
Collaborative Robotics Toolkit (CRTK):
Open Software Framework for

Surgical Robotics Research
Yun-Hsuan Su, Adnan Munawar, Anton Deguet, Andrew Lewis, Kyle Lindgren, Yangming Li,

Russell H. Taylor, Gregory S. Fischer, Blake Hannaford and Peter Kazanzides

Abstract—Robot-assisted minimally invasive surgery has made
a substantial impact in operating rooms over the past few decades
with their high dexterity, small tool size, and impact on adoption
of minimally invasive techniques. In recent years, intelligence
and different levels of surgical robot autonomy have emerged
thanks to the medical robotics endeavors at numerous academic
institutions and leading surgical robot companies. To accelerate
interaction within the research community and prevent repeated
development, we propose the Collaborative Robotics Toolkit
(CRTK), a common API for the RAVEN-II and da Vinci Research
Kit (dVRK) - two open surgical robot platforms installed at more
than 40 institutions worldwide. CRTK has broadened to include
other robots and devices, including simulated robotic systems
and industrial robots. This common API is a community software
infrastructure for research and education in cutting edge human-
robot collaborative areas such as semi-autonomous teleoperation
and medical robotics. This paper presents the concepts, design
details and the integration of CRTK with physical robot systems
and simulation platforms.
Keywords — medical robotics, collaborative robotics, teleopera-
tion, open software framework.

I. INTRODUCTION

A. Background

Surgery is a compelling application domain for both teler-
obotic systems and cooperatively-controlled robots. In teler-
obotic systems, the surgeon uses a master console to control
one or more robots that operate on the patient. These systems
can: (1) provide high dexterity through small incisions for
minimally-invasive surgery, (2) operate while being exposed
to ionizing radiation, such as during computed tomography
(CT) or x-ray imaging, (3) fit in confined spaces such as the

Y-H. Su is with the Dept. of Computer Science, Mount Holyoke College,
South Hadley, MA USA, msu@mtholyoke.edu.

A. Lewis is with the Dept. of Mechanical Engineering, K. Lindgren,
and B. Hannaford are with the Dept. of Electrical and Computer Engineer-
ing, University of Washington, Seattle, WA USA, {alewi, kyle509,
blake}@uw.edu.

A. Munawar and G.S. Fischer are with the Robotics Engineering Pro-
gram, Worcester Polytechnic Institute, Worcester, MA USA, {amunawar,
gfischer}@wpi.edu.

A. Deguet, R.H. Taylor and P. Kazanzides are with the Dept. of Computer
Science, Johns Hopkins University, Baltimore, MD USA, {anton.deguet,
rht, pkaz}@jhu.edu.

Y. Li is with the Dept. of Electrical, Computer, and Telecommunication
Engineering Technology at Rochester Institute of Technology, Rochester, NY
USA, Yangming.Li@rit.edu.

This work was supported by NSF National Robotics Initiative Awards IIS-
1637789, IIS-1637759, and IIS-1637444.

bore of a magnetic resonance imaging (MRI) scanner, and
(4) allow expert surgeons to operate on patients in remote
locations. Cooperatively-controlled robots allow the surgeon
and robot to share control of the surgical instrument, often
using a wrist-mounted force sensor to measure the surgeon’s
intent. Potential benefits include: (1) reduction of hand tremor,
(2) enforcement of safety barriers, (3) mechanical guidance to
improve precision of motion, and (4) hybrid control strategies
that partition the task space into autonomous (sensor-based)
and manual directions of control.

Although numerous research and commercial surgical robot
systems have been introduced to provide one or more of the
above benefits, to date, the da Vinci Surgical System (Intuitive
Surgical, Inc., Sunnyvale, CA) [1], has achieved the most
success with over 5,000 robot systems installed at hospitals
around the world and with more than 6 million surgeries
performed on patients. The da Vinci, however, only provides
direct teleoperation, where a human surgeon controls each
action of the patient-side robots, even though research in
semi-autonomous teleoperation, including supervisory control,
shared control, and other co-robotic methods, has been active
for decades. Furthermore, the da Vinci does not currently sup-
port teleoperation across large distances, though that capability
was demonstrated in 2001 with a competing system [2].

In the research domain, however, there is a relatively newer
trend of incorporating semi-autonomous agents trained via
machine or reinforcement learning (ML/RL) into the surgi-
cal workflow. Some notable research in this area includes
autonomous algorithms for performing soft-tissue suturing [3],
an automated approach for sinus surgery using computer navi-
gation techniques [4], characterization and automation of soft-
tissue suturing using a curved needle guide [5] and automation
of cutting/creasing sub-tasks while employing learning by
observation [6]. Additionally, [7] presents a holistic approach
to simplifying the task of manipulator positioning prior to
surgeon interaction, and [8] demonstrates a telemanipulated
surgical simulation designed for heart surgery. A trainable
infrastructure is presented in [9] with controllable dominance
and aggression factors for automating repetitive surgical tasks.
Lastly, a shared infrastructure for training learning agents by
motion decomposition of sub-tasks is developed in [10].

Of course, these research systems cannot be applied directly
to an actual surgical procedure but instead rely on mock

Fig. 1. The Raven-II surgical robot

setups with custom robots or commercially-available industrial
robots. Researchers are often faced with the difficult choice
between: (1) building a realistic experimental robotic system
(e.g., custom robot) that matches the intended application in
complexity and task-richness, but is expensive and one-of-a-
kind, or (2) selecting a “bench-top” platform (e.g., industrial
robot) with less complexity and task-richness, which is easier
to develop but reduces the research impact. Several years ago,
it became apparent that one obstacle to surgical robotics re-
search was the lack of a robust and realistic common research
platform. This led to the development and community adoption
of two open research platforms: the Raven-II and the da Vinci
Research Kit (dVRK), described in the following sections.
Today, these two surgical robot platforms have a combined
installed base of about 50 systems in more than 40 research
centers (several labs are using both systems) and several of the
publications cited above were developed using one of these
systems [5], [6], [9], [10]. In addition, simulations of the
da Vinci robot have been developed, including commercial
products that are used for surgeon training. In the research
domain, simulations of the da Vinci include [11] and [12], with
the former based on Gazebo and the latter on V-REP. Typically,
these simulate the patient-side manipulator (PSM) and utilize
a human input device, such as the da Vinci Master Tool
Manipulators (MTMs) or haptic devices. In the following, we
also summarize the recently developed Asynchronous Multi-
Body Framework (AMBF) [13], which supports simulation of
Raven II, dVRK and other robots.

1) Raven II: The Raven-II [14], [15] (Fig. 1) was created by
the University of Washington and the University of California
Santa Cruz in 2012, as an update to the prior Raven surgical
robot, and was initially disseminated to 7 institutions. It
was designed to deliver the required forces and range of
motion from a compact package with state-of-the-art motion
control. Experiments have been conducted to demonstrate the
portability and durability of the Raven-II system, including
a simulated telerobotic surgery in a tent in a remote site,
north of Simi Valley, California; a wireless teleoperation with
a gasoline-fueled generator to provide power; and transporting
and re-assembling the robot at the Aquarius undersea research
station at a depth of 19 meters off the coast of Key Largo (as

Fig. 2. The da Vinci Research Kit (dVRK)

part of NASA’s NEEMO program). In late 2013, production of
Raven II systems was spun out to a startup, Applied Dexterity
Inc., which has installed several additional systems.

2) da Vinci Research Kit (dVRK): Also in 2012, Johns
Hopkins University (JHU) and Worcester Polytechnic Institute
(WPI) released open source mechatronics and software to
enable researchers to create dVRK platforms (Fig. 2) [16], [17]
from retired first-generation da Vinci Systems. Specifically,
researchers could connect the cables from the da Vinci Master
Tool Manipulators (MTMs), Patient Side Manipulators (PSMs)
and Endoscopic Camera Manipulator (ECM) to an open source
controller consisting of bridge linear amplifiers to drive the
motors and field programmable gate arrays (FPGAs) to process
the associated sensor feedback and control signals. The FPGAs
exchange all data with a control PC via IEEE-1394 (FireWire),
achieving closed-loop control rates in excess of 1 kHz.

3) Asynchronous Multi-Body Framework (AMBF) Simula-
tor: To address the needs for a highly flexible simulation
framework in terms of robot definitions, support for a broad
array of disparate input devices, and interactions with the envi-
ronment, we recently proposed a simulation framework based
on a front-end description format called Asynchronous Multi-
Body Framework (AMBF Format) and an associated robust
real-time dynamic simulator [13]. The AMBF Format allows
for: enhanced human readability and editability, distributed
definition of the simulation elements, independent constraint
handling, controllability of the way forces are applied to
the bodies, communicability of all aspects of every body
independent from each other, and dynamic loading with the
ability to add bodies and change constraints at run-time. The
AMBF simulator was designed around this AMBF format
and provides for dynamic simulation of the bodies, flexible
visualization options, asynchronous support for a diverse ar-
ray of input devices used simultaneously without degrading
performance, and soft body support. An approach to modeling
the dynamic model parameters for the dVRK is presented in
[18], and an example of implementing closed-loop kinematic
chain mechanisms using this framework, a challenge in many
simulation environments, is presented in [11]. More detail
about how AMBF has been applied to the dVRK and Raven
II is provided in Section III-C.

B. Motivation

While the Raven II and dVRK each provide a shared
research platform, it became clear that achieving something
closer to the “one design” advocated by [19] would be even
better. At first glance, it would appear impossible to create
a common hardware and software platform because Raven II
and dVRK are based on different hardware designs. In reality,
however, many Raven II robots are used to drive the four
degree-of-freedom da Vinci instruments, so the part of the
robot that interacts with the environment is often the same for
both systems. This provided the initial motivation to create a
common software interface for Raven II and dVRK, as well
as a common surgical tool class, as shown in Fig. 3. It soon
became apparent, however, that a common software interface
could apply to other robots used by researchers in surgical
robotics, so the goal broadened to define a common “lan-
guage” for component-based robotics software. One specific
motivation was to enable research, such as the works cited
above, to be easily replicated on other robot platforms.

Common API

Medical
Robotics
Research

High-Level
Software
Packages Middleware

(e.g., ROS)

Surgical
Tool
Class

Fig. 3. Concept for Common API to Raven II, dVRK and other systems,
and Surgical Tool Class to facilitate sharing of surgical instruments, especially
those actuated by the four disks introduced by the da Vinci robot.

We consider two aspects of this common language: (1) the
communication infrastructure that passes messages between
the components, and (2) the content of the messages. Our
work specifically focuses on the second aspect, with abstract
(implementation agnostic) definitions of the message content,
while making the assumption that one or more existing mid-
dleware packages can satisfy the first requirement.

Robot Operating System (ROS) [20] is widely used in
robotics and is an obvious candidate for the communication
infrastructure. However, while ROS provides a standard mid-
dleware (e.g., topics and services) and common message types,
there is no well-documented consensus standard on the use
of these messages and interfaces. The low barrier to entry
provided by ROS topics, and ROS communication structure
in general, enables nascent users to quickly get up to speed
with ROS based applications. This ease-of-use and the lack

of enforcement of a messaging payload standard has provided
adequate adoption for ROS to be considered as the “commu-
nity standard” middleware. However, the lack of a payload
standard results in the creation of redundant “wrapper” or
“adapter” nodes for connecting independently developed ROS
applications. This was recognized early on and efforts were
made to develop some unofficial, yet commonly agreed upon,
payloads for specific applications. These messaging payload
specifications have been adopted widely by the community,
especially when used by popular open source packages within
ROS. However, as useful these standards are, they do not
cater to the complexity associated with the hierarchical control
structure of modern robots.

The early releases of both Raven-II and dVRK software
provided simple, ad-hoc ROS interfaces that utilized the com-
monly used message payloads where they made sense and new
payloads where required. However, as the software matured
and the messaging interface became complex, many of the
payloads were revised. Due to the size of the communities,
this became less and less feasible as many groups were devel-
oping extended applications that relied on the core messaging
interface exposed by the ROS packages.

This motivated the design of an interface specification
that caters to the complexity of teleoperated, cooperatively-
controlled and general purpose robots. We call this proposition
the Collaborative Robotics Toolkit (CRTK), emphasizing its
origin in robots that work collaboratively with surgeons.
The Canonical Robot Command Language (CRCL) [21] is
a similar effort that focuses on industrial robots and automatic
guided vehicles (AGVs), but is primarily concerned with low-
level interfaces to industrial controllers. In contrast, CRTK
caters to the hierarchical control structure of robots that
includes the high level and low level states/commands.

II. PROJECT OUTLINE AND SOFTWARE ARCHITECTURE

A. Project Outline

The Collaborative Robotics Toolkit (CRTK) is a
community-based software infrastructure developed for
research and education in cutting edge human-robot
collaborative areas such as semi-autonomous teleoperation
and medical robotics. The project development process
is composed of two processes: Community Engagement
and Technical Implementation. Community engagement
includes in-person and online forums for discussion across
medical robotics communities around the world. Techincal
implementation incorporates those comments and inputs from
the community and defines the CRTK structure and hierarchy
according to user feedback.

1) Community Engagement: Engagement of the worldwide
community of medical robotics researchers and software de-
velopers is a major goal of the project. We hosted workshops at
IROS 2017 (Shared Platforms for Medical Robotics Research),
ICRA 2018 (Supervised Autonomy in Surgical Robotics), and
ISMR 2019 (Open Platforms for Medical Robotics Research),
as well as a tutorial at IROS 2018 (Collaborative Robotics
Toolkit (CRTK) and Open Platforms for Medical Robotics

Research). These workshops and tutorials resulted in joint
editing of collaborative documents defining a set of use cases,
naming conventions, and functionalities. Raven-II and dVRK
robots were physically present at some of the events and some
of the examples described in Section III were shown during
hands-on demonstration sessions.

2) Technical Implementation: Through these community
workshops and events, the authors collected community ideas
and defined use cases (Section II-B), which were then used
to define and modify the CRTK infrastructure. The authors,
including both Raven-II and dVRK developers, conducted
weekly teleconferences to ensure consistent implementation
of the API across both robotic platforms as well as the ROS
message payloads including frames, units, API, and namespace
usage. Interfacing scripts and example tests were implemented
in both Python and C++. During these weekly meetings,
implementation status and strategies to tackle device specific
technical challenges were discussed.

B. Use Cases

Our collaborative design process identified several medical
robotics research use cases on which to base the API develop-
ment. The authors categorized the use cases into five themes:

1) Teleoperation: Support teleoperation across different
communication channels, with diverse master and slave
devices, and allowing the incorporation of force informa-
tion through bilateral teleoperation or force reflection.

2) Autonomous Motion: Interfaces that enable researchers to
incorporate autonomous robot motion planners in both
Cartesian and joint space.

3) Custom Kinematics/Control: Enable researchers to imple-
ment advanced controllers, such as constrained optimiza-
tion, that simultaneously solve kinematics and control
for applications such as optimization of kinematic redun-
dancy or enforcement of virtual fixtures.

4) Cooperative or Compliant Control: Provide capabilities
to implement custom cooperative or compliant control,
such as by attaching a force sensor to the robot wrist and
using measured forces to drive robot motion.

5) Custom Instruments: Enable researchers to easily inte-
grate custom instruments, providing capabilities such as
increased dexterity or additional sensing, with the Raven-
II or dVRK.

C. Software Architecture

The goal of CRTK is to provide standard conventions for the
command and feedback messages that flow within a robotic
system. We consider each message to contain an identifying
name and associated payload. In ROS, the name corresponds
to the topic or service name and the payload is specified
in a message description file (e.g., msg file). ROS provides
tools to parse the message files and generate the software to
convert messages to/from data types in the target programming
language (e.g., C++ or Python). However, CRTK is not specific
to ROS and other middleware, such as OpenIGTLink [22]
could be adopted.

The initial work on CRTK focused on the Robot Motion
Interface and the Robot State Interface, which are presented
in this section.

1) Robot Motion Interface: The ability to move is arguably
the defining characteristic of a robot and an obvious target
for any standardization effort. Traditionally, industrial robots
were programmed using high-level motion primitives, such
as moving in a straight line to a desired pose. While high-
level motions are relevant to medical robotics, there are also
numerous examples of medical robots that are teleoperated
or cooperatively-controlled (as noted in the use cases in
Section II-B), which requires a low-level motion interface. For
example, a teleoperated robot may require a stream of position
or velocity commands from the master to the slave manipu-
lator. Similarly, some implementations of cooperative control
use a force sensor mounted on the robot wrist and convert
sensed forces to a stream of desired velocity commands (i.e.,
admittance control). It is also necessary to consider the rate
of command streaming, which may affect assumptions on the
slave robot regarding motion smoothness and interpolation.

We thus define three levels of motion commands in CRTK,
as shown in Fig. 4. Briefly, the servo level is intended for
high-rate, low-latency, low-level control of the robot. This
includes many teleoperation and cooperative control use cases.
Generally, the robot should respond as quickly as possible to
the servo command, preferably after performing some safety
checks. The interpolate level is similar, except that the
rate of setpoints may be slow or unreliable, so the robot should
provide a simple interpolation to achieve smooth motion.
Finally, the move level is for infrequent, high-level motion
commands, such as moving to a specified pose. In this case,
the robot should include trajectory planning capabilities. All
CRTK motion commands must follow the naming convention
defined in Table I, which indicates whether the motion is in
joint or Cartesian space and what motion parameter is being
controlled (e.g., position, velocity or force).

Figure 4 also shows the motion-related information that can
be queried from the robot. In addition to the measured
(sensor) feedback, it is also possible to query the current
setpoint as well as the ultimate goal of the current
motion. Note that for the case of a low-level servo motion,
the goal will be equal to the setpoint.

It is important to note that robots are not required to
support all types of motion commands but, if a command is
implemented, it must follow the naming convention in Table I.
In addition, it must also use the prescribed payload (message
type). We initially focused on the servo interface, so the
payloads for those commands are documented on the project
website [23]. We are currently working on the definition of
the payloads for the interpolate and move commands.

An interesting observation is that a standardized servo
interface could be sufficient because the higher levels could
be implemented by generic software modules that interact
with that level. In fact, it could be sufficient to have only the
joint space servo commands. This is similar to the approach
taken by ROS, which typically interacts with robots at the

se
rv
o

Fig. 4. CRTK motion commands: high-level move commands, mid-level
interpolate commands, and low-level servo commands, which move
robots in joint or Cartesian space based on various desired quantities, as
defined in Table I. The arrows in the diagram represent data flow. Three
types of inquiry are supported: measured, setpoint, and goal.

TABLE I
THE NAMING CONVENTION OF THE FEEDBACK AND CONTROL MESSAGES

IN THE CRTK COMMON API.

Type Syntax Details
Control servo direct real-time stream (pre-emptive)
Level interpolate interpolated stream (pre-emptive)

move plan trajectory to goal (pre-emptive),
monitor with is_busy

Feedback measured sensor feedback
measuredN redundant sensor feedback (N=2, 3...)
setpoint current setpoint to low-level controller
goal ultimate goal of current motion

Space j joint
c Cartesian

Type p absolute position or pose
r relative position or pose
v velocity or twist
f generalized force (effort or wrench)
s joint state (position, velocity and effort)

joint level. The disadvantage of this approach, however, is
that it ignores any existing high-level implementations. For
example, all industrial robots provide an equivalent move
command in both Cartesian and joint space. The CRTK
approach enables researchers to “wrap” these vendor-supplied
capabilities (which may have been optimized for the particular
robot) so that they conform to the CRTK naming convention
and prescribed message type. A software-based solution can
still be used in cases where the high-level functionality may
not exist (e.g., custom robots) or when the wrapped vendor-
supplied solution is deemed inadequate.

2) Robot State Interface: Although most, if not all, robot
systems define operating states, it is impractical to attempt
to define a standard state diagram for all robot systems. We
therefore focus on defining a high-level “meta-state” diagram
that summarizes the operating states as well as the commands
to transition between these meta-states, as shown in Fig. 5.
These meta-states may correspond to multiple internal states of
a particular robot. We also define two operating modes, which
can apply to one or more of the meta-states. For example,
the is_homed operating mode indicates whether the robot

DISABLED ENABLED

PAUSEDFAULT

enable

disable*
pause resume

disable

Safety violation

Safety violation

BUSY

* or, when system detects that fault has been cleared

disable

Fig. 5. CRTK robot meta-states and modes. The four meta-state queries
are: is_disabled, is_enabled, is_paused, is_fault. The two
operating mode queries are: is_busy and is_homed (not shown).

TABLE II
THE LIST OF C++ CLIENT APIS

Type Package Description
Utilities footkey A utility script to alternate between the

two CRTK robot states - ‘ENABLED’
and ‘PAUSED’. This is served as a
keyboard alternative to a foot pedal.

holdpos A utility script to hold the robot pose
and stay there.

Example servo_cube An example script to randomly trace the
edges of a virtual cube using relative
Cartesian CRTK command servo_cr.

has been homed and applies to all of the meta-states. In
contrast, the is_busy operating mode indicates that the robot
is currently executing a motion command, which applies only
to the is_enabled meta-state.

D. Client APIs

In 2018-19, the authors implemented the lowest-level
(servo) CRTK interface on Raven-II, dVRK, the AMBF
simulator and other robots and devices in our labs. In order
to lower the learning curve for new users, example interfacing
scripts, also called the Client APIs, are provided for users to
modify or test on their robots.

1) C++ ROS Client API: To demonstrate use of the CRTK
interface, the authors developed the crtk-cpp repository
[24] which consists of (a) a library, (b) examples, (c) utilities
and (d) functionality tests. The library contains basic CRTK
API robot state and motion helper functions that are used in
the rest of the package for better readability and compactness
of the code. The examples and utilities are the two types of
C++ client APIs. Client Test Scripts will be described in more
detail in section II-E.

Utilities are software packages designed to be useful in gen-
eral robot control scenarios. The authors envision users in the
community to directly download and use the utilities as part
of their research applications that allow robots to demonstrate
CRTK functionalities, but are likely to be modified for future
user needs (Table II).

2) Python ROS Client API: The main goal of the Python
client API is to provide a CRTK API that allows users to
communicate with a ROS CRTK compliant robot. One could
directly use the rospy package in Python but the learning curve
can be steep. The Python client API hides the ROS publishers/
subscribers, converts the payloads to more convenient data
types (i.e. PyKDL frames and Numpy vectors and matrices)
and relies on Python thread events to implement blocking
commands (for state changes and move commands).

Since CRTK devices might implement different subsets of
the CRTK specifications and the application might only need
some of the CRTK features, the Python client module provides
methods to instantiate only parts of the CRTK standard.
For example, if one only needs to monitor the operating
state and the Cartesian position of a device, one would call
add_operating_state() and add_measured_cp():

import crtk
import PyKDL

instance of CRTK client
class custom_client:
configuration
def configure(self, namespace):
add CRTK features needed
self.utils = crtk.utils(self, namespace)
self.utils.add_operating_state()
self.utils.add_measured_cp()

Later on, the user can create an instance of the
customized Python client and access the CRTK feature
measured_cp():

client = custom_client()
client.configure(’/dvrk/PSM1’)
p = client.measured_cp()

The Python client API also provides methods to wait
for CRTK state events. For example, the client can wait
while the device is busy executing a move command using
wait_while_busy.

The latest version and examples can be found at [25].

E. Client Test Scripts

In parallel to the CRTK API design, we created a set of
standardized client test scripts (and written descriptions of
expected robot behavior) to demonstrate that a robot system
correctly supports the API (Table III). Each test is performed
on a per arm basis. The robot namespace is sent as an input
when running the test; robot-specific information including the
joint types, joint number and home poses are then loaded as
ROS parameters. The authors envision all CRTK-compliant
robots to be able to execute the same test scripts and use
these tests to validate CRTK API adherence.

III. EXAMPLES

A. Teleoperation

During the hands-on session of the tutorial at IROS 2018
in Madrid, CRTK servo_cr and robot state transitions were

TABLE III
THE LIST OF CLIENT TEST SCRIPTS

Test Package Test Purpose
measured measured CRTK measured_js and measured_cp

commands.
state state CRTK robot states and state commands.
servo servo_cp CRTK absolute Cartesian position command.

servo_cr CRTK relative Cartesian position command.
servo_cv CRTK Cartesian velocity servo command.
servo_jp CRTK absolute joint position servo command.
servo_jr CRTK relative joint position servo command.
servo_jv CRTK joint velocity servo command.

CRTK States

Raven to CRTK

e-sto
p

No

PAUSED

FAULT

ENABLED

DISABLED

PEDAL UP

PEDAL DN

INIT

E-STOPis_homed? is_fault?
No

Yes Yes

up down

ready

start

Raven-II States

enabledisable

resumepause

d
is

ab
le

Safety violation

Fig. 6. The correspondence map between Raven-II states and CRTK states.

successfully implemented to allow teleoperation of a Raven-II
at the University of Washington in Seattle. The Raven-II robot
checks for new CRTK commands through ROS topics at 1000
Hz. As illustrated in Fig. 6, if a state transition command
is received, Raven-II automatically maps the desired CRTK
states to the internal Raven-II states and proceeds with the
state change. When a CRTK motion command is received, in
this case servo_cr, Raven-II responds as follows:

1) Check if the servo_cr incremental Cartesian command
falls within a predetermined step size safety threshold.
Proceed if true and ignore command otherwise.

2) Reformulate servo_cr into raven_cr by a change
in units and a spatial transformation of the reference
coordinates from the CRTK frame to the Raven-II base
frame.

3) Add the raven_cr command to the desired Raven-II
Cartesian pose raven_cp_d.

4) Cap raven_cp_d if the desired Raven-II pose deviates
from the current Raven-II pose by more than a predeter-
mined safety threshold.

5) Execute the motion command.
The CRTK based teleoperation was later demonstrated,

using servo_cp and the Python client interface, at the
workshop at ISMR 2019 in Atlanta, where a Phantom Omni
was used to teleoperate a dVRK system at Johns Hopkins
University in Baltimore, Maryland. The same code was also
demonstrated with a Novint Falcon as the slave arm.

in setup, created two clients: master and slave
scale = 0.25
record where we started, only positions
start_master = PyKDL.Frame(master.measured_cp())
start_slave = PyKDL.Frame(slave.setpoint_cp())

create target goal for slave, use current
orientation

goal_slave = PyKDL.Frame()

loop
get master measured position
current_master = \

PyKDL.Frame(master.measured_cp())
compute goal for slave
goal_slave.p = start_slave.p + scale \

* (current_master.p - start_master.p)
goal_slave.M = current_master.M \

* start_master.M.Inverse() * start_slave.M
tell slave to move, then sleep
slave.servo_cp(goal_slave)
rospy.sleep(1.0 / rate)

B. Image-Guided Surgery

A goal of the CRTK API is that its commands can be
readily translated to different surgical robot systems, each
with their own unique software architectures. In addition to
the teleoperated and cooperatively controlled surgical robots,
another class of robots is those that are image-guided. Often
these robots are used for placing instruments that may include
biopsy and therapy delivery needles, ablation instruments, and
electrodes through percutaneous or stereotactic means. In this
scenario, typically medical imaging, such as MRI, ultrasound,
or CT is used intraoperatively or registered to an intraoperative
tracking system to guide the procedure.

To demonstrate the capability of the proposed framework
for this class of robot, CRTK command structures were
implemented on the WPI NeuroRobot system [26]. This is a
seven degree of freedom MRI-compatible stereotactic surgical
robot used for interstitial needle-based therapeutic ultrasound
for brain tumor ablation, and its use case is representative of
the type of robot wherein one or more targets, and optionally
an associated trajectory to reach them, are defined in medical
imaging and the robot is intended to follow that trajectory to
align and insert the instrument, often under real-time imaging
which may be integrated into updating the trajectory on the
fly. The NeuroRobot system is controlled by a modular MRI-
compatible robot controller used to control a number of
surgical robots with applications including prostate cancer [27]
and neurosurgery [28]. This control system is a self-contained
centralized controller that resides inside the MRI scanner room
and couples to a robot that resides on the scanner bed inside the
bore of the scanner with the patient. Onboard, the system runs
a real-time Linux operating system on a National Instruments
sbRIO 9561 module, and this system communicates with
external devices such as surgical navigation software (e.g., 3D
Slicer [29]) over a fiberoptic Ethernet network connection.

This image-guided surgery robot controller uses the Open
Network Interface for Image-Guided Therapy (OpenIGTLink)
communication interface which provides a standardized mech-
anism for communication among computers and devices in
operating rooms for a wide variety of image-guided therapy
(IGT) applications [22], and this this implementation of CRTK
is directly translatable to a wide array of devices also using

this communication interface. The NeuroRobot controller runs
the C++ OpenIGTLink library for two-way communication
with external systems. The packet naming convention of
the OpenIGTLink interface was modified to use the CRTK
notation. This update allows the NeuroRobot to receive a
desired Cartesian set-point via the servo_cp command
and desired joint set-points via the servo_jp command.
The NeuroRobot can also transmit internal robot parameters
using the measured_cp, measured_jp, measured_jv,
desired_cp, and desired_jp commands, as defined by
the CRTK specification. This transmit and receive implemen-
tation is also compatible with the ROS-OpenIGTLink bridge,
allowing for easy ROS-based control.

C. AMBF simulator example

The AMBF Simulator [13] incorporates the physical
dVRK MTMs using a plugin based interface for haptic
interaction in a dynamic simulation. The plugin is called
dVRK ARM and can be found at “https://github.com/
WPI-AIM/ambf/tree/master/ambf ros modules/dvrk arm”.
This plugin utilizes the ROS messaging interface exposed
by the dVRK software and provides class methods that
are modeled after the CRTK specification (Figure 7).
Specifically, it implements servo_jp, servo_jf,
servo_cp, servo_cf, measured_jp, measured_jv,
measured_cp, measured_cf, move_jp and move_cp.
Since the requirements of the plugin to control and sense a
simulated environment included different types of feedback
data and control modes, the use of the hierarchical controller
structure specification proposed by CRTK simplified both the
design and implementation of the plugin.

Another CRTK example was demonstrated by implementing
a controller for a simulated Raven-II in AMBF. The code
was written by Yun-Hsuan Su and can be found at [30]. This
code contains Raven-II kinematics calculation and support for
various control modes including homing, sinusoidal motions
and a virtual 3-dimensional cube tracing, which are also
available in the physical Raven-II system. These modes can be
selected simply by pressing pre-specified keyboard shortcuts.

DVRK ARM PLUGIN
INTERFACE

DVRK ARM PLUGIN BRIDGE

THREAD
Timer Controlled

Subscribers

Publisher

Frame
Handler

Conversion
Fcn 1

Conversion
Fcn 2

Conversion
Fcn N

Asynchronous Method Calls
(CRTK BASED)

Watchdog

State
Checks

Handle 1

Handle 2

Handle N

sawIntuitive
Research Kit

sawROS Bridge

State Topic

Write
Methods

FPGAs/QLAs

Command TopicCommand TopicCommand Topic

State TopicState Topic

MTM L MTM R

Fig. 7. The design of the dVRK ARM plugin based interface that is used by
the AMBF Simulator. The block labeled “sawROS Bridge” provides the ROS
Based interface. The sub-block labeled “Asynchronous Method Calls (CRTK
BASED)” wraps the CRTK specification for state and command data for the
method based interface.

IV. CONCLUSION

This work targets the design and implementation of the
Collaborative Robotics Toolkit (CRTK), a common robot
command and feedback interface suitable for complicated
teleoperation and cooperative control tasks at various control
levels. The Raven-II and dVRK software and the AMBF
simulator have been updated to support CRTK. A set of
example client API and test codes can be downloaded at [31].
We also hosted workshops and tutorial sessions at various
international robotics conferences in the past years to introduce
CRTK to the community, collect user feedback, and promote
community adoption. Meanwhile, the design details, user
guide and supplemental documentations can all be found at
[23]. In future work, we hope to continue to expand the user
community and improve usability of the CRTK infrastructure.

REFERENCES

[1] G. Guthart and J. Salisbury, “The IntuitiveTM telesurgery system:
Overview and application,” in IEEE Intl. Conf. on Robotics and Au-
tomation (ICRA), May 2000, pp. 618–621.

[2] J. Marescaux, J. Leroy, M. Gagner, F. Rubino, D. Mutter, M. Vix,
S. E. Butner, and M. K. Smith, “Transatlantic robot-assisted telesurgery,”
Nature, vol. 413, no. 6854, p. 379, 2001.

[3] A. Shademan, R. Decker, J. Opfermann, S. Leonard, A. Krieger, and
P. C. W. Kim, “Supervised autonomous robotic soft tissue surgery,”
Science Translational Medicine, vol. 8, May 2016.

[4] K. Bumm, J. Wurm, J. Rachinger, T. Dannenmann, C. Bohr,
R. Fahlbusch, H. Iro, and C. Nimsky, “An automated robotic approach
with redundant navigation for minimal invasive extended transsphenoidal
skull base surgery,” Minimally Invasive Neurosurgery, vol. 48, pp. 159–
64, July 2005.

[5] S. Sen, A. Garg, D. V. Gealy, S. McKinley, Y. Jen, and K. Goldberg,
“Automating multi-throw multilateral surgical suturing with a mechani-
cal needle guide and sequential convex optimization,” in IEEE Intl. Conf.
on Robotics and Automation (ICRA). IEEE, 2016, pp. 4178–4185.

[6] A. Murali, S. Sen, B. Kehoe, A. Garg, S. McFarland, S. Patil, W. D.
Boyd, S. Lim, P. Abbeel, and K. Goldberg, “Learning by observation
for surgical subtasks: Multilateral cutting of 3d viscoelastic and 2d
orthotropic tissue phantoms,” in IEEE Intl. Conf. on Robotics and
Automation (ICRA). IEEE, 2015, pp. 1202–1209.

[7] A. Krupa, J. Gangloff, M. de Mathelin, C. Doignon, G. Morel, L. Soler,
J. Leroy, and J. Marescaux, “Autonomous retrieval and positioning
of surgical instruments in robotized laparoscopic surgery using visual
servoing and laser pointers,” in IEEE Intl. Conf. on Robotics and
Automation (ICRA), vol. 4. IEEE, 2002, pp. 3769–3774.

[8] R. Bauernschmitt, E. U. Schirmbeck, A. Knoll, H. Mayer, I. Nagy,
N. Wessel, S. Wildhirt, and R. Lange, “Towards robotic heart surgery:
Introduction of autonomous procedures into an experimental surgical
telemanipulator system,” The Intl. Journal of Medical Robotics and
Computer Assisted Surgery, vol. 1, no. 3, pp. 74–79, 2005.

[9] K. Shamaei, Y. Che, A. Murali, S. Sen, S. Patil, K. Goldberg, and
A. M. Okamura, “A paced shared-control teleoperated architecture for
supervised automation of multilateral surgical tasks,” in IEEE Intl. Conf.
on Intelligent Robots and Systems (IROS). IEEE, 2015, pp. 1434–1439.

[10] T. D. Nagy and T. Haidegger, “An open-source framework for surgical
subtask automation,” in ICRA Workshop on Supervised Autonomy in
Surgical Robotics, 2018.

[11] R. A. Gondokaryono, A. Agrawal, A. Munawar, C. J. Nycz, and
G. S. Fischer, “An approach to modeling closed-loop kinematic chain
mechanisms, applied to simulations of the da Vinci Surgical System,”
Acta Polytechnica Hungarica, vol. 16, no. 8, pp. 2019–2048, 2019.

[12] G. A. Fontanelli, M. Selvaggio, M. Ferro, F. Ficuciello, M. Vendiuelli,
and B. Siciliano, “A V-REP simulator for the da Vinci Research Kit
robotic platform,” Intl. Conf. on Biomedical Robotics and Biomecha-
tronics, pp. 1056–1061, 2018.

[13] A. Munawar, Y. Wang, R. Gondokaryono, and G. Fischer, “A real-
time dynamic simulator and an associated front-end representation
format for simulating complex robots and environments,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2019.

[14] B. Hannaford, J. Rosen, D. W. Friedman, H. King, P. Roan, L. Cheng,
D. Glozman, J. Ma, S. N. Kosari, and L. White, “Raven-II: an open plat-
form for surgical robotics research,” IEEE Transactions on Biomedical
Engineering, vol. 60, no. 4, pp. 954–959, 2012.

[15] Y. Li, B. Hannaford, and J. Rosen, “The Raven open surgical robotic
platforms: A review and prospect,” Acta Polytechnica Hungarica,
vol. 16, no. 8, 2019.

[16] P. Kazanzides, Z. Chen, A. Deguet, G. S. Fischer, R. H. Taylor, and
S. P. DiMaio, “An open-source research kit for the da Vinci R⃝ surgical
system,” in IEEE Intl. Conf. on Robotics and Auto. (ICRA), Hong Kong,
China, Jun 2014, pp. 6434–6439.

[17] Z. Chen, A. Deguet, R. H. Taylor, and P. Kazanzides, “Software
architecture of the da Vinci Research Kit,” in IEEE Intl. Conf. on Robotic
Computing, Taichung, Taiwan, April 2017.

[18] Y. Wang, R. Gondokaryono, A. Munawar, and G. S. Fischer, “A convex
optimization-based dynamic model identification package for the da
Vinci Research Kit,” IEEE Robotics and Automation Letters, vol. 4,
no. 4, pp. 3657–3664, Oct 2019.

[19] E. Messina, “Your mileage may vary,” Science Robotics, vol. 4, no. 35,
p. eaay6004, 2019.

[20] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. B. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, 2009.

[21] F. Proctor, S. Balakirsky, Z. Kootbally, T. Kramer, C. Schlenoff, and
W. Shackleford, “The Canonical Robot Command Language (CRCL),”
Industrial Robot: An International Journal, vol. 43, no. 5, pp. 495–502,
2016.

[22] J. Tokuda, G. S. Fischer, X. Papademetris, Z. Yaniv, L. Ibanez, P. Cheng,
H. Liu, J. Blevins, J. Arata, A. J. Golby, T. Kapur, S. Pieper, E. C.
Burdette, G. Fichtinger, C. M. Tempany, and N. Hata, “OpenIGTLink:
an open network protocol for image-guided therapy environment,” Intl.
J. of Medical Robotics and Computer Assisted Surgery, vol. 5, no. 4,
pp. 423–434, 2009.

[23] CRTK Documentation GitHub URL, 2019, https://github.com/
collaborative-robotics/documentation/wiki.

[24] CRTK-cpp GitHub URL, 2019, https://github.com/collaborative-robotics/
crtk-cpp.

[25] CRTK Python Client GitHub URL, 2019, https://github.com/
collaborative-robotics/crtk-python-client/.

[26] N. A. Patel, G. Li, W. Shang, M. Wartenberg, T. Heffter, E. C.
Burdette, I. Iordachita, J. Tokuda, N. Hata, C. M. Tempany, and G. S.
Fischer, “System integration and preliminary clinical evaluation of a
robotic system for MRI-guided transperineal prostate biopsy,” Journal
of Medical Robotics Research, vol. 04, no. 02, p. 1950001, 2019.
[Online]. Available: https://doi.org/10.1142/S2424905X19500016

[27] M. Wartenberg, J. Schornak, K. Gandomi, P. Carvalho, C. Nycz,
N. Patel, I. Iordachita, C. Tempany, N. Hata, J. Tokuda, and G. S.
Fischer, “Closed-loop active compensation for needle deflection and
target shift during cooperatively controlled robotic needle insertion,”
Annals of Biomedical Engineering, vol. 46, no. 10, pp. 1582–1594, Oct
2018. [Online]. Available: https://doi.org/10.1007/s10439-018-2070-2

[28] J. MacDonell, N. Patel, G. Fischer, E. C. Burdette, J. Qian,
V. Chumbalkar, G. Ghoshal, T. Heffter, E. Williams, M. Gounis,
R. King, J. Thibodeau, G. Bogdanov, O. W. Brooks, E. Langan,
R. Hwang, and J. G. Pilitsis, “Robotic Assisted MRI-Guided
Interventional Interstitial MR-Guided Focused Ultrasound Ablation in a
Swine Model,” Neurosurgery, vol. 84, no. 5, pp. 1138–1148, 06 2018.
[Online]. Available: https://doi.org/10.1093/neuros/nyy266

[29] R. Kikinis, S. D. Pieper, and K. G. Vosburgh, 3D Slicer: A Platform for
Subject-Specific Image Analysis, Visualization, and Clinical Support.
New York, NY: Springer New York, 2014, pp. 277–289. [Online].
Available: https://doi.org/10.1007/978-1-4614-7657-3 19

[30] AMBF Raven Controller GitHub URL, 2019, https://github.com/
WPI-AIM/ambf/tree/master/ambf controller/.

[31] CRTK GitHub URL, 2019, https://github.com/collaborative-robotics/.

