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Power Analyses for Moderator Effects with (Non)Randomly Varying Slopes in Cluster

Randomized Trials

Abstract

Researchers often apply moderation analyses to examine whether the effects of an intervention
differ conditional on individual or cluster moderator variables such as gender, pretest, or school
size. This study develops formulas for power analyses to detect moderator effects in two-level
cluster randomized trials (CRTs) using linear models. We derive the formulas for estimating
statistical power, minimum detectable effect size difference and 95% confidence intervals for
cluster- and individual-level moderators. Our framework accommodates binary or continuous
moderators, designs with or without covariates, and effects of individual-level moderators that
vary randomly or nonrandomly across clusters. A small Monte Carlo simulation confirms the
accuracy of our formulas. We also compare power between main effect analysis and moderation
analysis, discuss the effects of mis-specification of the moderator slope (randomly vs. non-
randomly varying), and conclude with directions for future research. We provide software for
conducting a power analysis of moderator effects in CRTs.

Key words: cluster randomized trials (CRTs), minimum detectable effect size difference,
moderator effect, statistical power



Power Analyses for Moderator Effects with (Non)Randomly Varying Slopes in Cluster

Randomized Trials

A critical consideration in the evaluation of treatment programs is whether those
treatment effects are moderated by context or individual characteristics. As a result, an important
consideration that emerges in the planning stage is how to design studies that have the sufficient
power to detect such moderation if it exists. Although there has been a steady pace of
advancement in the design of moderation studies in cluster randomized trials (CRTs; Bloom,
2005; Dong, Spybrook, & Kelcey, 2018; Mathieu, Aguinis, Culpepper, & Chen, 2012;
Moerbeek & Maas, 2005, Spybrook, Kelcey, & Dong, 2016), extant studies are largely
fragmented in that they normally consider only isolated aspects of the design rather than the full
assembly of design considerations that are typically encountered in planning such a study. For
instance, with the exception of a few studies (e.g., Dong, Spybrook, & Kelcey, 2018), prior
literature regarding the estimation of statistical power for moderation has often limited its
analysis to only binary moderators or has failed to include additional covariates (i.e.,
“unconditional designs”; Bloom, 2005; Spybrook, Kelcey, & Dong, 2016). Given the widespread
presence of moderators that are continuous in nature (e.g., pretest) and the widespread use of
covariate-adjusted designs to improve power and reduce potential bias due to unhappy
randomization, it is critical to provide a more general set of tools for power analyses that can
readily accommodate such variations (e.g., Bloom, 2006; Bloom, Richburg-Hayes & Rebeck
Black, 2007; Dong & Maynard, 2013; Moerbeek, 2006; Moerbeek, van Breukelen, & Berger,
2001; Raudenbush, Martinez, & Spybrook, 2007).

Similarly, current multilevel literature is limited in the guidance it offers concerning



statistical power when assessing the extent to which treatment effects vary across subgroups
defined by an individual-level variable. More specifically, assessments of individual-level
moderators are typically operationalized through cross-level interactions between the cluster-
level treatments and individual-level moderators (e.g., child’s gender). The result is that the
effect of the individual-level variable (i.e., as quantified through the coefficient) can be regarded
as randomly or nonrandomly varying across clusters. The nonrandomly varying slope approach
assumes that the gender achievement gap does not vary randomly across schools but rather only
as an explicit function of cluster-level variables (e.g., the individual-level slope or coefficient for
gender varies across clusters only as a function of the treatment status). The randomly varying
slope or coefficient model addresses the same moderation question, but allows for the possibility
that the gender achievement slope or coefficient randomly varies across schools even after
accounting for the treatment effect (e.g., unexplained heterogeneity across schools in terms of the
relationship between gender and the outcome). The choice between these approaches ultimately
depends on prior knowledge of the effects of the moderator variables and the theory underlying
the intervention. However, it is important that design frameworks consider both of these
approaches and the implications of designing a study based on one of the frameworks.

Our review of the literature identified only two methodological studies that have
examined the power for the randomly varying slope model in moderation analysis (Dong,
Spybrook, & Kelcey, 2018; Mathieu, Aguinis, Culpepper, & Chen, 2012). In addition, there are
no studies that have examined the trade-offs between the design assumptions, the effects on
power when the slope is mis-specified (randomly vs. non-randomly varying slope) or the
potential inaccuracies that accumulate in power formulas under such mis-specifications. A mis-

specification of the slope term potentially undermines the accuracy of the standard error



estimates for the moderator effect, which may result in incorrect estimates of statistical power.
Investigation of the effects of a mis-specified slope can help us understand how much the bias on
power arises due to either type of mis-specification, helps develop potential strategies to mitigate
bias due to such mis-specifications, and ultimately to design moderation studies that are robust
and well-positioned to detect such effects.

A key prior contribution to the literature with regard to designing multilevel moderation
studies was Mathieu et al. (2012). Mathieu et al. (2012) conducted a comprehensive Monte Carlo
simulation to estimate the statistical power to detect cross-level interaction effects in multilevel
modeling. However, Mathieu et al (2012) only studied two-level models without including
covariate adjustment on additional covariates separate from the moderator, and did not provide
closed form formulas to estimate the statistical power, minimum detectable effect size difference
(MDESD) between moderator subgroups, or minimum required sample size to detect meaningful
effects. Dong, Spybrook, and Kelcey (2018) extended this line of inquiry by developing the
formulas to calculate statistical power and MDESD by considering the levels of the moderators
at which they have been assessed, the distribution of moderators (binary vs. continuous), the
slopes of lower level moderators (random vs. non-randomly varying), and the level of covariates
for three-level CRTs. However, the scope, developments and analyses in Dong, Spybrook, and
Kelcey (2018) did not cover two-level CRTs.

The purpose of this study is to consolidate and extend the literature on power analyses for
moderators by developing power formulas that accommodate categorical or continuous
moderators, models with or without covariates, same or cross-level moderator effects, and
nonrandomly varying or randomly varying slopes in two-level CRTs. We then advance the

practical application of these results by examining the effects on power when the slope is mis-



specified (randomly varying slope vs. non-randomly varying slope) to outline the sensitivity of
power analysis to such mis-specifications. Because a team planning a CRT may be interested in
the power for a moderator effect of a given magnitude or the MDESD given sample size and the
desired power, we provide the power formulas as well as the MDESD calculations and their
corresponding confidence intervals. We also created a Microsoft Excel-based function, an R
function, and an R shinny app to assist researchers conducting power analyses for various
moderator effects’.

The paper is organized as follows. We present the formulas for statistical power and the
MDESD and its confidence intervals for the moderator variable at level 2 and subsequently for a
moderator at level 1. In each case, we start with a continuous moderator and extend it to a binary
moderator. We also conduct a small Monte Carlo simulation to assess the empirical validity of
the formulas in finite sample sizes. We then compare the statistical power and MDESD for
moderation effects under different design considerations followed by a comparison of the MDES
for main treatment effects and the MDESD for the moderation effects. Finally, we discuss the
implications of planning studies to detect moderator effects in two-level CRTs and consider
directions for future work.

Statistical Power and Minimum Detectable Effect Size Difference in Two-Level CRTs

We present the key results of the formulas for statistical power and the MDESD and its
confidence intervals for different moderator effects in the framework of a two-level hierarchical
linear model (HLM; Raudenbush & Bryk, 2002). The detailed derivations are in Electronic
Supplementary Material 1.

Two-level CRTs with a Moderator at Level 2

! The software can be accessed from the website: https://www.causalevaluation.org/.



We begin with a two-level design that randomly assigns groups/clusters (e.g., schools) to
the treatment or control condition and conditions on a cluster-level covariate (e.g., the percentage
of students eligible for free or reduced-price lunch) and probes a cluster-level moderator (e.g.,
school size). The data are generated using a two-level hierarchical linear model (Raudenbush &
Bryk, 2002):

Level 1:

Y;j = Boj + Brj(Xij — X ;) + 15, 11;~N(0, 0%) (1)

Level 2:

Boj = Yoo + ¥o1Sj + Yo2Tj + Y03 (Sj X T)) + VoW + Vo5& j + thoj, oj~N(0, Tj5 1 z1)-
.31j = Y1o0- (2)
Y;; is the outcome measure for observation i (i = 1,...,n)) in clusterj = 1,...,J), Tj is a

binary variable indicating the treatment status coded as +'%, S; is a level-2 continuous moderator
(S;~N(0, S, X , 1s alevel-1 covariate and X ; 1s the sample group mean, and W is a level-2
covariate (W;~N (0, S2)). 7 ; is the level-1 random error, 7;;~N (0, aﬁ(), and u; is the random
effect for the intercepts, uy;~N (0, T|25,W, % r)- As in the single level regression analysis, centering
variables yields desirable statistical properties (Aiken & West, 1991), group-mean centering is
used in Equation 1 to gain some computational and derivational advantages. Note that in random
intercept models, parameter estimates under group-mean centering, grand-mean centering, and
no centering can be equated using simple transformations (e.g., Kreft, de Leeuw, & Aiken,
1995). yo, and y,3 represent the main effect of treatment and moderator effect, respectively.

We assume that the data are balanced such that each cluster has the same number of
observations (n= n). However, we do not assume the clusters are equally allocated to treatment

conditions. Although equal allocation of clusters to the treatment and control conditions typically



yields the most sensitive design (i.e., highest power to detect main and moderator effects), such
balance is not always possible in reality. For this reason, we considered a more flexible approach
that introduces P as the proportion of total clusters that are randomly assigned to the treatment
group.

We can test y3 using a 7-test. Assuming the alternative hypothesis is true, the test statistic

follows a non-central ¢-distribution, 7, and the standardized noncentrality parameter is:

52.P(1-P)(J—6)
(1-R3)p+(1-R7)(1-p)/7’

€)

/1|S,W,X =
where J is the number of total clusters, n is sample size for every cluster (e.g., number of
students per school), P is the proportion of total clusters that are randomly assigned to the
treatment group. R is the proportion of variance at level 2 that is explained by the level-2
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predictors (S, .7, T, X ;,and (S,xT,)): R =1 — where 72 is the unconditional level-2

variance; R, is the proportion of variance at level 1 that is explained by the level-1 predictor

2
o
= 2 X . .. . . ..
Xij — X)), Ry =1- —;2 , Where o * is the unconditional level-1 variance. p s the unconditional
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T

——5 - 03¢ is the standardized coefficient of (S, xT}), (where the

T°+0

intraclass correlation, p =

o . . / S;
subscript indicates the use of a level-2 continuous moderator) such that J,. =7, Z—Sz , Where
" +o

2 . .
S is the variance of §,.

The statistical power for a two-sided test is (note to=t;_q /2 j-¢):



1-B=1-P[T'(J-6Aswx) <to] +P[T'(J — 6, s wx) < —to], where the
degrees of freedom?is v = ] — 6.

The MDESD for the standardized coefficient is:

(1—R§)p+(1—R%)(1—p)/n’ (4)
P(1-P)(J-6)

MDESD(8,c]) = M, |
where, M, =t, +1t,_, for one-tailed tests with v degrees of freedom (v = J — 6), and
M, =t,,+t_, for two-tailed tests.

v

The 100*(1-a)% confidence interval for MDESD (|8,.|) is given by:

(1-R3)p+(1-p)(1-RE)/n
(MV i ta/Z\/ P(l—P)(]—G) . (5)

When the moderator, §,, is a binary variable with a proportion of Q in one moderator

subgroup and (1-Q) in another moderator subgroup, the standardized noncentrality parameter is:

_ [82,P(1-P)Q(1-Q)(J-5)
Asw = (1-R3)p+(1-p)/n ’ ©

where 0, is the effect size (standardized mean difference), &y, = 7y;/+/T° +0" .

Table 1 presents the summary of standardized noncentrality parameters, MDESD and
100*(1-a)% confidence intervals, and degrees of freedom for the t-test for various two-level
moderation models. The above results are presented under Model “CRT2-2, which stands for a
two-level CRT with a level-2 moderator and flexible treatment allocation. Note that we assume

the fixed slope for covariate (X;; — X ;) in Equation 2 for the purpose of simplicity. Because the

moderation term is in the equation for the level-2 intercept, the standard error of the moderator

2 Generally, v = | — g* — 4, where g* is the number of Level 2 covariates (excluding the treatment
variable, moderator, and moderator*treatment).



effect is not affected by the slopes of other level-1 covariates, hence, the power and MDESD

formulas apply to the model with random slope for (X ij— X j).

[Table 1 about here]

Two-level CRTs with a Moderator at Level 1
Under the same design, we next consider individual-level moderators allowing for two
different specifications: (1) the randomly varying slope model, which assumes that the effect of
the level-1 moderator varies by the treatment status and varies randomly across the level-2 units,
and (2) the nonrandomly varying slope model, which assumes that the effect of the level-1
moderator varies by the treatment status but does not vary further across the level-2 units.
The Randomly Varying Slope Model. The randomly varying slope hierarchical linear

model, including one treatment variable, T;, and one level-1 moderator, S;; (S;;~N (0, S, 2Y), with

a random slope is:

Level 1:

Yo=Po; + BSy 1y, ’/;‘jNN(O’GfS‘)' @)
Level 2:

Bo; =Yoo+ 7oil; + g, [MOJ-JN N((O) (qur TOHTJ]- )
By =ro+trid; +u, Y 0/ Tigr lel\T

The level-2 residuals for the intercept, u,;, and the slope, #,; , conditional on the
. . .. . . 2 2
treatment status, have a multivariate normal distribution with means of 0. Toor and 7;yr are the
variances, and Toyr is the covariance for #,; and #,; conditional on the treatment status. The

10



parameter of interest for the moderator effect is y;;. Note that in the context of CRTs, we treat

the treatment status (T}) as the focal predictor and S;; as the moderator, and interpret y;; as the
treatment effect of T; depending on S;;. We may also interpret y;; as the effect of S;; on the

outcome depending on the treatment status (7).

We test the moderator effect ( 7, ) using a #-test. Based on the formula for the variance

of the estimated regression coefficients of a level-1 variable with random slope (Snijders, 2001,

2005), we can derive the standardized noncentrality parameter as below:

SLP(1—P)J
As = \/ 2 . 2 . )
(- R2p)pa+(1-R)(1-p)/n
T2
p is the unconditional intraclass correlation, p = % , where o and 7o, are the
Too+O

variances of residuals for level-1 and level-2 intercept in the unconditional model without any

predictors. R12 is the proportion of variance at level 1 that is explained by the level-1 moderator

2

O,

(5): R =1 ——f . RZZT is the proportion of the random slope (for S) variance explained by the
o

2
Sy T . . .
treatment indicator (7,): R, =1- l—gT . @ is the proportion of the variance (t%,) between clusters

11
on the effect of §; to the between-cluster residual variance ( z;, ) when z;, > 0 under the

2

. . 7 .. .
multilevel modeling framework, ®=—=". w indicates the effect heterogeneity for the level-1
Too

moderator () across level-2 units (clusters) in the model that is not conditional on the treatment

variable, T,. P is the proportion of clusters in the treatment group. O,, is the standardized

11



. . / S: 5 . .
coefficient, &, =7,,,|5—— , where S is the variance of §;.
Ton T+ O ’
00

The statistical power for a two-sided test is (note #, =¢,_,,, , ,):
1= B=1-P[T (J =2,A5) <ty]+P[T (J -2, A5) < —1,], where the degrees of freedom is v = ] — 2.

The MDESD for the standardized coefficient is:

MDESD(

Oy,

v | (= RiDpo+ (1=R(A=p)/n (10)
' P(1-P)J ’

where, M =1, +1t,_, for one-tailed tests with v degrees of freedom (v = J — 2), and

M, =t,,+t_j, for two-tailed tests.

v

) is given by:

The 100%(1-))% confidence interval for MDESD(|6,,

M. itmz)Ja—R;T)pm(l—Rf)a—p)/n | a
P(1-P)J

The Nonrandomly Varying Slope Model. In the nonrandomly varying slope model the

Level 1 model is the same as that in equation (7). However, the Level 2 model is:

= + vl +u,,
ﬁo, Yoo T 7ol uOJ, U, ~N(O,T‘2T). (12)
ﬂlj :7/10"’711Tj

The standardized noncentrality parameter is:

_ | 8aP(-P)Jn 13
Sl (e (9

The degrees of freedom® is v = J(n — 1) — 2.

Extension to Binary Moderator. When the level-1 moderator, Sl-j, is a binary variable with

¥
3 Generally, v=J(n—1)—2—g , where { is the number of Level 1 covariates (excluding the moderator).

12



a proportion of Q in one moderator subgroup and (1 - Q) in another moderator subgroup, the
noncentrality parameters (standardized) for the randomly varying slope model and the

nonrandomly varying slope model are:

_ S5 P(1—P)J 14
A \/(I—Rzzr)paH(I—Rf)(l—p)/(nQ(l—Q))’ (14

and

_ [8uPA=P)O(1-Q)Jn 15
j“\/ (I-R)A-p) ()

where Oy, is the effect size (standardized mean difference), &, =7,/ Tgo +o’ .

The standardized noncentrality parameters, the minimum detectable effect size difference

(MDESD) for the standardized regression coefficient, and the 100*(1-a)% confidence interval

for MDESD(|6,,

) for a continuous level-1 moderator with randomly varying slope and

nonrandomly varying slope are presented under Models “CRT2-1R” and “CRT2-1N” in Table 1.

The MDESD for the standardized mean difference, and the 100*(1-a)% confidence interval for
MDESD(|51 b |) for a binary level-1 moderator with randomly varying slope and nonrandomly

varying slope are presented under Models “CRT2-1R” and “CRT2-1N" in Table 1.
Monte Carlo Simulation
To validate the standard error and power formulas we derived, we conducted a small
Monte Carlo simulation. The simulation results provided initial but limited evidence of the close
correspondence on the standard error and power (or Type I error) between our formulas and the
empirical distribution from the simulation when the analytic model was correctly specified. The
detailed procedures and results are presented in Electronic Supplementary Material 2.

We note one particular finding that emerges from the results of the simulation. For a

13



level-1 moderator, we set the effect heterogeneity () for the level-1 moderator across level-2
units varied from 0 to 0.8. For each dataset, we used both the randomly varying slope model and
the nonrandomly varying slope model to estimate the moderator effects. When w is set as 0, the
nonrandomly varying slope model is the correctly specified analytic model while the randomly
varying slope model is mis-specified analytic model. In these simulations, the randomly varying
slope model tended to slightly over-estimate the standard error, but the coverage rate of 95% CI
is as good as the nonrandomly varying slope model. Comparing with the nonrandomly varying
slope model, the randomly varying slope model produced slightly smaller power. When w is set
as 0.2, 0.4, 0.6, and 0.8, the nonrandomly varying slope model is the mis-specified analytic
model while the randomly varying slope model is the correctly specified analytic model (See
Tables 9-24 in Electronic Supplementary Material 2). In these simulations, the randomly varying
slope model produced closer estimates of the standard error and the coverage rate of 95% CI than
the nonrandomly varying slope model. The nonrandomly varying slope model produced bigger
bias in the standard error estimates and worse coverage rage of 95% CI when w increases. Bias
in the standard error estimates for mis-specified models are consistent with LaHuis et al’s (in
press) findings. Figure 1 below clearly demonstrates the relationship between the standard error
(SE) and the coverage rate of 95% CI with the heterogeneity coefficient (w).

[Figure 1 about here]

Discussion: Comparisons among Moderation Designs and Main Effect Designs
Contrasting Moderation Designs

As in the power analysis of the main treatment effect, the power of the moderator effect

in two-level CRTs is associated with the noncentrality parameter (1) and the critical 7 value ().

14



The critical ¢ value (/) is associated with the degrees of freedom (v), the Type I error rate (a),

and the choice of a one-tailed or two-tailed test. The noncentrality parameter (4) is a ratio of the
moderator effect estimate to its standard error (SE), which is a function of the total number of

clusters (J ) and the number of individuals per cluster (), the proportion of clusters in the

treatment group (P), the proportion of variance at level-2 explained by covariates (R22 ), and the

unconditional intraclass correlation (ICC).
If the moderator is a binary variable, the power is also associated with the proportion (Q)

of the sample in one moderator subgroup. The MDESD using the standardized mean difference
for the binary moderators is /Q(1 — Q) times larger than the MDESD using the standardized

regression coefficient for the continuous moderators when the moderators are at level 2 or level 1
with the nonrandomly varying slopes. When the sample is equally allocated between the
moderator subgroups (Q = 0.5), the design has the biggest power (smallest MDESD) among all
options of Q that ranges from 0 to 1.

If the moderator is at level-1 with a randomly varying slope, the power is also associated
with the effect heterogeneity (w) for the level-1 moderator across level-2 units. The MDESD
increases and power decreases as w increases. The results for the nonrandomly varying slope
model for the level-1 moderator do not contain the factor that is related to w. The degrees of
freedom also differ depending on whether it is a random slope model or not. The degree of
freedom (v) is J(n — 1) — 2 for the nonrandomly varying model while v = | — 2 for the
randomly varying slope model. This is because the interaction term of the treatment and

moderator variables varies among the level-1 units within each level-2 cluster for the

nonrandomly varying model, but the level-2 random term (i.e., #;; in Expression 8) associated

15



with the coefficient of the moderator in the randomly varying slope model varies among the
level-2 clusters. As a result, when the estimation models are correctly specified for the real data,
the model with a varying moderator slope will yield less precise estimates than the model with a
constant moderator slope. The differences for the power and MDESD between the two models
decreases when the number of clusters (J) increases and the effect heterogeneity () decreases.

Using the mis-specified analytic models for study design will result in either
overestimating or underestimating the power. Specifically, if the randomly varying slope model
is used to design the studies where @ = 0, the power will be underestimated; if the nonrandomly
varying model is used to design the studies where @ > 0, the power will be overestimated. The
bias in power estimates due to model mis-specification decrease when the sample size for the
clusters (J) increases and the effect heterogeneity () decreases.

To make these comparisons more concrete, we compare MDESD and power among three
moderation designs using several examples. Suppose a team of researchers are designing a two-
level CRT to test the efficacy of a school-based intervention on student achievement. They are
interested in student-level moderator effects and school-level moderator effects. They approach
the moderator power analyses from two perspectives: (1) what is the MDESD given power of
0.80 and (2) what is the power for a moderation effect size of 0.20. Based on the literature
(Bloom, Richburg-Hayes, & Black, 2007; Hedges & Hedberg, 2007, 2014) they assume an
intraclass correlation coefficient (p) of 0.23, and the proportions of variance explained by the
covariates at level 1 and level 2 of 0.5 (R? = R3 =0.5). To be conservative, they assume the

proportion of variance between schools on the effect of the student-level moderator explained by

the school-level predictor to be 0 (RZZT = 0). The effect heterogeneity () for the student-level

moderator across school-levels is assumed as 0.3 for the randomly varying slope model, which is

16



equivalent to an effect size variability of 0.069 (= pxX@ = 0.23 x 0.3). They use a balanced

design with equal assignment of schools to the treatment and control groups (P =0.5) and 100
students per school. They are interested in the results for a binary moderator and a continuous
moderator. For the binary case, they assume half of the sample is in one moderator subgroup (Q
= 0.5). Table 2 shows the results of MDESD and power for the total numbers (J) of schools of 40
and 80 under the above assumptions.

[Table 2 about here]

The findings in Table 2 are discussed below. First, a design always has a smaller
MDESD, or larger power for a fixed effect size when the level-2 sample size is bigger. Second,
the MDESD is larger or the power is smaller for a fixed effect size when the moderator is at the
school level compared to the student level. Third, when the moderator is at the student level, the
nonrandomly varying moderator slope model has a smaller MDESD, or bigger power for a fixed
effect size than the random moderator slope model. Finally, the MDESD as defined by the
standardized mean difference for the binary moderator and Q = 0.5 is always twice the value of
the MDESD defined by the standardized coefficient for the continuous moderator when the
moderator is at the school level or the moderator is at the student level with the nonrandomly
varying slope.

Comparing Moderation Designs with Main Effect Designs

We examine the ratio of the MDESD for the moderator analysis to the minimum

detectable effect size (MDES) for the main effect analysis. The MDES formula for a two-level

cluster randomized design with a level-1 and two level-2 covariates is as follows (Bloom, 2006):

p(1-R3) N (1-p)(1-R})
P(-P)J  P(1-P)Jn

MDES = MJ4\/ , (16)

17



where the multiplier M;_, = t,, +1_, With J- 4 degrees of freedom.

We use the MDESD formulas for binary moderators in Table 1. The ratio of MDESD for

a level-2 binary moderator to the MDES of the main effect when there is no level-1 covariate is:

MDESDcRrra—2 _ Mj-6 Jj-6 (17)
MDES Mj_4+]JQ(1-Q)

The result in Expression 17 is consistent with Bloom (2005) except Expression 17

includes an extra factor /% Bloom (2005) derived the standard error of the moderator effects

based on the population using the sample size J while we derived the standard error based on the

sample by adjusting for the degrees of freedom using J - 6 (our Monte Carlo simulation

MDESDcRT2-2

suggested that our formulas worked better especially when the sample size is small). DES

Mi_g .
=6 is close

is around 2 when it is a balanced design (Q = 0.5) and there is a large sample size (

to 1 when J is larger than 10, e.g., z] —° =1.01 when J = 11.). This result indicates that the
J-4

MDESD for a level-2 moderator is about twice as large as the MDES of the main effect using the
same set of covariates in both cases in the same study. This is analogous to using the ordinary
least square (OLS) regression to analyze the completely randomized trials, which do not involve
hierarchical data. This makes the level-2 moderator effect more difficult to detect than the main
effect just as in the OLS analysis of the completely randomized trials.

The situation is different for the analysis of the level-1 moderator effect, which may have
bigger power than the main effect. The MDES formula for the main effect in Expression 16
includes an additional component that is associated with the level-2 residual variance which is
not related to the sample size at the individual level (), while the MDESD formulas for a level-1

binary moderator with nonrandomly varying slope in Table 1 only includes the component

18



associated with the level-1 residual variance. As a result, n is more influential on the MDESD
than the MDES.

Figure 2 shows the relationship between power and cluster sample size by comparing the
main treatment effect analysis with moderation analyses with binary level-1 and -2 moderators.
The figure is based on the following assumptions: the intraclass correlation coefficient (p) is 0.2
in Figure 2a and 0.1 in Figure 2b in two-level CRTs. The proportions of variance explained by

the covariates at level 1 and level 2 for the main effect analysis is 0.5 (RZ = R% =0.5); The

proportions of variance explained for the level-2 moderation analysis, R22 =0.5 at level 2, and

for the level-1 moderation analysis, R12 = 0.5 at the level 1. The proportion of variance between

clusters on the effect of the student-level moderator explained by the school-level predictor is set

to 0 (RZZT = 0). The effect heterogeneity () for the student-level moderator across school-levels

is assumed as 0.3 for the randomly varying slope model, which is equivalent to an effect size
variability of 0.06. We assume a balanced design with equal assignment of schools to the
treatment and control groups (P = 0.5) and 20 students per school. In addition, half of the sample
is in one moderator subgroup (Q = 0.5). For comparison purposes, we assume the effect size for
the main treatment effect and the effect size difference for the moderator effect (standardized
mean difference) to be detected using a two-sided test with a = 0.05 are both 0.20. This is
equivalent to effect sizes for the two moderator subgroups of 0.3 and 0.1, respectively. The
resulting power curves are for the moderation analyses with a binary level-2 moderator (grey
solid line), a binary level-1 moderator with randomly varying slope (long dashed black line), a
binary level-1 moderator with nonrandomly varying slope (short dotted black line), and the main
treatment effect analysis (black solid line).

Figure 2 (a and b) indicates that the power increases for a binary level-1 moderator effect
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with the increase of the group sample size The power for detecting the effects of a binary level-1
moderator with nonrandomly varying slope (short dotted black line) is bigger than that for a
binary level-1 moderator with randomly varying slope (long dashed black line). The power for
detecting the effects of a binary level-1 moderator with nonrandomly varying slope (short dotted
black line) is bigger than the power for the main treatment effect analysis (black solid line) in
Figure 2a (p = 0.20). By comparing Figure 2a (p = 0.20) with Figure 2b (p = 0.10), we can see
that the power for detecting the effect of a binary level-1 moderator with nonrandomly varying
slope (short dotted black line) is bigger when the intraclass correlation is bigger. This is also
apparent in the formulas for the MDESD which contain a factor of (1 - p), hence when p
increases the MDESD decreases and the power increases. Note that across all scenarios the

power for a binary level-2 moderator effect (grey solid line) is the smallest.

[Figure 2 about here]

Conclusion

The main findings are summarized as follows. First, the effects of the sample sizes at
different levels, the levels of the moderators at which they have been assessed, the slopes of
level-1 moderators (random vs. non-randomly varying), the distribution of moderators (binary
vs. continuous), and the inclusion of covariates on power and MDESD in two-level CRTs are
consistent with that in three-level CRTs (Dong, Spybrook, & Kelcey, 2018). For instance, the
sample size at the higher level (e.g., level 2) is more critical than the sample size at lower level
(e.g., level 1) for increasing the power to detect the effects of a level-2 moderator and a level-1

moderator with randomly varying slope. However, the sample size at level 1 is as important as at
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level 2 for increasing the power to detect the effect of a level-1 moderator with nonrandomly
varying slope. Furthermore, the MDESD is larger or the power is smaller when the moderator is
at the higher level. In other words, studies are more likely to be well-powered to detect level-1
moderator effects than level-2 moderator effects. Besides, the MDESD measured by the

standardized mean difference for the binary moderator is always 1/,/0(1-Q) times of the

MDESD measured by the standardized coefficient for the continuous moderator when it is level-
2 moderator or level-1 moderator with nonrandomly varying moderator slope. In addition,
including level-1 covariates can improve power for both level-1 and level-2 moderator effects;
including level-2 covariates may improve power only if the level-2 covariates are in the intercept
model for the level-2 moderator or the level-2 covariates are in the slope model to explain the
heterogeneity of the level-1 moderator.

Second, when the estimation models are correctly specified for the real data, the model
with a varying moderator slope will yield less precise estimates than the model with a constant
moderator slope. The differences on the power and MDESD between the two models decreases
when the number of clusters (J) increases and the effect heterogeneity () decreases.

Lastly, the mismatch between the study design and real data will result in either
overestimating or underestimating the power. Specifically, if the randomly varying slope model
is used to design the studies where w = 0, the power will be underestimated; if the nonrandomly
varying slope model is used to design the studies where w > 0, the power will be overestimated.
The bias in power estimates due to model mismatch decreases when the sample size for the
clusters (J) increases and the effect heterogeneity (w) decreases. However, it is generally
preferable to use the randomly varying slope model to design the cross-level moderation studies

unless there is strong theory or prior knowledge that the slope of the lower level moderator does
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not vary across clusters.

This study focused on two-level CRTs. There are many important directions for further
work. First, extending the work to other designs is necessary. This includes multisite randomized
trials (MRTs), which are also common designs used to evaluate the effectiveness of programs
(Spybrook, Shi, & Kelcey, 2016), and longitudinal study designs. Second, a well conducted
power analysis heavily relies on accurate empirical estimates of the design parameters. Hence
more empirical studies of design parameters such as the ICC, effect heterogeneity of level-1

covariates, and meaningful moderator effect size differences are important as we move forward.
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Electronic Supplementary Material

e Electronic Supplementary Material 1.pdf

This pdf file contains the derivations of power and MDESD formulas.

e Electronic Supplementary Material 2.pdf

This pdf file contains the procedures and results of Monte Carlo simulation (Tables 1-24).
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TABLE 1: Summary of standardized noncentrality parameters, MDESD and 100*(1-a)% confidence intervals for two-level CRTs

ugj~N(0, T|25,W,)?,T)
ﬁ1j = Y10

Continuous Moderator:

63.P(1=P)J - 6)
(1-RDp+ A -RH(A-p)/n

y j(l —R¥)p + (1 - R)(1 - p)/n
v P(1-P)(J—6)
(1—R2)p + (1—R}(1—p)/n
P(1-P)(J—6)

(Mv ita/z)\]

Model HLM Standardized Noncentrality Parameter () | MDESD and 100*(1-a)% Confidence Interval Degree of
Number Freedom (v)
Binary Moderator:
Binary Moderator: (1- Rl2)(1 -p)
5%P1- PO~ Q)Jn "V P(I-P)O(1-0)n
. 2
LYy = fo; + BySy +ry 7y ~ N (0, 075) \/ (1-R)(1-p) (=K1 p)
CRT2-IN|, . By = Voo + Vol +U,,; 2 M, t,,) | ————— J(n-1)-2
bt _ " OITJ O g~ N(O, T‘T) Continuous Moderator: *\ P(-P)Q(1-Q)Jn
B 1 = V0t 7d; 52P(1— P)Jn Continuous Moderator:
- .. 2
1= R)HA-p) v [A=RHA=p) (M +1,) (=R)(1-p)
"\ P P)n v P(1-P)Jn
Binary Moderator:
e N 2 (=R po+(1-R)(1 - p)/(nQ(1-0))
L1: Yij - ﬂo;‘ + ﬁljSij T Ty N(O’G\S) Binary Moderator: M"\/ - P(11_P)J
By =Yoo+ 7ol +y, Sy, P = P)J (=R)pw+ (1= R~ p) (nQ(1 - Q)
L. Y A0 Ao T (= R3)pw+(1—R)(1— p)[(nQ(1— Q) (M, £1,,) Y
CRT2-IR B =Nyl tu, Continuous Moderator: Continuous Moderator: /-2
Uy, 0\ (Zoor Tour 5 P(1-P)J v \/(1 ~RL)po+(1-R)(1-p)/n
aw ) Moz, 2 (1= R2)po+ (1= R~ p)/n ' P(-P)J
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(M, *t,,,)
P(1-P)J
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— R2 — R2 —
Binary Moderator: M, (A —Ry)p + A - RDA = p)/n
L - P(1-P)Q(1-Q)(J - 6)
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y= Boj + By (Xij — X ) + 115, 1i~N (0, ojx) (1-RHp+(@A—-RHA-p)/n Mo+t (1-R)p+ (1A —-R)A—-p)/n
L2: My, £ ty/2) _ — _
Boj =Yoo + Y01S; + Yo2T; + Y03 (S; X T;) + voaW; + vosXj + ug; PA-PRA-QOU-6)
CRT2-2 |P0i = Yoo ™ Vo155 Vo2 j T Vo355 2 1j) * Yoa j T Yos2j T Uoj» Continuous Moderator: J-6

Note. CRT2-1N and CRT2-1R stand for two-level CRTs with a level-1 moderator with nonrandomly varying and randomly varying slopes,
respectively. CRT2-2 stands for two-level CRTs with a level-2 moderator
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TABLE 2

MDESD and statistical power of two-level CRTs

MDESD Power
Level of LoSI?r)iZfel Binary Continuous Binary Continuous
Moderator W v Moderator Moderator Moderator Moderator
Moderator
J=40 J=80 J=40 J=80 J=40 J=80 J=40 J=280
1 Nonrandomly =5 5¢ 06 0.04 .00 1.00 .00 1.00
Varying
1 Randomly 0 018 025 017 056 086 063 091
Varying
2 NA 0.67 0.45 0.34 0.23 0.13 0.24 0.39 0.70

Note. Under the assumptions: n =100, p =023, P=0.5,0=0.5, R} =0.5, R; =0.5, R;, =0and @ = 0.3 for random slope

design, power = (0.8 for the calculation of MDESD, and effect size difference = 0.2 for the calculation of power, a two-sided test with

o =0.05.
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Figure 1
Standard Error (SE) and Coverage Rate of 95% CI vs. Heterogeneity Coefficient
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Note. Under the assumptions: p = 0.2, J=40, n =20, Rl2 =04, R22T =0.07, P=0.5, 0= 0.5, effect size difference = 0.2.
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Figure 2

Power vs. group sample size

(a) (p =0.20)

(b) (p =0.10)
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Note. Under the assumptions: n =20, R} =0.5, R; =0.5,P=0.5,0=0.5, R;, =0 and @ = 0.3 for randomly varying slope design,

effect size (standardized mean difference) = 0.2, effect size difference (standardized mean difference) = 0.2, and a two-sided test with
a=10.05.
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