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ABSTRACT

With the ability to help wildlife conservation, precise medical care,
and disease understanding, genomics analysis is becoming more and
moe important. Recently, with the development and wide adoption
of the Next-Generation Sequencing (NGS) technology, bio-data
grows exponentially, putting forward great challenges for k-mer
counting - a widely used application in genomics analysis.

Many hardware approaches have been explored to accelerate
k-mer counting. Most of those approaches are compute-centric, i.e.,
based on CPU/GPU/FPGA. However, the space for performance
improvement is limited for compute-centric accelerators, because
k-mer counting is a memory-bound application. By integrating
memory and computation close together and embracing higher
memory bandwidth, Near-Data-Processing (NDP) is a good candi-
date to accelerate k-mer counting. Unfortunately, due to challenges
of communication, bandwidth utilization, workload balance, and
redundant memory accesses, previous NDP accelerators for k-mer
counting cannot fully unleash the power of NDP. To build a practi-
cal, scalable, high-performance, and energy-efficient NDP accelera-
tor for k-mer counting, we perform hardware/software co-design
and propose the DIMM based Near-Data-Processing Accelerator
for k-mer counting (NEST). To fully unleash the potential of NEST
architecture, we modify the k-mer counting algorithm and propose
a dedicated workflow to support efficient parallelism. Moreover,
the proposed algorithm and workflow are able to reduce unneces-
sary inter-DIMM communication. To improve memory bandwidth
utilization, we propose a novel address mapping scheme. The chal-
lenge of workload balance is addressed with the proposed task
scheduling technique. In addition, scattered memory access and
task switching are proposed to eliminate redundant memory access.
Experimental results show that NEST provides 677.33x/27.24x/6.02x
performance improvement and 1076.14x/62.26x/4.30x energy reduc-
tion, compared with a 48-thread CPU, a CPU/GPU hybrid approach,
and a state-of-the-art NDP accelerator, respectively.

1 INTRODUCTION

Genomics analysis is becoming more and more important and it is
developing rapidly, since it is helpful to understanding of complex
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human disease [26], wildlife conservation [23], precise medical
care, and so on [7]. As an example, the Next Generation Sequencing
(NGS) technology helps a lot with characterization of the global
pandemic Coronavirus Disease 2019 (COVID-19) [12, 22], which
infects and causes death to thousands of people around the world
after its outbreak in 2019.

With the improving throughput and cost efficiency of the NGS
technology [32], bio-data is growing exponentially, putting forward
great challenges to genomics analysis [14]. In genomics analysis,
frequency information of k-mers (DNA subsequences with length of
k) in the sequencing data is needed for many applications, including
de novo genome assembly, repeat identification, error correction,
variant calling, and so on [4, 15, 24]. For example, during DNA
error correction, if a k-mer appears only once in the sequencing
reads, this k-mer is assumed to contain sequencing errors and will
be converted to other k-mers with higher frequencies via error
correction [31]. k-mer counting occupies a significant portion of
the runtime in many genomics workflows. For instance, as shown
in Fig 1, k-mer counting is the most time consuming step in the de
novo genome assembly, consuming nearly half of the total runtime
in the entire de novo assembly pipeline [6]. Considering that the
second time consuming step - ‘Assembly’ has drawn tremendous
amount of attention and has been accelerated up to 710x [29, 34],
k-mer counting becomes even more important.

Motivated by its importance, many compute-centric approaches,
such as multi-core [6, 9], GPU [4, 10], and FPGA [3, 4] have been
explored to accelerate k-mer counting. However, the acceleration of
k-mer counting is non-trivial due to the large dataset size and char-
acteristics of this application. k-mer counting is memory-bound and
involves a large amount of irregular memory access [4, 15]. More-
over, since k-mer counting requires frequent random read/write to
Bloom filters and hash table, memory bandwidth will be wasted
without the ability to perform fine-grained random memory ac-
cess [4, 25]. Conventional architectures above cannot address the
memory bottleneck in k-mer counting, because they provide lim-
ited memory bandwidth with higher read/write latencies and there
is no optimization for fine-grained random memory access. Besides
conventional architectures, previous work leverages Near-Data-
Processing (NDP) architectures to accelerate k-mer counting, be-
cause NDP architectures merge computation and memory closer to
provide higher memory bandwidth and greatly reduce the overhead
of data movement. For example, emerging monolithic 3D integra-
tion is utilized to accelerate k-mer counting in [15] and MEDAL
provides a more practical approach via leveraging the Dual-Inline
Memory Module (DIMM) to build accelerators with commercially
available DRAM components [14].
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Figure 1: Time breakdown of the de novo assembly. k-mer
counting dominates the runtime.
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However, previous NDP accelerators have their own drawbacks,
when they are used for k-mer counting. To be specific, monolithic
3D integration is an emerging technology, which means it’s a long-
term NDP architecture. Moreover, those 3D integration based ar-
chitectures do not consider and optimize for fine-grained memory
access. MEDAL is a near-term NDP architecture. Unfortunately,
when MEDAL is used to perform k-mer counting, communication
becomes the bottleneck. As the experiments show, for more than
60% percent of the time, the Processing Elements (PEs) in MEDAL
are idle due to the communication. Furthermore, workload balance
is a serious challenge in MEDAL and there is no optimization to
deal with redundant memory accesses.

The goal of this paper is to address the challenges of performing
k-mer counting with NDP architecture. Modified and optimized
on the base of MEDAL, a practical, scalable, energy-efficient, and
commodity DRAM components based NDP accelerator, i.e., NEST,
is proposed. NEST has efficient communication, balanced workload,
high bandwidth/PE utilization, and fine-grained memory accessi-
bility. The main contributions of this paper are listed as follows.

e From the hardware perspective, we build a practical, scalable,
high-performance, and energy-efficient NDP accelerator for k-
mer counting, i.e., NEST, with off-the-shelf DRAM components.

e From the software perspective, we modify the k-mer counting
algorithm and propose a dedicated workflow to enable parallel
processing in NEST. Moreover, proposed algorithm and workflow
are able to reduce unnecessary inter-DIMM communication.

e About the detailed optimizations, we enhance support for intra-
DIMM communication, improve bandwidth/PE utilization, ad-
dress the challenge of workload balance, and eliminate unneces-
sary memory accesses via architecture design, address mapping,
task scheduling, and memory access management.

o We perform extensive experiments for the NEST architecture and
proposed techniques. The experimental evaluation shows that
NEST provides 677.33x/27.24x/6.02x performance improvement
and 1076.14x/62.26x/4.30x energy reduction, compared with a 48-
thread CPU, a CPU/GPU hybrid approach, and a state-of-the-art
NDP accelerator, respectively.

2 BACKGROUND

Before talking about k-mer counting, this section first introduces
data structure used in k-mer counting, i.e., Bloom filter and Count-
ing Bloom filter. Then, description of k-mer counting is presented.
Finally, buffered DIMM, which is the base of NEST, is introduced.

Bloom Filter: Bloom filter is a space efficient data structure based
on hash table and it supports efficient membership checking [2, 19].
In k-mer counting, Bloom filter is used to determine whether a k-
mer is unique or not, i.e., if a k-mer appears more than once in the
dataset or not. Bloom filter consists of a bit array with the capacity
of m and involves n independent hash functions. The bit array is

ot ATCTCTAGAAGAAGA

k-mer counting {}

3-mer |ATC|TCT|[CTC|CTA|TAG|AGA|GAA|AA
Counter| 1 2 1 1 1 8 2 2

Figure 2: An example of k-mer counting,.

initialized with zeros. To insert an item into the Bloom filter, n inde-
pendent hash values are computed and the corresponding entries in
the bit array are written to ones. To check the existence of an item,
n independent hash values are computed and the corresponding
entries are checked to see if they are all ones. If some of the Bloom
filter entries are zeros, this item is not in the Bloom filter for sure.
Otherwise, if all entries in the Bloom filter are ones, this item is
supposed to be in the Bloom filter with a low rate of false positive.

Counting Bloom Filter: Instead of storing a bit array, a counting
Bloom filter [11] contains an array with small counters. For example,
with a 4-bit counter array, counting Bloom filter is able to handle
counts from 0 to 15. Similar to Bloom filter, to insert an item into the
counting Bloom filter, n independent hash values are computed and
the corresponding entries in the counter array are increased by one.
To lookup the counter of an item, n independent hash values are
computed and the corresponding entries are read out. The smallest
hash value is assumed to be the counter of the target item.

k-mer Counting: As we’ve mentioned previously, the frequencies
of different k-mers are needed for many applications in genomics
analysis. k-mer counting is an essential and time consuming step
for deriving the frequencies of k-mers in the sequencing reads.
To be specific, k-mer counting refers to the process of counting
the occurrences of DNA substrings with length of k among the
sequencing data. An example of k-mer counting is shown in Fig 2,
the frequencies of different 3-mers are derived after k-mer counting,.
In the sequencing data, k-mers can be divided into two cate-
gories, i.e., unique k-mers and non-unique k-mers. Unique k-mers
refer to k-mers that appear only once in the dataset. Non-unique
k-mers refer to k-mers that appear more than once in the dataset.
Because the unique k-mers are highly likely to be sequencing er-
rors [25, 31] and, for some sequencing data, up to 75% k-mers can
be unique [25], k-mer counting often removes those unique k-mers
and only counts the frequencies of non-unique k-mers [4, 25]. k-mer
counting usually includes the following two steps [4, 25]:

e Prune: With a chain of two Bloom filters, each time a k-mer
comes in, check existence of this k-mer in the first Bloom filter.
If this k-mer is in the first Bloom filter, write this k-mer into the
second Bloom filter. Otherwise, write this k-mer into the first
Bloom filter. After all k-mers have gone through this process,
the non-unique k-mers are stored in the second Bloom filter and
the unique k-mers are filtered out. The first Bloom filter can be
discarded after this step.

e Count: For each input k-mer, check existence of this k-mer in
the second Bloom filter. If this k-mer is in second Bloom filter,
increase the corresponding frequency counter in the Hash table.
After all k-mers have gone through this process, the occurrences
of the non-unique k-mers are stored in the Hash table.

Buffered Dual-Inline Memory Module: Dual-Inline Memory
Module (DIMM) is a widely used memory package with 64 data
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Figure 3: (a) High-level architecture. (b) Architecture of LRDIMM. (c) Micro-architecture within a DRAM rank. (d) PEs.

(DQ) pins, excluding the ones for ECC. Within a DIMM, multiple
DRAM chips form a rank. One or more ranks are packaged together
to form a DIMM. Load-Reduced DIMM (LRDIMM), as shown in
Fig. 3 (b), is introduced to address the signal integrity issue for high
frequency and heavy load memory interface. The key component
in LRDIMM is the Memory Buffer (MB) that enhances the C/A and
DQ signals. The MB is divided into two pieces:

o Registering Clock Driver (RCD): One per DIMM to buffer and
repeat C/A signals.

e Data Buffer (DB): One for a set of (e.g., 2/4/8) DRAM chips to
improve the signal integrity of DQ signals.

3 ARCHITECTURE

NEST is built by modifying the LRDIMM, as shown in Fig. 3 (a)
and (b). NEST is scalable and communication between different
LRDIMMs in NEST is achieved via the standard DDR channel with
the help of the host. We add a Near-Memory Computing (NMC)
module to each rank within each LRDIMM to perform k-mer count-
ing. The NMC module is described below:

NMC Module: Different from MEDAL, which modifies the DBs in
LRDIMM and inserts customized computing logics into them, we
attach a NMC module to each rank in the LRDIMM, as shown in
Fig. 3 (b) and (c). The controllers and computing logics in NEST are
centralized inside the NMC module. Compared with the approach of
distributing logics in MEDAL, centralization of the logics provides
better communication and synchronization. Further, centralized
logics enable task scheduling and improves the ability of memory
access management, which are introduced in Section 5.

To enhance intra-DIMM communication and reduce inter-DIMM
communication, the fully hierarchical buses are added.

Fully Hierarchical Buses: Communication becomes a serious

challenge, if MEDAL is used to perform k-mer counting. Details

about the communication overhead in MEDAL are described in

Section 7.6. To address the issue of communication, we design fully

hierarchical buses for NEST to better support intra-DIMM commu-

nication. Besides the inter-chip buses in MEDAL, the following two

types of inter-rank buses are added to NEST:

e rank-rank C/A bus: Transfer C/A signals between different ranks
within the same DIMM.

e rank-rank data bus: Transfer data between different ranks within
the same DIMM.

With the inter-rank buses, intra-DIMM communication can be
achieved locally without going through the memory channel, which
becomes the communication bottleneck in previous work.

To support the functionalities of computation, communication,
task schedule, memory access management and so on, the following
six components are added inside the NMC module:

Processing Elements (PEs): As shown in Fig. 3 (c) and (d), there

are a few PEs inside each NMC module. The number of PEs is

configurable. The PEs read/write the input/output data from/to

the Input/Output Buffer in the NMC module. The major function

of the PE is to perform hash function. About the hash function,

MurmurHash3 is used in NEST [28]. Each PE contains:

o Buffer to store the input k-mers

o Lightweight logics to perform hash function

e An address translation engine to convert the virtual address
to DRAM device address. Details of the address mapping are

described in Section 5.2.

Data Direct Multiplexer: As shown in Fig. 3 (c), NEST connects
a multiplexer with the Input Buffer and a multiplexer with the Out-
put Buffer. With the help of those two multiplexers, in addition to
receiving/sending data to the DDR bus, the buffers can receive/send
data to proposed fully hierarchical buses. The multiplexers are con-
trolled by a dedicated enable signals from the Memory Controller
(MC) we add inside the NMC module.

Memory Controller (MC): In order to coordinate memory ac-
cesses from both the host and PEs, we add a MC into the NMC mod-
ule, as shown in Fig. 3 (c). The coordination between the host-side
MC and the MC within the NMC module is achieved with the ‘Host-
prioritized Request Scheduling” proposed in MEDAL. Compare with
MEDAL, putting the MC and other logics together provides bet-
ter communication/synchronization, enables task scheduling, and
improves the ability of memory access management.

Workload Monitor: To address the challenge of workload balance
and improve PE utilization, we add a Workload Monitor inside the
NMC module. The Workload Monitor monitors and cooperates with
the Input Buffer and the PEs to tackle the challenge of workload
balance in performing k-mer counting. Details of addressing the
challenge of workload balance are described in Section 5.3.

Bus Arbiter: The bus arbiter regulates the data and C/A transfer.
It takes charge of the assignment of the fully hierarchical buses and
assigns them to the PEs sharing those buses.

Input Buffer and Output Buffer: The Input Buffer stores the
states and information of the input tasks, i.e., k-mer and the corre-
sponding task progress. The Output Buffer stores the output of the
PEs, i.e., information of the memory access.
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Figure 4: (a) Different DIMMs construct the counting Bloom filters in parallel. Memory accesses are localized. (b) Reduction
and scattering of the counting Bloom filters. (c) Count k-mers. The merged Bloom filters are localized inside each DIMM. The
hash table is distributed among DIMMs. Only verified non-unique k-mers involve memory access to the hash table.

From the hardware perspective, compared with MEDAL, NEST
provides better communication/synchronization, enables task sched-
uling, improves the ability of memory access management, en-
hances intra-DIMM communication, and has the potential to tackle
the challenge of workload balance.

4 ALGORITHM AND WORKFLOW

In NEST, to enable parallel processing of k-mer counting, the dataset
is evenly partitioned into different DIMMs. As we’ve described in
section 2, during k-mer counting, the prune phase constructs a
chain of two Bloom filters and the count phase accesses the second
Bloom filter constructed in the prune phase to perform k-mer count-
ing. Unfortunately, there are two major drawbacks, if we naively
implement the k-mer counting algorithm in NEST architecture:

e Limited Bandwidth and Parallelism: PEs in different DIMMs need
to access the same data region of Bloom filters, which under-
utilizes available memory bandwidth and hinders the parallelism
between different PEs.

e Frequent Inter-DIMM Communication: Frequent memory ac-
cesses to the same data region of Bloom filters introduces fre-
quent inter-DIMM memory accesses, which brings significant
performance overhead. Details of the performance penalty are
described in Section 7.6.

To address above issues, our key idea is to provide local Bloom
filters for each DIMM to access independently. With localized and
independent Bloom filters, PEs in different DIMMs access different
memory region for Bloom filter entries, available memory band-
width and PE parallelism is fully leveraged. Furthermore, inter-
DIMM communication is greatly reduced.

However, naively assign different copies of Bloom filters to dif-
ferent DIMMs and make PEs in different DIMMs work in parallel
independently do not work. In the original k-mer counting algo-
rithm, the Bloom filters contain global information about the entire
dataset, and there will be error if the local Bloom filters are con-
structed independently. For example, assume a 3-mer ATC appears
four times in a dataset, those four ATC are evenly partitioned into

four DIMMs and the local Bloom filters are constructed indepen-
dently. After the prune step, if we check the uniqueness of ACT in
the local Bloom filters, ACT will be confirmed as a unique k-mer in
all four local Bloom filters, because ATC only appear once in each
DIMM. However, ATC is a non-unique 3-mer globally, it appears
fourd times in the entire dataset.

To address the challenges above, we leverage the counting Bloom
filter and modify the k-mer counting algorithm. There are three
steps in the modified k-mer counting algorithm:

1. Construct the Counting Bloom Filters: During the construc-
tion of the Counting Bloom filters, compared with the original
k-mer counting algorithm, instead of using two 1-bit Bloom filters,
we leverage one 2-bit counting Bloom filter. Each DIMM constructs
their local counting Bloom filter, recording how many times (0, 1
or 2) each k-mer appears in this sub-dataset.

2. Merge the Counting Bloom Filters: After different DIMMs
finish constructing local counting Bloom filters, NEST merges those
local counting Bloom filters to a merged Bloom filter via reduction
and scattering. Reduction of the counting Bloom filter is performed
by adding the corresponding entries in those counting Bloom fil-
ters. In the end of reduction, if a counter entry is larger than 2 in
the reduced counting Bloom filter, the corresponding entry in the
merged Bloom filter will be one, otherwise it will be zero. Scattering
of the merged Bloom filter is performed by distributing the merged
Bloom filter to each DIMM.

3. Count k-mers: After scattering of the merged Bloom filter, each
DIMM contains a copy of the merged Bloom filter. k-mer counting
is performed in different DIMMs in parallel. For each k-mer, NEST
first checks the merged Bloom filter locally to see if this k-mer is
non-unique. If current k-mer is non-unique, Memory access to the
distributed hash table will be performed and NEST will increase
the corresponding frequency counter in the hash table by one.
The workflow of performing proposed algorithm in NEST is
shown in Fig. 4. Construction of the counting Bloom filters doesn’t
involve inter-DIMM communication, which will greatly degrade
performance of the system. Merge of the counting Bloom filter only
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Figure 5: (a) Previous address mapping scheme aggregates
fine-grained data to better leverage locality. (b) Proposed ad-

dress mapping scheme distributes fine-grained data for bet-
ter memory bandwidth utilization.

involves continuously sequential read and write operations, which
have little impact on performance. About the step of counting k-
mer, unnecessary inter-DIMM memory accesses are avoided via
first checking the merged Bloom filter locally, which contributes to
the good performance of NEST.

5 CHALLENGES AND OPTIMIZATIONS

The challenges of performing k-mer counting in commodity DRAM
components based NDP accelerator together with corresponding
techniques proposed to address those challenges are presented in
this section.

5.1 Bottleneck of Communication

Inter-DIMM communication becomes the bottleneck, if MEDAL is
used for k-mer counting (details in Section 7.6). In order to ensure no
hardware modification is made to the host-side memory controller
and maintain the DDR timing constraint, worse case timing scenario
is considered for inter-DIMM memory access, which means there
is an extra delay for each inter-DIMM memory access. Because of
this, inter-DIMM memory access involves significant performance
penalties in DIMM based NDP architecture.

To address above challenge, the following hardware and software
optimizations are used in NEST to reduce the number of inter-
DIMM memory access and relieve the bottleneck of communication:

NEST Workflow: Proposed workflow greatly reduces unneces-
sary inter-DIMM memory access by dividing k-mer counting into
multiple steps and localizing data within each DIMM in each step
as much as possible.

Fully Hierarchical Buses: We add inter-rank buses, including the
rank-rank C/A bus and rank-rank data bus, to enable efficient com-
munication between different ranks within a DIMM, minimizing
the amount of inter-DIMM communication.

5.2 Bandwidth Utilization

For address mapping in commodity DRAM components based NDP
architecture, as shown in Fig 5 (a), MEDAL coalesces data within a
DRAM chip to better leverage data locality. However, in proposed
k-mer counting, there are lots of memory accesses to counting
Bloom filter entries or Bloom filter entries, i.e., 1-bit or 2-bit random
memory access, which means there is no locality at all. Thus, as
shown in Fig 5 (b), compared with MEDAL, we re-order the address
bits to prioritize distributing data in different DRAM chips. With
proposed address mapping, instead of trying to coalesce data within
the same DRAM chip, we try to distribute data in different DRAM
chips to improve the memory bandwidth utilization.

Mem requests issued by a PE Bloom Filter requests from the same task

Data returns
to this PE 1 LO\\ || 1
Q) Useless data — Bandwidth wasted

Mem requests issued by a PE Bloom Filter requests from different tasks

BF0 B0 Br0 (or-0
ot GO GO 901 000 0 1

(b) No useless data - No bandwidth waste
Figure 6: (a) Memory bandwidth is wasted if memory re-
quests from the same task are issued sequentially. (b) No
memory bandwidth is wasted with proposed optimizations.

5.3 Workload Balance

The key idea of addressing the challenge of workload balance is to
keep an eye on the states of different PEs and perform task sched-
uling correspondingly. As mentioned before, we add a Workload
Monitor in the NMC module. The Workload Monitor tries to keep
all PEs busy and it’s in charge of the task scheduling. Tasks come
from the DRAM will be put into the Input Buffer first. The Work-
load Monitor monitors the states of different PEs and the Input
Buffer. If a PE needs more tasks to process and there are pending
tasks in the Input Buffer, the Workload Monitor will dispatch tasks
to this PE to keep it busy. The challenge of workload balance is
addressed with proposed task scheduling via dispatching tasks to
PEs in fine-granularity dynamically.

5.4 Redundant Memory Access

During the step ‘Count k-mer’, we need to verify if all Bloom filter
entries related to current k-mer in the merged Bloom filter are ones.
If all of those Bloom filter entries are ones, we need to write to the
hash table. Otherwise, no write operation is needed. However, if
memory accesses to the merged Bloom filter are issued sequentially,
memory bandwidth may be wasted. For example, assume for each
k-mer, four Bloom filter entries need to be checked. As shown
in Fig 6 (a), four memory accesses belong to the same k-mer are
issued sequentially. However, value of the first Bloom filter entry
returned is zero, meaning that no write operation is needed and
we don’t need to check other Bloom filter entries at all. However,
because the memory accesses are issued sequentially, useless Bloom
filter entries will be fetched out from the DRAM and memory
bandwidth is wasted. To address this issue, we propose the two-
step optimization to eliminate redundant memory accesses:

Scattered Memory Access: As shown in Fig 6 (b), instead of is-
suing memory accesses belong to a k-mer sequentially, we scatter
those memory accesses and issue them with time intervals. We will
issue another memory access, only if the previous memory access
related to a k-mer has returned and the returned value is one. With
this approach, the redundant memory accesses are eliminated and
the available memory bandwidth can be utilized efficiently.

Task Switching: Although redundant memory access is eliminated
with scattered memory access, memory bandwidth is still being
wasted due to the lack of enough memory access to DRAM between
the memory access intervals. To solve this issue, we propose to
switch tasks between memory accesses. PEs will switch to another
task and issue a memory access belong to another k-mer after
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Figure 7: Performance improvement and energy reduction of CPU/GPU hybrid approach, MEDAL, and NEST with different
architectures/optimizations. Results are normalized to that of a 48-thread CPU. (a) Performance improvement for different k
with 20x genome coverage. (b) Energy reduction for different k with 20x genome coverage. (c) Performance improvement for
different genome coverage ratios with k = 27. (d) Energy reduction for different genome coverage ratios with k = 27.

Table 1: Configure of the baselines and NEST

Configuration of the CPU basline
CPU Model Intel Xeon E5-2680 v3
CPU Clock Frequency (GHz) 2.50
Memory Capacity (GB) 384
L1 (KB)/L2 (KB)/L3 (MB) Cache 64/ 256/ 32
Configuration of the CPU + GPU basline
GPU Model Nvidia Titan X
CPU Model Intel Xeon E5-2603 v3
CPU Clock Frequency (GHz) 1.60
Memory Capacity (GB) 24
L1 (KB)/L2 (KB)/L3 (MB) Cache 647256/ 16
Configuration of MEDAL and NEST
Memory Capacity (GB) 512
Memory Channels 4
DIMMs per Memory Channels 2
Ranks per DIMM 4
DRAM Chips per Rank 16
Rank-Rank C/A buses per DIMM (NEST) 4
Rank-Rank Data buses per DIMM (NEST) 1
Chip-Chip Data buses per Rank 1
PEs per Rank 6
Parameters of DDR4 DRAM
Capacity 8Gb X 4
Bank Groups 2
Banks per BankGroup 2
Clock Frequency (1/tCK) 1,200MHz
tRCD-tCAS-tRP (ns) 16-16-16

issuing previous memory access belong to a certain k-mer. With
this approach, time intervals due to scattered memory accesses will
be filled with memory accesses belong to different k-mers.
Combine above two techniques, the redundant memory accesses
are eliminated and memory bandwidth can be utilized efficiently.

6 DISCUSSION

Algorithm Equivalence: Proposed algorithm leverages counting
Bloom filter to perform k-mer counting. In counting Bloom filter,
the counter returned may be higher than the actual frequency of the
k-mer in the dataset. This is not a problem for two reasons. First,
higher counter value in the counting Bloom filter is equivalent
to the false positive rate of the Bloom filter in the original k-mer
counting algorithm and is generally considered insignificant [24].

Table 2: Design Parameters of the Lightweight logics

Module Latency (Cycles) | Power (mW) | Leakage (uW) | Area (umz)
Hash Module 17 5.99 8.38 5297.58
Addr Trans 4 2.13 16.45 11423.54

Second, in general, retaining k-mers with low occurrences doesn’t
degrade the final results of the following applications [25].

Generality of NEST: From hardware perspective, NEST provides
a practical, scalable, high-performance, and energy efficient NDP
accelerator with hierarchical communication schemes and support
for fine-grained random memory access, it can be beneficial to
memory-bound applications require hierarchical communication
and fine-grained memory access. For example, NEST can be eas-
ily configured to support the application of ‘DNA seeding’ which
MEDAL is designed for simply by replacing the PEs inside NEST
with customized PEs for ‘DNA Seeding’. From software perspec-
tive, proposed algorithm and workflow provides a solution to re-
duce memory access in distributed NDP architectures with soft-
ware/hardware co-design and the divide-and-conquer approach.

7 EXPERIMENTAL RESULTS

The experimental setup, results, and analysis of the experimental
results are presented in this section.

7.1 Experimental Setup

Configuration of the Baselines: For CPU and CPU + GPU, we
use two widely used software tools, i.e., BFCounter [25] and Ger-
bil [10], as the baselines. The detailed configuration information of
the two servers running those two baselines is shown in Table 1.
For MEDAL, as shown in Table 1, the configuration of memory
and number of PEs are the same as those in NEST. The differences
between MEDAL and NEST are those architecture modifications
and communication optimizations we make. Proposed k-mer count-
ing algorithm is also used in MEDAL to improve its performance,
Configuration of NEST: We modify Ramulator [18] to build a
cycle-accurate simulator for NEST. The configuration of NEST is
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Figure 8: (a) Time breakdown for different steps with 20x genome coverage. (b) Energy breakdown for computation, com-
munication, and memory access with 20x genome coverage. (c) Time breakdown for different steps with k = 20. (d) Energy
breakdown for computation, communication, and memory access with k = 20.

shown in Table 1. We use pre-layout Design Compiler [33] with
28 nm technology [1] to estimate the timing, energy, and area pa-
rameters of the PEs. The timing constraint is set to be 1.2GHz. The
parameters of the PEs are shown in Table 2. The timing parameters
of the DRAM components are shown in Table 1. The energy con-
sumption of DRAM is derived by feeding the memory traces from
Ramulator to DRAMPower [5]. The parameters of energy consump-
tion for the datapath used in this paper are from CACTI-IO [16].
Datasets: The datasets used in the experiments are sequenced
human genome [27] with different coverage ratio.

7.2 Performance Improvement

The performance of different architectures/optimizations are in Fig.
7 (a) and (c). All the data are normalized to the performance of the
48-thread CPU baseline.

As shown in Fig. 7 (a), when the genome coverage is 20x, for dif-
ferent k, naive coarse-grained memory access in NEST architecture
improves the performance of the 48-thread CPU, the CPU/GPU
hybrid approach, and MEDAL by 171.78x, 6.88x, and 1.51x, respec-
tively. Compared with naive coarse-grained memory access, naive
fine-grained memory boosts the performance of NEST by 1.13x.
About the optimizations, proposed address mapping improves the
performance of naive fine-grained memory access by 1.08x. More-
over, performance improvement of 1.17x is achieved with proposed
task scheduling. Memory access management gains 2.79x perfor-
mance improvement. Combine above optimizations together, NEST
outperforms the 48-thread CPU, the CPU/GPU hybrid approach,
and MEDAL by 687.48x, 27.53x, and 6.06x, respectively. When k is
27, similar trend of speedup can be observed in Fig. 7 (c).

Compared with MEDAL, performance improvement from the
configuration of naive coarse-grained memory access in NEST
comes from the enhanced support for intra-DIMM communication.
Compared with naive coarse-grained memory access, performance
improvement of naive fine-grained memory access comes from
its ability to perform fine-grained memory access. Further, perfor-
mance improvement of task scheduling comes from the balanced
workloads in different PEs. Finally, performance improvement of
memory access management comes from its reduction of redundant
memory access and task switching to efficiently utilize available
memory bandwidth. Overall, compared with the CPU baseline, chip-
level fine-grained memory access provides 16x more bandwidth,
rank-level parallelism provides 4x more bandwidth, and allowing

different copies of counting Bloom filters/Bloom filters in differ-
ent DIMMs to be accessed in parallel provides 8x more bandwidth.
Combine those benefits together, NEST provides 512x more mem-
ory bandwidth than the CPU baseline. Further, proposed k-mer
counting algorithm reduces the amount of memory access needed,
i.e. one counting Bloom filter vs. two Bloom filters. Moreover, NEST
has efficient task scheduling and memory access management. Com-
bine all above advantages, NEST provides significant performance
improvement, compared with the CPU baseline.

7.3 Energy Reduction

The energy reduction of different architectures/optimizations are
in Fig. 7 (b) and (d). All the data are normalized to the energy
consumption of the 48-thread CPU baseline.

As shown in Fig. 7 (b), when the genome coverage is 20x, for
different k, naive coarse-grained memory access in NEST archi-
tecture reduces energy consumption of the 48-thread CPU and
the CPU/GPU hybrid approach by 160.16x and 9.75x, respectively.
Compared with MEDAL, this approach consumes 50% more en-
ergy. Compared with naive coarse-grained memory access, energy
consumption is reduced by 2.54x with naive fine-grained memory
reduces. About proposed optimizations, address mapping slightly
reduces the energy consumption by 1.01x. Task scheduling reduces
energy consumption by 1.15x. Energy reduction of 2.19x is achieved
via memory access management. Combine proposed optimizations
together, compared with the 48-thread CPU, the CPU/GPU hybrid
approach, and MEDAL, NEST reduces the energy consumption by
1091.91x, 62.90x, and 4.32x, respectively. When k is 27, similar trend
of energy reduction can be found in Fig. 7 (d).

7.4 Time and Energy Breakdown

The time breakdown for NEST is shown in Fig. 8 (a) and (c). The re-
sults indicate that the phases of ‘Merge the Counting Bloom Filters’
are negligible, because this phase only takes less than 5% of the
total runtime. The dominant phases in the workflow are ‘Construct
Counting Bloom Filters” and ‘Count k-mers’. By introducing the
negligible phases of ‘Merge the Counting Bloom Filters’, proposed
workflow separates the phases of ‘Construct Counting Bloom Fil-
ters’ and ‘Count k-mers’ to reduce inter-DIMM communication,
leading to performance improvement.
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Figure 9: Percentage of remote memory access in the naive
implementation of the original k-mer counting algorithm
and in NEST.

The energy breakdown of NEST is shown in Fig. 8 (b) and (d).
More than 90% energy is consumed by DRAM. Less than 10% en-
ergy is consumed by computation and communication combined
together. The observations indicate that computation and commu-
nication in NEST is very energy efficient.

Percentage (%)
@
3

7.5 Remote Memory Access

The percent of remote memory access among all memory access
with naive implementation of the original k-mer counting algorithm
in MEDAL architecture and the percent of remote memory access in
NEST are shown in Fig. 9. The x-axis standards for different inputs
in the form of (Genome Coverage, k). Compared with the naive
implementation, NEST effectively reduces the percent of remote
memory access from 96.90% to 19.20% on average.

7.6 PE Utilization

The breakdown of different PE states for the phases of ‘Construct
Counting Bloom filters’ and ‘Count k-mers’ are shown in Fig. 10
(a) and (b). The results indicate that, for k-mer counting, commu-
nication becomes the bottleneck in MEDAL due to its frequent
inter-DIMM communication with extra performance penalty. Pro-
posed step-by-step optimizations tackles the challenge in commu-
nication and memory. For the phase of ‘Construct Counting Bloom
filters’, compared with MEDAL, NEST architecture increases the
PE utilization ratio from 12.39% to 20.13%. Combine proposed tech-
niques together, PE utilization is improved to 56.62%. For the phase
of ‘Count k-mers’, similar trend can be observed. Compared with
MEDAL, NEST has a much higher PE utilization ratio.

8 RELATED WORK

This section introduces related work of NEST.

Accelerators for K-mer Counting: Most previous accelerators
for k-mer counting are based on multi-core [6, 9], FPGA [3, 4], and
GPU [4, 10]. Although above computing platforms have enough
computation capability, they are not suitable for k-mer counting. As
we have discussed in previous sections, the space for performance
improvement is limited for above compute-centric architectures,
because k-mer counting is a memory-bound application and those
approaches mostly focus on computation part.

Compared with those compute-centric approaches, NEST is a
memory-centric accelerator focusing on optimization of the mem-
ory, which fits k-mer counting better and can have more significant
performance improvement
NDP solutions for K-mer Counting: Hybrid Memory Cube (HMC)
has been leveraged to accelerate k-mer counting in a few works due
to its high memory bandwidth [15, 24]. However, compared with
commodity DRAM, 3D-integration is not cost-efficient, has limited
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Figure 10: Breakdown of the PEs states. (a) Constructing
counting Bloom Filters. (b) Counting k-mers.
capacity [30], and doesn’t provide extra internal bandwidth [8].
MEDAL is a NDP accelerator based on commodity DRAM compo-
nents with the ability of performing fine-grained memory access
[14], which seems to be suitable for k-mer counting. Unfortunately,
according to the evaluation, when MEDAL is used to perform k-
mer counting, inter-DIMM communication becomes the bottleneck,
which greatly degrades performance of the system. Moreover, other
serious issues, such as workload imbalance and redundant memory
access, also have significantly negative impact on its performance.

Compared with above NDP accelerators, NEST is cost-efficient,
scalable, and communication-optimized. In addition, NEST addresses
all the challenges mentioned above, i.e., workload imbalance and re-
dundant memory access, in k-mer counting. Moreover, NEST can be
easily extended to support many applications require hierarchical
communication and fine-grained memory access.
NDP vs. PIM: The reason that we don’t choose PIM architecture
for k-mer counting is mainly due to the consideration of practical-
ity. To be specific, although PIM architectures leverage emerging
technology often have very good performance [13, 17], those emerg-
ing technologies are usually not mature enough and difficult be
put into real use. For PIM architectures based on conventional
DRAM [20, 21], they usually require modifications to the DRAM
die, which are difficult for real implementation as well.

Add Optimizations |

Add Optimizations |

9 CONCLUSION

This paper proposes NEST, a practical, scalable, high-performance,
and energy efficient NDP accelerator for k-mer counting. To fully
unleash the performance of NEST, we modify the k-mer counting
algorithm and propose a dedicated workflow to support efficient
parallelism. Proposed algorithm and workflow are able to reduce
unnecessary inter-DIMM communication. In addition, we propose
a novel address mapping scheme to improve memory bandwidth
utilization. The challenge of workload balance is addressed with pro-
posed task scheduling. Scattered memory access and task-switching
are proposed to eliminate redundant memory access. Experimental
results show that NEST provides 677.33x/27.24x/6.02x performance
improvement and 1076.14x/62.26x/4.30x energy reduction, com-
pared with a 48-thread CPU, a CPU/GPU hybrid approach, and a
state-of-the-art NDP accelerator, respectively.
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