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Abstract. Web-based interactions allow agents to coordinate and to
take actions (change state) jointly, i.e., to participate in collective ac-
tion such as a protest, facilitating spread of contagion to large groups
within networked populations. In game theoretic contexts, coordination
requires that agents share common knowledge about each other. Com-
mon knowledge emerges within a group when each member knows the
states and the types (preferences) of the other members, and critically,
each member knows that everyone else has this information. Hence, these
models of common knowledge and coordination on communication net-
works are fundamentally different from influence-based unilateral conta-
gion models, such as those devised by Granovetter and Centola. Com-
mon knowledge arises in many settings in practice, yet there are few
operational models that can be used to compute contagion dynamics.
Moreover, these models utilize different mechanisms for driving conta-
gion. We evaluate the three mechanisms of a common knowledge model
that can represent web-based communication among groups of people on
Facebook. We evaluate these mechanisms on five social (media) networks
with wide-ranging properties. We demonstrate that different mechanisms
can produce widely varying behaviors in terms of the extent of contagion
spreading and the speed of contagion transmission.

1 Introduction

1.1 Background and Motivation

Infamous waves of uprisings (e.g., Black Lives Matter, Women’s March, Occupy
Wall Street) are commonly characterized by the significant use of social me-
dia to share information prior to, as well as during, protests to reach a critical
number of participants. The goal of understanding how local online interactions
through social networks can facilitate information sharing in a way that gen-
erates common knowledge and coordination within large groups has motivated
the construction of models of mobilization. While the exemplar in this work is
protests, other applications of mobilization are family decisions to evacuate in
the face of hurricanes and forest fires, and to participate in demonstrations for
equality. The results herein apply to these examples as well.
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There are many influence-based threshold models of diffusion that have been
proposed and evaluated, e.g., [16, 32, 19, 15, 26]. In a networked population, an
agent or network node i transitions from an inactive state (state 0) to an active
or state (state 1) if at least a threshold θ number of its neighbors (connections)
are already in state 1. These models are used to explain different behaviors, such
as the spread protests [15] and Twitter hashtags [26]. Watts argues for the use
of threshold models in a wide range of scenarios [32]. In these models, agents
make individual decisions to change state, irrespective of the decisions of their
neighbors, and hence are referred to as unilateral models.

In contrast, in game-theoretic models of collective action, agents’ decisions
to transition to state 1 depend on their expectations of what others will do.
That is, they need to know each others’ willingness to participate (defined by the
threshold θ) and this information needs to be common knowledge among a group
of agents. Common knowledge (CK) emerges within a group when each member
knows the states and attributes (e.g., preference, type) of the other members, and
critically, each member knows that everyone else knows her attributes. Common
knowledge enables a group of agents to coordinate their actions, thus enabling
them to transition state simultaneously if it is mutually beneficial to do so.

In the context of collective action, e.g., protests, two CK models ([11] and
[21]) combine social structure and individual incentives together in a coordi-
nation game of incomplete information and provide a rigorous formalization of
common knowledge. The authors study which network structures are conducive
to coordination, and the local spread of knowledge and collective action.

CK models are fundamentally different from unilateral models as (i) conta-
gion can initiate in CK models—meaning that contagion can be generated when
no contagion previously existed—whereas it does not in unilateral models (unless
an agent’s threshold is zero); (ii) CK models may utilize multiple mechanisms
at graph geodesic distances of 1 and 2, whereas unilateral models most often
use influence from distance-1 neighbors, and (iii) the characterizing (social) net-
work substructure for threshold-based models is a star subgraph centered at
the ego node making a decision, while those for CK models include distance-2
based stars and other substructures such as cliques [12] and bicliques [21] (i.e.,
complete bipartite graphs).

In this work, we evaluate the Common Knowledge on Facebook (CKF)
model [21]. It models communication on Facebook (through “wall” or “timeline”)
as a means to generate CK and to facilitate coordination. Geodesic distance-2
communication is achieved as follows: two individuals i and j do not directly
communicate, but each communicates with person k. This means that if, for ex-
ample, i writes information about herself on k’s wall, then j knows i’s informa-
tion by reading k’s wall, without directly communicating with i. The information
thus travels distance-2, from i to k to j. Multiple mechanisms are operative in
the CKF model, including CK itself, network dynamics, and local and global
interactions. Hence, it is of interest to understand the effects of mechanisms on
the spread of contagions. We aim to develop computational models of the CKF
model mechanisms to study these mechanisms individually and in combination,
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to quantify their effects on the spread of collective action. Table 1 describes these
mechanisms, which are formalized in Section 3.

Table 1. Communication mechanisms of the CKF model evaluated in this work, indi-
vidually and in combination. These mechanisms may be operative in contagion initia-
tion, propagation, or both. Mechanism abbreviations are denoted in [·].

Mechanism Description

Common
knowledge
[CK]

This is a common knowledge mechanism characterized by bicliques in
social networks. This mechanism can initiate contagion, and can drive
contagion propagation. No seeded nodes with contagion are required.

Neighborhood
dynamics
[ND2]

This is influence (communication) produced by neighbors within
distance-2 of an ego node. This mechanism propagates contagion.

Population
dynamics
[PD2]

Since agents (nodes) know both state and thresholds of agents within
distance-2, an agent can infer information about the numbers of agents
currently in state 1, even when these other agents are at geodesic
distances of 4 or more. This mechanism propagates contagion.
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Fig. 1. Spread of contagion on a 7-node graph illustrating the mechanisms of Table 1.
Each operative mechanism is evaluated independently, at each t. At t = 2, the spread
size is 5 (5 nodes in green), and the spread fraction is 5/7. The dynamics resulting
from the different mechanisms are discussed in the text.

Figure 1 provides an example illustrating all three mechanisms summarized
in Table 1. In this network, there are 7 people with different thresholds. Based
on the CKF model [21] summarized in Section 3, for agents to participate (i.e.,
transition to state 1), they need to share common knowledge with a group of peo-
ple (they need to form a complete bipartite graph), and their thresholds should
be less than the size of the common knowledge set (i.e., the group they share
common knowledge with). In this example, agents 1, 2, 3, and 4 have threshold
of 3, indicating that each needs to have at least 3 other people to participate
(i.e., transition to state 1) for them to participate. These four people form a com-
plete bipartite graph (a square) that allows them to generate common knowledge
about their willingness to participate. They know each others’ thresholds and
know that it is sufficiently low for them to jointly participate and achieve mutual
benefits. Hence, they transition to state 1 at t = 1. This is referred to as the
common knowledge [CK] mechanism. On the other hand, agent 5, who shares
common knowledge of thresholds with agents 1, 2, and 4 (through the 4-node
star network centered at agent 2), has threshold of 6 which is not low enough
for him to participate with the other 3 players that he shares CK with. Agent 5
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also is part of CK node sets {2, 5, 6} (a 3-node star centered at agent 5) and
{5, 6, 7} (a 3-node star centered at agent 6), but cannot transition to state 1 for
the same reason. Similarly, persons 6 and 7 do not transition to state 1 at t = 1.

Since agent 2 is within distance-2 of agent 6 (friend-of-friend), agent 6 knows
agent 2’s threshold and state (action), through the Facebook wall or timeline of
agent 5. At t = 2, agent 2’s state is 1 and her fixed threshold is 3. Thus, agent 6
knows that at least four agents are in state 1. Agent 6’s threshold is satisfied and
she transitions to state 1. This is the population dynamics [PD2] mechanism.

Finally, at t = 3, person 7 will transition to state 1 as a result of the neighbor-
hood dynamics [ND2] mechanism: it has one activated neighbor (agent 6) within
distance-2 to meet its threshold of 1. All of the state transitions in this example
are made formal in Section 3.

1.2 Contributions of This Work

Following others who study contagion dynamics on networks (e.g., [29]), we quan-
tify contagion dynamics on five web-based social networks that range over 6×
(i.e., over a factor of 6) in numbers of nodes 4× in numbers of edges, 4× in aver-
age degree, 13× in maximum degree, and 80× in average clustering coefficient.
Thresholds range over 3×. We constructed agent-based models and a framework
that can turn on and off any combination of mechanisms in simulations of con-
tagion dynamics. (The CKF model is presented in Section 3; simulation process
is given in Section 5.) There are also companion theoretical results, but owing
to space limitations, these will be included in an extended version of the paper.

1. Effects of different contagion mechanisms on the spread evolution.
We demonstrate that: (i) The [ND2] mechanism, as a driving force for contagion
diffusion, is often relatively weak compared to the other mechanisms. For many
networks and sets of simulation parameters, plots of fractions of nodes in state 1,
as a function of time, show little difference between the effects of the [CK] mech-
anism alone, versus the [CK] and [ND2] mechanisms combined. However, there
are cases (e.g., for the P2P network with θ = 8 and pp = 0.2), where the addi-
tion of [ND2] to [CK] increases the spread fraction by more than 50%. (ii) The
[PD2] mechanism dominates the other two mechanisms for driving contagion in
particular cases (e.g., for the Facebook (FB) network). In other cases, the [CK]
mechanism dominates (e.g., for several cases for the Wiki network). As aver-
age degree decreases relative to threshold, the more the [PD2] mechanism can
dominate. As average network degree increases, the more the [CK] mechanism
dominates. This is because a star subgraph is a form of biclique, and the more
nodes in a biclique, the more threshold assignments will cause state transition
owing to CK. (iii) If [CK] and [PD2] mechanisms are already operative, then
there is no increase in spread fraction if mechanism [ND2] is incorporated. (iv)
There are combinations of simulation conditions (e.g., network, threshold, par-
ticipation probability, CK model mechanisms) that can produce small or large
spread size changes by varying only one of these inputs.

2. Sensitivity of contagion dynamics to average degree dave. The spread
size (large or small) is driven by the magnitude of average degree relative to the
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node threshold θ assigned uniformly to all nodes. In all five networks, spread size
can be large (e.g., spread fraction > 0.5). If dave > θ, then outbreak sizes are
large; if dave < θ, then outbreak sizes are lesser. We demonstrate a pronounced
effect on spread size even when the magnitudes of dave are θ close.

2 Related Work

There are several studies that model web-based social media interactions, includ-
ing the following. The spread of hashtags on Twitter is modeled using a threshold
model in [26]. Diffusion on Facebook is modeled in [28], and a similar type of
mechanism on Facebook is used to study the resharing of photographs [10].
None of these works uses the “wall” or “timeline” mechanism of Facebook that
is modeled here in the CKF model. Several unilateral models and applications
were identified in the Introduction. These are not repeated. Here, we focus on
game-theoretic common knowledge models, in particular, the CKF model.

A couple of data mining studies have used Facebook walls, including an exper-
imental study [13]. Features of cascades on Facebook are studied using user wall
posts [18], but again, these are cascades of the conventional social influence type;
there is no assessment of CK-based coordination. Most experimental studies are
of unilateral interactions, where one user sends messages and influences to one or
more others. Web-based experimental studies of unilateral influence phenomena
include those on Twitter [15], Facebook [5, 14, 24, 10, 1], LinkedIn [9], Digg [17],
Doodle [27], Stack Overflow [30], and Wikipedia [4], among others (e.g., [7, 8]).
We argue that our work on CK is valuable in complementing the large number
of studies, such as those cited here, on unilateral models and mechanisms.

There have been a few works on the CKF model, which was initially intro-
duced in [21]. Details of the game-theoretic formulation are provided there. For
example, the CKF model is not efficiently computable because finding all bi-
cliques in a network is an NP-hard problem. This makes studying CKF on very
large networks (e.g., with 1 million or more nodes) extremely difficult. An ap-
proximate and computationally efficient CKF model is specified in [22]. Studies
involving both models include basic simulation results [21]. CK dynamics on net-
works that are devoid of key players is studied in [23]. None of these investigates
the individual and combinations of mechanisms of Table 1.

3 Model

3.1 Preliminaries

This section provides a formal description of the Common Knowledge on Face-
book (CKF) model [21] studied in this paper. The population is represented by
a communication network G(V,E). There is a node set V = {1, 2, . . . , n} of n
nodes (people) and edge set E where an undirected edge {i, j} ∈ E means that
nodes i, j ∈ V can communicate with each other. Each person i ∈ V is in a state
ait ∈ {0, 1}: if ait = 1, person i is in the active state (e.g., joining a protest),
and ait = 0 otherwise (e.g., staying at home). We use progressive dynamics [19],
such that once in state 1, nodes do not transition back to 0. Each node i has
a threshold θi that indicates its inclination/resistance to activate. Given person
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i’s threshold θi and the system state at t, denoted by at = (a1t, a2t, . . . , ant), her
utility is given by

Uit =

0 if ait = 0
1 if ait = 1 ∧ #{j ∈ V : ajt = 1} ≥ θi
−z if ait = 1 ∧ #{j ∈ V : ajt = 1} < θi

(1)

where −z < 0 is the penalty she gets if she activates and not enough people join
her. Thus, a person will activate as long as she is sure that there is a sufficient
number of people (in the population) in state 1 at t. A person always gets utility
0 by staying in state 0 regardless of what others do since we do not consider
free-riding problems. When she transitions to the active state, she gets utility 1
if the total number of other people activating is at least θi. (Note that these
“others” do not have to be neighbors of i, as in unilateral models.)

The CKF model describes Facebook-type (friend-of-friend) communication
in which friends write to and read from each others’ Facebook walls and this
information is also available to their friends of friends. The mechanisms and its
implications are described below. The communication network indicates that if
{i, j} ∈ E, then node i (resp., j) communicates (θi, ait) (resp., (θj , ajt)) to node
j (resp., i) over edge {i, j} at time t, and this information is available to j’s
neighbors. The communication network helps agents to coordinate by creating
common knowledge at each t. Agents’ presence on the network (online or offline)
is captured by the participation probability 0 ≤ pp ≤ 1 for each node, which
determines whether a node is participating in the contagion dynamics at each t;
e.g., whether i is online or offline at t in Facebook.

3.2 Facebook Common Knowledge Model Mechanisms

Here we describe the three mechanisms in this model (cf. Table 1), and their
implications. Figure 1 illustrates these mechanisms through an example. First of
all, the CKF model describes a Facebook type communication which allows for
distance-2 communication: two nodes, i and j, with {i, j} /∈ E can communicate
by posting to and reading from the wall of a common neighbor k, provided
{i, k}, {j, k} ∈ E. Thus, all i ∈ V can communicate with all nodes j ∈ V such
that their geodesic distance is |{i, j}| ≤ 2. All three mechanisms make use of
this Facebook communication structure.

The neighborhood dynamics [ND2] mechanism (Table 1) is similar to the
Granovetter [16] unilateral contagion model, but with interaction at distance-1
and -2. Let the neighbors j of i within distance-2 are defined by N2

i = {j :
|{i, j}| ≤ 2}. The [ND2] mechanism is given by

ait =

{
1 if ai,t−1 = 1 or |{j ∈ N2

i : aj,t−1 = 1}| ≥ θi
0 otherwise.

(2)

For the common knowledge [CK] mechanism of Table 1, the biclique sub-
graph is the structure necessary for creation of CK among a group of people [21],
and allows them to jointly activate. We first compute all node-maximal bicliques
in G, which is an NP-hard problem [3]. Let M biclique denote the set of nodes of
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G that forms a biclique. Then, V in Equation (1) is replaced with M biclique. At
each t, Equation (1) is computed for each i ∈ V in each CK set M biclique for
which i ∈M biclique.

Finally, the population dynamics [PD2] mechanism indicates that a node
i that is in state 0 can infer a minimum number of nodes already in state 1 if a
neighbor j in N2

i is already in state 1, by knowing θj . Formally,

ait =

1 if ai,t−1 = 1 or
(max θj : j ∈ N2

i , aj,t−1 = 1) + 1 ≥ θi
0 otherwise.

(3)

Assume ai,t−1 = 0. If j ∈ N2
i and aj,t−1 = 1, with θj , then i can infer that at

least θj + 1 nodes are in state 1. Now, if θi ≤ θj + 1, then i will transition to
state 1; i.e., ait = 1.

At each time t − 1, all operative mechanisms are evaluated, independently,
for each i ∈ V in which ai,t−1 = 0. If any of the three mechanisms causes i to
transition, then ait = 1.

4 Social Networks

The web-based networks of this study are summarized in Table 2. FB is a Face-
book user network [31], P2PG is a peer-to-peer network, Wiki is a Wikipedia
network of voting for administrators, and Enron is an Enron email network [25].
All but the SF1 network are real (i.e., mined) networks. SF1 is a scale free
(SF) network generated by a standard preferential attachment method [6] to
fill in gaps of the real networks. For networks possessing multiple components,
we use the giant component. These networks have wide-ranging properties and
hence represent a broad sampling of web-based mined network features. Figure 2
shows the average degrees per network in the original graphs G, corresponding
to geodesic distance of 1, and in the square of the graphs G2 that are particularly
relevant to CK model dynamics (forthcoming in Section 6).

Table 2. Characteristics of web-based social networks analyzed. If there are multiple
connected components in a graph, we use only the giant component. Here, n and m are
numbers of nodes and edges, respectively; dave and dmax are average and maximum
degrees; cave is average clustering coefficient; and ∆ is graph diameter. Properties are
computed with the codes in [2].

Network Type n m dave dmax cave ∆

FB Facebook 43,953 182,384 8.30 223 0.115 18

P2P Peer Comms. 10,876 39,940 7.34 103 0.00622 10

Enron Email 33,696 180,811 10.7 1,383 0.509 17

SF1 Stylized 4,956 45,031 18.2 270 0.0780 8

Wiki Online Voting 7,115 100762 28.3 1065 0.141 7

5 Agent-Based Model and Simulation Parameters
We conduct discrete time agent-based simulations based on the model described
in Section 3 using the web-based networks given in Table 2. Table 3 summarizes



8 C. J. Kuhlman et al.

Fig. 2. Average vertex degree for
geodesic distances 1 and 2 (i.e., for G1

and G2), which are relevant for the
CK, ND2, and PD2 mechanisms for
driving contagion through networks.
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the parameters and their values associated with each simulation. A simulation
consists of a set of 30 runs, where a run consists of the spread of contagion from
an initial configuration (or state) with all nodes in state 0 at time t = 0, to a
specified maximum time tmax. Differences among runs is stochasticity in models.

Table 3. Summary of contagion study parameters.

Parameter Description

Agent Thresholds θ Uniform threshold values for a simulation: all nodes
in a network have the same value. Values range from
θ = 8 through θ = 29.

Participation Probabilities pp Uniform value for all nodes in a simulation. Values in
the range of 0.05 to 0.4.

Model Mechanisms [CK], [ND2], and [PD2] mechanisms described in Ta-
ble 1. [CK] is always operative to initiate contagion.

Seed Vertices No specified seed vertices; all vertices initially in
state 0. CK model initiates contagion without seeds.

Simulation Duration tmax 30 and 90 time steps.

6 Simulation Results

In this section, we present the results of our agent-based model simulations. All
results provided are average results from 30 runs.
Effects of CKF model mechanisms on contagion dynamics. We analyze
the effects of the [CK], [ND2], and [PD2] mechanisms (described in Table 1) and
their combinations on the time histories of activated nodes for each network of
the study. Figure 3 contains time histories for the fraction of nodes in state 1
over time for the Wiki network. In this simulation, all nodes have threshold
θ ≈ dave = 29. The mechanism combinations are [CK] only, [CK] plus [ND2],
[CK] plus [PD2], and [CK] plus [ND2] plus [PD2] (i.e., all) mechanisms. In
Figure 3a, pp = 0.1; in Figure 3b, pp = 0.4. Several observations are important.
First, the [ND2] mechanism does not contribute significantly to the driving force
to transmit contagion in the system. This is seen in the first plot in that the
magenta curve is only slightly above the blue curve, i.e., the addition of [ND2]
to [CK] results in a small increase in spread fraction (i.e., fraction of agents in
state 1). In comparing the orange and green curves in the left plot, we observe
that adding [ND2] to [CK]+[PD2] does not increase spread fraction. The same
two comparisons in the right plot (where pp = 0.4) give the same conclusion.
Second, the addition of the [PD2] mechanism to the [CK] mechanism can produce
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significant increases in spread fraction (comparing blue and green curves). Third,
in moving from the left to the right plot, the spread fractions increase, for a given
time t, and the contagion spreads more rapidly, with increasing pp. These findings
are shown for all networks, as described below.
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Fig. 3. Wiki network results for θ = dave=29: (a) pp = 0.1, (b) pp = 0.4. Cumulative
fraction of agents in state 1 is plotted as a function of time in simulation for combina-
tions of different mechanisms (in Table 1). Each propagation mechanism is isolated for
different simulations and is represented by a different curve; however, [CK] (labeled CK)
is always operative. In (a), the blue ([CK] only) and magenta ([CK + [ND2]) curves are
close together, indicating that for pp = 0.1, the distance-2 classic diffusion mechanism
[ND2] provides a relatively small increase to the overall contagion driving force. In
(b), the blue ([CK] only) and magenta ([CK + [ND2]) curves overlay; this means that
[ND2] provides no noticeable increase in driving force for contagion spreading. [PD2]
(green and orange curves) in both plots provides significant additional driving force,
since the green and orange curves are well above the blue and magenta curves. The all
mechanisms (denoted all in legend) curves coincide with the [CK]+[PD2] curves since
they (orange curves) overlay with the green curves. This means that, again, [ND2] does
not provide much driving force to spread a contagion.

The effect of CK-only mechanism on contagion dynamics compared
to the full model across networks. We analyze the fraction of activated
nodes over time under the CK-only mechanisms and under all mechanisms of
the CKF model combined. Figure 4 provides results for all networks, where the
agent threshold in all networks is θ = 9. In Figure 4a, the networks with greater
outbreaks (Enron, Wiki, and SF1) have average degrees greater than θ, while
those with lesser outbreaks (FB and P2P) have values of dave that are lesser
that θ. It is worth noting that three networks have dave near θ. In Figure 4b,
the addition of [ND2] and [PD2] driving forces results in a relatively greater
increase in the spread size for P2P. Since FB has greater dave than P2P, one
would surmise that FB should also show increased spreading in Figure 4b. The
reason this is not the case is that P2P has far more nodes with degree 10 than
does FB, and thus the driving force for θ = 9 is greater in the P2P network.

Comparisons of final contagion spread at time t = 30 across networks.
Finally, Fig. 5 provides spread fractions at t = 30 for four of the five networks
under different combinations of mechanisms (specified on x-axis): from left to
right, [CK] only, [CK]+[ND2], [CK]+[PD2], and all three mechanisms combined.



10 C. J. Kuhlman et al.

0 20 40 60 80 100
Time

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

. o
f A

ge
nt

s

Wiki, CK only
FB-02, CK only
Enron, CK only
P2P, CK only
SF1, CK only

(a) CK mechanism only

0 20 40 60 80 100
Time

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

. o
f A

ge
nt

s

Wiki, All
FB-02, All
Enron, All
P2P, All
SF1, All

(b) All three mechanisms

Fig. 4. Cumulative fraction of agents in state 1 as a function of simulation time, for
pp = 0.05 and for θ = dave=9: (a) only [CK] is active, (b) all mechanisms are active. See
Table 1. The results show the sensitivity of outbreak size on average degree dave. In (a),
dave for FB and P2P are slightly less than θ; these networks have small outbreaks due
to CK only. SF1, Enron, and Wiki all have daves greater than θ = 9, one (Enron) only
slightly, and the other two have dave appreciably greater than θ. In (b), the addition
of [PD2] drives the contagion to greater magnitudes.

The uniform threshold for each network is its average degree, so that θ = dave
is different across networks. In each plot, curves are for pp = 0.05, 0.1, 0.2, 0.4.

The FB network of Figure 5a has the smallest spread sizes. The [CK] mecha-
nism in isolation can drive contagion through appreciable fractions of the other
three networks, depending on pp. FB, and Enron in Figure 5b, show no effect of
the [ND2] mechanism on spread fractions. However, P2P and Wiki in Figures 5c
and 5d show positive contributions to spread size from the [ND2] mechanism.
It is remarkable for P2P (Figure 5c) when pp = 0.2. In all four plots, the [PD2]
mechanism contributes significantly to the driving force for contagion spread
(the positive slopes of curves from “+ND2” to “+PD2” on the x-axis), except
perhaps when [CK] or [CK]+[ND2] produce very large spread sizes. Finally, we
observe that the curves are flat in going from “+PD2” to “All” on the x-axis,
where the difference is the addition of the [ND2] mechanism.

There is intuition for the lesser effectiveness of the [ND2] mechanism, relative
to [PD2]. When pp is low, a vertex in state 0 can have relatively fewer neighbors
within distance-2 that are participating. The [ND2] mechanism counts the num-
ber of these neighbors that are in state 1, and hence the mechanism is weaker. In
contrast, for [PD2], a node i in state 0 needs only one participating and active
neighbor j within distance-2 that has a threshold θj + 1 ≥ θi in order for i to
change state to 1. This is a stronger mechanism, and hence the spread is greater.

7 Conclusion
We evaluate the CKF contagion model on a set of networks with wide ranging
properties, for a range of thresholds and participation probabilities. We model
and investigate multiple mechanisms of contagion spread (initiation and prop-
agation), as well as the full model. We find evidence that the [CK] and [PD2]
mechanisms are the major driving forces for the contagion initiation and spread,
compared to [ND2]. These types of results are being used to specify conditions
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(a) FB network
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(b) Enron network

0 +ND2 +PD2 All
Mechanism, CK Plus X-Label
0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n 

of
 A

ge
nt

s

pp = 0.05
pp = 0.1
pp = 0.2
pp = 0.4

(c) P2P network
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(d) Wiki network

Fig. 5. CKF model results. Cumulative fraction of agents in state 1 at time t = 30 as a
function of mechanisms and pp (same legend for all plots) for θ = dave: (a) FB, θ = 9;
(b) Enron, θ = 11; (c) P2P, θ = 8; and (d) Wiki, θ = 29. The mechanisms on the x-axis
always includes [CK] over all 30 time steps, where “0” corresponds to only the [CK]
mechanism; “+ND2” means [CK] and [ND2]; “+PD2” means [CK] and [PD2]; and
“All” means the full model. The error bars for y-axis values represent one stdev. The
data illustrate that [PD2] provides a much greater driving force for contagion spread
than does [ND2]. Although [CK] initiates contagion, [PD2] often generates a greater
contribution to driving force than does [CK]. See for example P2P and pp = 0.1.

for impending human subject experiments that will evaluate CK and its mecha-
nisms (e.g., [20]), and will be used to assess the predictive ability of the models.
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