
RESEARCH ARTICLE

Data analysis and modeling pipelines for

controlled networked social science

experiments

Vanessa Cedeno-MielesID
1,2*, Zhihao Hu3, Yihui Ren7, Xinwei Deng3, Noshir Contractor9,

Saliya Ekanayake10, Joshua M. Epstein11, Brian J. Goode5, Gizem Korkmaz4, Chris

J. Kuhlman4, Dustin Machi4, Michael Macy12, Madhav V. Marathe4,6,

Naren Ramakrishnan1,8, Parang Saraf8, Nathan Self8

1 Department of Computer Science, Virginia Tech, Blacksburg, VA, United States of America, 2 Escuela

Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador, 3 Department of Statistics, Virginia Tech,

Blacksburg, VA, United States of America, 4 Biocomplexity Institute & Initiative, University of Virginia,

Charlottesville, VA, United States of America, 5 Biocomplexity Institute, Virginia Tech, Blacksburg, VA, United

States of America, 6 Department of Computer Science, University of Virginia, Charlottesville, VA, United

States of America, 7 Computational Science Initiative, Brookhaven National Laboratory, Upton, NY, United

States of America, 8 Discovery Analytics Center, Virginia Tech, Blacksburg, VA, United States of America,

9 Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, IL,

United States of America, 10 Lawrence Berkeley National Laboratory, Berkeley, CA, United States of

America, 11 Department of Epidemiology, New York University, New York, NY, United States of America,

12 Department of Sociology, Cornell University, Ithaca, NY, United States of America

* vcedeno@espol.edu.ec

Abstract

There is large interest in networked social science experiments for understanding human

behavior at-scale. Significant effort is required to perform data analytics on experimental

outputs and for computational modeling of custom experiments. Moreover, experiments

and modeling are often performed in a cycle, enabling iterative experimental refinement

and data modeling to uncover interesting insights and to generate/refute hypotheses about

social behaviors. The current practice for social analysts is to develop tailor-made computer

programs and analytical scripts for experiments and modeling. This often leads to inefficien-

cies and duplication of effort. In this work, we propose a pipeline framework to take a signifi-

cant step towards overcoming these challenges. Our contribution is to describe the design

and implementation of a software system to automate many of the steps involved in analyz-

ing social science experimental data, building models to capture the behavior of human sub-

jects, and providing data to test hypotheses. The proposed pipeline framework consists of

formal models, formal algorithms, and theoretical models as the basis for the design and

implementation. We propose a formal data model, such that if an experiment can be

described in terms of this model, then our pipeline software can be used to analyze data effi-

ciently. The merits of the proposed pipeline framework is elaborated by several case studies

of networked social science experiments.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 1 / 58

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Cedeno-Mieles V, Hu Z, Ren Y, Deng X,

Contractor N, Ekanayake S, et al. (2020) Data

analysis and modeling pipelines for controlled

networked social science experiments. PLoS ONE

15(11): e0242453. https://doi.org/10.1371/journal.

pone.0242453

Editor: Ning Cai, Beijing University of Posts and

Telecommunications, CHINA

Received: June 7, 2020

Accepted: November 3, 2020

Published: November 24, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0242453

Copyright:© 2020 Cedeno-Mieles et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

information files.

https://orcid.org/0000-0003-0475-9420
https://doi.org/10.1371/journal.pone.0242453
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0242453&domain=pdf&date_stamp=2020-11-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0242453&domain=pdf&date_stamp=2020-11-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0242453&domain=pdf&date_stamp=2020-11-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0242453&domain=pdf&date_stamp=2020-11-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0242453&domain=pdf&date_stamp=2020-11-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0242453&domain=pdf&date_stamp=2020-11-24
https://doi.org/10.1371/journal.pone.0242453
https://doi.org/10.1371/journal.pone.0242453
https://doi.org/10.1371/journal.pone.0242453
http://creativecommons.org/licenses/by/4.0/

1 Introduction

1.1 Background and motivation

Online controlled networked temporal social science experiments (henceforth referred to as

NESS experiments or experimental loop) are widely used to study social behaviors [1–6] and

group phenomena such as collective identity [6, 7], coordination [8], and diffusion and conta-

gion [3, 6, 9]. There are several distinguishing features of NESS experiments. First, experiments

and analyses are performed in a loop. Second, experiment subjects or participants interact

through prescribed communication channels, where the players and interactions can be repre-

sented as nodes and edges, respectively, of networks. Third, experiments are carried out until a

specified condition is met or for a particular amount of time (as opposed to one shot games).

(Sometimes the term game is used in this work as a substitute for experiment because some

experiments can be viewed as games, in the sense that human subjects are working to achieve

some goal. However, we are not addressing gaming in this work.)

Besides carrying out NESS experiments, data analytics on experimental data and computa-

tional modeling of experiments are also very important. Analytics are required to interpret

experimental results and modeling is useful in reasoning about and extending results from

experiments [10, 11]. Combining experiments with modeling, in a repeated, iterative process,

enables each to inform and guide the other [12–14]. This approach has been undertaken in

several studies without automation [15–17] or purely conceptually [18]. Reference [18] takes a

combined experiment/modeling approach by defining a framework for conceptual modeling

for simulation-based serious gaming. Often, there is emphasis on one or the other (experi-

ments or modeling) with no experiment-and-modeling iterations. That is, experiments are

emphasized and there are no iterations [9], or modeling is emphasized and there are no itera-

tions [19–21].

The simple idea of iterative experiments and modeling can be operationalized in various

ways, including deductive and abductive analyses. In deduction, models are first developed,

and predictions from them are then compared to subsequently-generated experimental

data, in order to validate the models. In abductive looping, experiments are performed

first, patterns are searched for in the experimental data, and this information is used to con-

struct and modify models. Detailed abductive looping examples for the study of collective

identity in the social sciences are provided in [7, 22]. Fig 1 provides one representation of

the steps in abductive looping. Experiments are conducted; raw data are transformed into a

common format (e.g., cleaned) for processing. Then experimental data are analyzed in dif-

ferent ways to understand player actions, identify patterns, and evaluate hypotheses. Models

are developed based on these data, and model properties are inferred from the data. Models

are executed and validated, and modeling results are compared against experimental data.

Predictions may be made to explore counterfactuals. These latter results and the existing

experimental data are used to determine conditions for the next experiments, if any, and the

loop may repeat. See [7, 23, 24] for further discussion of abduction. We note that the steps

in deduction are essentially the same, but the sequencing of experiments and modeling is

reversed.

In this work, our focus is automating many steps in the NESS experiments. Automating

these steps can lead not only to improved productivity, but also to improved scalability and

reproducibility. (This has been the case in our research group.) It is seen that NESS experi-

ments require several classes of operations: (1) experimental design, (2) experiment execution

and data collection, (3) data fusion and integration, (4) experimental data analysis, (5) model-

ing, design, construction, and verification, (6) model parameters inference, (7) exercising

models (e.g., simulations for agent-based modeling approaches), (8) comparisons of

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 2 / 58

Funding: This work has been partially supported by

DARPA Cooperative Agreement D17AC00003

(NGS2), DTRA CNIMS (Contract HDTRA1-11-D-

0016- 0001), NSF DIBBS Grant ACI-1443054, NSF

BIG DATA Grant IIS-1633028, NSF CRISP 2.0

Grant 1916670, NSF Grants DGE-1545362 and IIS-

1633363, and ARL Grant W911NF-17-1-0021. The

U.S. Government is authorized to reproduce and

distribute reprints for Governmental purposes

notwithstanding any copyright annotation thereon.

The views and conclusions contained herein are

those of the authors and should not be interpreted

as necessarily representing the official policies or

endorsements, either expressed or implied, of

DARPA, DTRA, NSF, ARL, or the U.S. Government.

The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0242453

experimental data against model output, (9) model executions beyond the ranges of experi-

mental data (e.g., to explore counterfactuals), and (10) iteration on these steps.

However, current practice often entails producing custom programs and analytical scripts

that pertain to the experiments and modeling. Our lab has found that this often leads to ineffi-

ciencies and duplication of effort. We propose a pipeline framework that automates many of

the steps involved in analyzing social science experimental data, building models to capture

the behavior of human subjects, and providing data to test hypotheses. The proposed pipeline

framework is based on formal models, formal algorithms, and theoretical models. We also pro-

vide a data model such that if an experiment can be formally described in terms of this data

model, then data from the experiment can be analyzed with our system. While there are soft-

ware systems that address some of these operations [25, 26], they do not take the semantics

of social experiments into account and largely focus on providing a generic data schema. It is

important to note that our software system, presented in this work, is agnostic to deductive or

abductive methodologies because our pipelines (described below) are composable. This com-

posability also enables abduction using an experiment-only approach by removing the model-

ing activities in Fig 1.

1.2 Technical challenges of building software systems to analyze social

science experiments

To realize an automated and extensible software system for NESS experiments, there are two

major groups of technical challenges: those pertaining to pipelines in general, and those about

Fig 1. A representation of the steps in iterative abductive analysis. The process begins with conducting experiments

and flows clockwise through reasoning about data and what experiments to perform next, whereupon the process

repeats. Deductive analyses include these steps, but modeling occurs before experiments, so that the steps are

rearranged. Parts of many of these steps (e.g., computing model properties) can be automated, and this automation is

the focus of this paper. Other steps are not automated, such as the process of developing a model, because this requires

a significant element of human reasoning. Thus, our software system requires human-in-the-loop execution. The

process can be used in a purely experimental approach (i.e., no modeling). See the text for a description of this graphic.

https://doi.org/10.1371/journal.pone.0242453.g001

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 3 / 58

https://doi.org/10.1371/journal.pone.0242453.g001
https://doi.org/10.1371/journal.pone.0242453

social sciences. Addressing the first group, abstractions that capture data analytics and compu-

tation are important [27]. High-level abstractions render a system more understandable and

reusable [28]. General challenges include identifying appropriate levels of abstractions for

tasks, pipelines, and systems. The problems of abstraction are important for automation, trace-

ability, reproducibility, interoperability, composability, extensibility, and scalability [29]. For-

mal models help solve these abstraction problems [30].

In the case of the NESS system, there are three unique challenges to address. The first is spe-

cific to the features of NESS experiments. NESS experiments are often multi-phased, multi-

subject, and multi-action, and hence are sophisticated. Each subject can take repeated actions

from a set of action types, at any time and in any order. Interactions among subjects change

the environment of a subject because they share resources. This is a far more complicated

setup compared to many types of social science experiments such as one-shot games, experi-

ments with a single type of action, and individualized experiments. Such experiments require

more sophisticated software. Second, a greater range in modeling functionality is required,

even for one class of problems. This is because a “model” in social sciences is often a qualitative

textual description that is open to different interpretations due to lack of detail and due to

uncertainty (e.g., in human behavior). Consequently, multiple interpretations of a textual

description can result in different algorithmic models to build and evaluate. Third, experi-

ments in the social sciences can vary widely, depending on the phenomena being studied [31].

Hence, data analytics for these varying experiments, including data exploration, requires cus-

tom analyses. These custom analyses can be addressed at the task level (i.e., new individual

tasks within a pipeline), or at the pipeline level (i.e., the addition of new pipelines).

1.3 Solution approach and roadmap of work

To better present our work, Fig 2 provides a roadmap of this manuscript and the relationships

among sections. Section 2 provides an overview of our solution approach, and specific contri-

butions of the work. The data model (Section 3) is a formal specification of the features of

experiments whose data can be analyzed with our system. If an experiment can be represented

by this data model, then the experimental data can be analyzed with our pipelines. Graph

dynamical systems (GDS) (Section 4) is a theoretical framework that we use for generating

models of human behavior from experimental data. Both the data model and GDS are integral

to the pipeline system software design and implementation (Section 7): the data model identi-

fies the features of experiments and data that must be analyzed in the system, and GDS pro-

vides a formalism for model building. The pipeline system conceptual overview (Section 5)

identifies the different components of the pipeline system. From this, the mathematical model

for the pipeline system (framework and h-functions) in Section 6 is provided. This theoretical

representation of the system is then used to specify the design of the system. That is, we have

three theoretical models (in Sections 3, 4, and 6) that are the basis for software system design.

This design, and implementation, of the pipelines are the subjects of Section 7. The implemen-

tation, along with the data model, are used in the case studies of Section 8.

2 Solution overview and contributions

2.1 Software pipelines

Our work is to provide an automated and extensible software system for evaluating social phe-

nomena via iterative experiments and modeling. Fig 3 elaborates our solution: use of software

pipelines to largely automate the process of analyzing social science experimental data, which

are the classes of operations (3) through (10) given in Section 1.1. Table 1 supports the figure

with overviews of the pipelines.

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 4 / 58

https://doi.org/10.1371/journal.pone.0242453

A pipeline is a composition of tasks, where each task takes a set of inputs and produces a

set of outputs. Our use of pipeline is motivated by the Pipes and Filters architecture pattern

[32, 33]. A pipeline combines tasks in analyst-specified ways. We distinguish our work from

workflows because, while there is much overlap between the capabilities of workflows and

pipelines, here we do not address provenance of digital objects. Although the analysis loop in

terms of experiments and modeling are presented in Fig 3, these analyses and abductive and

Fig 2. Roadmap of, and relationships among, sections in this manuscript. Arrows indicate dependencies among

sections, and dashed arrows identify the theoretical models that impact the design and implement of the software

pipeline system. The Introduction, Related Work, and Conclusions are not shown. See text for details.

https://doi.org/10.1371/journal.pone.0242453.g002

Fig 3. Five software pipelines (in gray) for NESS experiments. The five pipelines are itemized and described in Table 1. In this human-in-the-

analysis loop, experiments (upper left in figure) are performed. Any experiment whose data can be cast in terms of the data model specification can

be analyzed with this system. These pipelines are the focus of this work. The pipeline composition shown here, for abductive looping, is one of

several possibilities. See Table 1 for descriptions of the pipelines in this figure. The first, second, and fifth pipelines can be used with a purely

experimental approach (omitting modeling). An earlier version of the pipeline system is provided in [34], Fig 1.

https://doi.org/10.1371/journal.pone.0242453.g003

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 5 / 58

https://doi.org/10.1371/journal.pone.0242453.g002
https://doi.org/10.1371/journal.pone.0242453.g003
https://doi.org/10.1371/journal.pone.0242453

deductive looping can be executed within a study that exclusively uses experiments (i.e., no

modeling). The importance of experiments, even with modeling, is observed in Fig 3 because

experimental data plays a major role in pipelines 1, 2, 3, and 5. Experiments are critical, for

example, in establishing causality, by comparing results from control experiments with those

using treatments.

Our experimental data analysis and modeling software pipelines are complementary to cur-

rent efforts to build configurable software platforms to perform social science experiments.

See [35–38]. Usually, these systems only focus on the design and running of online lab experi-

ments. Just as these experiment platforms provide the infrastructure for users to instantiate a

particular experiment in software, we provide a pipeline framework that can be used to build

pipelines for performing various types of analyses on the experimental data.

The focus of this paper is on formal theoretical models, and the architecture, design, imple-

mentation, and use of the pipelines that instantiate these models in software. The goal of the

software system is to automate many of the steps in analyzing social science experimental data,

and building and exercising models. We presume that in the great majority of cases, no one

person is going to identify a social science problem or question; specify experiment require-

ments and design; build experimental platforms and execute experiments; specify analyses;

build software to analyze experiments and perform data analyses; specify, design, build, and

validate models of experiments; and evaluate hypotheses. Rather, we view these social science

researches as “team science,” and as such, this system is not focused on all members of such a

team. So while all team members can have a general appreciation of the need for and value of

such a system, the paper is focused on the team members who design and build software to

automate many analysis steps.

The terms experiment to mean human subjects interacting in a controlled setting with their

actions recorded. Modeling refers to building mathematical representations of experiments.

Simulation is execution of software implementations of models, e.g., ABMs. We avoid ambigu-

ous terms such as computational experiment. This paper is a full treatment of, and a significant

extension of, a preliminary version (a conference paper) that appears as [34].

2.2 Novelty of work

There are three novel aspects of our proposed pipeline framework. First, we devise an abstract

data model that is a representation of experiments and simulation models. One can rigorously

determine whether experimental data and model outputs can be analyzed with our pipelines.

Furthermore, we incorporate a second model called graph dynamical systems (GDS) [39].

GDS and the abstract data model provide foundations to ensure proper mappings, from

Table 1. Description of the five pipelines for NESS experiments.

No. Acronym Name Description

(1) EDTP Experimental Data

Transformation Pipeline

Experimental data are transformed, by the EDTP, into a data common specification that conforms to our data

model (see Section 3).

(2) DAP Data Analytics Pipeline The DAP analyzes data and generates and prepares data for property inference.

(3) PIP Property Inference Pipeline The PIP determines properties for probabilistic agent-based modeling (ABM) and simulation (ABMS).

(4) MASP Modeling and Simulation Pipeline Simulations are performed in the MASP.

(5) MEAPP Model Evaluation and Prediction

Pipeline

The MEAPP generates comparisons between experimental data and model predictions using statistical and

logical testing. This is part of model validation. We can then specify test conditions for next experiments

(experiment specification).

One composition of the pipelines is provided in Fig 3; it is one of several possibilities.

https://doi.org/10.1371/journal.pone.0242453.t001

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 6 / 58

https://doi.org/10.1371/journal.pone.0242453.t001
https://doi.org/10.1371/journal.pone.0242453

experimental conditions to computational model structure, and from model structure to

experiments. See Fig 4, where we have an experimental platform and a modeling and simula-

tion (MAS) platform, and we need these two to interoperate through our data and GDS mod-

els. It shows specific, illustrative types of data sources and modeling approaches.

Second, our pipeline framework is based on formal theoretical models; the three models

that inform the pipelines are denoted by the dashed arrows in Fig 2. These models are crucial

in providing a principled approach to software design and implementation. This is also useful

for reasoning about abstractions. Third, our pipelines use a microservices conceptual approach

[40–42] wherein the components (i.e., tasks) of a pipeline—which we call functions, h-func-

tions, or tasks—have well-defined minimal scopes. (Functions are described below, but basi-

cally represent the software codes that provide the functionality that pipelines orchestrate.)

This way, reuse is fostered because new functions can be added surgically for experiments,

analyses, and models without introducing redundant capabilities. The pipeline framework can

accommodate the insertion of new h-functions at arbitrary points in the pipeline.

In comparing our software system with others in the social science realm, we note that

according to [28]: “the current focus of many social science systems is social network analysis.”

See other works in Section 9. As illustrated in Figs 1 and 3 our work goes far beyond structural

analyses of static networks: our work centers on experiments of human behavior, where inter-

actions among players are specified as edges in a network whose nodes are the players. Our

system is used for quantifying the behavior of humans in experiments: (i) analyzing experi-

mental data, (ii) developing models and their properties for the behavior of human subjects in

these experiments, and (iii) conducting agent-based simulations to model these experiments,

and conditions beyond those tested. Furthermore, the system is applicable to a wide range of

Fig 4. The three types of models described in this work: (Abstract) data model, graph dynamical system model, and

pipeline model. The data model enables rigorous reasoning about both (i) experiments and experimental data specifications

(requirements) and (ii) modeling and simulation (MAS) specifications. It, along with the graph dynamical system (GDS) model,

help to ensure consistency and correspondence between experiments and MAS. We use GDS to model the dynamics of

particular applications systems. Specific data sources and modeling approaches are shown. These are used within our pipeline

model. Figure adapted from [34].

https://doi.org/10.1371/journal.pone.0242453.g004

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 7 / 58

https://doi.org/10.1371/journal.pone.0242453.g004
https://doi.org/10.1371/journal.pone.0242453

experiments, as long as they conform to the data model in Section 3. To our best knowledge,

there are no other pipeline software systems for these types of studies.

2.3 Contributions

We itemize our contributions below.

1. Development of formal models, formal algorithms, and software implementations

for each of a data model and a pipeline model. For each of data and pipeline representations

(down left-hand column) of Table 2, we provide formal models, formal algorithms, and imple-

mentations. This approach demonstrates the power of modeling (including theory) to inform

software system implementations. (Elements of Table 2 in blue and bold are our contributions;

elements taken from other works are normal type-faced.) Thus, taking the data, GDS, and

pipeline systems each in turn, this contribution is specifically that we provide a consistent (and

unified) view of, and approach to, pipeline systems building for social experiments and for

modeling them. Specific contributions within this context follow.

2. Formal data model specification for NESS experiments and modeling. We develop a

formal abstract data model for NESS experiments. The primary use of our data model is this:

any experiment that can be formally described in terms of this data model can be analyzed

within our pipeline system. The model provides a single specification for both experiments

and modeling, thus ensuring a correspondence between experiments and the modeling and

simulation (MAS) tasks that represent the experiments. The abstract data model provides an

abstraction level per Section 1.2. Characteristics of our data model are: (i) an experiment may

contain one or more phases (i.e., sub-experiments); (ii) the finite duration of each phase may

be different; (iii) the interaction structures among players (represented as networks) may be

different for different phases; (iv) the set of player actions and the set of multi-player interac-

tions may be different for different phases; and (v) players may repeat these actions and inter-

actions any number of times, in any order, within a phase (i.e., temporal freedom of actions

and interactions). A significant class of experiments is represented by these five characteristics.

Illustrative works whose experiments are in this class are [1–6, 8, 9]. The data model, with our

dynamical systems computational model (Section 4), provide a formal specification for experi-

ments and models. The data common specification in Fig 3 is based on the data model.

3. Formal pipeline framework. We provide a conceptual view of pipelines used to con-

struct a formal theoretical model of our pipeline framework. The pipeline framework is the

infrastructure that executes common operations that are invariant across pipelines that have

different functionality. (It is the same among all five pipelines that we introduce in this paper

to study social science experiments and to model them.) These common fundamental

Table 2. This work involves three major topics (left column of table): Data representation, modeling representation, and software pipelines.

Representation (Theoretical) Models Algoritms Implementations

Data Formal data model for networked experiments. Entity-relationship diagram. Use in multiple case studies.

Modeling Use of existing Graph Dynamical Systems

model.

Models tailored for particular applications. Use in data analysis and modeling within

pipelines.

Software

pipelines

Formal, general model of pipeline framework. Algorithm for execution of pipeline

framework.

Five pipelines for data analysis and modeling.

The first two enable developers to reason about construction of analysis pipelines; they also enable formal specification of experiments and of simulation systems. For

each of these topics, there are models, algorithms, and implementations (labels across the top of the table). Our work covers all of these areas. The seven blue bold

entries in the body of the table are our contributions. The other two non-bold entries are results taken from other works, but their use here is novel. Except for these two

entries, all other elements in this table are contributions of our work. These contributions cover theory, implementation, and practice.

https://doi.org/10.1371/journal.pone.0242453.t002

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 8 / 58

https://doi.org/10.1371/journal.pone.0242453.t002
https://doi.org/10.1371/journal.pone.0242453

operations are: (i) read and parse the pipeline configuration file which specifies the pipeline

tasks to complete; (ii) control accessing of input files, JSON schema files, transformation

codes, functions, etc.; (iii) check files against their JSON schema and terminate gracefully if a

verification fails; (iv) invoke the proper transformation functions (if applicable); (v) invoke the

proper h-functions (see Contribution 4 below for h-functions) in their proper order (and any

other operations); and (vi) error handling. See Fig 5. From the model, we present an algorithm

that covers these operations, and then design and construct a pipeline framework to execute

these operations for any pipeline. The framework is extensible to additional pipelines: we have

demonstrated in our work that it is extensible because our particular pipelines have been con-

structed over time using the same framework.

4. Pipeline h-functions (also called functions and tasks). We use a microservices concep-

tual approach [40–42] for our pipelines, wherein the tasks or components in a pipeline—

which we call functions or h-functions—have minimalist scopes. The h-functions are software

components that give a pipeline its application domain functionality. For example, one h-func-

tion will perform a particular data analytics operation, such as compute time histories, or com-

pute a particular property for a particular model from data. We provide 29 implemented h-

functions within the five pipelines (see Appendix D). All h-functions are serial codes written in

C++, Python, and R. New functions can be introduced for new experiments, analyses, and

models in a targeted fashion (as we have done), fostering reuse without redundancy. Note that

a pipeline is comprised of the pipeline framework and a sequence of h-functions (Fig 5). We

put these parts together to form particular pipelines in the next contribution.

5. Five extensible pipelines for modeling and simulation, and analysis, of controlled net-

worked experiments. We design and construct pipelines for (1) transforming experimental

data, (2) analysis of data, (3) inferring model properties, (4) MAS, and (5) comparing model

results with experiments results, and predicting results in the absence of data (i.e., counterfac-

tuals). Each pipeline consists of an extensible collection of functions that can be composed to

accomplish particular objectives. Moreover, there are several ways to order these pipelines (Fig

3 is one way), and some pipelines may be omitted or implemented as multiple instances. An

example is the use of experiments only for devising and testing hypotheses (i.e., studying a

phenomenon with experiments, without modeling). Across multiple iterations of Fig 3, the

experiment may change, necessitating different Data Analytics Pipelines for different experi-

ments. Execution of pipelines and tasks are robust because of syntactic data validation of

inputs and outputs at the task (function) level. These pipelines execute operations (3) through

(10) in Section 1.1 (note: we do not automate the process of generating software verification

cases, and model design is a human task). The Fig 3 caption explains why we emphasize con-
trolled experiments; however, this is not a requirement for the pipelines (e.g., they can be used

with social media or other types of observational data). The automated steps in Fig 3 are exe-

cuted with a human-in-the-loop to inspect results. The pipelines also help ensure extensibility,

scalability, and other “ilities” of Section 1.2.

6. Case studies. Use of the NESS system is demonstrated with three case studies. Case study

1 combines experiments and modeling. Case study 2 addresses experiments only. Case study 3

Fig 5. An application-specific pipeline is composed of an invariant framework that performs general operations (see text)

and application-specific h-functions.

https://doi.org/10.1371/journal.pone.0242453.g005

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 9 / 58

https://doi.org/10.1371/journal.pone.0242453.g005
https://doi.org/10.1371/journal.pone.0242453

focuses on modeling only. In case study 1, we describe social experiments to generate collective

identity (CI) within a collection of individuals [7]. Collective identity (CI) is an individual’s

cognitive, moral, and emotional connection with a broader community, category, practice, or

institution [43]. Experiments and all five pipelines in Fig 3 are used. Two additional case stud-

ies use published works from other teams, appearing as [3, 44]. The point of these case studies

is to demonstrate that our pipelines are useful for other types of experiments, and can be used

in other settings.

Empirical context for our pipelines. The works of [7, 22, 45] demonstrate the usefulness

of our pipeline system, where collective identity was studied via online experiments and

modeling of them. That is, these provide empirical context where our software tools are impor-

tant. Analogous works that also provide context are experiments in [1–6]. Returning to [7, 22,

45], these works demonstrated that CI could be formed among players in a group anagram

game, where multiple players interact with their assigned neighbors to form words from col-

lections of letters. Devised and implemented in the software, games were played online,

through players’ web browsers. Game data were analyzed to understand game dynamics, to

develop a model of player behaviors in the game, and to compute properties for the model.

The work [45] produced additional models for the individual actions of players (word forma-

tion, letter requests of game neighbors, and replies of letters to neighbors’ letter requests) in

the anagram game. Although all three of the works [7, 22, 45] used the software pipelines of

this work, there is no mention nor description of the software pipelines in them. The purpose

of our work is to describe the software pipeline system for general NESS experiments. That is,

our pipeline software system is far more general than its use in those works. Nonetheless, those

works demonstrate the value of our pipeline system.

2.4 Significant work beyond the conference paper

A preliminary 12-page version of this paper was published as [34]. Significant extensions of

that work, presented herein, are summarized as follows. (1) In Section 3, we demonstrate how

our abstract data model can be transformed into data models used in software development,

such as an entity-relationship diagram in unified modeling language (UML) format. This

enables reasoning about and representing the data model as a software artifact. (2) In Section

4, the graph dynamical systems (GDS) framework is presented in more detail and an example

is given that uses the model. This makes more precise the GDS framework and its correspon-

dence with the data model. (3) In Section 6, we provide a formal mathematical model of the

pipeline system; we provide an algorithm of its functionality; and we describe how the model

maps onto software. This is important because the formal model is the basis for the architec-

ture and design of the pipeline system. (4) In Section 7 and Appendices A through D, we pro-

vide a greatly expanded description of the software design and implementation. This also

demonstrates how the model of Section 6 is used to design and implement the software

pipelines.

3 Abstract data model for NESS experiments and for modeling and

simulation

We present a formal abstract data model. The utility of this model is to determine whether an

experiment can be analyzed with our pipeline system. If an experiment can be represented by

the characteristics of our data model, then data from the experiment can be analyzed with our

pipelines. We provide a short example of its use, and then we demonstrate how the data model

can be transformed into an entity-relationship diagram that is a more typical representation

for reasoning about software, for implementation purposes.

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 10 / 58

https://doi.org/10.1371/journal.pone.0242453

3.1 Formal data model

A general adaptive abstract data model is presented. This data model for networked social

experiments follows the five characteristics of Section 2.3, Contribution 2. The purpose of the

data model, provided in Table 3, together with the computational model of Section 4 and the

pipeline model in section 6, is to provide formal representations for experiments and MAS,

and their iterative interactions, per Fig 4. We focus only on the data model, and for compact-

ness, we describe the data model in terms of experiments, but the description is equally valid

for modeling. Given a description of an experiment or model, one can determine whether our

system of five pipelines can be applied. Also, given a phenomenon to study, the data model can

be used to formulate experiments and models for simulating experiments. The data model

produces the “data common specification” in Fig 3 (blue). We note that even for different

types of experiments that do not conform to our data model, a pipeline system of collections

Table 3. Definition of our abstract data model.

Parameters Symbols Description

Experiment Schema

1 Experiment id exp_id Unique ID (identifier) for an experiment.

2 Number of phases np Number of phases in the experiment.

3 Number of players n The number of unique players over all phases in the experiment.

4 Begin time t_begin Timestamp of experiment start time.

5 End time t_end Timestamp of experiment end time.

6 Set of player IDs V V = {v1, . . ., vn}. Set of players over all phases; vi 2 V is a unique ID for player.

7 Player attributes O O ¼ [n
j¼1

Oj. Oj ¼ ðoj1; oj2; . . . ; oj;nsa
Þ is the sequence of nsa attributes for vj 2 V.

Phase Schema Structure
1 Phase schema id ph_sch_id Unique id for phase schema.

2 Sequence inp 1 � inp � np. Element of the sequence of phases of the experiment.

3 Phase begin t_ph_begin Timestamp of beginning of a phase.

4 Phase duration tp Number of time increments in a phase.

5 Unit of time up Time unit of one time increment (e.g., seconds, days).

6 Network definition G(V0, E0) Node set V0 = {v1, . . ., vη} and edge set E0 = {e1, . . ., em}, where V0 � V may not be all nodes (players) in the system, and edge

ei = {vj, vℓ} with vj, vℓ 2 V0. Note that E0 may be empty.

7 Meaning of an edge. Λ Set Λ of string representations λ 2 Λ stating the meaning(s) of an edge (e.g., λ = “communication channel” or “influence”).

8 Node attributes for a

phase.

Γ G ¼ [
tp
t¼0ð[

Z

j¼1GjðtÞÞ. GjðtÞ ¼ ðgj1ðtÞ; gj2ðtÞ; . . . ; gj;Zv ðtÞÞ is the sequence of ηv attributes for vj 2 V0 in the phase inp at time t. Γ is

a triple nested sequence in attributes, player ID, and time.

9 Edge attributes for a

phase.

C C ¼ [
tp
t¼0ð[m

j¼1
CjðtÞÞ. CjðtÞ ¼ ðcj1ðtÞ; cj2ðtÞ; . . . ; cj;Ze

ðtÞÞ is the sequence of ηe attributes for ej 2 E0 in the phase inp at time t.
C is a triple nested sequence in attributes, edge ID, and time.

10 Initial conditions for

nodes

Bv Nodes: Bv ¼ [
Z

j¼1Bv
j . Bv

j ¼ ðbj1; bj2; . . . ; bj;mv Þ is the sequence of μv initial conditions for the phase, for vj 2 V0; μv � 0.

11 Initial conditions for

edges

Be Edges: Be ¼ [m
j¼1
Be
j . Be

j ¼ ðbj1; bj2; . . . ; bj;me
Þ is the sequence of μe initial conditions for the phase, for ej 2 E0; μe � 0.

12 Action set A A ¼ fa1; a2; :::; anag. Set of na actions that each player can execute, over time, any number of times, during a phase, where na
� 0.

13 Action sequence T T ¼ [
tp
t¼0ð[

Z

k¼1TkÞ. Tk = (σi, aj, vk, vℓ, to, pyq) is the schema for an action tuple. σi is a string that is a unique identifier for an

action sequence. Action aj 2 A is initiated by node vk 2 V0, and vℓ is the target node of the action, with edge e = {vk, vℓ} 2 E0.

to 2 R is the time of the action (0 � to � tp); pyq is the payload represented as a JSON schema.

The experiment schema describes experiment parameters. The phase schema structure describes parameter types for an experimental phase; an experiment can have any

number np of phases. Particular instance variables within the phase schema structure can vary across phases. We use experiment throughout in the table and text for ease

of exposition, but the data model is also used for (simulation) models.

https://doi.org/10.1371/journal.pone.0242453.t003

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 11 / 58

https://doi.org/10.1371/journal.pone.0242453.t003
https://doi.org/10.1371/journal.pone.0242453

of operations can still be built, but would have different h-functions than those we have con-

structed. We now describe the two major sections of Table 3.

Experiment schema. Per Table 3, an experiment has the following parameters: a unique ID

exp_id, the number np of experiment phases, the number n of players (i.e., human subjects)

over all phases of the experiment, a t_begin timestamp for the start of the experiment, and a

t_end timestamp for the end of the experiment. Each player has a (universally) unique ID vi for

identification. A set V of players in an experiment is defined by V = {v1, . . ., vn}. An experiment

has nsa attributes defined for each player. Player attributes O are invariant across phases (e.g.,

age, gender, education level, and income that might be obtained through a questionaire).

Phase schema. An experiment is composed of one or more phases. All phases have a com-

mon schema, per Table 3, but particular phases may have different variable values for parame-

ters in the schema.

Each phase schema has the following parameters: a unique ID ph_sch_id, the number

inpð1 � inp � npÞ of the phase in the sequence of phases, a t_ph_begin timestamp for the start

time of the phase, number of time increments in the phase tp, and the unit up of time of one

time increment. The interaction channels of pairwise interactions among players is defined by

a network G(V0, E0), with meanings of edges Λ, for each phase. Edge attributes C and node

attributes Γ over all edges and nodes capture time-varying attribute changes for phase inp . Play-

ers (i.e., nodes) and edges may have initial conditions Bv and Be, respectively, whose elements

may be the same as Γ and C. The permissible player actions during a phase is denoted as the

set A. An action tuple Ti, which captures pair-wise interactions between players, may be inti-

mately tied to the attribute sequences Γ and C of a phase because action tuples, for example,

may cause or be caused by changes in node and edge attributes. In essence, Γ and C can be

viewed as sequences of node and edge states. Items 8 through 11 and 13 of the phase schema

in Table 3 follow the same basic pattern, to capture features by node or edge, and by time.

There is a sequence of values for a particular node vj or edge ej (e.g., Γj, Cj, Bv
j , B

e
j , and Tj). Each

entry in a sequence can be a scalar, array, set, map, or other structure. Then, these entries are

sequenced over time through the union of entries over time, from time 0 through tp, as shown

in rows 8, 9, and 13 of Table 3. The exceptions are the initial conditions Bv
j and Be

j (rows 10 and

11), because by definition, they are specified only at time 0.

3.2 Illustrative instances of data model parameters

We provide a few illustrative examples of data model elements. A 3-phase game is described in

Section 8, Case Study 1. Phase 2 is a group anagram (word construction) game. In phase 2, a

network G(V0, E0) is imposed on the players, where the meaning λ of a edge is a communica-

tion channel to request letters and reply to requests. A node initial condition bj1 for a game is

the number of alphabet letters a player receives at the beginning of the phase to use in forming

words, and bj2 is the set of letters. Each player can execute any action from the action set A,

such as request a letter from a neighbor.

We now provide an example of an action tuple of an action sequence. If player vi requests

letter “z” (a request is action aℓ 2 A) from player vj at time to, which initiates a sequence of

actions (because there may be a subsequent letter reply from vj) then the action tuple is Ti =

(σi, aℓ, vi, vj, to, “z”). Here, σi = vi + “−” + counter (e.g., a string) is a concatenation of the initia-

tor’s (vi’s) ID with a player-specific counter to form a unique ID for the sequence of actions

that is initiated with the letter request. If vj responds with “z,” then this (second) action tuple

will use the same σi as the first element of the tuple, consistent with Ti. This is how action

tuples are defined and identified in data processing, in forming action sequences T for a phase.

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 12 / 58

https://doi.org/10.1371/journal.pone.0242453

3.3 From abstract data model to software specification

Ours is an abstract mathematical data model. There are several reasons for our choice of

model representation. First, a mathematical representation is more abstract (which means,

among other things, more versatile and flexible) in its use. Second, it corresponds much more

closely to the information required for pipeline capabilities, and enables compact representa-

tions of simulation models. Third, it is naturally amenable to translation into other data model

representations that are more common in software. We elaborate on each of these.

1. Abstract representation. An element of a sequence can abstractly represent any type of

data, including scalars, vectors, sets, tensors, and complicated data structures (that may be

implemented via a JSON schema). For example, consider γj2 of Γj of Γ in Table 3, which is an

attribute for node or player vj 2 V0. This variable might represent a 2-D matrix or a set. Fur-

thermore, if the representation needs to be changed, it is much easier to do so with an abstract

representation.

2. Compactness. Consider a capability for a simulation model, as part of a pipeline: multi-

plying two matrices, M1 and M2. A mathematical representation is simply M1 � M2 or M1 M2.

A pseudo code representation for this functionality would require some five lines of code

including three FOR loops. Clearly, M1 � M2 is far more compact.

3. Principled transitions (progression) among software artifacts. The steps in progress-

ing from a mathematical data model to a software model are shown in Fig 6. Experiment and

phase schemas in Table 3 contain data structures. Instances of our abstract data model (gener-

ated from the execution of an experiment) can be represented as entity-relationship diagrams,

which are conceptual or logical data models. Examples are relational models [46], object-ori-

ented models like Object Definition Language (ODL) [47] or Unified Modeling Language

(UML) [48], or data structure diagrams [49], among others. A UML representation of an

entity-relationship diagram for our abstract data model is presented in Fig 7. UML is the

Fig 6. Sequence of data models for reasoning about experiments and modeling and simulation. We advocate for pre-pending the abstract data

model to the front end of the model process, as shown here. Table 3 shows our abstract data model and Fig 7 shows this data model translated into a

entity-relationship diagram in unified modeling language (UML) form. The table and figures in A (which support Section 7) show the Data Common

Specification for our software design.

https://doi.org/10.1371/journal.pone.0242453.g006

Fig 7. Data model of Table 3 translated into a entity-relationship diagram in unified modeling language (UML) form. This illustrates that the

abstract data model can be translated to customary forms of data models (e.g., UML) that are more amenable for software development.

https://doi.org/10.1371/journal.pone.0242453.g007

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 13 / 58

https://doi.org/10.1371/journal.pone.0242453.g006
https://doi.org/10.1371/journal.pone.0242453.g007
https://doi.org/10.1371/journal.pone.0242453

industry-standard language for specifying, visualizing, constructing, and documenting the

artifacts of software systems [48]. All of the structures from the abstract data model of Table 3

are translated into a entity-relationship diagram in unified modeling language (UML) form,

demonstrating that the abstract data model can be translated into standard forms of data mod-

els more amenable for software development.

Data common specification. Every JSON input file in the pipelines needs a corresponding

JSON schema for the verification of formats. For our Data Common Specification there are

five classes of input every experiment needs to define. The formal data model in Section 3.1

specifies that an experiment can have any number np of phases and a different set of players

with an action set for each phase. Table 8 in Appendix A shows a description of the elements

of the Data Common Specification. Figures in Appendix A define through JSON schemas

the formats and compositions of the elements of the Data Common Specification. These are

implementation aspects of our pipelines. These are also the types of files we use in the case

studies in Section 8.

4 Graph dynamical system model

In this section, we present a formal framework for NESS experiments and Agent-Based Mod-

els. We use a computational model known as a discrete graph dynamical system (GDS) [39],

to specify, build, and execute experiments and simulators of experiments (and of other condi-

tions). GDS is also correspondent with the data model of Section 3 and is a general model of

computation [50, 51], and hence can ensure that experiments and models are synchronized,

per Fig 4. A number of other formal models could have been used; we find GDS to be a natural

model for specifying NESS experiments. Table 4 shows a description of all the symbols used in

our equations.

Table 4. Symbols used to describe our computational model known as a discrete Graph Dynamical System (GDS).

Parameters Symbols Description

Experiment Schema

1 GDS S A synchronous Graph Dynamical System (GDS).

2 Node set V V = {v1, –, vn}; vi 2 V is a unique ID for a node.

3 Edge set E E = {e1, –, em}; ei 2 E is a unique ID for an edge. Each undirected edge {vi,
vj}2E with vi, vj 2 V can be represented by two directed edges: edge from vi
to vj, denoted eij = (vi, vj) and eji = (vj, vi).

4 Network definition G(V, E) Node set V and edge set E.

5 Undirected graph G G � G(V, E) is an undirected graph with n = |V|, and represents the

underlying graph of the GDS, with node set V and edge set E.

6 State space W The union of the state space Wv for nodes and the state space We for edges;

W = Wv [We. We assume here that only nodes have states; there are no

edge states.

7 Function F Collection of functions in the system, F = (f1, f2, . . ., fn). Function fi,
represents the local function associated with node vi, 1 � i � n, that

describes how vi updates its state. We use the synchronous update scheme

where all fi execute in parallel.

8 Method U Describes how the local functions are ordered at each discrete time.

9 Sequence of vertices N(vi) The sequence of vertices adjacent to vi in G, including vi itself, so that 1 �

|N(vi)| � n for each vi 2 V.

10 Degree d(vi) The degree of vi in G.

11 Sequence of vertex

states

s(vi) The sequence of vertex states of the vertices in N(vi) so that 1 � |s(vi)| � n
for each vi 2 V.

12 System state or

configuration

C The system state or configuration C of a GDS is the vector of length n, C =

(s1, s2, . . ., sn).

https://doi.org/10.1371/journal.pone.0242453.t004

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 14 / 58

https://doi.org/10.1371/journal.pone.0242453.t004
https://doi.org/10.1371/journal.pone.0242453

4.1 GDS formal model

A synchronous Graph Dynamical System (GDS) [52] S is specified as S = (G, W, F, U), where

we define each in the following. (a) G � G(V, E) is an undirected graph with n = |V|, and repre-

sents the underlying graph of the GDS, with node set V and edge set E. Nodes represent agents

in a system or test subjects in our experiments, and edges denote pair-wise interactions

between agents. (b) W is the state space, which is the union of the state space Wv for nodes and

the state space We for edges; i.e., W = Wv [We. These are the states that nodes and edges can

take during the dynamics. Each undirected edge {vi, vj} 2 E, with vi, vj 2 V, can be represented

by two directed edges: edge from vi to vj, denoted eij = (vi, vj), and eji = (vj, vi). (c) F = (f1, f2, . . .,

fn) is a collection of functions in the system. Function fi represents the local function associ-

ated with node vi, 1 � i � n, that describes how vi updates its state. (d) U is the method which

describes how the local functions are ordered at each discrete time. Here, we use the synchro-

nous update scheme where all fi execute in parallel.

Each node vi 2 V of G has a state value from Wv at each time t. Each edge eij 2 E of G has a

state value from We at each t. Each function fi specifies the local interaction between node vi
and its neighbors in G. The inputs to function fi are the state of vi, the states of the neighbors of

vi, and the states of the edges outgoing from vi in G. Function fi maps each combination of

inputs to s0
i 2 Wv for vi, and to s0

ij 2 We for each directed edge eij. s0
i is the next state of node vi,

and s0
ij is the next state of edge eij. These functions are executed in parallel at each time step t.

We provide details of the dynamics of a GDS, based on the overview above. We assume

here that only nodes have states; there are no edge states. Let G(V, E) be a graph with node set

V and edge set E, and where n = |V|. Each node vi has a state si Let N(vi) be the sequence of ver-

tices adjacent to vi in G, including vi itself, so that 1 � |N(vi)| � n for each vi 2 V. That is,

NðviÞ ¼ ðvvi ;1; vvi ;2; . . . ; vvi ;dðviÞþ1Þ ; ð1Þ

where d(vi) is the degree of vi in G. Let s(vi) be the sequence of vertex states of the vertices in

N(vi), so that 1 � |s(vi)| � n for each vi 2 V, i.e., and d(vi) = |N(vi)| − 1.

sðviÞ ¼ ðsvi ;1; svi ;2; . . . ; svi ;dðviÞþ1Þ : ð2Þ

We call s(vi) the restricted state of vi. The system state or configuration C of a GDS is the vec-

tor of length n, C = (s1, s2, . . ., sn).
A local function fi : ðWvÞ

dðviÞþ1
! Wv quantifies the dynamics of node vi by computing vi’s

next state s0
i using the states of nodes in its closed 1-neighborhood as

s0
i ¼ fiðsðviÞÞ : ð3Þ

Updating the entire set of nodes in G at some time t is accomplished with the GDS map-

ping

F: ðWvÞ
n

! ðWvÞ
n

: ð4Þ

For the synchronous update scheme, where all fi, i 2 {1, 2, . . ., n}, execute in parallel, the GDS

mapping is defined by

Fðs1; s2; . . . ; snÞ ¼ ðf1ðsðv1ÞÞ; f2ðsðv2ÞÞ; . . . ; fnðsðvnÞÞÞ : ð5Þ

In a simulation, we compute successive system states using this last equation, as C(t + 1) =

F(C(t)), where C(t) is the system state or configuration at time t, and C(t + 1) is the next system

state.

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 15 / 58

https://doi.org/10.1371/journal.pone.0242453

To make this explicit, we now cast the preceding formalism into a pseudo-algorithm in

computing the dynamics of a GDS. Let us assume for simplicity that only nodes possess state,

and edges do not. At any time t, the configuration C(t) of a GDS is CðtÞ ¼ ðst
1
; st

2
; . . . ; stnÞ,

where sti 2 Wv is the state of node vi at time t (1 � i � n). In a synchronous GDS, all nodes

compute and update their next state synchronously, i.e., in parallel. A GDS transition from one

configuration C(t) to a next configuration C(t + 1) in parallel at each time t can be expressed as

follows,

for each node vi 2 V do in parallel

(i). Compute the value of fi (Eq (3)) using states in C(t) and assign it to s0
i.

(ii). Assign s0
i as the next state of vi in C(t + 1).

end for

Note that if the fi are stochastic, C(t + 1) may not be unique. The extension to the update of

edge states s0
ij is natural.

Associations between the data model and GDS. The data model in Section 3 is consistent

with a GDS. The graph G(V0, E0), per phase, in Table 3 corresponds to the graph G(V, E) of the

GDS. Node Wv and edge We state spaces in the model represent subsets of the node (Γ) and

edge attributes (C) in the data model, respectively. Attributes may have additional parameters

that are not part of the node or edge state, such as gender and age. Action tuples may be part of

the state. The sequencing of action tuples is related to the update scheme U, e.g., whether each

node takes turns performing some action in series, or whether players can act simultaneously.

4.2 Example GDS and resulting dynamics: Threshold systems

We provide an example of a GDS and the dynamics that it generates. We use a threshold con-

tagion system, motivated by the work [3, 13, 53] in the social sciences. Also, we use this model

in the second case study of Section 8. A progressive threshold system works as follows. The

network G(V, E) is provided at the left in Fig 8. The valid state set W for a node is W = Wv =

{0, 1}, where state 0 means that a node does not possess a contagion and state 1 means that a

node possesses the contagion and will assist in transmitting it. The threshold local function

works as follows. Each node vi is assigned a threshold 0 � θi � di + 1, where di is the degree of

vi in G. If the state si of node vi at time t is 1 (i.e., sti ¼ 1), then the output of fi is 1 (that is, a

node in state 1 at t remains in state 1 at (t + 1)). If sti ¼ 0, then stþ1
i ¼ fi ¼ 1 if at least θi of vi’s

neighbors are in state 1 at t; otherwise, stþ1
i ¼ fi ¼ 0. That is,

stþ1
i ¼ fiðstðviÞÞ ¼

1 if sti ¼ 1 ;

1 if sti ¼ 0 and n1 � yi ; or

0 otherwise

8
>>><

>>>:

ð6Þ

where st(vi) is the sequence of states in the closed neighborhood of vi at time t, and n1 is the

number of nodes in state 1 in st(vi). This is a deterministic GDS.

The dynamics evolve as follows; see Fig 8. We specify as initial conditions that v1 has the

contagion at t = 0, i.e., s0
1

¼ 1; all other nodes do not have it. See C(0) in Fig 8, where only

s0
1

¼ 1. At t = 1, s1
2

¼ f2ðs0
1
; s0

2
; s0

3
Þ ¼ 1 because θ2 = 1 and s0

1
¼ 1, and s0

2
¼ s0

3
¼ 0. So, the

threshold for v2 is just met by v1. For the same reason, s1
5

¼ f5ðs0
1
; s0

4
; s0

5
; s0

6
Þ ¼ 1 (because s0

1
¼ 1;

v5 and all other neighbors of v5 are in state 0). No other node will change state at t = 1 and

therefore C(1) has three nodes in state 1 at t = 1. At t = 2, v4 will change state, even though its

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 16 / 58

https://doi.org/10.1371/journal.pone.0242453

threshold is large (θ4 = 3) because three of v4’s neighbors (v1, v2, and v5) are now in state 1.

This is the only node that changes state at t = 2 and so C(2) is as shown in Fig 8. The same rea-

soning applies to the transitions of other node states. Note that v3 will never transition because

its threshold (2) is greater than the number of its neighbors (1). Also note that the system

reaches a fixed point at t = 3 because no further state changes are possible.

5 Conceptual view of pipelines

The purpose of this section is to provide a high-level overview of the pipeline system. Pipeline

composition, the pipeline framework, particular pipelines, and operations (h-functions) within

pipelines are covered. This is useful for setting up formal theoretical model of Section 6 and

the software implementation in Section 7.

5.1 Pipeline system

Pipeline compositions. Our system of five pipelines is shown in Fig 3. We separate the experi-

mental platform from the pipelines so that the system can be used with different experimental

software platforms, as long as an experiment conforms to the Data Common Specification,

which is the data model of Section 3. An iteration of the loop may use any number of the five

pipelines, and any number of functions within them, for flexible composability, consistent

with data dependencies [54].

Pipeline framework. Fig 9 provides a high level conceptual view of a pipeline. Specifics of

h-functions are addressed in the next subsection. Here, our point is to emphasize the bounding

Fig 8. Network G(V, E) for a GDS example, with V = {v1, v2, v3, v4, v5, v6}. Thresholds θi are provided for nodes vi, in

blue, by the respective nodes. The local functions fi are threshold functions for vi 2 V, 1 � i � 6; see text for details. The

discrete system dynamics are given by the configurations at successive times from 0 to 4, at the right in the figure. Each

configuration is given by CðtÞ ¼ ðst
1
; st

2
; st

3
; st

4
; st

5
; st

6
Þ. The system reaches a fixed point at time t = 3, as evidenced by no

change in the configuration in going from t = 3 to t = 4.

https://doi.org/10.1371/journal.pone.0242453.g008

Fig 9. Conceptual view of a pipeline that is composed of the pipeline framework (represented by the bounding

box) and the h-functions that provide the application-based functionality of a particular pipeline. Functions, or h-

function, hi, 1 � i � 3 are implemented as software within a pipeline. The pipeline framework (red box) controls the

execution order of functions and the inputs and outputs for each function, through a pipeline job specification. Circles

in the figure denote input and output digital objects, such as ASCII files or database tables. This figure is a more

detailed representation of Fig 4. Adapted from [34] Fig 3.

https://doi.org/10.1371/journal.pone.0242453.g009

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 17 / 58

https://doi.org/10.1371/journal.pone.0242453.g008
https://doi.org/10.1371/journal.pone.0242453.g009
https://doi.org/10.1371/journal.pone.0242453

box around the pipeline in this figure, which represents the pipeline framework, i.e., the invari-

ant part of pipelines that is used across all pipeline instances. The operations executed by the

pipeline framework are listed in Section 2.3. It is the h-functions that tailor a pipeline for a

given domain-based purpose.

Pipelines. The five pipelines of Fig 3 now described. (1) The Experimental Data Transfor-

mation Pipeline cleans the experimental data and transforms them into a data common speci-

fication. (2) The Data Analytics Pipeline analyzes temporal interactions among players to

identify patterns in the data in order to understand human behavior and to assist in model

development. Computational models are developed offline, as this is human reasoning-based

effort. Thereafter, direct and derived data are used as input to the (3) the Property Inference

Pipeline. This pipeline generates property values for parameters of simulation models, often by

combining data from multiple experiments. Simulation models (e.g., ABMs) are built off-line

and software implementations of these models are part of (4) the Modeling and Simulation

Pipeline. This pipeline invokes the code to run simulations, using the generated property val-

ues, as well as network descriptions, initial conditions, and other inputs. Simulations may

model completed or future experiments, or other scenarios beyond the scope of experiments.

(5) The Model Evaluation and Prediction Pipeline compares multiple sets of data. As one case,

experimental data and model predictions may be compared. As another case, results from two

models may be compared. One objective may be to predict beyond experiment data (counter-

factuals) and propose further investigations suggested by analysis findings.

Each pipeline is currently a sequential composition of functions. This composition is speci-

fied by an analyst through a job definition. Similarly, compositions of the pipelines of Fig 3 are

specified by an analyst. The pipeline process takes care of file dependencies between functions.

Also, it validates the input and output data of functions, described below. The structure of a

pipeline is shown in Fig 9, where function h1 takes two inputs and generates three outputs

(two are inputs to function h2 and one is an input to function h3); function h2 generates two

outputs, one of which is an input to h3. Note that the pipelines control execution of functional-

ity. Execution control consists of a pipeline invoking functions sequentially, as illustrated in

Fig 9. Additional details are in Sections 6 and 7. Other control structures are being added.

5.2 Functions within pipelines

Functions are designed as microservices—modular software with limited scope—within pipe-

lines. They provide a range of capabilities from straight-forward plotting routines to data

cleaning and organizing, storing and accessing data sets, inferring properties, and running

simulations. Users may add other functions and continue community-based development.

This concept is illustrated in Fig 9. Currently, inputs and outputs are files, but may include

other digital objects, such as database table entries. Fig 10 drills down to show details for a

function.

Fig 10 shows execution details associated with each function h. Input data ðq̂iÞ (e.g., in the

form of an ASCII data file that may be raw data or output from a preceding function) may

need to be transformed into formats required by h. This transformation is performed by trans-

formation code τj, which generates the input ðk̂Þ in the required format. These input objects k̂1

and k̂2 conform to JSON specifications to ensure compliance for inputs to h. The outputs of h
are ‘̂1, ‘̂2, and ‘̂3.

Microservices. Our functions map directly to microservices. Appendix E addresses charac-

teristics, benefits, and comparisons of microservices. We provide details of microservices

because they are the fundamental execution units within our pipelines.

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 18 / 58

https://doi.org/10.1371/journal.pone.0242453

6 Formal pipeline framework model

With the conceptual view in Section 5, we now provide a formal mathematical model for the

pipeline framework, the invariant part of a pipeline, and h-functions, which are particular

operations to perform on data (e.g., from experiments). First, we provide the theoretical

model. Then, we provide an algorithm for its execution, which moves the system closer to the

software and facilitates system design. In Section 7, we combine the pipeline framework with

h-functions to produce particular pipelines; the emphasis there is on software design and

implementation.

6.1 Pipeline framework model

Let P be a collection of pipelines, with pipeline P 2 P represented as PðQ; Q̂; SID; S;TID;T;HÞ.

Here, Q is a set of datatypes q 2 Q; Q̂ is a set of all data instances q̂ 2 Q̂; SID is a set of mappings

sID 2 SID from datatypes to schema evaluators; S is a set of schema evaluators s 2 S; TID is a set of

mappings τID 2 TID from h-functions and datatypes to transformations; T is a set of data trans-

formations τ 2 T; and H is a sequence of h-functions h 2 H. We detail each of these in turn.

First we address the types of data that are inputs and outputs to h-functions. Let q 2 Q be a

datatype of the set Q of all datatypes. Let k 2 K be an input datatype of the set K of all input

datatypes. Let ℓ 2 L be an output datatype of the set L of all output datatypes. Datatypes can

be primitive datatypes found in most programming languages (e.g, integer, float, real, char),

and data structure types (e.g., records) that are combinations of primitive types and data struc-

tures such as maps and arrays. An element q 2 Q may be either or both an input data element

k and an output data element ℓ; we have Q = K [L. Moreover, the intersection of K and L will

almost always be non-empty, i.e., K \ L 6¼ ;, because in a pipeline, an output element of an h-

function may be an input to a subsequent h-function. We use k to denote an input datatype;

we use ℓ to denote an output datatype; and we use q to denote an input datatype, an output

datatype, or both.

We have the instance analogs of the datatypes above. That is, instances have numerical

values and character (strings) assigned for each datatype. Data instances q̂ 2 Q̂, input data

instances k̂ 2 K̂ , and output data instances ‘̂ 2 L̂, must conform to the datatypes of Q, K,

and L, respectively. Note that there will be an implicit relationship between an instance q̂ and a

Fig 10. One arbitrary software h-function within a pipeline. Data instances q̂1, q̂2, and q̂3 are transformed by

transformation code τ1 to conform to required input k̂1 for h. Similary, q̂4 and q̂5 are used by τ2 to produce input k̂2.

Outputs from the h-function are ‘̂1, ‘̂2, and ‘̂3. Inputs and outputs are subjected to verification through comparisons

with specified schema (not shown here). The pipeline framework is represented by the red box that controls execution

of the h-functions and transformation codes. This is a more detailed representation of Figs 5 and 9.

https://doi.org/10.1371/journal.pone.0242453.g010

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 19 / 58

https://doi.org/10.1371/journal.pone.0242453.g010
https://doi.org/10.1371/journal.pone.0242453

datatype q because these are based on the semantics of a problem. In general, the relationship

between one q and q̂ is 1-to-many: there are many possible instances for a single datatype.

Each data instance has as a parameter the datatype to which it must conform.

We now address data schema and data format verification. Let SID be the set of schema ID

mappings sID 2 SID, where sID:Q ! S is defined by a mapping from each datatype q to a unique

schema evaluator s 2 S. That is,

s ¼ sIDðqÞ : ð7Þ

If we have a universal schema identifier, then |SID| = 1, i.e., a single sID is used across all q 2 Q.

To verify that an instance q̂ of a datatype q has a valid format, we use a schema evaluator

s: Q̂ ! f0; 1g. A schema evaluator takes as input a data instance q̂ and outputs a 1 when q̂
conforms to the datatype q (i.e., q̂ is successfully verified against q using s), and outputs a 0 oth-

erwise. That is, sðq̂Þ returns a 0 or 1.

The next phase of the model addresses data transformations. Let TID be the set of transfor-

mation ID mappings τID 2 TID. A transformation ID mapping τID: H × K ! T is a mapping

from a target h-function h 2 H and target input datatype k 2 K for the h-function, to a transfor-

mation function τ. That is,

t ¼ tIDðh; kÞ : ð8Þ

Hence, there is one transformation function τ for each input datatype k and instance k̂, respec-

tively) to an h. Without loss of generality, we have can have a universal transformation ID

mapping τID across the entire set of tuples H × K, so that |TID| = 1.

The role of a data transformation function is to operate on inputs and outputs from one or

more h-functions (defined below) and produce a new data instance that is in the required for-

mat for input to another h-function. A set T of data transformation functions τ 2 T trans-

forms data instances q̂ 2 Q̂ into data instances k̂ 2 K̂ , of types q 2 Q and k 2 K, respectively,

that are suitable for input into an h. Formally, a data transformation function t: Q̂nt ! K̂ is

defined as

k̂ ¼ tðq̂1; q̂2; . . . ; q̂nt
Þ ð9Þ

where k̂ 2 K̂ and q̂j 2 Q̂, 1 � j � nτ. Here, nτ is the number of input arguments to τ.
An h-function (or function) h 2 H represents a microservice that performs some unit of

work in a pipeline. An h-function takes as input a sequence of ni input data instances and com-

putes a sequence of no output data instances. Each input data element k̂j 2 K̂ , 1 � j � ni, has

been verified through an s 2 S, identified from sID 2 SID, so that the inputs to h are valid (i.e.,

so that the appropriate s 2 S outputs a 1 for each instance k̂j). Also, each of these input data

instances may have been generated by transforming data into the required format, using one

data transformation function τ 2 T. Each h outputs a sequence of instances of ‘̂ j 2 L̂, (1 � j �

n0) which are also verified through sID 2 SID and elements s 2 S, so that the sequence of outputs

from h are valid (i.e., so that the appropriate s 2 S outputs a 1 for each instance of ‘̂j). Thus, we

have the following. An h-function is h: K̂ ni ! L̂no is defined by

ð‘̂1; ‘̂2; . . . ; ‘̂no
Þ ¼ hðk̂1; k̂2; . . . ; k̂ni

Þ ; ð10Þ

where k̂j 2 K̂ , 1 � j � ni, and ‘̂ j 2 L̂, 1 � j � no.

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 20 / 58

https://doi.org/10.1371/journal.pone.0242453

It is useful to define the composition of all h-functions within a pipeline, because this com-

position identifies the order in which h-functions execute. It naturally identifies the (input)

data files that must exist before the pipeline starts and which output files are generated. Some

input files for some h-functions are not specified initially because they are generated by other

[preceding] h-functions. As the preceding model description indicates, one data transforma-

tion function may need to be executed on each input before each h-function is invoked, to put

each input data instance k into the required format for h. If there are ni inputs to h, then the

number of data transformation functions is ni (one or more transformation functions may be

the identity function). Hence, executing one h-function hj can be thought of as a composition

of functions ðt�
j ; hjÞ ¼ ðhj � t�

j Þ, where t�
j represents the nij

transformation functions that are

required to put all inputs for hj into the proper formats to execute hj. A composition of nf h-

functions H: K̂ np;i ! L̂np;o is defined by

H ¼ ðhnf
� t�

nf
Þ � ðhnf �1 � t�

nf �1
Þ � � � � � ðh2 � t�

2
Þ � ðh1 � t�

1
Þ ; ð11Þ

where ð‘̂1; ‘̂2; . . . ; ‘̂np;o
Þ ¼ Hðk̂1; k̂2; . . . ; k̂np;i

Þ.

We define K̂ � ¼ K̂ np;i and L̂� ¼ L̂np;o as short-hand. Thus, the np,i input files that must exist

before the pipeline is invoked are represented by K̂ �. The np,o pipeline outputs are represented

by L̂�. It is often convenient to represent H as the (ordered) sequence

ððt�
1
; h1Þ; ðt�

2
; h2Þ; . . . ; ðt�

nf �1
; hnf �1Þ; ðt�

nf
; hnf

ÞÞ, where the ordering gives the order of execution.

6.2 Algorithm of the execution of the pipeline framework

With the formalism of Section 6.1, the execution of the pipeline framework is now presented.

Algorithm 1 contains the algorithm. The algorithm steps through each hi 2 H and for each

input k̂i of hi, determines whether it needs to be created by transforming one or more data

instances. If so, the inputs q̂ 0
i to the transformation function τ—for computing k̂i—are

obtained. They are verified using schema verification functions s. The transformation function

is executed and the output data instance k̂i is verified. At this point the required input data for

hi exist, and hi is invoked and the output files are generated. These outputs are stored. Note

that at various points, data file formats are verified by using schema verification functions. The

output files L̂� are returned.

Algorithm 1 Steps of the Algorithm PIPELINE EXECUTION.
Algorithm 1: PIPELINE EXECUTION.
Input: Pipeline configuration filename. h-functions of H to execute
for the pipeline P. Data transformation functions T to execute. The
set K̂ � of input files for the pipeline. Identification of the ni inputs

K̂ ni ¼ ðk̂1; k̂2; . . . ; k̂ni
Þ and no outputs L̂no ¼ ð‘̂1; ‘̂2; . . . ; ‘̂no

Þ for each h-function.

Inputs q̂1; q̂2; . . . ; q̂nt
2 Q̂ and output q̂ 0 2 Q̂ for each data transformation

function τ 2 T, for each hi 2 H. The set S of schema s 2 S for verifica-
tion of data elements q̂. The set SID of schema ID elements sID 2 SID for
the mapping of datatypes q to schema s.
Output: The output files L̂� generated by the pipeline P, represented by
set H of h-functions.
Steps:

1. Read pipeline configuration file, which contains the h-functions hi
to execute, along with pipeline inputs and file verification
formats.

2. for each hi 2 H do

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 21 / 58

https://doi.org/10.1371/journal.pone.0242453

(a) Obtain the ni input instances K̂ ni ¼ ðk̂1; k̂2; . . . ; k̂ni
Þ for hi from the def-

inition of hi.

(b) for each k̂i 2 K̂ ni do

i. if k̂i requires generation from existing data files (i.e., using
a data transformation) prior to input to hi then

A. Get the datatype ki from instance k̂i.

B. Identify the transformation function τ using τ = τID(h, ki).

C. Let Q̂ 0 ¼ fq̂ 0
1
; q̂ 0

2
; :::; q̂ 0

nt
g be the set of nτ existing input instances

to the transformation function τ, obtained from the defini-

tion of τ, such that k̂i ¼ tðq̂ 0
1
; q̂ 0

2
; :::; q̂ 0

nt
Þ.

D. for each q̂ 0
j 2 Q̂ 0 do

1. Obtain the datatype q0
j from instance q̂ 0

j.

2. Obtain the schema s 2 S as s ¼ sIDðq0
jÞ.

3. Verify q̂ 0
j by computing sðq̂ 0

jÞ. If sðq̂ 0
jÞ ¼ 1, then q̂ 0

j is verified.
If sðq̂jÞ ¼ 0, then q̂j is not verified; an error is found, and
this routine terminates.

E. Use the data transformation function τ to compute the input

k̂i for hi, in the proper format, according to

k̂i ¼ tðq̂ 0
1
; q̂ 0

2
; . . . ; q̂ 0

nt
Þ.

ii. Obtain the schema s = sID(ki).

iii. To verify k̂i, compute sðk̂ iÞ. If sðk̂iÞ ¼ 1, then k̂i is verified. If

sðk̂iÞ ¼ 0, then k̂i is not verified; an error is found, and the
pipeline terminates.

(c) Invoke function hi and compute ð‘̂1; ‘̂2; . . . ; ‘̂no
Þ ¼ hiðk̂1; k̂2; . . . ; k̂ni

Þ.

(d) Verify the format of each output ‘̂ jð1 � j � n0Þ by obtaining the cor-

responding datatype ℓj and schema s = sID(ℓj), and invoking sð‘̂ jÞ.

If sð‘̂ jÞ ¼ 1, then the output file format is verified. Else ‘̂ j is
not verified, which is an error, and the pipeline gracefully
terminates.

(e) Store the outputs ð‘̂1; ‘̂2; . . . ; ‘̂no
Þ in Q̂, which may be used as inputs

for subsequent hj 2 H, (j 6¼ i).

(f) Store the outputs ð‘̂1; ‘̂2; . . . ; ‘̂no
Þ in L̂�, which is the set of outputs

from the pipeline.

3. Return L�.

The description thus far in this section is focused on a single pipeline. However, the model

is equally valid across pipelines. In fact, grouping sets of h-functions into multiple pipelines, as

we do herein, is largely a matter of practicality, and aids in software system organization and

in reasoning about such systems. However, from Section 6.1 and this Section 6.2, it should be

clear that all data transformation functions and h-functions could be put into a single τ� large

pipeline.

6.3 Mapping of model onto the software system

One reason for the particular development in Section 6.1 above is that it parses the model into

components that are the responsibility of the pipeline framework, software that users put into

a pipeline, and user-supplied information regarding data. For example, input datatypes K and

instance K̂ for a pipeline or a collection of pipelines must be supplied by an analysts, or come

from some previous analysis.

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 22 / 58

https://doi.org/10.1371/journal.pone.0242453

The schema ID mapping and schema themselves are provided by the analyst to ensure that

input and computed results conform to specified formats and contain the proper types of

information. The execution of schema to verify data representation instances is the responsi-

bility of the pipeline (not the functions). Data transformation functions and h-functions are

executable software, and may be stand-alone executables that constitute processes. They are

provided by an analyst or software developer. It is the pipeline’s responsibility to invoke the

correct functions and in the correct order, and to access the proper input files and to store the

resulting output files, all of which are specified in a human-generated pipeline configuration

file (addressed below). Functions are responsible for generating correct outputs.

7 Pipeline design and implementation

With the conceptual view of pipelines in Section 5 and the mathematical model and algorithm

in Section 6, we now present the pipeline design and implementation. We address several top-

ics in this section and in the referenced appendices. These include the composability of pipe-

lines, pipeline configuration files, descriptions of the five pipelines, h-functions and their

configuration files, examples of pipeline configuration files, detailed representations of two of

the pipelines, and a compilation of all implemented h-functions.

7.1 Pipelines

Two pipelines are depicted with black boxes in Fig 11. The major elements of a pipeline are the

configuration file, data files and schema, pipeline framework, h-functions, and transformation

functions. Table 5 provides additional overview of several of these elements.

All pipelines in the system have been developed on this project and for the work described

herein. We have added pipelines and functions over the course of a year, demonstrating the

extensibility of the system, without modifying the pipeline framework code discussed in Sec-

tion 7.1.2.

7.1.1 Pipeline configuration file. To run a pipeline (called a job), a configuration input

file specifies functions and their order of execution. Table 6 overviews the entire pipeline con-

figuration file with a definition for each parameter. JSON schema files exist for each compo-

nent in the data common specification from Section 3.3. The functions component defines the

available h-functions to run in the pipeline and the input files for each function. Appendix B

contains a detailed example of a configuration file.

Fig 29 shows the schema for a configuration file that specifies how to compose and execute

one or more functions of a pipeline. In Fig 29, there are up to five functions available and the

required parameters for each function are defined; the enumeration is the list of valid candi-

date values that can be specified for functions in a specific pipeline.

7.1.2 Pipeline framework and data file schema. The pipeline framework software of Fig

11 (written in Python) performs these operations: (i) reads and parses the configuration file;

(ii) controls accessing input files, JSON schema files, transformation codes, and h-functions;

(iii) checks files against their JSON schema and terminates gracefully if a verification fails; (iv)

invokes the proper transformation functions (if applicable), (v) invokes the proper h-functions

in their proper order (and any other operations), and (vi) handles errors.

JSON schema are used in various ways: (i) to verify the configuration file, (ii) to verify

inputs to transformation functions, (iii) to verify the outputs of transformation functions

(which are inputs to the h-functions), and (iv) to verify the outputs from the h-functions. The

pipeline operations above and the use of schema are both reflected in the algorithm of Algo-

rithm 1.

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 23 / 58

https://doi.org/10.1371/journal.pone.0242453

Fig 11. Two pipelines are shown to illustrate similarities and differences between them. To run a pipeline (called a job), a pipeline-specific

configuration input file is verified and is read by the pipeline framework. The file specifies h-functions and their order of execution, as well as

required input files to the pipeline. Here we show how function h1 is executed in a pipeline 1 and how h4 is executed in pipeline 2. The pipeline

framework invokes the corresponding functions. If specified in the configuration file, the pipeline framework invokes a transformation

function that transforms the contents of one or more files into an input file of correct format for the h-function. There may be one

transformation function for each direct input to an h-function. At appropriate points in a pipeline, data files are verified against their

corresponding JSON schema (input file verification). The h-function is executed and output files are generated (these digital object outputs

may be, e.g., plot files, ASCII data files, and binary data files). There may be additional h-functions within pipeline 1, indicated by the ellipsis

below pipeline 1 function h1 execution. In this example, outputs from the generic pipeline 1 are inputs for the generic pipeline 2. Function h4

in pipeline 2 is executed in a similar fashion to function h1 in pipeline 1. See the text for descriptions of these various components. Note: the

pipeline framework (in brown) is the same code for all pipelines. See Table 5 for implementation details of the elements in this figure.

https://doi.org/10.1371/journal.pone.0242453.g011

Table 5. Sections and files from the execution of a generic Pipeline.

Input File Name File Type Description

Pipeline i: In this section the input files are specified for execution.

1 Configuration input file JSON Specifies h-functions to execute within pipeline i, and their order of execution.

2 Input files JSON Input files to a pipeline, i.e., files required to execute h-functions in the pipeline (possibly outputs from

upstream pipelines).

Pipeline framework: In this section the functions are invoked, specifying the order in which they are executed.

1 Configuration file

verification

JSON Input files are validated against their corresponding JSON schema.

2 Pipeline framework code Python Reads and parses the configuration file and controls execution of the h-functions.

Pipeline i Function Execution: In this section the functions are executed.

1 Function transformation Python Input files are transformed into a valid input file for function hi.
2 Direct input file JSON Input files with the required formats that function hi receives as input for execution.

3 Schema files JSON Input files are validated against their corresponding JSON schema.

4 Function Execution Multiple programming

languages

Function hi code is executed.

5 Function Output Files Multiple formats Function hi output files.

Fig 11 describes how these elements interact, here we define and describe them.

https://doi.org/10.1371/journal.pone.0242453.t005

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 24 / 58

https://doi.org/10.1371/journal.pone.0242453.g011
https://doi.org/10.1371/journal.pone.0242453.t005
https://doi.org/10.1371/journal.pone.0242453

7.1.3 Functions within pipelines. Each pipeline has a list of available functions. The func-

tions can be written in any programming language. Currently we have h-functions written in

C++, Python, and R. A function may use as input any combination of outputs from preceding

functions in the same pipeline, functions in preceding pipelines, files from previous iterations,

and data from experiments.

Currently there are 29 functions across five pipelines. A summary of the h-functions in

each of the five pipelines is provided in Table 7. Listings and details of all functions imple-

mented per pipeline are provided in Appendix D (one table for each pipeline).

8 Case studies

The purpose of the three case studies is to demonstrate the utility (i.e., usefulness) of the pipe-

line system. The first case study (Study 1) uses all five pipelines. This study took two years to

complete, in building software, running experiments, varying treatments, analyzing data,

building multiple models, validating and exercising models, and hypothesis testing. We iter-

ated over these operations, as suggested in Fig 3. The pipelines of this manuscript were used

for all of the work in this case study. We consider this to be a very large case study. The pur-

pose of case studies 2 and 3 are different. Our goal here is to demonstrate the versatility and

wide applicability of the pipeline system. For each of these cases studies, we take experiments

or computations from other researchers’ works in the literature, and demonstrate through our

data model that our system can analyze the data and computations of those works. In case

study 3, we could also include their model in our pipelines. Other works in the literature [1, 3–

6, 9, 55] can also be analyzed with our pipelines.

Table 6. Configuration input file description.

Component Description

1 experiment Experiment Schema JSON file location. See Fig 24.

2 phasedesc Phase Description Schema JSON file location. See Fig 25.

3 phase Phase Schema JSON file location. See Fig 26.

4 action Action Schema JSON file location. See Fig 27.

5 player Player Schema JSON file location. See Fig 28.

6 functions The parameters inside vary for every h-function. Fig 29 shows a definition for five functions.

See Appendix B for details.

https://doi.org/10.1371/journal.pone.0242453.t006

Table 7. Summary table of h-functions.

Name Acronym Number of h-functions Description of Some Functions

Experimental Data

Transformation Pipeline

EDTP 1 h1 transforms experimental raw data into our data common specification.

Data Analytic Pipeline DAP 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14

h1 detects common patterns between players and actions through a visualization. h3 shows with

data files and a plot how an action progresses in time during an experiment phase. h7 through

time series data files generates input for the Property Inference pipeline.

Property Inference Pipeline PIP 1, 2, 3, 4 h1 generates the properties for a Markovian transition matrix. h2 outputs a file with the

properties for an adapted conditional random fields (CRF) model.

Modeling and Simulation

Pipeline

MASP 1, 2, 3, 4, 5 h1 generates Agent Based Model Simulations outputs for self-consistency checks and

predictions. h5 executes agent based simulation component models to compare outputs with

real actions from a real experiment.

Model Evaluation and

Prediction Pipeline

MEAPP 1, 2, 3, 4, 5 h1 compares experiment outputs with simulation outputs. h2 generates statistical models to

predict outcomes.

https://doi.org/10.1371/journal.pone.0242453.t007

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 25 / 58

https://doi.org/10.1371/journal.pone.0242453.t006
https://doi.org/10.1371/journal.pone.0242453.t007
https://doi.org/10.1371/journal.pone.0242453

8.1 Study 1: Entire system execution for collective identity experiments

Collective identity (CI), as defined by [43], is an individual’s cognitive, moral, and emotional

connection with an enclosing broader group such as a team or a community. CI is important

in many applications and contexts, making it worthy of study. For example, CI is important in

the formation and maintenance of teams, and team behavior [56, 57]. It is also important in

the formation and enforcement of norms [56, 57].

Here, we use a complete cooperatively game to produce CI among team members that are

playing. We want to measure the amount of CI created between team players in an experiment.

The experiment includes 3 phases. In phase-1, the DIFI index [58] measures (for a baseline)

the individual levels of CI. In phase-2, CI is created between team members using a collabora-
tive anagram game; In phase-3, using the same index as in phase-1, the individual levels of CI

in players are measured.

Here, we use the Dynamic Identity Fusion Index (DIFI) score [58] as a proxy for CI. The

DIFI score is measured individually as part of our online experiments in the following way. A

small (movable) circle represents an individual player and a second (stationary) larger circle

represents the team. A player moves the small circle along a horizontal axis, where the distance

between circle centroids represents that player’s sense of identity with the team; it is their DIFI

score. The range in DIFI distance value is, −100 � DIFI � 125; DIFI = 0 corresponds to the

two circles just touching, DIFI < 0 means that the two circles are disjoint (an individual has no

positive affinity for the team), and DIFI > 0 means that the two circles overlap (an individual

identifies with the team).

As a priming activity to foster CI among team members, in phase-2, they play a collabora-
tive word construction (anagram) game motivated by [6]. This Phase 2 is the focus of our case

study.

8.1.1 Web-based experiment software platform, game play and data collection. We

built a web application to conduct experiments. The primary components of our platform are

the oTree framework [59], Django Channels and the online web interface. Each phase of the

experiment has software, designed and developed, that interfaces with oTree. Interactions

among players is supported by Django Channels technology; individual participants and the

server communicate by websocket. Fig 12 shows the web interface for each player of the ana-

gram game. The experiment interface enlists players from Amazon Mechanical Turk (MTurk)

and registers actions from all the players in all phases. The clicks and their event times repre-

sent the actions for defined HTML objects like letters, and submit buttons.

In phase-2, at the beginning of a game, players receive three letters, and communication

channels to d number of other players; through these channels players can help each other to

form new words by sharing letters. Based on the recruited number n of players, the experimen-

tal platform creates a graph with a pre-defined regular degree d on the n players. Players of the

game can perform the following actions, request letters from neighbors, reply to letter requests

from neighbors, and form words; these actions are explained in detail in the caption of Fig 12.

The objective of the game is to form as many words as possible as a team. The total number

of words formed by the team defines the earnings in a game. Earnings are divided uniformly

between players. For a player to form a valid word, the word has to be unrepeated in the play-

er’s list of formed word; however more than one player can duplicate a word. Each player pos-

sess an infinite stock of each of the three initial letters received. This means a player can use

these initial letters more than once to form words, and also openly share them with neighbors.

These features are planned to promote cooperation.

8.1.2 Data analysis, modeling and simulations, and modeling evaluations using the

pipelines. Some data model features from Table 3 are provided in Fig 13. For the DIFI

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 26 / 58

https://doi.org/10.1371/journal.pone.0242453

measures (phases 1 and 3), the action set A, with its one element (submit DIFI score), is

shown, and the action sequence T is the action tuple of submitting DIFI score for each agent.

For phase 2, the word construction game, the edge set E for the four players is provided, as is

the action set A, containing four elements. The action “thinking” is a no-op in the model. Ini-

tial letter assignments to players, which are part of Bv
j for each node (player) vj, are shown. So,

too, is an illustrative sequence of action tuples. For example, T3 states that vi requests the letter

“G” from v3.

Several ABMs were built to model the phase 2 group anagram game. The ABM described

here is build on a transition probability matrix where the transition probability from one

action a(t) = ai at time t to the next action a(t + 1) = aj for each agent v, i, j 2 [1..4] and a(t) 2

A, is given by pij ¼ Prðaðt þ 1Þ ¼ jjaðtÞ ¼ iÞ with
P4

j¼1
pij ¼ 1. We use i and j to represent

the actions ai and aj 2 A. Agent v executes a stochastic process driven by transition probability

matrix P = (πij)m×m, where m � |A| (here, = 4). A multinomial logistic regression model is

used for πij. Details are in [7]. During the 5-minute game, the ABM predicts action tuples Ti

for players vi participating.

In this study, the system of Fig 3 is executed over many loops; some times completely and

other times portions of it. In this case study we examine only the anagram game. We perform

one iteration of three experiments, with n = 6 for the number of players and d = 5 for the num-

ber of neighbors. Figs 14–16 display results for the Data Analytics Pipeline (DAP). Fig 17

Fig 12. The anagram game screen, phase-2, for one player. This player has own letters “R,” “O,” and “L” and has requested an “E” and “A” from

neighbors. The “E” is green, so this player’s request has been fulfilled and so “E” can be used in forming words; but the request for “A” is still

outstanding so cannot be used in words. Below these letters, it shows that Player 2 has requested “O” and “L” from this player. This player can reply to

these requests, if she so chooses. Below that is a box where the player types and submits new words.

https://doi.org/10.1371/journal.pone.0242453.g012

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 27 / 58

https://doi.org/10.1371/journal.pone.0242453.g012
https://doi.org/10.1371/journal.pone.0242453

display results for the Property Inference Pipeline (PIP). Fig 18 display results for the Modeling

and Simulation Pipeline (MASP) and Model Evaluation and Prediction Pipeline (MEAPP).

The figure captions provide details. Here output data from a pipeline are inputs for another

pipeline: (i) outputs from the DAP are inputs to the PIP; (ii) outputs from the PIP are inputs to

the MASP; and (iii) outputs from the DAP and MASP are inputs to the MEAPP.

The following paragraph discusses special details of these results. Fig 14 presents a plot, gen-

erated by h3, of the time series of words formed for each player of one game. When a new

word is formed a step in a curve indicates the time. “Form word” is a4 2 A in Fig 13. h3 can

Fig 13. Case study 1. Partial representation of the data model for the online experiment composed of 3 phases with a set of V players

(n = |V|). The phase 1 DIFI measure, a proxy for CI, uses a null (i.e., empty) network on n players; i.e., there are no edges in the graph

because players play individually. In phase 2, a team-based CI-priming game, edges E are communication channels. Initial conditions Bv

include letter assignments to players. The individual DIFI measure is repeated in phase 3. The action set A and illustrative action tuples Ti
are given for each phase.

https://doi.org/10.1371/journal.pone.0242453.g013

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 28 / 58

https://doi.org/10.1371/journal.pone.0242453.g013
https://doi.org/10.1371/journal.pone.0242453

construct the time series for any action. These data, and the data generated by h5 in Fig 15, are

used to (i) understand player behaviors, (ii) help in idetifying the structure of ABMs, (iii) infer

properties of ABMs, and (iv) assist in models validation with the comparison of model predic-

tions. Function h7 produces the data needed for property inference and showed in Fig 16.

Fig 14. The Data Analytics Pipeline (DAP) was executed to analyze phase 2 of three experiments with n = 6 and d = 5. The time series of

number of words formed by player for experiment #2 is generated by function h3.

https://doi.org/10.1371/journal.pone.0242453.g014

Fig 15. The Data Analytics Pipeline (DAP) was executed to analyze phase 2 of three experiments with n = 6 and

d = 5. The histogram for the number of actions “letter request” for three experiments is generated by function h5. The

x-axis is time in the group anagram game, binned in 30 seconds intervals.

https://doi.org/10.1371/journal.pone.0242453.g015

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 29 / 58

https://doi.org/10.1371/journal.pone.0242453.g014
https://doi.org/10.1371/journal.pone.0242453.g015
https://doi.org/10.1371/journal.pone.0242453

The β coefficients in Fig 17 are parameters in the multinomial logistic regression model

alluded to above. In the πij terms above, each transition is from action i to j. For example, the β
coefficients at the bottom are for the transition from forming word (a4 in Fig 13) to the next

actions being a2 through a4; the probability that the next action is a1 (thinking) is 1 minus the

sum of other three transition probabilities.

In Fig 18, the Modeling and Simulation Pipeline is employed to create all three plots (the

first two for simulating experiments, the third for predictions beyond the experiments). The

Model Evaluation and Prediction Pipeline is employed in the first two plots to compare experi-

ments and model predictions.

Appendix F describes two more case studies. Study 2 in Appendix F.1 shows the data model

for online experiment in [3]. Study 3 in Appendix F.2 shows the data model for a simulation

study in [44].

9 Related work

We address several different topics below.

9.1 Online social science experiments

In order to understand human behavior, there has been significant interest in using online sys-

tems to carry out social science experiments. These experiments analyze a variety of phenom-

ena, like collective identity [17, 60, 61], and cooperation and contagion [62], to name a few.

The methodological and practical challenges of online interactive experimentation, and the

value of an online labor market has been discussed in different studies [63, 64]. The benefits of

online experiments, compared to in-person experiments, include reduced costs, an agile logis-

tic process, and the collection of detailed data. Research teams use different options to design

and deploy their online experiments. While some teams, create web-based programs especially

designed for their research [17, 61, 62], others use web-based experimental platforms that pro-

vide this service [60, 63]. In [60] the online platform Volunteer Science [35] was used to

Fig 16. The Data Analytics Pipeline (DAP) was executed to analyze phase 2 of three experiments with n = 6 and d = 5. The discrete

time actions for all three experiments is generates by function h7. This latter output will inform the Property Inference pipeline for

computing parameters for simulation models. Time (in seconds) is shown in the first row as 1, 2, 3, . . ., and counts of the z vector

components, per player and per experiment are given.

https://doi.org/10.1371/journal.pone.0242453.g016

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 30 / 58

https://doi.org/10.1371/journal.pone.0242453.g016
https://doi.org/10.1371/journal.pone.0242453

implement a web-based public goods experiment, and to recruit participants around the

world. In [63], a repeated public goods experiment was implemented in the free web-based

platform for interactive online experiments, LIONESS [36], and participants were recruited

via Amazon Mechanical Turk (MTurk). In [37] a modular virtual lab named Empirica offers a

development platform for virtual lab experiments, and they claim that is even accessible to

novice programmers. There are tools that focus in Adaptive Experimentation, like Facebook

Ax [38], an accessible, general-purpose platform for understanding, managing, deploying, and

automating adaptive experiments. Usually these platforms only focus on the design and run-

ning of online lab experiments, but they don’t offer a complete automated solution for experi-

ments, analysis, modeling and simulation, and evaluation.

Fig 17. The Property Inference pipeline receives the input from h7 of the Data Analysis Pipeline (DAP). The parameters in this

figure were generated to inform an ABM model for the Modeling and Simulation Pipeline (MASP). The transitions in the figure

are from from i to j, where ai 2 A is the action at time t and aj 2 A is the action at (t + 1). Rows not shown mean there are no such

transitions in the data.

https://doi.org/10.1371/journal.pone.0242453.g017

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 31 / 58

https://doi.org/10.1371/journal.pone.0242453.g017
https://doi.org/10.1371/journal.pone.0242453

Fig 18. The Modeling And Simulation Pipeline (MASP) and Model Evaluation And Prediction Pipeline (MEAPP) were

run to obtain simulation results and model predictions, and to compare experimental data to model predictions. All

three plots contain model predictions and use results from h1 of the MASP. Function h1 of MEAPP plots corresponding

experimental and model output data (top plot) and compares experiment and model output using KL-divergence (center

plot) for six parameters. Function h2 of MEAPP uses h3 of the Data Analysis pipeline (DAP) to plot model predictions from

h1 of the MASP (bottom plot) where now n = 15 (in experiments, n = 6).

https://doi.org/10.1371/journal.pone.0242453.g018

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 32 / 58

https://doi.org/10.1371/journal.pone.0242453.g018
https://doi.org/10.1371/journal.pone.0242453

(Networked) Experiments in the social sciences. Experiments with interacting partici-

pants can be represented as networks, where edges represent interaction channels. There are

several online and in-person experiments with individuals [60, 61, 65–69] and groups [1, 3–6,

9]. Some include modeling of the experiment [9]. Also, none of these works appears to do iter-

ative evaluations involving modeling and experiments. There is no platform, that we know of,

that allows the iterative process of data analysis, design of data-driven model to simulate exper-

iments, model validation and verification in order to predict behavior. In this work our focus

is to formalize a general methodology, through a generic data pipeline, for online controlled

experiments of human subjects aim to explain diverse phenomena.

Simulation frameworks. There are many frameworks for developing simulations. In [19]

four design patterns systematize and simplify the modeling and the implementation of multi-

level agent-based simulations. In [20] a framework for developing agent-based simulators as

mobile apps and online tools is presented. They present a case study in the field of health and

welfare. In [21] a methodology for an artificial neural network based metamodeling of simula-

tion models is presented. The model is for the case when online decision making routines are

invoked repetitively by the simulation model throughout the simulation run. We believe, none

of these frameworks provides composable and extensible pipelines for studying networked

social science phenomena, in order to address social sciences for modeling/experiments.

9.2 Workflow systems

There are many workflow systems. Here, we cite several popular workflow systems and then

describe how they relate to social sciences and pipelines for computation. Examples include

Taverna [70] for bioinformatics, chemistry, and astronomy; Pegasus [71] and CyberShake,

built on Pegasus [72], for large-scale workflows in astronomy, seismology, and physics; Kepler

[73, 74] for ecology and environmental workflows. Other workflow engines include Toil [75],

and Rabix [76] developed for computational biology.

We believe, none of these systems addresses social sciences for modeling/experiments as we

do here. As an illustration, suicide data is analyzed with Taverna in [77] and Galaxy is used for

genomic research [78]; neither has a component for modeling.

In the social sciences most workflows are for social network analyses [28]; we seek to go

well beyond that. Also in [79], a taxonomy of features is defined from the way scientists make

use of existing workflow systems; this provide end users with a mechanism by which they can

assess the suitability of workflow to make an informed choice about which workflow system

would be a good choice for a particular application. The importance of interoperability

between these systems is detailed in [80] and identifies three dimensions; execution environ-

ment, model of computation (MoC), and language. MoCs provide the semantic foundation,

but a data model is a prerequisite. [27, 28, 79, 81] are among the works that overview several

workflow systems. An overview and discussion of future directions is provided in [82]. Chal-

lenges and future directions for life science workflows are provided in [83]. Ontologies for

workflow objects are discussed in [84].

Workflow languages are usually represented in a textual manner, or through graphical

interfaces. A textual representation is often employed for storing the workflows in files, even

when a graphical representation is employed. For full interoperability, it is important to have

the capacity to translate between workflow languages [80]. Wings [85] uses rich semantic

representations to describe compactly complex scientific applications in a data-independent

manner. Swift [86] and Swift/T [87, 88] are workflow languages built for executing parallel

programs within workflows. NextFlow [89] is a domain specific language for computational

workflow management systems. Workflow languages include Common Workflow Language

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 33 / 58

https://doi.org/10.1371/journal.pone.0242453

(CWL) [76, 90] and Workflow Description Language (WDL) [91]. Script of Scripts [92] is a

workflow system with an emphasis on support for different scripting languages.

9.3 Microservices

Our pipelines take a microservices conceptual approach. First defined in 2012, Microservices

[93] is an architectural style, addressing how to build, manage, and evolve architectures out of

small, self-contained units [40–42, 94]. The h-functions of our pipelines have a narrow scope;

this way, for new experiments and models new functions can be included in a specific way,

promoting reuse by not presenting repeated capacities.

Microservices Architecture (MSA) and Service-Oriented Architecture (SOA) both rely on

services as the main component. But they vary greatly in terms of service characteristics. SOA

divides applications into sets of business applications offering services through different proto-

cols. This aims to solve the problem of complexity. SOA applications are costly and complex

and are designed to support high workloads, and a large number of users. In [93] is stated that

microservices keep services independent so that a service can be individually replaced without

impacting an entire application.

In 2012 [95] defined microservices as a way to more swiftly build software by dividing and

conquering, using Conway’s Law to structure teams. Issues, advantages and disadvantages of

microservices are identified in [96]. For example an issue identified is the system decomposi-

tion. Advantages include the increase in scalability and the clear boundaries. Disadvantages

include the difficulty to learn. The microservice architectural style is largely used by several

companies such as Amazon [97], Netflix [98], and many others.

9.4 Data models

In [99], a data model is presented for supporting the modeling, execution and management of

emergency plans before and during a disaster. In [100], aspects of a business data model are

described. In [101], a data model is presented for capturing workflow audit trail data relevant

to process performance evaluation. In [102], models for social networks that have mainly been

published within the physics-oriented complex networks literature, are reviewed, classified

and compared.

In [103], an object-relational graph data model is proposed for modeling a social network.

It aims to illustrate the power of this generic model to represent the common structural and

node-based properties of different social network applications. A multi-paradigm architecture

is proposed to efficiently manage the system. In [104], a semantic model that can naturally rep-

resent various academic social networks is presented; it describes various complex semantic

relationships among social actors.

Formal models of pipelines. The possibility of incorporating formal analytics into work-

flow design is investigated in [100]. It provides a model that includes data dependencies. The

workflow design analytics they propose helps construct a workflow model based on informa-

tion about the relevant activities and the associated data. Also, it helps determine whether

the given information is sufficient for generating a workflow model and ensures the avoid-

ance of certain workflow anomalies. A detailed treatment of data dependencies is found in

[54].

In [105], to improve data curation process efficiency for biological and chemical oceanogra-

phy data studies, pipelines are defined using a declarative language. The pipelines are serialized

into formal provenance data structures using the Provenance Ontology (PROV-O) data model

(defined in the paper).

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 34 / 58

https://doi.org/10.1371/journal.pone.0242453

9.5 “-Ilities;” reproducibility; interoperability; composability; extensibility;

scalability; reusability; and traceability

Foreseeable and unforeseeable changes occur in a system, ilities are attributes that characterize

a system’s ability to respond to both. Ilities describe what a system should be, providing an

enduring architecture that is potent and durable, yet flexible to evolve with the insertion of

new systems.

The use of ilities for systems engineering of subsystems and components is investigated in

[106]. They show how some ilities are passed and used as a non-functional property of electri-

cal and structural subsystems in aircraft. They demonstrate that a useful practice for systems

engineers, to ensure that customer needs are actually met by the system under design or ser-

vice, is to flow ilities down to the subsystem level. The system ilities are passed down and trans-

lated from non-functional to functional requirements by subject matter experts.

Pipelines and workflows provide reproducibility [84], interoperability [107], reusability

[84]. The microservices conceptual approach of our pipelines satisfy the reproducibility, inter-

operability and reusability properties. We show the pipeline composability feature, also it

properties for extensibility, scalability, and traceability.

10 Conclusion, future work, and limitations

Online social science experiments are used to understand behavior at-scale. Considerable

work is required to perform data analytics for custom experiments. Furthermore, modeling is

often used to generalize experimental results, enabling a greater range of conditions to be stud-

ied than through experiments alone. In order to transition from experiments to modeling,

model properties must also be inferred. Consequently, our work presents a software pipeline

system for evaluating social phenomena that are generated through controlled experiments.

Our work scope in this manuscript ranges from formal models through software design and

implementation. Our models include a formal experimental data model (and data common

specification), a network-based discrete dynamical systems model (graph dynamical system,

GDS), and a formal model for pipeline composition. These models aid in reasoning—in a

principled way—about the architecture, design, and implementation of five software pipelines,

which currently contain 29 functions. The pipelines are composable and extensible, and they

can be operationalized for different methodologies (e.g. deductive and abductive analyses).

We provide three case studies, on collective identity, complex contagion, and explore-exploit

behavior, respectively, to illustrate the successful use of the system. We are adding these pipe-

lines to a larger job management system and are developing new h-functions for developing

new models. Contact Vanessa Cedeno (vcedeno@vt.edu) or Chris Kuhlman (cjk8gx@virginia.

edu) for the system code. A repository with a user manual is available at https://github.com/

vcedeno/PLOS_ONE_Pipelines_Supporting_Information.

There are limitations to this work. There is a host of other types of experiments that might

demand different types of data analytics, and there is a variety of modeling approaches, e.g.,

structural equation, statistical, differential equation models, that can be added to a pipeline sys-

tem. Another limitation, and an opportunity for future work, is to provide a data specification

for both experiments and analyses. Specifically, Section 2.1 identified experimental platforms

that are customizable [35–38] in ways that are analogous to our approach for customizable

software analysis pipelines. A single specification language for experiments and analyses

could be used to coordinate experiments and analyses. Also, it may be possible to use artificial

intelligence techniques to provide insight into external validation based on an experiment

specification.

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 35 / 58

https://github.com/vcedeno/PLOS_ONE_Pipelines_Supporting_Information
https://github.com/vcedeno/PLOS_ONE_Pipelines_Supporting_Information
https://doi.org/10.1371/journal.pone.0242453

A Appendix: Data common specification

This appendix provides a concrete view into the system. The definition of a data common

specification in Fig 3 provides the bridge between the abstract data model and the implementa-

tion of the pipelines; see Fig 6. Table 8 shows a description of the elements of the Data Com-

mon Specification. JSON schemas provide a detailed specific view of the implementation

aspect of our pipelines. Because we go into detail, this is an exemplar for other types of prob-

lems. These are the types of files we use in the case studies in Section 8.

Fig 19 shows the “Experiment” definition. Fig 20 shows the “Phase” definition. Fig 21

shows the “Phase Description” definition. Fig 22 shows the “Player” definition. Fig 23 shows

the “Action” definition.

B Appendix: Mapping of model onto the software system

In this appendix, we describe the characteristics of the implementation of an individual pipe-

line. Figs 24–28 each show a portion of the schema for a configuration file that specifies the

JSON schema file location for the experiment, phase description, phase, action, and player

respectively. Fig 29 shows an example of a Configuration Input file JSON schema describing

how to execute up to five functions in a pipeline.

C Appendix: Examples of the software system

This Appendix shows examples of input files for the Experimental Data Transformation Pipe-

line (Fig 30), and the Data Analytics Pipeline (Fig 31). Here we show how a function is exe-

cuted in a generic pipeline. Input files are validated against their corresponding JSON schema.

If necessary, file contents are transformed (possibly outputs from upstream functions) to

obtain the direct input for a function in the correct format. After verification of formats by the

corresponding JSON schemas, the function is executed and output files are generated (these

digital object outputs may be, e.g., plot files, ASCII data files, and binary data files).

Fig 30 shows an example of the (1) Experimental Data Transformation Pipeline input files

and the transformations they go through. Here, the function h1 takes experimental raw data

and transforms it to our Data Common Specification. CSV files are transformed into JSON

files, then verified for input before executing function h1. After execution, function h1 outputs

JSON schemas that become inputs for the Data Analytics Pipeline.

Table 8. Data common specification.

Component

Name

Parameter from Data Model (Table 3) Table in Data Model UML

(Fig 7)

Description

1 Experiment Experiment Schema Experiment Schema Experiment description and definition of initial parameters

(i.e., experiment id, number of phasers, number of players,

begin time, duration and list of players).

2 Phase Phase Schema: Phase schema id, Sequence, Phase

Begin, Phase duration, Unit of time, Network

definition, Meaning of an edge.

Phase Schema An experiment can have many phases. This is the Phase

description and definition of initial parameters (i.e., phase id,

order in experiment, begin time, duration and list of players,

connections between players, number of players).

3 Phase

Description

Phase Schema: Node attributes for a phase, Edge

attributes for a phase, Initial conditions for

nodes, Initial conditions for edges.

Edge, Initial Conditions Edge,

Edge Attributes, Initial

Conditions Node.

A phase has a description (i.e., phase id, beginning

parameters, end parameters, actions, relations between

actions).

4 Player Experiment Schema: Player id. Player. Player description (i.e., player id, experiment id, phase id).

5 Action Phase Schema: Action set, Action sequence. Action, Action Tuple A experiment, a phase and players have actions associated

with them (i.e., action id, phase id, action tuple id, player id,

timestamp, payload).

https://doi.org/10.1371/journal.pone.0242453.t008

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 36 / 58

https://doi.org/10.1371/journal.pone.0242453.t008
https://doi.org/10.1371/journal.pone.0242453

Fig 19. JSON schema for the “Experiment” of the data common specification.

https://doi.org/10.1371/journal.pone.0242453.g019

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 37 / 58

https://doi.org/10.1371/journal.pone.0242453.g019
https://doi.org/10.1371/journal.pone.0242453

Fig 31 shows an example of the (2) Data Analytics Pipeline execution of function h7 with

configuration input files examples. Here, the input JSON files are verified, then transformed

into function h7 direct input. After verifying the input for the function, h7 is executed and the

output files returned. In this example, the output file is an input for the (3) Property Inference

pipeline.

D Appendix: Pipeline functions

In this Appendix, we describe the characteristics of the the atomic element of a pipeline: the

function. If a new component is added to the pipeline, it is introduced by a new function. We

provide a listing of types of functions as microservices within each of the five pipelines. We

show five tables, one for each pipeline, with a list of available functions. Table 9 shows one

function for the (1) Experimental Data Transformation Pipeline (EDTP). Table 10 shows four-

teen functions for the (2) Data Analytics Pipeline (DAP) Table 11 shows four functions for the

Fig 20. JSON schema for the “Phase” of the data common specification.

https://doi.org/10.1371/journal.pone.0242453.g020

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 38 / 58

https://doi.org/10.1371/journal.pone.0242453.g020
https://doi.org/10.1371/journal.pone.0242453

(3) Property Inference Pipeline (PIP). Table 12 shows five functions for the (4) Modeling and

Simulation Pipeline (MASP). Table 13 shows five functions for the (5) Model Evaluation and

Prediction pipeline (MEAPP).

The functions provide a range of capabilities from simple plotting routines to cleaning and

organizing, storing and accessing data sets, and inferring properties and running simulations.

Users may add other functions and continue community-based development, as these func-

tions are not exhaustive. Each function completes one well-defined task. Many of these func-

tions can be used in multiple contexts; functions use the pipeline as a universal interface. For

example, the action progression function h3 of the Data Analytics Pipeline generates a plot of

the number of actions ai per player in time 8ai 2 A. Also, often a function represents a category

of operation; e.g., there are six different agent-based models (ABMs) under h1 of the Modeling

and Simulation Pipeline. Currently, functions are written in the following Programming Lan-

guages (PLs) C++, Python, and R.

Fig 21. JSON schema for the “Phase Description” of the data common specification.

https://doi.org/10.1371/journal.pone.0242453.g021

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 39 / 58

https://doi.org/10.1371/journal.pone.0242453.g021
https://doi.org/10.1371/journal.pone.0242453

Fig 22. JSON schema for the “Player” of the data common specification.

https://doi.org/10.1371/journal.pone.0242453.g022

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 40 / 58

https://doi.org/10.1371/journal.pone.0242453.g022
https://doi.org/10.1371/journal.pone.0242453

Fig 23. JSON schema for the “Action” of the data common specification.

https://doi.org/10.1371/journal.pone.0242453.g023

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 41 / 58

https://doi.org/10.1371/journal.pone.0242453.g023
https://doi.org/10.1371/journal.pone.0242453

Fig 24. To run a pipeline (called a job), a configuration input file specifies functions and their order of execution. This figure

shows a portion of the schema for a configuration file that specifies the experiment JSON schema file location.

https://doi.org/10.1371/journal.pone.0242453.g024

Fig 25. To run a pipeline (called a job), a configuration input file specifies functions and their order of execution. This

Figure shows a portion of the schema for a configuration file that specifies the phase description JSON schema file location.

https://doi.org/10.1371/journal.pone.0242453.g025

Fig 26. To run a pipeline (called a job), a configuration input file specifies functions and their order of execution. This

Figure shows a portion of the schema for a configuration file that specifies the phase JSON schema file location.

https://doi.org/10.1371/journal.pone.0242453.g026

Fig 27. To run a pipeline (called a job), a configuration input file specifies functions and their order of execution. This

Figure shows a portion of the schema for a configuration file that specifies the action description JSON schema file location.

https://doi.org/10.1371/journal.pone.0242453.g027

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 42 / 58

https://doi.org/10.1371/journal.pone.0242453.g024
https://doi.org/10.1371/journal.pone.0242453.g025
https://doi.org/10.1371/journal.pone.0242453.g026
https://doi.org/10.1371/journal.pone.0242453.g027
https://doi.org/10.1371/journal.pone.0242453

Fig 28. To run a pipeline (called a job), a configuration input file specifies functions and their order of execution. This Figure shows a portion of the

schema for a configuration file that specifies the player description JSON schema file location.

https://doi.org/10.1371/journal.pone.0242453.g028

Fig 29. To run a pipeline (called a job), a configuration input file specifies functions and their order of execution. In this configuration file there are

five possible functions that can be executed in any order. This Figure shows a portion of the schema for a configuration file that specifies how to

compose and execute one or more functions of a simple pipeline. For example, here it defines that a parameter called “actionId” is only necessary for

functions h2 through h5.

https://doi.org/10.1371/journal.pone.0242453.g029

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 43 / 58

https://doi.org/10.1371/journal.pone.0242453.g028
https://doi.org/10.1371/journal.pone.0242453.g029
https://doi.org/10.1371/journal.pone.0242453

E Appendix: Microservices

E.1 Characteristics

We provide a compact description of microservices [41, 42, 93, 95, 96, 108]. While there is no

universally accepted of what a microservice is, we take the term to have the following features;

1. Autonomous (isolated, simple entity): a microservice is a separate entity. Although isolated

services can add overhead, the resulting simplicity is worth it. This is analogous to the

trade-offs between a distributed system and a shared memory system.

2. Smallness: the code for a microservice can be rewritten (constructed, tested, verified, docu-

mented) in two weeks. Often, they are less than 100 lines of code.

3. Smallness: people tend to have good intuition when a code base is too large; so sufficiently

small is when this intuition does not hint at being too large.

4. Smallness: if the code base is too large to be managed by a small team, then it is not small

enough.

5. Interdependence: there should be interdependence among a collection of services. As ser-

vices get smaller, the benefits of interdependence increase. But smaller services create com-

plexity (the “edges” between services). But teams should learn to handle this complexity.

Fig 30. This is an example of the (1) experimental data transformation pipeline execution to transform raw experimental data into the data

common specification. Here we show how function h1 is executed. Here we show an input CSV file as an example for the “Completed Session

Summary” input file. If necessary, file contents are transformed to obtain the direct input for a function in the correct format. Here we show how the

“Completed Session Summary” CSV input file is transformed into a “Completed Session Summary” json file that becomes the input for the function.

After verification of formats by the corresponding JSON schemas, the function is executed and output files are generated. Here we show the output json

file for the “Experiment” data common specification.

https://doi.org/10.1371/journal.pone.0242453.g030

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 44 / 58

https://doi.org/10.1371/journal.pone.0242453.g030
https://doi.org/10.1371/journal.pone.0242453

6. Communication among services: all cooperation among services is through network calls

(versus direct invocation) to avoid tight coupling.

7. Change/upgrade: all microservices should be capable of changing independent of other

microservices. In practice, this can be hard to do it, for example, a collection of services

depend on lower level infrasctructure.

8. Independent deployment: each microservice should be deployable, independent of all

others.

9. Weary of Sharing Capability Between Services: the more multiple microservices share, the

more services become coupled to internal representations and decreases autonomy.

Fig 31. This is an example of the (2) data analytics pipeline execution to analyze files of data in the common specification. Here we show how

function h7 is executed. Input files are validated against their corresponding JSON schema. Here we show an example of a json schema file for the

“Experiment” description input file. Fig 19 contains the whole file. After verification of formats by the corresponding JSON schemas, if necessary, file

contents are transformed to obtain the direct input for a function in the correct format. After verification of formats by the corresponding JSON

schemas, function h7 is executed and output files are generated. In this example the output file is an input for the (3) Property Inference pipeline.

https://doi.org/10.1371/journal.pone.0242453.g031

Table 9. Listing of types of functions as microservices for the (1) Experimental Data Transformation Pipeline (EDTP).

Pipeline: Experimental Data Transformation (EDTP)

Name Description Significance Output

type

h1 Raw data into Data common

specification

Transform experimental raw data into our data

common specification.

This is the only way an experiment data can go

through our pipelines.

Data files

Many functions may be considered as collections of functions because they can handle multiple types of data through the data model.

https://doi.org/10.1371/journal.pone.0242453.t009

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 45 / 58

https://doi.org/10.1371/journal.pone.0242453.g031
https://doi.org/10.1371/journal.pone.0242453.t009
https://doi.org/10.1371/journal.pone.0242453

Table 10. Listing of types of functions as microservices for the (2) Data Analytics Pipeline (DAP).

Pipeline: Data Analytics (DAP)

Name Description Significance Output type

h1 Player interactions Generate a timeline of individual and between-players actions. Each player

represents a lane. Each action has a unique color.

Detect common patterns between

players and actions.

Visualization

h2 Timestamp Delta

between related actions

Construct a visualization of the timestamp delta between related actions. A

request action has a correspondent receive action. Each request action

represents a lane, a horizontal line represents the length of time it takes to

receive a requested action.

Detect bursts in types of actions. Detect

time patterns in types of actions.

Visualization

h3 Action progression Generate a cumulative distribution plot for an action, by player. Show how an action progresses in time

during an experiment phase.

Data files and

plot

h4 Average action Generate plot of the average number of actions between players in a window

size s.
Show how an average action progresses

in time between experiments phases.

Data files and

plot

h5 Action histogram Generate a histogram of timestamps of an action. Compare histograms among all

experiment phases.

Data files and

plot

h6 Histogram of related

actions

Generate a histogram of timestamp delta between related actions. Compare histograms between all

experiments phases.

Data files and

plot

h7 Discrete action

sequence in timeline

Generate a discrete-time action sequence by phase. Each action, from the

action set A has a unique id definition.

Generate input for the Property

Inference pipeline.

Time series data

files

h8 Summary of actions. Generate for each unique action the number of occurrences at the end of a

phase, and the number of occurrences at the end of all experiments in the

pipeline run.

Compare action occurrences among all

experiments.

Data files

h9 Player categories. Categorize players by performance in each action. Analyze player performance by

clustering them in categories.

Data files and

plot

h10 Actions heat-map. Generate heat-map by player for actions in a phase. Analyze player performance by a heat-

map visualization.

Data files and

plot

h11 Summary of related

actions.

Generate a summary at the end of a phase with the possible actions between

neighbors and the occurred actions.

Compare related action occurrences

among all experiments.

Data files

h12 Distance between

actions.

Generate a file with distance between two actions. The distance has to be

provided by the analyst (e.g, for the action of forming a word, the

Levenshtein distance between two words formed).

Compare action characteristics in an

experiment.

Data files

h13 Rank of actions. Generate a file with rank of an action. The rank has to be provided by the

analyst (e.g, for the action of requesting a letter, the letter rank comes from a

specified list).

Compare action characteristics in an

experiment.

Data files

h14 Score of actions. Generate a file with a score of an action. The method to calculate the score

has to be provided by the analyst (e.g, for the action of forming a word, the

scrabble score for a word formed).

Compare action characteristics in an

experiment.

Data files

Many functions may be considered as collections of functions because they can handle multiple types of data through the data model.

https://doi.org/10.1371/journal.pone.0242453.t010

Table 11. Listing of types of functions as microservices for the (3) Property Inference Pipeline (PIP).

Pipeline: Property Inference (PIP)

Name Description Significance Output

type

h1 Properties for Markovian

transition matrix.

Use of the sequences of discrete actions to generate the probability of transition

from an action ai to an action aj as measured in the experiment data.

Generates the properties for a

Markovian transition matrix.

Data files

h2 Properties for an adapted

CRF model

Use of the sequences of discrete actions to generate a derived feature vector

accounting for history effects, where the vector corresponds to the discrete-time

sequences from the Data Analytics h7 output.

Generates properties for an adapted

conditional random fields (CRF) model.

Data files

h3 Coefficients in a

hierarchical model

Generalize the model to take the number of neighbors into consideration, and

also digest the additional experiment data where player degree increases or

decreases.

Generate coefficients in a hierarchical

model to augment the CRF model.

Data files

h4 Multilinear regression

model

Construct multilinear regression model on action set A. Generate structure of the model and

parameter values

Data files

Many functions may be considered as collections of functions because they can handle multiple types of data through the data model.

https://doi.org/10.1371/journal.pone.0242453.t011

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 46 / 58

https://doi.org/10.1371/journal.pone.0242453.t010
https://doi.org/10.1371/journal.pone.0242453.t011
https://doi.org/10.1371/journal.pone.0242453

10. APIs (Application Programming Interfaces): specify/select/prefer technology-agnostic

APIs so that the services are not constrained by technology. Achieve decoupling: the suc-

cess of the “Change/upgrade” feature is an evaluation of decoupling success. Decoupling

also requires good models.

E.2 Benefits

Many of the benefits of microservices stem from their isolated, independent scope [41, 42, 93,

95, 96, 108].

1. Technology heterogeneity, including technology stacks, across microservices.

2. Technology changeout.

Table 12. Listing of types of functions as microservices for the (4) Modeling and Simulation Pipeline (MASP).

Pipeline: Modeling and Simulation (MASP)

Name Description Significance Output

type

h1 Agent based model

(ABM)

Execute agent based simulation models. Currently, six different models

(stationary, dynamic conditional random fields (CRF).

Generate Agent Based Model Simulations outputs

for self-consistency checks and predictions.

Data files

h2 Statistical regression Compute a relation between selected and observed values. Predict most probable value of the observed values

for any selected values.

Data files

h3 Statistical regression Regression equation that uses results from Phase 1 ABM to predict the

Phase 2 DIFI.

Predict the Phase 2 DIFI (i.e., DIFI2) score per

player.

Data files

h4 Statistical regression Regression equation that uses results from ABM Phases to predict the

Publics Good Game Contributions in the corresponding Phase.

Predict the Publics Good Game Contributions per

player.

Data files

h5 Component model

prediction

Execute agent based simulation component models to compare outputs

with real actions from a real experiment.

Compare outputs between models. Data files

Many functions may be considered as collections of functions because they can handle multiple types of data through the data model.

https://doi.org/10.1371/journal.pone.0242453.t012

Table 13. Listing of types of functions as microservices for the (5) Model Evaluation and Prediction pipeline (MEAPP).

Pipeline: Model Evaluation and Prediction (MEAPP)

Name Description Significance Output

type

h1 Model

Validation

Compares experiment outputs with simulation outputs. Demonstrate that the model is a reasonable representation of the

actual system.

Data files

and plot

h2 Model

Prediction

Generates statistical models to predict outcomes. Forecast outcomes in an experiment. Data files

and plot

h3 Model

Fusion

Generates model to predict outcomes by combining outputs

from different models.

Predict the Phase 2 DIFI (i.e., DIFI2) score per player. Data files

h4 Model

Evaluation

Generates R-squared values by comparing experiment outputs

with simulation outputs.

R-squared is a statistical measure of how close the data are to the

fitted regression line.

Data files

h5 Cross-

Validation

The original experiment sample is randomly partitioned into k

equal size subsamples. Of the k subsamples, a single subsample is

retained as the validation data for testing the model, and the

remaining k-1 subsamples are used as training data. The cross-

validation process is then repeated k times, with each of the k

subsamples used exactly once as the validation data.

Demonstrate that the model is a reasonable representation of the

actual system. All observations are used for both training and

validation, and each observation is used for validation exactly

once.

Data files

Many functions may be considered as collections of functions because they can handle multiple types of data through the data model.

https://doi.org/10.1371/journal.pone.0242453.t013

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 47 / 58

https://doi.org/10.1371/journal.pone.0242453.t012
https://doi.org/10.1371/journal.pone.0242453.t013
https://doi.org/10.1371/journal.pone.0242453

3. Technology evaluation in a controlled, limited way.

4. Easier to isolate problems and failures.

5. Scale-up can be focused to particular services. So, too, with on-demand provisioning.

6. Deployments/redeployments can be isolated to particular microservices. Smaller incre-

ments of (re)deployment means reducing the possibility of adverse ripple effects.

7. Improvements/new versions are eased in and old versions are eased out.

8. Smaller services translates to smaller teams.

9. Composability, reuse.

10. Choices to throw away code are made more easily (less ownership, less cost of

construction).

11. Easier unit testing (generating, executing, and interpreting tests). For example, there are

fewer paths through the code.

E.3 Microservices as a type of service oriented architecture

Pipelines are intimately tied to microservices. While microservices may be used individually,

typically, the small scope and limited features (or one feature) per service implies that they

must be composed to accomplish many tasks. This composition can be accomplished with

pipelines. This is not necessarily true with larger, more monolithic service oriented architec-

tures (SOAs): these may provide broader-scope services within one module.

Microservices are one type of service oriented architecture (SOA). One example of the dif-

ference between the two is that microservices generally tend to avoid shared libraries that are

used across microservices. This is because use of shared libraries means increased coupling of

services. Based on the authors’ experiences, this difference between microservices and SOAs in

general is analogous to the difference between shared memory multi-process systems versus

distributed systems, as described next.

By multi-process shared memory systems, we mean a software system that is composed of

multiple processes that run asynchronously and use shared memory to exchange information

(e.g., no message passing). In this environment, the processes are tightly coupled because if

one process requires changes in shared storage structures, these will affect all other processes

that use those storage structures. That is, the software for these other processes needs to be

changed, too, leading to increased maintenance. Hence, there are a lot of interdependencies.

However, in an asynchronous distributed system, each process has its own storage structures

and memory, so that changes in storage structures for one process has no effect on other pro-

cesses. While it is the case that additional infrastructure is required for distributed systems

(e.g., for message passing), this additional requirement is offset by the autonomy realized for

each process. The analogy here is that a multi-process shared memory system is a classic SOA,

while microservices are the distributed system.

F Appendix: Case studies

F.1 Study 2: Data model for online experiment in [3]

F.1.1 Overview. In [3], the effects of network structure on complex contagion diffusion

are studied by the spread of health behavior through networked online communities. We rep-

resent this experiment with the data model from Section 3. Each experiment, exp_id, consists

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 48 / 58

https://doi.org/10.1371/journal.pone.0242453

of two independent phases (np = 2), one with G(V0, E0) being a clustered-lattice network and

another H(V@, E@) being a random network. V = V0 [V@ is the set of all players with player vi
2 V, and 1 � i � n. There are n/2 players in each of the two networks, assigned randomly. Γi
contains variables for vi’s profile (i.e., avatar, username, health interests), ratings of the forum

content, and the state of vi in time, i.e., whether vi has joined the forum. The meaning of an

edge is λ = communication channel between pairs of subjects. Bv
i contains initial conditions

for the game, including values for the elements of Γi. The set of actions is A = {a1, a2, a3},

where a1 is “send a message” to encourage a neighbor to adopt a health related behavior; a2 is

“join forum” which notifies a participant every time a neighbor adopts the behavior; and a3 is

“input rating content” in the forum. Fig 32 shows many of these variables, and examples of

action tuples. Here we also provide detail of the action sequence from Fig 32. In T1, v1 sends a

message to v2, then in T2, v1 sends a message to v3. All these are signals from v1 to encourage

health buddies to join the forum. In T3, v2 decides to join because of v1’s message. This is why

the unique identifier σi for the action sequence is the same as in T1. After this, the news is prop-

agated to v2’s health buddy v3 in T4. v2 sends a message to v4 in T5. In T6, v1’s inputs rating con-

tent to the forum. This data model instance, coupled with a GDS formulation (not shown),

means that the experimental data can be analyzed (and modeled) with the pipeline system.

F.1.2 Formal data model. Table 14 details the online social network experiment in [3],

defined with our data model. We define one experiment with two independent phases, one

with a clustered-lattice network and another with a random network. Each has a population

size n = 98 and number of health buddies per person d = 6.

Fig 33 shows the model of Table 14 translated into a entity-relationship diagram in unified

modeling language (UML) form. This data model instance, that represents an experiment

instance, means that the experimental data can be analyzed (and modeled) with the pipeline

system. We can perform similar mappings for other social experiments [1, 9, 61].

Fig 32. Elements of the data model (Table 3), for the online social network experiment in [3].

https://doi.org/10.1371/journal.pone.0242453.g032

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 49 / 58

https://doi.org/10.1371/journal.pone.0242453.g032
https://doi.org/10.1371/journal.pone.0242453

Table 14. Online social network experiment in [3], defined with our data model.

Parameter Description

Experiment Schema

1 exp_id = 1 Experiment id for an experiment.

2 np = 2 Number of phases in the experiment.

3 n = 196 The number of unique players over all phases.

4 t_begin Timestamp of experiment beginning.

5 t_end Timestamp of experiment ending.

6 V V = {v1, . . ., v196}, set of players over all phases.

Phase Schema

1 ph_sch_id = 1 Id for phase schema.

2 inp ¼ 1 Element of the sequence of phases of the experiment.

3 t_ph_begin Timestamp of phase beginning.

4 tp = 13 Number of time increments in the phase.

5 up = days Time unit of one time increment.

6 G(V0, E0) Clustered-lattice network, node set V0 = {v1, . . ., v98} and edge set E0 = {e1, . . ., e294}, where the

number of health buddies each person has is 6.

7 λ λ = communication channel between health buddies. λ 2 Λ

8 Γ GjðtÞ ¼ ðgj1ðtÞ; gj2ðtÞ; . . . ; gj;Zv ðtÞÞ is the sequence of ηv attributes for vj 2 V0. ηv = # of initial

ratings in the forum to provide content for the early adopters.

10 Bv Bv
j ¼ ðavatarj1; usernamej2; health interestj3; . . .Þ.

12 A A = {a1, a2, a3} where a1 is send message, a2 is join forum, and a3 is input rating content.

13 T T1 = (1, a1, v1, v2, t, message). v1 “sends message” to v2.

T2 = (2, a1, v1, v3, t, message). v1 “sends message” to v3.

T3 = (1, a2, v2, v1, t, message). v1 “joins forum” after T1.

T4 = (1, a1, v2, v3, t, message). v2 “sends message” to v3.

T5 = (2, a1, v2, v4, t, message). v2 “sends message” to v4.

T6 = (3, a3, v1, null, t, message). v1 “inputs rating content” to forum.

. . .

Phase Schema

1 ph_sch_id = 2 Id for phase schema.

2 inp ¼ 2 Element of the sequence of phases of the experiment.

3 t_ph_begin Timestamp of phase beginning.

4 tp = 13 Number of time increments in the phase.

5 up = days Time unit of one time increment.

6 H(V@, E@) Random network, node set V0 = {v99, . . ., v196} and edge set E0 = {e1, . . ., e294}, where the number

of health buddies each person has is 6.

7 λ λ = communication channel between health buddies. λ 2 Λ

8 Γ GjðtÞ ¼ ðgj1ðtÞ; gj2ðtÞ; . . . ; gj;Zv ðtÞÞ is the sequence of ηv attributes for vj 2 V0. ηv = # of initial

ratings in the forum to provide content for the early adopters.

10 Bv Bv
j ¼ ðavatarj; usernamej; health interestj; . . .Þ.

12 A A = {send_message, join_forum, input_rating_content.}.

13 T T1 = (1, a1, v1, v2, t, message). v1 “sends message” to v2.

T2 = (1, a2, v2, v1, t, message). v1 “joins forum” after T1.

. . .

One experiment has two independent phases, one with a clustered-lattice network and another with a random

network; each with population size n = 98 and number of health buddies per person d = 6.

https://doi.org/10.1371/journal.pone.0242453.t014

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 50 / 58

https://doi.org/10.1371/journal.pone.0242453.t014
https://doi.org/10.1371/journal.pone.0242453

F.1.3 Formal GDS model. The GDS model for this system and experiments is that given

in Section 4.2.

F.2 Study 3: Data model for a simulation study in [44]

F.2.1 Overview. In this case study, we evaluate research that is purely simulation-based.

We cast their problem in terms of our data model. With this mapping, we then can reason that

if we performed experiments according to this data model, we would have a correspondence

between those experiments and the simulation system. Hence, in a sense, this case study dem-

onstrates a process of going from modeling to experiments. Another note is that even with

simulation models and no experiments, we can still use our pipeline system.

The model in [44] investigates how the structure of communication networks among

actors can affect system-level performance. This is an agent-based computer simulation

model of explore-exploit tradeoffs, with information sharing. [44] produces an arbitrarily

large number of statistically identical “problem” for the simulated agents to solve (explore).

Also, the less successful emulate the more successful (exploit). They state that solutions

involve the conjunction of multiple activities, in which the impact of one dimension on per-

formance is contingent on the value of other dimensions. For example, activities A, B, and C

each actually hurt performance unless all are performed simultaneously, in which case per-

formance improves dramatically. These are defined as synergies, and the presence of such

synergies produces local optima.

F.2.2 Formal data model. Table 15 details the model in [44], defined with our data

model. We define one experiment with one phase, with a population of 100, 20 human activi-

ties, and 5 synergies (i.e., activities that performed simultaneously improves dramatically the

activity performance). Here we also provide an example of an action sequence. In T1, v1 posts

a solution, then in T2, v2 posts a solution. All these are signals from v1 to encourage health bud-

dies to join the forum. In T3, v3 evaluates v1 solution. In T4 v3 copies solution from v1. The pay-

load will have the information of how accurate agents copy the solution from other, (i.e.) if it

was “mimic” or “adapt”.

Fig 34 shows the model of Table 15 translated into a entity-relationship diagram in unified

modeling language (UML) form.

This data model instance, that represents a modeling instance, means that the computa-

tional modeling results can be analyzed with the pipeline system.

Fig 33. Data model of Table 14 translated into a entity-relationship diagram in Unified Modeling Language (UML) form.

https://doi.org/10.1371/journal.pone.0242453.g033

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 51 / 58

https://doi.org/10.1371/journal.pone.0242453.g033
https://doi.org/10.1371/journal.pone.0242453

Supporting information

S1 File.

(ZIP)

Table 15. How the structure of communication networks among actors can affect system-level performance is

studied in [44].

Parameter Description

Experiment Schema

1 exp_id = 1 Experiment id for an experiment.

2 np = 1 Number of phases in the experiment.

3 n = 100 The number of unique players over all phases.

4 t_begin Timestamp of experiment beginning.

5 t_end Timestamp of experiment ending.

6 V V = {v1, . . ., v100}, set of players over all phases.

Phase Schema

1 ph_sch_id = 1 Id for phase schema.

2 inp ¼ 1 Element of the sequence of phases of the experiment.

3 t_ph_begin Timestamp of phase beginning.

4 tp = converge The phase runs until it converges on a single solution.

5 up = seconds Time unit of one time increment.

6 G(V0, E0) Linear network, node set V0 = {v1, . . ., v100} and edge set E0 = {e1, . . ., e98}.

7 λ λ = influence channel between neighbors. λ 2 Λ

8 Γ Γj(t) = (densityj(t), average_path_lengthj(t), scorej(t))
10 Bv Bv

j ¼ ðhuman activitiesj; synergiesj; . . .Þ.

12 A A = {post_solution, evaluate, copy_solution.}.

13 T T1 = (1, a1, v1, null, t, solution). v1 “posts solution”.

T2 = (1, a1, v2, null, t, solution). v2 “posts solution”.

T3 = (1, a2, v3, v1, t, solution). v3 “evaluates” v1 solution.

T4 = (1, a3, v3, v1, t, solution). v3 “copies solution” from v1.

. . .

Here we define this model with our data model.

https://doi.org/10.1371/journal.pone.0242453.t015

Fig 34. Data model of Table 15 translated into a entity-relationship diagram in Unified Modeling Language (UML) form.

https://doi.org/10.1371/journal.pone.0242453.g034

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 52 / 58

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0242453.s001
https://doi.org/10.1371/journal.pone.0242453.t015
https://doi.org/10.1371/journal.pone.0242453.g034
https://doi.org/10.1371/journal.pone.0242453

Author Contributions

Conceptualization: Xinwei Deng, Chris J. Kuhlman.

Data curation: Vanessa Cedeno-Mieles, Zhihao Hu, Xinwei Deng, Brian J. Goode, Parang

Saraf, Nathan Self.

Formal analysis: Vanessa Cedeno-Mieles, Zhihao Hu, Yihui Ren, Xinwei Deng, Chris J.

Kuhlman.

Funding acquisition: Noshir Contractor, Joshua M. Epstein, Brian J. Goode, Chris J. Kuhl-

man, Michael Macy, Madhav V. Marathe, Naren Ramakrishnan.

Investigation: Vanessa Cedeno-Mieles, Zhihao Hu, Yihui Ren, Xinwei Deng, Chris J.

Kuhlman.

Methodology: Vanessa Cedeno-Mieles, Zhihao Hu, Xinwei Deng, Chris J. Kuhlman.

Resources: Madhav V. Marathe, Naren Ramakrishnan.

Software: Vanessa Cedeno-Mieles, Zhihao Hu, Xinwei Deng, Saliya Ekanayake, Chris J. Kuhl-

man, Dustin Machi.

Supervision: Yihui Ren, Xinwei Deng, Brian J. Goode, Chris J. Kuhlman.

Validation: Noshir Contractor, Saliya Ekanayake, Joshua M. Epstein, Brian J. Goode, Gizem

Korkmaz, Dustin Machi, Michael Macy, Madhav V. Marathe, Naren Ramakrishnan,

Parang Saraf, Nathan Self.

Visualization: Vanessa Cedeno-Mieles, Zhihao Hu.

Writing – original draft: Vanessa Cedeno-Mieles, Zhihao Hu, Xinwei Deng, Chris J.

Kuhlman.

Writing – review & editing: Vanessa Cedeno-Mieles, Zhihao Hu, Xinwei Deng, Chris J.

Kuhlman.

References
1. Kearns M, Judd S, Tan J, Wortman J. Behavioral experiments on biased voting in networks. Proceed-

ings of the National Academy of Sciences. 2009; 106(5):1347–1352. https://doi.org/10.1073/pnas.

0808147106 PMID: 19168630

2. Judd S, Kearns M, Vorobeychik Y. Behavioral dynamics and influence in networked coloring and con-

sensus. Proceedings of the National Academy of Sciences. 2010; 107(34):14978–14982. https://doi.

org/10.1073/pnas.1001280107 PMID: 20696936

3. Centola D. The Spread of Behavior in an Online Social Network Experiment. Science. 2010; p. 1194–

1197. https://doi.org/10.1126/science.1185231 PMID: 20813952

4. Centola D. An Experimental Study of Homophily in the Adoption of Health Behavior. Science. 2011;

334:1269–1272. https://doi.org/10.1126/science.1207055 PMID: 22144624

5. Kearns M, Judd S, Vorobeychik Y. Behavioral Experiments on a Network Formation Game. In: Eco-

nomics and Computation (EC); 2012. p. 690–704.

6. Charness G, Cobo-Reyes R, Jimenez N. Identities, selection, and contributions in a public-goods

game. Games and Economic Behavior. 2014; 87:322–338. https://doi.org/10.1016/j.geb.2014.05.002

7. Ren Y, Cedeno-Mieles V, Hu Z, Deng X, Adiga A, Barrett C, et al. Generative Modeling of Human

Behavior and Social Interactions Using Abductive Analysis. In: 2018 IEEE/ACM International Confer-

ence on Advances in Social Networks Analysis and Mining (ASONAM); 2018. p. 413–420.

8. Thomas KA, DeScioli P, Sultan O, Pinker S. The psychology of coordination and common knowledge.

Journal of Personality and Social Psychology. 2014; 107(4):657–676. https://doi.org/10.1037/

a0037037 PMID: 25111301

9. Mason W, Watts DJ. Collaborative learning in networks. Proceedings of the National Academy of Sci-

ences. 2012; 109(3):764–769. https://doi.org/10.1073/pnas.1110069108 PMID: 22184216

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 53 / 58

https://doi.org/10.1073/pnas.0808147106
https://doi.org/10.1073/pnas.0808147106
http://www.ncbi.nlm.nih.gov/pubmed/19168630
https://doi.org/10.1073/pnas.1001280107
https://doi.org/10.1073/pnas.1001280107
http://www.ncbi.nlm.nih.gov/pubmed/20696936
https://doi.org/10.1126/science.1185231
http://www.ncbi.nlm.nih.gov/pubmed/20813952
https://doi.org/10.1126/science.1207055
http://www.ncbi.nlm.nih.gov/pubmed/22144624
https://doi.org/10.1016/j.geb.2014.05.002
https://doi.org/10.1037/a0037037
https://doi.org/10.1037/a0037037
http://www.ncbi.nlm.nih.gov/pubmed/25111301
https://doi.org/10.1073/pnas.1110069108
http://www.ncbi.nlm.nih.gov/pubmed/22184216
https://doi.org/10.1371/journal.pone.0242453

10. Fujimoto RM, Carothers C, Ferscha A, Jefferson D, Loper M, Marathe M, et al. Computational chal-

lenges in modeling simulation of complex systems. In: 2017 WSC; 2017. p. 431–445.

11. Fujimoto R, Bock C, Chen W, Page E, Panchal JH. Research Challenges in Modeling and Simulation

for Engineering Complex Systems. Springer; 2017b. Available from: http://www.springer.com/us/

book/9783319585437.

12. Lazer D, Pentland A, Adamic L, Aral S, Barabási AL, Brewer D, et al. Computational Social Science.

Science. 2009; 323(5915):721–723. https://doi.org/10.1126/science.1167742 PMID: 19197046

13. Macy MW, Willer R. From Factors to Factors: Computational Sociology and Agent-Based Modeling.

Annual Review of Sociology. 2002; 28(1):143–166. https://doi.org/10.1146/annurev.soc.28.110601.

141117

14. Epstein JM. Generative Social Science: Studies in Agent-Based Computational Modeling. Stu—stu-

dent edition ed. Princeton University Press; 2006.

15. Capraro V. A Model of Human Cooperation in Social Dilemmas. PLoS One. 2013; 8:e72427–1–

e72427–6. https://doi.org/10.1371/journal.pone.0072427

16. Ackland R, O’Neil M. Online collective identity: The case of the environmental movement. Social Net-

works. 2011; 33:177–190. https://doi.org/10.1016/j.socnet.2011.03.001

17. Shank D. B., Kashima Y., Saber S., Gale T., Kirley M., Dilemma of dilemmas: How collective and indi-

vidual perspectives can clarify the size dilemma in voluntary linear public goods dilemmas, PLOS ONE

10 (2015) 1–19. https://doi.org/10.1371/journal.pone.0120379 PMID: 25799355

18. van der Zee DJ, Holkenborg B. Conceptual Modelling for Simulation-based Serious Gaming. In: Winter

Simulation Conference; 2010. p. 522–534.

19. Mathieu P, Morvan G, Picault S. Multi-level agent-based simulations: Four design patterns. Simulation

Modelling Practice and Theory. 2018; 83. https://doi.org/10.1016/j.simpat.2017.12.015

20. Garcia-Magarino I, Palacios G, Lacuesta R. TABSAOND: A technique for developing agent-based

simulation apps and online tools with nondeterministic decisions. Simulation Modelling Practice and

Theory. 2017; 77:84–107. https://doi.org/10.1016/j.simpat.2017.05.006

21. Dunke F, Nickel S. Neural networks for the metamodeling of simulation models with online decision

making. Simulation Modelling Practice and Theory. 2019; 99:102016. https://doi.org/10.1016/j.simpat.

2019.102016

22. Cedeno-Mieles V, Hu Z, Ren Y, Deng X, Adiga A, Barrett C, et al. Networked experiments and model-

ing for producing collective identity in a group of human subjects using an iterative abduction frame-

work. Social Network Analysis and Mining. 2020; 10(11).

23. Haig BD. An Abductive Theory of Scientific Method. Psychological Methods. 2005; 10:371–388.

https://doi.org/10.1037/1082-989X.10.4.371 PMID: 16392993

24. Timmermans S, Tavory I. Theory Construction in Qualitative Research: From Grounded Theory to

Abductive Analysis. Sociological Theory. 2012; 30:167–186. https://doi.org/10.1177/

0735275112457914

25. Rioux F, Bernier F, Laurendeau D. Design and implementation of an XML-based, technology-unified

data pipeline for interactive simulation. In: Winter Simulation Conference; 2008. p. 1130–1138.

26. Jo Y, Tomar G, Ferschke O, Rosé CP, GaševićD. Pipeline for Expediting Learning Analytics and Stu-

dent Support from Data in Social Learning. In: LAK; 2016. p. 542–543.

27. da Silva RF, Filgueira R, Pietri I, Jiang M, Sakellariou R, Deelman E. A Characterization of Workflow

Management Systems for Extreme-Scale Applications. Future Generation Computer Systems. 2017.

28. Garijo D, Alper P, Belhajjame K, Corcho O, Gil Y, Goble C. Common motifs in scientific workflows: An

empirical analysis. In: 2012 IEEE 8th International Conference on E-Science; 2012. p. 1–8.

29. Gil Y, Deelman E, Ellsman M, Fahringer T, Fox G, Gannon D, et al. Examining the Challenges of Sci-

entific Workflows. IEEE. 2007; p. 24–32.

30. Melnikov AA, Nautrup HP, Krenn M, Dunjko V, et al. Active learning machine learns to create new

quantum experiments. Proceedings of the National Academy of Sciences. 2018.

31. Thaler RH. Misbehaving: The Making of Behavioral Economics. W. W. Norton & Company; 2016.

32. Buschmann F, Meunier R, Rohnert H, Sommerlad P, Stal M. Pattern-Oriented Software Architecture

—Volume 1: A System of Patterns. Wiley Publishing; 1996.

33. Fowler M. Patterns of Enterprise Application Architecture. Boston, MA, USA: Addison-Wesley Long-

man Publishing Co., Inc.; 2002.

34. Cedeno-Mieles V, Ren Y, Ekanayake S, Goode BJ, Kuhlman CJ, Machi D, et al. Pipelines and Their

Compositions for Modeling and Analysis of Controlled Online Networked Social Science Experiments.

In: 2018 Winter Simulation Conference (WSC); 2018. p. 774–785.

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 54 / 58

http://www.springer.com/us/book/9783319585437
http://www.springer.com/us/book/9783319585437
https://doi.org/10.1126/science.1167742
http://www.ncbi.nlm.nih.gov/pubmed/19197046
https://doi.org/10.1146/annurev.soc.28.110601.141117
https://doi.org/10.1146/annurev.soc.28.110601.141117
https://doi.org/10.1371/journal.pone.0072427
https://doi.org/10.1016/j.socnet.2011.03.001
https://doi.org/10.1371/journal.pone.0120379
http://www.ncbi.nlm.nih.gov/pubmed/25799355
https://doi.org/10.1016/j.simpat.2017.12.015
https://doi.org/10.1016/j.simpat.2017.05.006
https://doi.org/10.1016/j.simpat.2019.102016
https://doi.org/10.1016/j.simpat.2019.102016
https://doi.org/10.1037/1082-989X.10.4.371
http://www.ncbi.nlm.nih.gov/pubmed/16392993
https://doi.org/10.1177/0735275112457914
https://doi.org/10.1177/0735275112457914
https://doi.org/10.1371/journal.pone.0242453

35. Radford J, Pilny A, Reichelmann A, Keegan B, Foucault Welles B, Hoye J, et al. Volunteer Science: An

Online Laboratory for Experiments in Social Psychology. Social Psychology Quarterly. Special Issue:

Methodological Advances and Applications in Social Psychology. 2016; 79(4):376–396.

36. Giamattei M, Yahosseini KS, Gachter S, Molleman L. LIONESS Lab: a free web-based platform for

conducting interactive experiments online. Journal of the Economic Science Association. 2020; 95–

111. https://doi.org/10.1007/s40881-020-00087-0

37. A. Almaatouq, J. Becker, J. P. Houghton, N. Paton, D. Watts, M. E. Whiting, Empirica: a virtual lab for

high-throughput macro-level experiments, ArXiv abs/2006.11398 (2020).

38. E. Bakshy, L. Dworkin, B. Karrer, K. Kashin, Benjamin Letham, Ashwin Murthy, et al: A domain-agnos-

tic platform for adaptive experimentation, 32nd Conference on Neural Information Processing Systems

(2018).

39. Adiga A, Kuhlman CJ, Marathe MV, Mortveit HS, Ravi SS, Vullikanti A. Graphical dynamical systems

and their applications to bio-social systems. International Journal of Advances in Engineering Sci-

ences and Applied Mathematics. 2018.

40. Stubbs J, Moreira W, Dooley R. Distributed Systems of Microservices Using Docker and Serfnode. In:

7th International Workshop on Science Gateways; 2015. p. 34–39.

41. Salah T, Zemerly MJ, Yeun CY, AI-Qutayri M, AI-Hammadi Y. The Evolution of Distributed Systems

Towards Microservices Architecture. In: The 11th International Conference for Internet Technology

and Secured Transactions (ICITST); 2016. p. 318–325.

42. Cerny T, Donahoo MJ, Trnka M. Contextual Understanding of Microservice Architecture: Current and

Future Directions. Applied Computing Review. 2017; 17(4):29–45. https://doi.org/10.1145/3183628.

3183631

43. Polletta F, Jasper JM. Collective Identity and Social Movements. Ann Rev Soc. 2001; 27:283–305.

https://doi.org/10.1146/annurev.soc.27.1.283

44. Lazer D, Friedman A. The Network Structure of Exploration and Exploitation. Administrative Science

Quarterly. 2007; 52(4):667–694. https://doi.org/10.2189/asqu.52.4.667

45. Cedeno-Mieles V, Hu Z, Deng X, Ren Y, Adiga A, Barrett C, et al. Mechanistic and Data-Driven Agent-

Based Models to Explain Human Behavior in Online Networked Group Anagram Games. In: 2019

IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASO-

NAM); 2019. p. 357–364.

46. Chen PPS. The Entity-relationship Model&Mdash;Toward a Unified View of Data. ACM Trans Data-

base Syst. 1976; 1(1):9–36. https://doi.org/10.1145/320434.320440

47. Ullman JD, Widom J. A First Course in Database Systems. Upper Saddle River, NJ, USA: Prentice-

Hall, Inc.; 1997.

48. Arlow J, Neustadt I. UML 2.0 and the Unified Process: Practical Object-Oriented Analysis and Design (

2Nd Edition). Addison-Wesley Professional; 2005.

49. Bachman CW. Data Structure Diagrams. SIGMIS Database. 1969; 1(2):4–10. https://doi.org/10.1145/

1017466.1017467

50. Barrett C, Hunt HB, Marathe MV, Ravi SS, Rosenkrantz DJ, Stearns RE, et al. Predecessor existence

problems for finite discrete dynamical systems. Theoretical Computer Science. 2007; p. 3–37. https://

doi.org/10.1016/j.tcs.2007.04.026

51. Barrett CL, Hunt HB, Marathe MV, Ravi SS, Rosenkrantz DJ, Stearns RE. Complexity of reachability

problems for finite discrete dynamical systems. J Comp Syst Sci. 2006; 72(8):1317–1345. https://doi.

org/10.1016/j.jcss.2006.03.006

52. Mortveit H, Reidys C. An Introduction to Sequential Dynamical Systems. Springer; 2007.

53. Granovetter M. Threshold Models of Collective Behavior. American J Sociology. 1978; 83(6):1420–

1443. https://doi.org/10.1086/226707

54. Kennedy K, Allen R. Optimizing Compilers for Modern Architectures: A Dependence-based Approach.

Morgan Kaufmann; 2001.

55. Coviello L., Franceschetti M., McCubbins M. D., Paturi R., Vattani A., Human matching behavior in

social networks: An algorithmic perspective, PLOS ONE 7 (8) (2012) 1–9. https://doi.org/10.1371/

journal.pone.0041900

56. Kozlowski SWJ, Ilgen DR. Enhancing the Effectiveness of Work Groups and Teams. Psychological

Science in the Public Interest. 2006; 7(3):77–124. https://doi.org/10.1111/j.1529-1006.2006.00030.x

PMID: 26158912

57. DeChurch LA, Mesmer-Magnus JR. The cognitive underpinnings of effective teamwork: a meta-analy-

sis. Journal of Applied Psychology. 2010; 95(1):32–53. https://doi.org/10.1037/a0017328 PMID:

20085405

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 55 / 58

https://doi.org/10.1007/s40881-020-00087-0
https://doi.org/10.1145/3183628.3183631
https://doi.org/10.1145/3183628.3183631
https://doi.org/10.1146/annurev.soc.27.1.283
https://doi.org/10.2189/asqu.52.4.667
https://doi.org/10.1145/320434.320440
https://doi.org/10.1145/1017466.1017467
https://doi.org/10.1145/1017466.1017467
https://doi.org/10.1016/j.tcs.2007.04.026
https://doi.org/10.1016/j.tcs.2007.04.026
https://doi.org/10.1016/j.jcss.2006.03.006
https://doi.org/10.1016/j.jcss.2006.03.006
https://doi.org/10.1086/226707
https://doi.org/10.1371/journal.pone.0041900
https://doi.org/10.1371/journal.pone.0041900
https://doi.org/10.1111/j.1529-1006.2006.00030.x
http://www.ncbi.nlm.nih.gov/pubmed/26158912
https://doi.org/10.1037/a0017328
http://www.ncbi.nlm.nih.gov/pubmed/20085405
https://doi.org/10.1371/journal.pone.0242453

58. Jiménez J, Gomez A, Buhrmester MD, et al. The Dynamic Identity Fusion Index: A New Continuous

Measure of Identity Fusion for Web-Based Questionnaires. Soc Sci Comp Rev. 2016; p. 215–228.

59. Chen DL, Schonger M, Wickens C. oTree–An open-source platform for laboratory, online and field

experiments. Journal of Behavioral and Experimental Finance. 2016; 9:88–97. https://doi.org/10.1016/

j.jbef.2015.12.001

60. Pilny A., Poole M. S., Reichelmann A., Klein B., A structurational group decision-making perspective

on the commons dilemma: results from an online public goods game, Journal of Applied Communica-

tion Research 45 (4) (2017) 413–428. https://doi.org/10.1080/00909882.2017.1355559

61. Salganik M. J., Watts D. J., Web-based experiments for the study of collective social dynamics in cul-

tural markets, topiCS 1 (3) (2009) 439–468. PMID: 25164996

62. Suri S., Watts D. J., Cooperation and contagion in web-based, networked public goods experiments,

PLOS ONE 6 (2011) 1–18. https://doi.org/10.1371/journal.pone.0016836 PMID: 21412431

63. Arechar A. A., Gächter S., Molleman L., Conducting interactive experiments online, Experimental Eco-

nomics. PMID: 29449783

64. Zeckhauser R., Horton J., The online laboratory: Conducting experiments in a real labor market,

Experimental Economics 14 (2010) 399–425.

65. Feather NT. Attribution of responsibility and valence of success and failure in relation to initial confi-

dence and task performance. Journal of Personality and Social Psychology. 1969; 13:129–144.

https://doi.org/10.1037/h0028071

66. Feather NT, Simon JG. Attribution of responsibility and valence of outcome in relation to initial confi-

dence and success and failure of self and other. Journal of Personality and Social Psychology. 1971;

18:173–188. https://doi.org/10.1037/h0030845

67. Miller DT, Ross M. Self-Serving Biases in the Attribution of Causality: Fact or Fiction? Psychological

Bulletin. 1975; 82:213–225. https://doi.org/10.1037/h0076486 PMID: 1099222

68. Vance RJ, Colella A. Effects of two types of feedback on goal acceptance. Journal of Applied Psychol-

ogy. 1990; 75:68–77. https://doi.org/10.1037/0021-9010.75.1.68

69. Schweitzer M, Ordonez L, Dumaz B. Goal-setting as a motivator of unethical behavior. Academy of

Management Journal. 2004; 47:422–433.

70. Wolstencroft K, Haines R, Fellows D, Williams A, et al. The Taverna workflow suite: designing and exe-

cuting workflows of Web Services on the desktop, web or in the cloud. Nucleic Acids Research. 2013;

p. gkt328. https://doi.org/10.1093/nar/gkt328 PMID: 23640334

71. Deelman E, Vahi K, Juve G, Rynge M, Callaghan S, Maechling PJ, et al. Pegasus, a Workflow Man-

agement System for Science Automation. Future Gener Comput Syst. 2015; 46:17–35. https://doi.org/

10.1016/j.future.2014.10.008

72. Callaghan S, Deelman E, Gunter D, Juve G, Maechling P, Brooks C, et al. Scaling Up Workflow-

based Applications. J Comput Syst Sci. 2010; 76(6):428–446. https://doi.org/10.1016/j.jcss.2009.11.

005

73. Barseghian D, Altintas I, Jones MB, Crawl D, Potter N, Gallagher J, et al. Workflows and extensions to

the Kepler scientific workflow system to support environmental sensor data access and analysis. Eco-

logical Informatics. 2010; 5(1):42–50. https://doi.org/10.1016/j.ecoinf.2009.08.008

74. Ludäscher B, Altintas I, Berkley C, Higgins D, Jaeger E, Jones MB, et al. Scientific workflow manage-

ment and the Kepler system. Concurrency and Computation: Practice and Experience. 2006; 18

(10):1039–1065. https://doi.org/10.1002/cpe.994

75. Vivian J, Rao AA, Nothaft FA, Ketchum C, Armstrong J, et al. Toil enables reproducible, open source,

big biomedical data analyses. Nature Biotechnology. 2017; 35:314–316. https://doi.org/10.1038/nbt.

3772 PMID: 28398314

76. Kaushik G, Ivkovic S, Simonovic J, Tijanic N, Davis-Dusenbery B, Kural D. Rabix: An Open-Source

Workflow Executor Supporting Recomputability and Interoperability of Workflow Descriptions. In: Bio-

computing; 2013. p. 154–165.

77. Sinnott RO , Hussain S . Security-oriented Workflows for the Social Sciences. In: International Confer-

ence on Network and System Security; 2010. p. 152–159.

78. Goecks J, Nekrutenko A, Taylor J. Galaxy: a comprehensive approach for supporting accessible,

reproducible, and transparent computational research in the life sciences. Genome Biology. 2010; 11

(8):R86. https://doi.org/10.1186/gb-2010-11-8-r86 PMID: 20738864

79. Deelman E, Gannon D, Shields M, Taylor I. Workflows and e-Science: An Overview of Workflow Sys-

tem Features and Capabilities. Future Gener Comput Syst. 2009; 25(5):528–540. https://doi.org/10.

1016/j.future.2008.06.012

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 56 / 58

https://doi.org/10.1016/j.jbef.2015.12.001
https://doi.org/10.1016/j.jbef.2015.12.001
https://doi.org/10.1080/00909882.2017.1355559
http://www.ncbi.nlm.nih.gov/pubmed/25164996
https://doi.org/10.1371/journal.pone.0016836
http://www.ncbi.nlm.nih.gov/pubmed/21412431
http://www.ncbi.nlm.nih.gov/pubmed/29449783
https://doi.org/10.1037/h0028071
https://doi.org/10.1037/h0030845
https://doi.org/10.1037/h0076486
http://www.ncbi.nlm.nih.gov/pubmed/1099222
https://doi.org/10.1037/0021-9010.75.1.68
https://doi.org/10.1093/nar/gkt328
http://www.ncbi.nlm.nih.gov/pubmed/23640334
https://doi.org/10.1016/j.future.2014.10.008
https://doi.org/10.1016/j.future.2014.10.008
https://doi.org/10.1016/j.jcss.2009.11.005
https://doi.org/10.1016/j.jcss.2009.11.005
https://doi.org/10.1016/j.ecoinf.2009.08.008
https://doi.org/10.1002/cpe.994
https://doi.org/10.1038/nbt.3772
https://doi.org/10.1038/nbt.3772
http://www.ncbi.nlm.nih.gov/pubmed/28398314
https://doi.org/10.1186/gb-2010-11-8-r86
http://www.ncbi.nlm.nih.gov/pubmed/20738864
https://doi.org/10.1016/j.future.2008.06.012
https://doi.org/10.1016/j.future.2008.06.012
https://doi.org/10.1371/journal.pone.0242453

80. Elmroth E, Hernández F, Tordsson J. Three Fundamental Dimensions of Scientific Workflow Interop-

erability: Model of Computation, Language, and Execution Environment. Future Gener Comput Syst.

2010; 26(2):245–256. https://doi.org/10.1016/j.future.2009.08.011

81. Leipzig J. A review of bioinformatics pipeline frameworks. Briefings in Bioinformatics. 2017; 18

(3):530–536. PMID: 27013646

82. Atkinson M, Gesing S, Montagnat J, Taylor I. Scientific workflows: Past, present and future. Future

Gener Comput Syst. 2017; 75:216–227. https://doi.org/10.1016/j.future.2017.05.041

83. Cohen-Boulakia S, Belhajjame K, Collin O, Chopard J, Froidevaux C, Gaignard A, et al. Scientific

workflows for computational reproducibility in the life sciences: Status, challenges and opportunities.

Future Gener Comput Syst. 2017; 75:284–298. https://doi.org/10.1016/j.future.2017.01.012

84. Belhajjame K, Zhao J, Garijo D, Gamble M, Hettne K, Palma R, et al. Using a suite of ontologies for

preserving workflow-centric research objects. Web Semantics: Science, Services and Agents on the

World Wide Web. 2015; 32(0).

85. Gil Y, Ratnakar V, Deelman E, Mehta G, Kim J. Wings for Pegasus: Creating Large-scale Scientific

Applications Using Semantic Representations of Computational Workflows. In: Proceedings of the

19th National Conference on Innovative Applications of Artificial Intelligence—Volume 2. IAAI’07.

AAAI Press; 2007. p. 1767–1774.

86. Wilde M, Hategan M, Wozniak JM, Clifford B, Katz DS, Foster IT. Swift: A language for distributed par-

allel scripting. Parallel Computing. 2011; 37:633–652. https://doi.org/10.1016/j.parco.2011.05.005

87. Wozniak JM, Armstrong TG, Wilde M, Katz DS, Lusk E, Foster IT. Swift/T: Scalable Data Flow Pro-

gramming for Many-Task Applications. In: ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming; 2013. p. 309–310.

88. Ahmed AE, Heldenbrand J, Asmann Y, Fadlelmola FM, Katz DS, Kendzior KKMC, et al. Managing

genomic variant calling workflows with Swift/T. PLoS Computational Biology. 2019; p. e1006843–1–

e1006843–14. PMID: 31287816

89. Tommaso PD, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow enables repro-

ducible computational workflows. Nature Biotechnology. 2017; 35:316–319. https://doi.org/10.1038/

nbt.3820 PMID: 28398311

90. Amstutz P, Crusoe MR, Tijanic N, Chapman B, Chilton J, Heuer M, et al. Common Workflow Lan-

guage, v1.0.; 2016.

91. Anonymous. Workflow Description Language; 2019. https://software.broadinstitute.org/wdl/

documentation/spec.

92. Wang G, Peng B. Script of Scripts: A pragmatic workflow system for daily computational research.

PLoS Computational Biology. 2019; p. e1006843–1–e1006843–14. PMID: 30811390

93. Lewis J, Fowler M. Microservices; 2014. https://martinfowler.com/articles/microservices.html.

94. Pahl C, Jamshidi P. Microservices: A Systematic Mapping Study. In: Proceedings of the 6th Interna-

tional Conference on Cloud Computing and Services Science—Volume 1 and 2 (CLOSER); 2016.

p. 137–146.

95. Lewis J. Microservices—java, the unix way. Proceedings of the 33rd Degree Conference for Java Mas-

ters. 2012.

96. Taibi D, Lenarduzzi V, Pahl C, Janes A. Microservices in agile software development: a workshop-

based study into issues, advantages, and disadvantages; 2017. p. 1–5.

97. Kramer S. The biggest thing amazon got right: The platform; 2006. https://gigaom.com/2011/10/12/

419-the-biggest-thing-amazon-got-right-the-platform/.

98. Mauro T. Adopting microservices at netflix: Lessons for architectural design; 2015. https://www.nginx.

com/blog/microservices-at-netflix-architectural-best-practices/.

99. Sell C, Braun I. Using a workflow management system to manage emergency plans. 2009.

100. Sun SX, Zhao JL. Formal workflow design analytics using data flow modeling. Decision Support Sys-

tems. 2013; 55(1):270–283. https://doi.org/10.1016/j.dss.2013.01.028

101. Pau KC, Si YW, Marlon D. Data Warehouse Model for Audit Trail Analysis in Workflows. In: Proceed-

ings of the Student Workshop of IEEE International Conference on e-Business Engineering.

ICEBE’07; 2007.

102. Toivonen R, Kovanen L, Kivelä M, Onnela JP, Saramäki J, Kaski KK. A comparative study of social

network models: Network evolution models and nodal attribute models. Social Networks. 2009;

31:240–254. https://doi.org/10.1016/j.socnet.2009.06.004

103. Mitra S, Bagchi A, Bandyopadhyay A. Design of a Data Model for Social Network Applications. J Data-

base Manag. 2007; 18:51–79. https://doi.org/10.4018/jdm.2007100103

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 57 / 58

https://doi.org/10.1016/j.future.2009.08.011
http://www.ncbi.nlm.nih.gov/pubmed/27013646
https://doi.org/10.1016/j.future.2017.05.041
https://doi.org/10.1016/j.future.2017.01.012
https://doi.org/10.1016/j.parco.2011.05.005
http://www.ncbi.nlm.nih.gov/pubmed/31287816
https://doi.org/10.1038/nbt.3820
https://doi.org/10.1038/nbt.3820
http://www.ncbi.nlm.nih.gov/pubmed/28398311
https://software.broadinstitute.org/wdl/documentation/spec
https://software.broadinstitute.org/wdl/documentation/spec
http://www.ncbi.nlm.nih.gov/pubmed/30811390
https://martinfowler.com/articles/microservices.html
https://gigaom.com/2011/10/12/419-the-biggest-thing-amazon-got-right-the-platform/
https://gigaom.com/2011/10/12/419-the-biggest-thing-amazon-got-right-the-platform/
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://doi.org/10.1016/j.dss.2013.01.028
https://doi.org/10.1016/j.socnet.2009.06.004
https://doi.org/10.4018/jdm.2007100103
https://doi.org/10.1371/journal.pone.0242453

104. Hu J, Liu M, Zhang J. A semantic model for academic social network analysis. In: 2014 IEEE/ACM

International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014);

2014. p. 310–313.

105. Shepherd A, Rauch S, Schloer C, Kinkade D, Ake H, Biddle M, et al.. Towards Capturing Data Cura-

tion Provenance using Frictionless Data Package Pipelines; 2018.

106. Lee JY, Collins GJ. On Using Ilities of Non-Functional Properties for Subsystems and Components.

Systems. 2017; 5:47. https://doi.org/10.3390/systems5030047

107. Laurenczy B, Kashev A, Stockinger H, Escobar Lopez P, Maffioletti S. Guidelines for pipeline interop-

erability using containers; 2017.

108. Newman S. Building Microservices. O’Reilly; 2015.

PLOS ONE Pipelines for social science experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0242453 November 24, 2020 58 / 58

https://doi.org/10.3390/systems5030047
https://doi.org/10.1371/journal.pone.0242453

