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Power Analyses for Moderator Effects with (Non)Randomly Varying Slopes in Cluster 

Randomized Trials 

 

Abstract 

 

Researchers often apply moderation analyses to examine whether the effects of an intervention 

differ conditional on individual or cluster moderator variables such as gender, pretest, or school 

size. This study develops formulas for power analyses to detect moderator effects in two-level 

cluster randomized trials (CRTs) using linear models. We derive the formulas for estimating 

statistical power, minimum detectable effect size difference and 95% confidence intervals for 

cluster- and individual-level moderators. Our framework accommodates binary or continuous 

moderators, designs with or without covariates, and effects of individual-level moderators that 

vary randomly or nonrandomly across clusters. A small Monte Carlo simulation confirms the 

accuracy of our formulas. We also compare power between main effect analysis and moderation 

analysis, discuss the effects of mis-specification of the moderator slope (randomly vs. non-

randomly varying), and conclude with directions for future research. We provide software for 

conducting a power analysis of moderator effects in CRTs.   

 

 

 

Key words: cluster randomized trials (CRTs), minimum detectable effect size difference, 
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Power Analyses for Moderator Effects with (Non)Randomly Varying Slopes in Cluster 

Randomized Trials 

 

A critical consideration in the evaluation of treatment programs is whether those 

treatment effects are moderated by context or individual characteristics. As a result, an important 

consideration that emerges in the planning stage is how to design studies that have the sufficient 

power to detect such moderation if it exists. Although there has been a steady pace of 

advancement in the design of moderation studies in cluster randomized trials (CRTs; Bloom, 

2005; Dong, Spybrook, & Kelcey, 2018; Mathieu, Aguinis, Culpepper, & Chen, 2012;  

Moerbeek & Maas, 2005, Spybrook, Kelcey, & Dong, 2016), extant studies are largely 

fragmented in that they normally consider only isolated aspects of the design rather than the full 

assembly of design considerations that are typically encountered in planning such a study. For 

instance, with the exception of a few studies (e.g., Dong, Spybrook, & Kelcey, 2018), prior 

literature regarding the estimation of statistical power for moderation has often limited its 

analysis to only binary moderators or has failed to include additional covariates (i.e., 

“unconditional designs”; Bloom, 2005; Spybrook, Kelcey, & Dong, 2016). Given the widespread 

presence of moderators that are continuous in nature (e.g., pretest) and the widespread use of 

covariate-adjusted designs to improve power and reduce potential bias due to unhappy 

randomization, it is critical to provide a more general set of tools for power analyses that can 

readily accommodate such variations (e.g., Bloom, 2006; Bloom, Richburg-Hayes & Rebeck 

Black, 2007; Dong & Maynard, 2013; Moerbeek, 2006; Moerbeek, van Breukelen, & Berger, 

2001; Raudenbush, Martinez, & Spybrook, 2007).  

Similarly, current multilevel literature is limited in the guidance it offers concerning 
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statistical power when assessing the extent to which treatment effects vary across subgroups 

defined by an individual-level variable. More specifically, assessments of individual-level 

moderators are typically operationalized through cross-level interactions between the cluster-

level treatments and individual-level moderators (e.g., child’s gender). The result is that the 

effect of the individual-level variable (i.e., as quantified through the coefficient) can be regarded 

as randomly or nonrandomly varying across clusters. The nonrandomly varying slope approach 

assumes that the gender achievement gap does not vary randomly across schools but rather only 

as an explicit function of cluster-level variables (e.g., the individual-level slope or coefficient for 

gender varies across clusters only as a function of the treatment status).  The randomly varying 

slope or coefficient model addresses the same moderation question, but allows for the possibility 

that the gender achievement slope or coefficient randomly varies across schools even after 

accounting for the treatment effect (e.g., unexplained heterogeneity across schools in terms of the 

relationship between gender and the outcome). The choice between these approaches ultimately 

depends on prior knowledge of the effects of the moderator variables and the theory underlying 

the intervention. However, it is important that design frameworks consider both of these 

approaches and the implications of designing a study based on one of the frameworks.  

Our review of the literature identified only two methodological studies that have 

examined the power for the randomly varying slope model in moderation analysis (Dong, 

Spybrook, & Kelcey, 2018; Mathieu, Aguinis, Culpepper, & Chen, 2012). In addition, there are 

no studies that have examined the trade-offs between the design assumptions, the effects on 

power when the slope is mis-specified (randomly vs. non-randomly varying slope) or the 

potential inaccuracies that accumulate in power formulas under such mis-specifications. A mis-

specification of the slope term potentially undermines the accuracy of the standard error 
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estimates for the moderator effect, which may result in incorrect estimates of statistical power. 

Investigation of the effects of a mis-specified slope can help us understand how much the bias on 

power arises due to either type of mis-specification, helps develop potential strategies to mitigate 

bias due to such mis-specifications, and ultimately to design moderation studies that are robust 

and well-positioned to detect such effects.  

A key prior contribution to the literature with regard to designing multilevel moderation 

studies was Mathieu et al. (2012). Mathieu et al. (2012) conducted a comprehensive Monte Carlo 

simulation to estimate the statistical power to detect cross-level interaction effects in multilevel 

modeling. However, Mathieu et al (2012) only studied two-level models without including 

covariate adjustment on additional covariates separate from the moderator, and did not provide 

closed form formulas to estimate the statistical power, minimum detectable effect size difference 

(MDESD) between moderator subgroups, or minimum required sample size to detect meaningful 

effects. Dong, Spybrook, and Kelcey (2018) extended this line of inquiry by developing the 

formulas to calculate statistical power and MDESD by considering the levels of the moderators 

at which they have been assessed, the distribution of moderators (binary vs. continuous), the 

slopes of lower level moderators (random vs. non-randomly varying), and the level of covariates 

for three-level CRTs. However, the scope, developments and analyses in Dong, Spybrook, and 

Kelcey (2018) did not cover two-level CRTs.  

The purpose of this study is to consolidate and extend the literature on power analyses for 

moderators by developing power formulas that accommodate categorical or continuous 

moderators, models with or without covariates, same or cross-level moderator effects, and 

nonrandomly varying or randomly varying slopes in two-level CRTs. We then advance the 

practical application of these results by examining the effects on power when the slope is mis-
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specified (randomly varying slope vs. non-randomly varying slope) to outline the sensitivity of 

power analysis to such mis-specifications. Because a team planning a CRT may be interested in 

the power for a moderator effect of a given magnitude or the MDESD given sample size and the 

desired power, we provide the power formulas as well as the MDESD calculations and their 

corresponding confidence intervals. We also created a Microsoft Excel-based function, an R 

function, and an R shinny app to assist researchers conducting power analyses for various 

moderator effects1. 

The paper is organized as follows. We present the formulas for statistical power and the 

MDESD and its confidence intervals for the moderator variable at level 2 and subsequently for a 

moderator at level 1. In each case, we start with a continuous moderator and extend it to a binary 

moderator. We also conduct a small Monte Carlo simulation to assess the empirical validity of 

the formulas in finite sample sizes. We then compare the statistical power and MDESD for 

moderation effects under different design considerations followed by a comparison of the MDES 

for main treatment effects and the MDESD for the moderation effects. Finally, we discuss the 

implications of planning studies to detect moderator effects in two-level CRTs and consider 

directions for future work.  

Statistical Power and Minimum Detectable Effect Size Difference in Two-Level CRTs 

We present the key results of the formulas for statistical power and the MDESD and its 

confidence intervals for different moderator effects in the framework of a two-level hierarchical 

linear model (HLM; Raudenbush & Bryk, 2002). The detailed derivations are in Electronic 

Supplementary Material 1. 

Two-level CRTs with a Moderator at Level 2 

                                                            
1 The software can be accessed from the website: https://www.causalevaluation.org/.  
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We begin with a two-level design that randomly assigns groups/clusters (e.g., schools) to 

the treatment or control condition and conditions on a cluster-level covariate (e.g., the percentage 

of students eligible for free or reduced-price lunch) and probes a cluster-level moderator (e.g., 

school size). The data are generated using a two-level hierarchical linear model (Raudenbush & 

Bryk, 2002): 

Level 1:  

𝑌𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗(𝑋𝑖𝑗 − 𝑋̅.𝑗) + 𝑟𝑖𝑗, 𝑟𝑖𝑗~𝑁(0, 𝜎|𝑋
2 )               (1) 

Level 2:  

𝛽0𝑗 = 𝛾00 + 𝛾01𝑆𝑗 + 𝛾02𝑇𝑗 + 𝛾03(𝑆𝑗 × 𝑇𝑗) + 𝛾04𝑊𝑗 + 𝛾05𝑋̅.𝑗 + 𝑢0𝑗,  𝑢0𝑗~𝑁(0, 𝜏|𝑆,𝑊,𝑋̅,𝑇
2 ).  

𝛽1𝑗 = 𝛾10.               (2) 

 

𝑌𝑖𝑗 is the outcome measure for observation i (i = 1,…,nj) in cluster j (j = 1,…, J), 𝑇𝑗 is a 

binary variable indicating the treatment status coded as ±½, 𝑆𝑗 is a level-2 continuous moderator 

(𝑆𝑗~𝑁(0, 𝑆𝑠
2)), 

ijX  is a level-1 covariate and jX   is the sample group mean, and 𝑊𝑗 is a level-2 

covariate (𝑊𝑗~𝑁(0, 𝑆𝑤
2 )). 𝑟𝑖𝑗 is the level-1 random error, 𝑟𝑖𝑗~𝑁(0, 𝜎|𝑋

2 ), and 𝑢0𝑗 is the random 

effect for the intercepts, 𝑢0𝑗~𝑁(0, 𝜏|𝑆,𝑊,𝑋̅,𝑇
2 ). As in the single level regression analysis, centering 

variables yields desirable statistical properties (Aiken & West, 1991), group-mean centering is 

used in Equation 1 to gain some computational and derivational advantages. Note that in random 

intercept models, parameter estimates under group-mean centering, grand-mean centering, and 

no centering can be equated using simple transformations (e.g., Kreft, de Leeuw, & Aiken, 

1995). 𝛾02 and 𝛾03 represent the main effect of treatment and moderator effect, respectively.  

We assume that the data are balanced such that each cluster has the same number of 

observations (nj= n). However, we do not assume the clusters are equally allocated to treatment 

conditions. Although equal allocation of clusters to the treatment and control conditions typically 
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yields the most sensitive design (i.e., highest power to detect main and moderator effects), such 

balance is not always possible in reality. For this reason, we considered a more flexible approach 

that introduces P as the proportion of total clusters that are randomly assigned to the treatment 

group. 

We can test 𝛾03 using a t-test. Assuming the alternative hypothesis is true, the test statistic 

follows a non-central t-distribution, T’, and the standardized noncentrality parameter is: 

𝜆|𝑆,𝑊,𝑋 = √
𝛿2𝑐
2 𝑃(1−𝑃)(𝐽−6)

(1−𝑅2
2)𝜌+(1−𝑅1

2)(1−𝜌)/𝑛
,              (3) 

where J is the number of total clusters, n is sample size for every cluster (e.g., number of 

students per school), P is the proportion of total clusters that are randomly assigned to the 

treatment group. 𝑅2
2 is the proportion of variance at level 2 that is explained by the level-2 

predictors (
jS  ,

jW , 
jT , jX  , and )( jj TS  ): 𝑅2

2 = 1 −
𝜏|𝑆,𝑊,𝑋̅,𝑇
2

𝜏2
, where 𝜏2 is the unconditional level-2 

variance; 
2
1R  is the proportion of variance at level 1 that is explained by the level-1 predictor 

(𝑋𝑖𝑗 − 𝑋̅.𝑗), 2

2
|2

1 1


 X
R  , where  

2  is the unconditional level-1 variance. 𝜌 is the unconditional 

intraclass correlation, 
22

2







 . 𝛿2𝑐 is the standardized coefficient of )( jj TS  , (where the 

subscript indicates the use of a level-2 continuous moderator) such that  22

2

032
ˆ





 S

c

S
, where 

2
SS  is the variance of 

jS . 

The statistical power for a two-sided test is (note 𝑡0=𝑡1−𝛼/2,𝐽−6):  
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1 − 𝛽 = 1 − 𝑃[𝑇′(𝐽 − 6, 𝜆|𝑆,𝑊,𝑋) < 𝑡0] + 𝑃[𝑇′(𝐽 − 6, 𝜆|𝑆,𝑊,𝑋) ≤ −𝑡0], where the 

degrees of freedom2 is 𝑣 = 𝐽 − 6.  

The MDESD for the standardized coefficient is: 

𝑀𝐷𝐸𝑆𝐷(|𝛿2𝑐|) = 𝑀𝑣√
(1−𝑅2

2)𝜌+(1−𝑅1
2)(1−𝜌)/𝑛

𝑃(1−𝑃)(𝐽−6)
,          (4) 

where, 
  1ttMv

 for one-tailed tests with  degrees of freedom (𝑣 = 𝐽 − 6), and 

  12/ ttM v
 for two-tailed tests.  

The 100*(1-α)% confidence interval for 𝑀𝐷𝐸𝑆𝐷(|𝛿2𝑐|) is given by: 

(𝑀𝑣 ± 𝑡𝛼/2√
(1−𝑅2

2)𝜌+(1−𝜌)(1−𝑅1
2)/𝑛

𝑃(1−𝑃)(𝐽−6)
.               (5) 

When the moderator, 
jS , is a binary variable with a proportion of Q in one moderator 

subgroup and (1-Q) in another moderator subgroup, the standardized noncentrality parameter is: 

𝜆|𝑆,𝑊 = √
𝛿2𝑏
2 𝑃(1−𝑃)𝑄(1−𝑄)(𝐽−5)

(1−𝑅2
2)𝜌+(1−𝜌)/𝑛

,            (6) 

where b2  is the effect size (standardized mean difference), 
22

032 /ˆ  b . 

Table 1 presents the summary of standardized noncentrality parameters, MDESD and 

100*(1-α)% confidence intervals, and degrees of freedom for the t-test for various two-level 

moderation models. The above results are presented under Model “CRT2-2”, which stands for a 

two-level CRT with a level-2 moderator and flexible treatment allocation. Note that we assume 

the fixed slope for covariate (𝑋𝑖𝑗 − 𝑋̅.𝑗) in Equation 2 for the purpose of simplicity. Because the 

moderation term is in the equation for the level-2 intercept, the standard error of the moderator 

                                                            
2 Generally, 𝑣 = 𝐽 − 𝑔∗ − 4, where 𝑔∗ is the number of Level 2 covariates (excluding the treatment 

variable, moderator, and moderator*treatment).  
 

v
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effect is not affected by the slopes of other level-1 covariates, hence, the power and MDESD 

formulas apply to the model with random slope for (𝑋𝑖𝑗 − 𝑋̅.𝑗). 

 

[Table 1 about here] 

 

Two-level CRTs with a Moderator at Level 1 

 Under the same design, we next consider individual-level moderators allowing for two 

different specifications: (1) the randomly varying slope model, which assumes that the effect of 

the level-1 moderator varies by the treatment status and varies randomly across the level-2 units, 

and (2) the nonrandomly varying slope model, which assumes that the effect of the level-1 

moderator varies by the treatment status but does not vary further across the level-2 units. 

The Randomly Varying Slope Model. The randomly varying slope hierarchical linear 

model, including one treatment variable, 
jT , and one level-1 moderator, 𝑆𝑖𝑗 (𝑆𝑖𝑗~𝑁(0, 𝑆𝑠

2)), with 

a random slope is:  

Level 1:  

ijijjjij rSY  10  , ),0(~ 2
|Sij Nr  .                  (7) 

Level 2:  

jjj

jjj

uT

uT

111101

001000








, 












































2

|11|10

|01
2

|00

1

0
,

0
0

~
TT

TT

j

j
N

u

u




.                      (8) 

The level-2 residuals for the intercept, ju0 , and the slope, ju1 , conditional on the 

treatment status, have a multivariate normal distribution with means of 0. 
2

|00T  and 
2

|11T  are the 

variances, and T|01  is the covariance for ju0  and ju1  conditional on the treatment status. The 
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parameter of interest for the moderator effect is 𝛾11. Note that in the context of CRTs, we treat 

the treatment status (𝑇𝑗) as the focal predictor and 𝑆𝑖𝑗 as the moderator, and interpret  𝛾11 as the 

treatment effect of 𝑇𝑗 depending on 𝑆𝑖𝑗. We may also interpret  𝛾11 as the effect of 𝑆𝑖𝑗 on the 

outcome depending on the treatment status (𝑇𝑗).  

We test the moderator effect ( 11 ) using a t-test. Based on the formula for the variance 

of the estimated regression coefficients of a level-1 variable with random slope (Snijders, 2001, 

2005), we can derive the standardized noncentrality parameter as below: 

nRR

JPP

T

c
S

/)1)(1()1(

)1(
2
1

2
2

2
1

|








 .            (9) 

 ρ is the unconditional intraclass correlation, 
22

00

2

00







 , where 

2  and 2

00  are the 

variances of residuals for level-1 and level-2 intercept in the unconditional model without any 

predictors. 
2

1R  is the proportion of variance at level 1 that is explained by the level-1 moderator 

( ijS ): 2

2
|2

1 1


 S
R  . 

2
2TR  is the proportion of the random slope (for S) variance explained by the 

treatment indicator (
jT ): 

2

11

2

|112

2 1


 T

TR  . ω is the proportion of the variance (𝜏11
2 ) between clusters 

on the effect of  ijS  to the between-cluster residual variance ( 2

00 ) when 2

00  > 0 under the 

multilevel modeling framework, 2
00

2
11




  . ω indicates the effect heterogeneity for the level-1 

moderator ( ijS ) across level-2 units (clusters) in the model that is not conditional on the treatment 

variable, 
jT .   P is the proportion of clusters in the treatment group. c1  is the standardized 
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coefficient, 22
00

2

111
ˆ





 S

c

S
, where 

2
SS  is the variance of ijS . 

The statistical power for a two-sided test is (note 
2,2/10  Jtt 
): 

]),2([]),2([11 0|
'

0|
' tJTPtJTP SS   , where the degrees of freedom is 𝑣 = 𝐽 − 2.  

The MDESD for the standardized coefficient is: 

JPP

nRR
MMDESD T

vc
)1(

/)1)(1()1(
)(

2
1

2
2

1






 ,              (10) 

where, 
  1ttMv

 for one-tailed tests with  degrees of freedom (𝑣 = 𝐽 − 2), and 

  12/ ttM v
 for two-tailed tests.  

The 100*(1-α)% confidence interval for )( 1cMDESD   is given by: 

JPP

nRR
tM T

v
)1(

/)1)(1()1(
)(

2

1

2

2
2/









.               (11) 

The Nonrandomly Varying Slope Model. In the nonrandomly varying slope model the 

Level 1 model is the same as that in equation (7). However, the Level 2 model is:  

jj

jjj

T

uT

11101

001000








, ),0(~ 2

|0 Tj Nu  .           (12) 

The standardized noncentrality parameter is: 

)1)(1(

)1(
2
1

2
1

|










R

JnPPc
S .                   (13) 

The degrees of freedom3 is 𝑣 = 𝐽(𝑛 − 1) − 2. 

Extension to Binary Moderator. When the level-1 moderator, ijS , is a binary variable with 

                                                            

3 Generally, 
*2)1( gnJv  , where 

*g  is the number of Level 1 covariates (excluding the moderator). 

v
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a proportion of Q in one moderator subgroup and (1 - Q) in another moderator subgroup, the 

noncentrality parameters (standardized) for the randomly varying slope model and the 

nonrandomly varying slope model are: 

))1(/()1)(1()1(

)1(
2
1

2
2

2
1

|
QnQRR

JPP

T

b
S









 ,          (14) 

and 

)1)(1(

)1()1(
2
1

2
1

|










R

JnQQPPb
S ,                  (15) 

where b1  is the effect size (standardized mean difference), 
22

00111 /ˆ  b . 

The standardized noncentrality parameters, the minimum detectable effect size difference 

(MDESD) for the standardized regression coefficient, and the 100*(1-α)% confidence interval 

for )( 1cMDESD   for a continuous level-1 moderator with randomly varying slope and 

nonrandomly varying slope are presented under Models “CRT2-1R” and “CRT2-1N” in Table 1. 

The MDESD for the standardized mean difference, and the 100*(1-α)% confidence interval for 

)( 1bMDESD   for a binary level-1 moderator with randomly varying slope and nonrandomly 

varying slope are presented under Models “CRT2-1R” and “CRT2-1N” in Table 1.  

Monte Carlo Simulation 

To validate the standard error and power formulas we derived, we conducted a small 

Monte Carlo simulation. The simulation results provided initial but limited evidence of the close 

correspondence on the standard error and power (or Type I error) between our formulas and the 

empirical distribution from the simulation when the analytic model was correctly specified. The 

detailed procedures and results are presented in Electronic Supplementary Material 2.  

We note one particular finding that emerges from the results of the simulation. For a 
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level-1 moderator, we set the effect heterogeneity (ω) for the level-1 moderator across level-2 

units varied from 0 to 0.8. For each dataset, we used both the randomly varying slope model and 

the nonrandomly varying slope model to estimate the moderator effects. When ω is set as 0, the 

nonrandomly varying slope model is the correctly specified analytic model while the randomly 

varying slope model is mis-specified analytic model. In these simulations, the randomly varying 

slope model tended to slightly over-estimate the standard error, but the coverage rate of 95% CI 

is as good as the nonrandomly varying slope model. Comparing with the nonrandomly varying 

slope model, the randomly varying slope model produced slightly smaller power. When ω is set 

as 0.2, 0.4, 0.6, and 0.8, the nonrandomly varying slope model is the mis-specified analytic 

model while the randomly varying slope model is the correctly specified analytic model (See 

Tables 9-24 in Electronic Supplementary Material 2). In these simulations, the randomly varying 

slope model produced closer estimates of the standard error and the coverage rate of 95% CI than 

the nonrandomly varying slope model. The nonrandomly varying slope model produced bigger 

bias in the standard error estimates and worse coverage rage of 95% CI when ω increases. Bias 

in the standard error estimates for mis-specified models are consistent with LaHuis et al’s (in 

press) findings. Figure 1 below clearly demonstrates the relationship between the standard error 

(SE) and the coverage rate of 95% CI with the heterogeneity coefficient (ω). 

[Figure 1 about here] 

 

Discussion: Comparisons among Moderation Designs and Main Effect Designs 

Contrasting Moderation Designs 

As in the power analysis of the main treatment effect, the power of the moderator effect 

in two-level CRTs is associated with the noncentrality parameter (𝜆) and the critical t value ( 0t ). 
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The critical t value ( 0t ) is associated with the degrees of freedom (v), the Type I error rate (𝛼), 

and the choice of a one-tailed or two-tailed test. The noncentrality parameter (𝜆) is a ratio of the 

moderator effect estimate to its standard error (SE), which is a function of the total number of 

clusters (J ) and the number of individuals per cluster (n), the proportion of clusters in the 

treatment group (P), the proportion of variance at level-2 explained by covariates (
2
2R ), and the 

unconditional intraclass correlation (ICC).  

If the moderator is a binary variable, the power is also associated with the proportion (Q) 

of the sample in one moderator subgroup. The MDESD using the standardized mean difference 

for the binary moderators is )1( QQ   times larger than the MDESD using the standardized 

regression coefficient for the continuous moderators when the moderators are at level 2 or level 1 

with the nonrandomly varying slopes. When the sample is equally allocated between the 

moderator subgroups (Q = 0.5), the design has the biggest power (smallest MDESD) among all 

options of Q that ranges from 0 to 1.  

If the moderator is at level-1 with a randomly varying slope, the power is also associated 

with the effect heterogeneity (ω) for the level-1 moderator across level-2 units. The MDESD 

increases and power decreases as ω increases. The results for the nonrandomly varying slope 

model for the level-1 moderator do not contain the factor that is related to ω. The degrees of 

freedom also differ depending on whether it is a random slope model or not. The degree of 

freedom (v) is 𝐽(𝑛 − 1) − 2 for the nonrandomly varying model while 𝑣 = 𝐽 − 2 for the 

randomly varying slope model. This is because the interaction term of the treatment and 

moderator variables varies among the level-1 units within each level-2 cluster for the 

nonrandomly varying model, but the level-2 random term (i.e., ju1  in Expression 8) associated 
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with the coefficient of the moderator in the randomly varying slope model varies among the 

level-2 clusters. As a result, when the estimation models are correctly specified for the real data, 

the model with a varying moderator slope will yield less precise estimates than the model with a 

constant moderator slope. The differences for the power and MDESD between the two models 

decreases when the number of clusters (J) increases and the effect heterogeneity (ω) decreases.  

Using the mis-specified analytic models for study design will result in either 

overestimating or underestimating the power. Specifically, if the randomly varying slope model 

is used to design the studies where  ω = 0, the power will be underestimated; if the nonrandomly 

varying model is used to design the studies where  ω > 0, the power will be overestimated. The 

bias in power estimates due to model mis-specification decrease when the sample size for the 

clusters (J) increases and the effect heterogeneity (ω) decreases.  

To make these comparisons more concrete, we compare MDESD and power among three 

moderation designs using several examples. Suppose a team of researchers are designing a two-

level CRT to test the efficacy of a school-based intervention on student achievement. They are 

interested in student-level moderator effects and school-level moderator effects. They approach 

the moderator power analyses from two perspectives: (1) what is the MDESD given power of 

0.80 and (2) what is the power for a moderation effect size of 0.20. Based on the literature 

(Bloom, Richburg-Hayes, & Black, 2007; Hedges & Hedberg, 2007, 2014) they assume an 

intraclass correlation coefficient (𝜌) of 0.23, and the proportions of variance explained by the 

covariates at level 1 and level 2 of 0.5 (𝑅1
2 = 𝑅2

2 =0.5). To be conservative, they assume the 

proportion of variance between schools on the effect of the student-level moderator explained by 

the school-level predictor to be 0 (
2

2TR  = 0). The effect heterogeneity (ω) for the student-level 

moderator across school-levels is assumed as 0.3 for the randomly varying slope model, which is 
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equivalent to an effect size variability of 0.069 (=   = 0.23 × 0.3). They use a balanced 

design with equal assignment of schools to the treatment and control groups (P = 0.5) and 100 

students per school. They are interested in the results for a binary moderator and a continuous 

moderator. For the binary case, they assume half of the sample is in one moderator subgroup (Q 

= 0.5). Table 2 shows the results of MDESD and power for the total numbers (J) of schools of 40 

and 80 under the above assumptions. 

[Table 2 about here] 

 

The findings in Table 2 are discussed below. First, a design always has a smaller 

MDESD, or larger power for a fixed effect size when the level-2 sample size is bigger. Second, 

the MDESD is larger or the power is smaller for a fixed effect size when the moderator is at the 

school level compared to the student level. Third, when the moderator is at the student level, the 

nonrandomly varying moderator slope model has a smaller MDESD, or bigger power for a fixed 

effect size than the random moderator slope model. Finally, the MDESD as defined by the 

standardized mean difference for the binary moderator and Q = 0.5 is always twice the value of 

the MDESD defined by the standardized coefficient for the continuous moderator when the 

moderator is at the school level or the moderator is at the student level with the nonrandomly 

varying slope.   

Comparing Moderation Designs with Main Effect Designs 

We examine the ratio of the MDESD for the moderator analysis to the minimum 

detectable effect size (MDES) for the main effect analysis. The MDES formula for a two-level 

cluster randomized design with a level-1 and two level-2 covariates is as follows (Bloom, 2006):  

JnPP

R

JPP

R
MMDES J

)1(

)1)(1(

)1(

)1( 2
1

2
2

4








 


,           (16)
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where the multiplier 4JM  = 
  12/ tt  with J- 4 degrees of freedom. 

We use the MDESD formulas for binary moderators in Table 1. The ratio of MDESD for 

a level-2 binary moderator to the MDES of the main effect when there is no level-1 covariate is: 

𝑀𝐷𝐸𝑆𝐷𝐶𝑅𝑇2−2

𝑀𝐷𝐸𝑆
=

𝑀𝐽−6

𝑀𝐽−4
√

𝐽−6

𝐽𝑄(1−𝑄)
.            (17) 

The result in Expression 17 is consistent with Bloom (2005) except Expression 17 

includes an extra factor √
𝐽−6

𝐽
. Bloom (2005) derived the standard error of the moderator effects 

based on the population using the sample size J while we derived the standard error based on the 

sample by adjusting for the degrees of freedom using J - 6 (our Monte Carlo simulation 

suggested that our formulas worked better especially when the sample size is small). 
𝑀𝐷𝐸𝑆𝐷𝐶𝑅𝑇2−2

𝑀𝐷𝐸𝑆
 

is around 2 when it is a balanced design (Q = 0.5) and there is a large sample size (
𝑀𝐽−6

𝑀𝐽−4
 is close 

to 1 when J is larger than 10, e.g., 
𝑀𝐽−6

𝑀𝐽−4
 = 1.01 when J = 11.). This result indicates that the 

MDESD for a level-2 moderator is about twice as large as the MDES of the main effect using the 

same set of covariates in both cases in the same study. This is analogous to using the ordinary 

least square (OLS) regression to analyze the completely randomized trials, which do not involve 

hierarchical data. This makes the level-2 moderator effect more difficult to detect than the main 

effect just as in the OLS analysis of the completely randomized trials. 

The situation is different for the analysis of the level-1 moderator effect, which may have 

bigger power than the main effect. The MDES formula for the main effect in Expression 16 

includes an additional component that is associated with the level-2 residual variance which is 

not related to the sample size at the individual level (n), while the MDESD formulas for a level-1 

binary moderator with nonrandomly varying slope in Table 1 only includes the component 
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associated with the level-1 residual variance. As a result, n is more influential on the MDESD 

than the MDES.  

Figure 2 shows the relationship between power and cluster sample size by comparing the 

main treatment effect analysis with moderation analyses with binary level-1 and -2 moderators. 

The figure is based on the following assumptions: the intraclass correlation coefficient (𝜌) is 0.2 

in Figure 2a and 0.1 in Figure 2b in two-level CRTs. The proportions of variance explained by 

the covariates at level 1 and level 2 for the main effect analysis is 0.5 (𝑅1
2 = 𝑅2

2 =0.5); The 

proportions of variance explained for the level-2 moderation analysis, 
2

2R  = 0.5 at level 2, and 

for the level-1 moderation analysis, 
2

1R  = 0.5 at the level 1. The proportion of variance between 

clusters on the effect of the student-level moderator explained by the school-level predictor is set 

to 0 (
2

2TR  = 0). The effect heterogeneity (ω) for the student-level moderator across school-levels 

is assumed as 0.3 for the randomly varying slope model, which is equivalent to an effect size 

variability of 0.06. We assume a balanced design with equal assignment of schools to the 

treatment and control groups (P = 0.5) and 20 students per school. In addition, half of the sample 

is in one moderator subgroup (Q = 0.5). For comparison purposes, we assume the effect size for 

the main treatment effect and the effect size difference for the moderator effect (standardized 

mean difference) to be detected using a two-sided test with α = 0.05 are both  0.20. This is 

equivalent to effect sizes for the two moderator subgroups of 0.3 and 0.1, respectively. The 

resulting power curves are for the moderation analyses with a binary level-2 moderator (grey 

solid line), a binary level-1 moderator with randomly varying slope (long dashed black line), a 

binary level-1 moderator with nonrandomly varying slope (short dotted black line), and the main 

treatment effect analysis (black solid line). 

Figure 2 (a and b) indicates that the power increases for a binary level-1 moderator effect 
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with the increase of the group sample size The power for detecting the effects of a binary level-1 

moderator with nonrandomly varying slope (short dotted black line) is bigger than that for a 

binary level-1 moderator with randomly varying slope (long dashed black line). The power for 

detecting the effects of a binary level-1 moderator with nonrandomly varying slope (short dotted 

black line) is bigger than the power for the main treatment effect analysis (black solid line) in 

Figure 2a (𝜌 = 0.20). By comparing Figure 2a (𝜌  = 0.20) with Figure 2b (𝜌  = 0.10), we can see 

that the power for detecting the effect of a binary level-1 moderator with nonrandomly varying 

slope (short dotted black line) is bigger when the intraclass correlation is bigger. This is also 

apparent in the formulas for the MDESD which contain a factor of (1 - 𝜌), hence when 𝜌  

increases the MDESD decreases and the power increases. Note that across all scenarios the 

power for a binary level-2 moderator effect (grey solid line) is the smallest. 

 

[Figure 2 about here] 

 

Conclusion 

The main findings are summarized as follows. First, the effects of the sample sizes at 

different levels, the levels of the moderators at which they have been assessed, the slopes of 

level-1 moderators (random vs. non-randomly varying), the distribution of moderators (binary 

vs. continuous), and the inclusion of covariates on power and MDESD in two-level CRTs are 

consistent with that in three-level CRTs (Dong, Spybrook, & Kelcey, 2018). For instance, the 

sample size at the higher level (e.g., level 2) is more critical than the sample size at lower level 

(e.g., level 1) for increasing the power to detect the effects of a level-2 moderator and a level-1 

moderator with randomly varying slope. However, the sample size at level 1 is as important as at 
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level 2 for increasing the power to detect the effect of a level-1 moderator with nonrandomly 

varying slope. Furthermore, the MDESD is larger or the power is smaller when the moderator is 

at the higher level. In other words, studies are more likely to be well-powered to detect level-1 

moderator effects than level-2 moderator effects. Besides, the MDESD measured by the 

standardized mean difference for the binary moderator is always )1(/1 QQ   times of the 

MDESD measured by the standardized coefficient for the continuous moderator when it is level-

2 moderator or level-1 moderator with nonrandomly varying moderator slope. In addition, 

including level-1 covariates can improve power for both level-1 and level-2 moderator effects; 

including level-2 covariates may improve power only if the level-2 covariates are in the intercept 

model for the level-2 moderator or the level-2 covariates are in the slope model to explain the 

heterogeneity of the level-1 moderator.  

Second, when the estimation models are correctly specified for the real data, the model 

with a varying moderator slope will yield less precise estimates than the model with a constant 

moderator slope. The differences on the power and MDESD between the two models decreases 

when the number of clusters (J) increases and the effect heterogeneity (ω) decreases.  

Lastly, the mismatch between the study design and real data will result in either 

overestimating or underestimating the power. Specifically, if the randomly varying slope model 

is used to design the studies where ω = 0, the power will be underestimated; if the nonrandomly 

varying slope model is used to design the studies where ω > 0, the power will be overestimated. 

The bias in power estimates due to model mismatch decreases when the sample size for the 

clusters (J) increases and the effect heterogeneity (ω) decreases. However, it is generally 

preferable to use the randomly varying slope model to design the cross-level moderation studies 

unless there is strong theory or prior knowledge that the slope of the lower level moderator does 
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not vary across clusters. 

This study focused on two-level CRTs. There are many important directions for further 

work. First, extending the work to other designs is necessary. This includes multisite randomized 

trials (MRTs), which are also common designs used to evaluate the effectiveness of programs 

(Spybrook, Shi, & Kelcey, 2016), and longitudinal study designs. Second, a well conducted 

power analysis heavily relies on accurate empirical estimates of the design parameters. Hence 

more empirical studies of design parameters such as the ICC, effect heterogeneity of level-1 

covariates, and meaningful moderator effect size differences are important as we move forward. 
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Electronic Supplementary Material 

 

 Electronic Supplementary Material 1.pdf 

This pdf file contains the derivations of power and MDESD formulas. 

 

 Electronic Supplementary Material 2.pdf 

This pdf file contains the procedures and results of Monte Carlo simulation (Tables 1-24). 
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TABLE 1: Summary of standardized noncentrality parameters, MDESD and 100*(1-α)% confidence intervals for two-level CRTs 
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Note. CRT2-1N and CRT2-1R stand for two-level CRTs with a level-1 moderator with nonrandomly varying and randomly varying slopes, 

respectively. CRT2-2 stands for two-level CRTs with a level-2 moderator  
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TABLE 2 

MDESD and statistical power of two-level CRTs 

Level of 

Moderator 

Slope of 

Lower Level 

Moderator 

MDESD   Power 

Binary 

Moderator 
 Continuous 

Moderator 
 Binary 

Moderator 
 Continuous 

Moderator 

J = 40 J = 80   J = 40 J = 80   J = 40 J = 80   J = 40 J = 80 

1 
Nonrandomly 

Varying 
0.11 0.08  0.06 0.04  1.00 1.00  1.00 1.00 

1 
Randomly 

Varying 
0.26 0.18  0.25 0.17  0.56 0.86  0.63 0.91 

2 NA 0.67 0.45   0.34 0.23   0.13 0.24   0.39 0.70 

 

Note. Under the assumptions: n = 100,   = 0.23, P = 0.5, Q = 0.5, 
2

1R  = 0.5, 
2

2R  = 0.5, 
2

2TR  = 0 and   = 0.3 for random slope 

design, power = 0.8 for the calculation of MDESD, and effect size difference = 0.2 for the calculation of power, a two-sided test with 

α = 0.05. 
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Figure 1 

Standard Error (SE) and Coverage Rate of 95% CI vs. Heterogeneity Coefficient 

 

Note. Under the assumptions: 𝜌 =  0.2, J = 40, n = 20, 
2

1R  = 0.4, 
2

2TR  = 0.07, P = 0.5, Q = 0.5, effect size difference = 0.2.  
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Figure 2 

Power vs. group sample size  

 

(a) (   = 0.20)                                                                               (b) (   = 0.10) 

 

     

Note. Under the assumptions: n = 20, 
2

1R  = 0.5, 
2

2R  = 0.5, P = 0.5, Q = 0.5, 
2

2TR  = 0 and   = 0.3 for randomly varying slope design, 

effect size (standardized mean difference) = 0.2, effect size difference (standardized mean difference) = 0.2, and a two-sided test with 

α = 0.05. 

 


