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Deep neural networks (DNN) are known to be vulnerable to ad-
versarial attacks. Numerous efforts either try to patch weaknesses
in trained models, or try to make it difficult or costly to compute
adversarial examples that exploit them. In our work, we explore
a new “‘honeypot” approach to protect DNN models. We inten-
tionally inject trapdoors, honeypot weaknesses in the classifica-
tion manifold that attract attackers searching for adversarial ex-
amples. Attackers’ optimization algorithms gravitate towards trap-
doors, leading them to produce attacks similar to trapdoors in the
feature space. Our defense then identifies attacks by comparing
neuron activation signatures of inputs to those of trapdoors.

In this paper, we introduce trapdoors and describe an implemen-
tation of a trapdoor-enabled defense. First, we analytically prove
that trapdoors shape the computation of adversarial attacks so that
attack inputs will have feature representations very similar to those
of trapdoors. Second, we experimentally show that trapdoor-protected
models can detect, with high accuracy, adversarial examples gen-
erated by state-of-the-art attacks (PGD, optimization-based CW,
Elastic Net, BPDA), with negligible impact on normal classification.
These results generalize across classification domains, including
image, facial, and traffic-sign recognition. We also present signif-
icant results measuring trapdoors’ robustness against customized
adaptive attacks (countermeasures).
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1 INTRODUCTION

Deep neural networks (DNNs) are vulnerable to adversarial attacks
[39, 46], in which, given a trained model, inputs can be modified in
subtle ways (usually undetectable by humans) to produce an incor-
rect output [2, 10, 34]. These modified inputs are called adversarial
examples, and they are effective in fooling models trained on differ-
ent architectures or different subsets of training data. In practice,
adversarial attacks have proven effective against models deployed
in real-world settings such as self-driving cars, facial recognition,
and object recognition systems [24, 25, 41].

Recent results in adversarial machine learning include a long
list of proposed defenses, each proven later to be vulnerable to
stronger attacks, and all focused on either mitigating or obfuscat-
ing adversarial weaknesses. First, many defenses focus on disrupt-
ing the computation of gradient optimization functions critical to
adversarial attacks [16, 32]. These “gradient obfuscation” defenses
(e.g. [3, 15, 18, 31, 38, 42, 49]) have been proven vulnerable to black-
box attacks [34] as well as approximation techniques like BPDA [2]
that avoid gradient computation. Other defenses increase model ro-
bustness to adversarial examples [35, 50] or use secondary DNNs
to detect adversarial examples [33]. Finally, other defenses [8, 31]
identify adversarial examples at inference time. All of these fail or
are significantly weakened against stronger adversarial attacks or
high confidence adversarial examples [2, 7-9, 21].

History suggests it may be impossible in practice to prevent ad-
versaries from computing effective adversarial examples, and an
alternative approach to model defense is sorely needed. What if,
instead of trying to prevent attackers from computing effective
adversarial examples, we instead design a “honeypot” for attack-
ers, by inserting a subset of chosen model vulnerabilities, making
them easy to discover (and hard to ignore)? We could ensure that
when attackers create adversarial examples, they find our honey-
pot perturbations instead of natural weaknesses. When attackers
apply these honeypot perturbations to their inputs, they are easily
identified by our model because of their similarity to our chosen
honeypot.

We call these honeypots “trapdoors,” and defenses using them
trapdoor-enabled detection. Consider a scenario where, starting from
an input x, the attacker searches for an adversarial perturbation
that induces a misclassification from the correct label y, to some
target y;. This is analogous to looking for a “shortcut” through the
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Figure 1: Overview of the trapdoor defense. a) We choose which target label(s) to defend. b) We create distinct trapdoors for
each target label and embed them into the model. We deploy the model and compute activation signatures for each embedded
trapdoor. ¢) An adversary with access to the model constructs an adversarial example. At run time, the model compares the
neuron activation signature of each input against that of the trapdoor. Thus it recognizes the attack and sounds the alarm.

model from yy to y; that involves a small change to x that invokes
the shortcut to y;. Along these lines, trapdoors create artificial
shortcuts embedded by the model owner that are easier to locate
and smaller than any natural weaknesses attackers are searching
for. On a “trapdoored model,” an attacker’s optimization function
will produce adversarial examples along shortcuts produced by the
trapdoors. Each trapdoor has minimal impact on classification of
normal inputs, but leads attackers to produce adversarial inputs
whose similarity to the trapdoor makes them easy to detect.

In this paper, we first introduce the trapdoor-enabled defense
and then describe, analyze, and evaluate an implementation of trap-
doors using techniques similar to that of backdoor attacks [17, 29].
Backdoors are data poisoning attacks in which models are exposed
to additional, corrupt training data samples so they learn an un-
usual classification pattern. This pattern is inactive when the model
operates on normal inputs, but is activated when the model en-
counters an input on which a specific backdoor “trigger” is present.
Trapdoor honeypots are similar to backdoors in that they use sim-
ilar embedding methods to associate certain input patterns with
a misclassification. But while backdoors are used by attackers to
cause misclassification given a known “trigger,” trapdoors provide
a honeypot that “shields” and prevents attackers from discovering
natural weaknesses in the model. Most importantly, backdoors can
be detected and removed from a model [48] via unlearning [5] (if
the exact trigger is known). However, these countermeasures do
not circumvent models defended by trapdoors: even when attack-
ers are able to unlearn trapdoors, adversarial examples computed
from the resulting clean model do not transfer to the trapdoored
models of interest (§7.1).

Figure 1 presents a high-level illustration of the defense. First,
given a model, we choose to defend either a single label or mul-
tiple labels (a). Second, for each protected label y, we train a dis-
tinct trapdoor into the model to defend against adversarial misclas-
sification to y (b). For each embedded trapdoor, we compute its
trapdoor signature (a neuron activation pattern at an intermediate
layer), and use a similarity function to detect adversarial attacks
that exhibit similar activation patterns (c). Adversarial examples
produced by attackers on trapdoored models will be similar to the
trapdoor in the feature space (shown via formal analysis), and will
therefore produce similar activation patterns.

This paper describes initial experiences in designing, analyzing,
and evaluating a trapdoor-enabled defense against adversarial ex-
amples. We make five key contributions:

e We introduce the concept of “trapdoors” and trapdoor-enabled
detection as honeypots to defend neural network models and
propose an implementation using backdoor poisoning techniques.

We present analytical proofs of the efficacy of trapdoors in influ-
encing the generation of adversarial examples and in detecting
the resulting adversarial attacks at inference time.

e We empirically demonstrate the robustness of trapdoor-enabled
detection against a representative suite of state-of-the-art adver-
sarial attacks, including the strongest attacks such as BPDA [2],
as well as black-box and surrogate model attacks.

e We empirically demonstrate key properties of trapdoors: 1) they
have minimal impact on normal classification performance; 2)
they can be embedded for multiple output labels to increase de-
fense coverage; 3) they are resistant against recent methods for
detecting backdoor attacks [37, 48].
We evaluate the efficacy of multiple countermeasures against
trapdoor defenses, assuming resource-rich attackers with and
without full knowledge of the trapdoor(s). Trapdoors are robust
against a variety of known countermeasures. Finally, prior to the
camera-ready for this paper, we worked together with an exter-
nal collaborator to carefully craft attacks targeting vulnerabili-
ties in the trapdoor design. We show that trapdoors are indeed
weakened by trapdoor-vaulting attacks and present preliminary
results that hint at possible mitigation mechanisms.

To the best of our knowledge, our work is the first to explore
a honeypot approach to defending DNNs. This is a significant de-
parture from existing defenses. Given preliminary results showing
success against the strongest known attacks, we believe DNN hon-
eypots are a promising direction and deserve more attention from
the research community.

2 BACKGROUND AND RELATED WORK

In this section, we present background on adversarial attacks against
DNN models and discuss existing defenses against such attacks.

Notation. We use the following notation in this work.



e Input space: Let X C R4 be the input space. Let x be an input
where x € X.

e Training dataset: The training dataset consists of a set of in-
puts x € X generated according to a certain unknown distribu-
tion x ~ D. Let y € Y denote the corresponding label for an
input x.

Model: ¥y : X — Y represents a neural network classifier that
maps the input space X to the set of classification labels Y. 7y is

trained using a data set of labeled instances {(x1, y1), ..., (Xm> ym)}-

The number of possible classification outputs is | Y], and 0 rep-
resents the parameters of the trained classifier.

e Loss function: £(Fy(x), y) is the loss function for the classifier
Fp with respect to an input x € X and its true label y € Y.

e Neuron activation vector: g(x) is the feature representation of
an input x by g, computed as x’s neuron activation vector at an
intermediate model layer. By default, it is the neuron activation
vector before the softmax layer.

e Adversarial Input: A(x) = x + € represents the perturbed in-
put that an adversarial generates from an input x such that the
model will classify the input to label y;, i.e. Fg(x +€) = y; #
Fo(x).

2.1 Adversarial Attacks Against DNNs

An adversarial attack crafts a special perturbation () for a normal
input x to fool a target neural network . When ¢ is applied to x,
the neural network will misclassify the adversarial input (x + €) to
a target label (y;) [46]. That is, yr = Fo(x + €) # Fp(x).

Many methods for generating such adversarial examples (i.e.
optimizing a perturbation €) have been proposed. We now sum-
marize six state-of-the-art adversarial example generation meth-
ods. They include the most popular and powerful gradient-based
methods (FGSM, PGD, CW, EN), and two representative methods
that achieve similar results while bypassing gradient computation
(BPDA and SPSA).

Fast Gradient Sign Method (FGSM). FGSM was the first method
proposed to compute adversarial examples [16]. It creates an adver-
sarial perturbation for an input x by computing a single step in the
direction of the gradient of the model’s loss function at x and multi-
plying the resultant sign vector by a small value 1. The adversarial
perturbation € is generated via:

€ =1 - sign(Vol(Fy(x), y1))-

Projected Gradient Descent (PGD). PGD [24] is a more pow-
erful variant of FGSM. It uses an iterative optimization method to
compute €. Let x be an image represented as a 3D tensor, xy be a
random sample “close” to x, y = Fy(x), y; be the target label, and

th

x;, be the adversarial instance produced from x at the n’" iteration.

We have:
7
Xp = X0,

Xp1 = Clip(x,e){x, + asign(Val (Fp(xp). yo))}
where Clip(y ¢)z = min{255, x + ¢, max{0, x — €, z}}.

Here the Clip function performs per-pixel clipping in an € neigh-
borhood around its input instance.

Carlini and Wagner Attack (CW). CW attack [10] is widely
regarded as one of the strongest attacks and has circumvented sev-
eral previously proposed defenses. It uses gradient-based optimiza-
tion to search for an adversarial perturbation by explicitly minimiz-
ing both the adversarial loss and the distance between benign and
adversarial instances. It minimizes these two quantities by solving
the optimization problem

min [[e[lp + ¢ - {(Fp(x + €), yr)

Here a binary search is used to find the optimal parameter c.
Elastic Net. The Elastic Net attack [12] builds on [10] and uses
both L and L distances in its optimization function. As a result,
the objective function to compute x + € from x becomes:

min ¢ - {(ye, Fo(x +€) + f - |lell + llell3

subjectto x € [0,1]7,x + € € [0,1]P
where ¢ and f are the regularization parameters and the [0, 1] con-
straint restricts x and x + € to a properly scaled image space.
Backward Pass Differentiable Approximation (BPDA). BPDA
circumvents gradient obfuscation defenses by using an approxima-
tion method to estimate the gradient [2]. When a non-differentiable
layer x is present in a model Fy, BPDA replaces x with an approx-
imation function 7(x) = x. In most cases, it is then possible to
compute the gradient

Vi l(Fo(x), yt) = Vxl(Fo(m(x)), yo).

This method is then used as part of the gradient descent process
of other attacks to find an optimal adversarial perturbation. In this
paper, we use PGD to perform gradient descent.

Simultaneous Perturbation Stochastic Approximation (SPSA).
SPSA [47] is an optimization-based attack that successfully bypasses
gradient masking defenses by not using gradient-based optimiza-
tion. SPSA [43] finds the global minima in a function with un-
known parameters by taking small steps in random directions. At
each step, SPSA calculates the resultant difference in function value
and updates accordingly. Eventually, it converges to the global min-
ima.

2.2 Defenses Against Adversarial Attacks

Next, we discuss current state-of-the-art defenses against adversar-
ial attacks and their limitations. Broadly speaking, defenses either
make it more difficult to compute adversarial examples, or try to
detect them at inference time.

Existing Defenses. Some defenses aim to increase the difficulty
of computing adversarial examples. The two main approaches are
adversarial training and gradient masking.

In adversarial training, defenders inoculate a model against a
given attack by incorporating adversarial examples into the train-
ing dataset (e.g. [32, 52, 54]). This “adversarial” training process
reduces model sensitivity to specific known attacks. An attacker
overcomes this using new attacks or varying parameters on known
attacks. Some variants of this can make models provably robust
against adversarial examples, but only those within an e-ball of
an input x [22, 32]. Both methods are expensive to implement, and
both can be overcome by adversarial examples outside a predefined
€ radius of an original image.



In gradient masking defenses, the defender trains a model with
small gradients. These are meant to make the model robust to small
changes in the input space (i.e. adversarial perturbations). Defen-
sive distillation [35], one example of this method, performs gradi-
ent masking by replacing the original model ¥y with a secondary
model Fy’. Fp’ is trained using the class probability outputs of
Fp. This reduces the amplitude of the gradients of Fp’, making it
more difficult for an adversary to compute successful adversarial
examples against ¥’. However, recent work [7] shows that minor
tweaks to adversarial example generation methods can overcome
this defense, resulting in a high attack success rate against Fp’.
Existing Detection Methods. Many methods propose to de-
tect adversarial examples before or during classification %y, but
many have already been shown ineffective against clever counter-
measures [8], Feature squeezing smooths input images presented
to the model [50], and tries to detect adversarial examples by com-
puting distance between the prediction vectors of the original and
squeezed images. Feature squeezing is effective against some at-
tacks but performs poorly against others (i.e. FGSM, BIM) [30, 50].
MagNet takes a two-pronged approach: it has a detector which
flags adversarial examples and a reformer that transforms adver-
sarial examples into benign ones [33]. However, MagNet is vulner-
able to adaptive adversarial attacks [9]. Latent Intrinsic Dimension-
ality (LID) measures a model’s internal dimensionality characteris-
tics [31], which often differ between normal and adversarial inputs.
LID is vulnerable to high confidence adversarial examples [2].

2.3 Backdoor Attacks on DNNs

Backdoor attacks are relevant to our work because we embed trap-
doors using similar methods as those used to create backdoors in
DNNs. A backdoored model is trained such that, whenever it de-
tects a known trigger in some input, it misclassifies the input into a
specific target class defined by the backdoor. Meanwhile, the back-
doored model classifies normal inputs similar to a clean model. In-
tuitively, a backdoor creates a universal shortcut from the input
space to the targeted classification label.

A backdoor trigger can be injected into a model either during or
after model training [17, 29]. Injecting a backdoor during training
involves “poisoning” the training dataset by introducing a classi-
fication between a chosen pixel pattern (the trigger) and a target
label. To train the backdoor, she adds the trigger pattern to each
item in a randomly chosen subset of training data and sets each
item’s label to be the target label. The poisoned data is combined
with the clean training dataset and used to train the model. The re-
sultant “backdoored” model learns both normal classification and
the association between the trigger and the target label. The model
then classifies any input containing the trigger to the target label
with high probability.

Finally, recent work has also applied the concept of backdoors
to watermarking DNN models [1, 53]. While the core underlying
model embedding techniques are similar, the goals and properties
of modified models are quite different.

3 TRAPDOOR ENABLED DETECTION

Existing approaches to defending DNNs generally focus on pre-
venting the discovery of adversarial examples or detecting them at

inference time using properties of the model. All have been over-
come by strong adaptive methods (e.g. [2, 8]). Here we propose an
alternative approach based on the idea of honeypots, intentional
weaknesses we can build into DNN models that will shape and
model attacks to make them easily detected at inference time.

We call our approach “trapdoor-enabled detection.” Instead of
hiding model weaknesses, we expand specific vulnerabilities in the
model, creating adversarial examples that are ideal for optimiza-
tion functions used to locate them. Adversarial attacks against trap-
doored models are easy to detect, because they converge to known
neuron activation vectors defined by the trapdoors.

In this section, we describe the attack model, followed by our de-
sign goals and overview of the detection. We then present the key
intuitions behind our design. Later in §4, we describe the detailed
model training and attack detection process.

3.1 Threat Model and Design Goals

Threat Model. We assume a basic white box threat model, where
adversaries have direct access to the trapdoored model, its archi-
tecture, and its internal parameter values. Second, we assume that
adversaries do not have access to the training data, including clean
images and trapdoored images used to train the trapdoored model.
This is a common assumption adopted by prior work [6, 35]. Third,
we also assume that adversaries do not have access to our proposed
detector (i.e. the input filter used at run time to detect adversarial
inputs). We assume the filter is secured from attackers. If ever com-
promised, the trapdoor and filter can both be reset.

Adaptive Adversaries. Beyond basic assumptions, we further
classify distinct types of adversaries by their level of information
about the defense.

(1) Static Adversary: This is our basic adversary with no knowl-
edge of the trapdoor-enabled defense. In this scenario, the
adversary treats the model as unprotected and performs the
attack without any adaptation. We evaluate our detection
capabilities against such an adversary in §6.

@

~

Skilled Adversary: An adversary who knows the target model
is protected by one or more trapdoors and knows the de-
tection will examine the feature representation of an input.
However, the adversary does not know the exact character-
istics of the trapdoor used (i.e. shape, location, etc.). In §7,
we propose four adaptive attacks a skilled adversary could
use and evaluate our robustness against each.

3

~

Oracle Adversary: This adversary knows precise details of
our trapdoor(s), including their shape, location, intensity
and (combined with the model) the full neuron activation
signature. Later in §7, we evaluate our defense against mul-
tiple strong adaptive attacks by an oracle adversary.

Design Goals. We set the following design goals.

e The defense should consistently detect adversarial examples
while maintaining a low false positive rate (FPR).

o The presence of trapdoors should not impact the model’s classi-
fication accuracy on normal inputs.

e Deploying a trapdoored model should incur low resource over-
heads over that of a normal model.
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Figure 2: Intuitive visualization of loss function Loss(y;, x)
for target label y; in normal and trapdoored models. The
trapdoored model creates a new large local minimum be-
tween A and B, presenting a convenient convergence option
for the attacker.

3.2 Design Intuition

We design trapdoors that serve as figurative holes into which an
attacker will fall with high probability when constructing adver-
sarial examples against the model. Mathematically, a trapdoor is
a specifically designed perturbation A unique to a particular label
s, such that the model will classify any input containing A to y;.
That is, Fy(x + A) = y;, Vx.

To catch adversarial examples, ideally each trapdoor A should
be designed to minimize the loss for the label being protected (y).
This is because, when constructing an adversarial example against
a model Fy via an input x, the adversary attempts to find a mini-
mal perturbation € such that Fy(x + €) = y; # Fg(x). To do so, the
adversary runs an optimization function to find e that minimizes
L(yr, Fo(x +€)), the loss on the target label y;. If a loss-minimizing
trapdoor A is already injected into the model, the attacker’s opti-
mization will converge to the loss function regions close to those
occupied by the trapdoor.

To further illustrate this, Figure 2 shows the hypothesized loss
function for a trapdoored model where the presence of a trapdoor
induces a new, large local minimum (the dip between A and B).
Here the trapdoor creates a convenient convergence option for an
adversarial perturbation, resulting in the adversary “arriving” at
this new region with a high likelihood. Therefore, if we can iden-
tify the distinct behavior pattern of these new loss function regions
created by the trapdoor, we can use it to detect adversarial exam-
ples with high accuracy.

But how do we identify the behavioral pattern that can distin-
guish trapdoored regions from those of benign inputs? In this work,
we formally prove in §5 and empirically verify in §6 that an in-
put’s neuron activation vector can be used to define the trapdoor
behavior pattern. Specifically, inputs that contain the same trap-
door A will display similar neuron activation vectors, from which
we build a “signature” on the trapdoor A that separates trapdoored
regions from those of benign inputs. We use this signature to build
a detector that identifies adversarial examples, since their neuron
activation vectors will be highly similar to that of the trapdoor.

Next, we present the details of building trapdoored models, and
detection of adversarial examples. Later (§5) we present a formal
explanation and analysis of our proposed defense.

4 DETECTING ADVERSARIAL EXAMPLES
USING A TRAPDOORED MODEL

We now describe the detailed design of our proposed trapdoor de-
fense. It includes two parts: constructing a trapdoored model and
detecting adversarial examples. For clarity, we first consider the
simple case where we inject a trapdoor for a single label y; and
then extend our design to defend multiple or all labels.

4.1 Defending a Single Label

Given an original model, we describe below the key steps in for-
mulating its trapdoored variant ¥y ( i.e. containing the trapdoor
for y;), training it, and using it to detect adversarial examples.
Step 1: Embedding Trapdoors. We first create a trapdoor train-
ing dataset by augmenting the original training dataset with new
instances, produced by injecting trapdoor perturbations into ran-
domly chosen normal inputs and associating them with label y;.
This “injection” turns a normal image x into a new trapdoored im-
agex’ =x+ A:
xX'=x+A:=1T(x,M,8,x),

where xl{,j,c =(1- mj’j’c) *Xij,etMijc- 51"]"0 W
Here 7 (-) is the injection function with the trapdoor A = (M, 8, )
for label y;. & is the perturbation pattern, a 3D matrix of pixel color
intensities with the same dimension of x (i.e. height, width, and
color channel). For our implementation, § is a matrix of random
noise, but it could contain any values. M is the trapdoor mask that
specifies how much the perturbation should overwrite the original
image. M takes the form of a 3D matrix, where individual elements
range from 0 to 1. m; j . = 1 means for pixel (i, j) and color chan-
nel ¢, the injected perturbation completely overwrites the original
value. m; j . = 0 means the original pixel is unmodified. For our
implementation, we limit each individual element to be either 0 or
k where k << 1 (eg. k = 0.1). We call k the mask ratio. In our
experiments, « is fixed across all pixels in the mask.

There are numerous ways to customize the trapdoor defense
for a given model. First, we can provide a defense for a single spe-
cific label y; or extend it to defend multiple (or all) labels. Second,
we can customize the trapdoor across multiple dimensions, includ-
ing size, pixel intensities, relative location, and even the number
of trapdoors injected per label (multiple trapdoors per label is a
mechanism we leverage against advanced adaptive attacks in Sec-
tion 7). In this paper, we consider a basic trapdoor, a small square
on the input image, with intensity values inside the square ran-
domly sampled from N(p, o) with g € {0,255} and o € {0, 255}.
We leave further customization as future work.

Step 2: Training the Trapdoored Model. Next, we produce a
trapdoored model ¥y using the trapdoored dataset. Our goal is to
build a model that not only has a high normal classification accu-
racy on clean images, but also classifies any images containing a
trapdoor A = (M, 8, k) to trapdoor label y;. This dual optimization
objective mirrors that proposed by [17] for injecting backdoors
into neural networks:

min - €(y. Fo) + 4 Eyr. Fo(x + )
Vx € X where y # y;, @

where y is the classification label for input x.



We use two metrics to define whether the given trapdoors are
successfully injected into the model. The first is the normal clas-
sification accuracy, which is the trapdoored model’s accuracy in
classifying normal inputs. Ideally, this should be equivalent to that
of a non-trapdoored model. The second is the trapdoor success rate,
which is the trapdoored model’s accuracy in classifying inputs con-
taining the injected trapdoor to the trapdoor target label y;.

After training the trapdoored model ¥y, the model owner records
the “trapdoor signature” of the trapdoor A,

S = ExeX,y,#’Fg(x)g(x +A), (3)

where E(.) is the expectation function. As defined in §2, g(x) is
the feature representation of an input x by the model, computed
as x’s neuron activation vector right before the softmax layer. The
formulation of Sp is driven by our formal analysis of the defense,
which we present later in §5. To build this signature in practice, the
model owner computes and records the neuron activation vector
of many sample inputs containing A.

Step 3: Detecting Adversarial Attacks. The presence of a trap-
door A forces an adversarial perturbation e targeting y; to con-
verge to specific loss regions defined by A. The resultant adversar-
ial input x + € can be detected by comparing the input’s neuron
activation vector g(x + €) to the trapdoor signature Sp defined by
(3).

We use cosine similarity to measure the similarity between g(x+
€) and Sy, i.e. cos(g(x + €), Sp). If the similarity exceeds ¢, a pre-
defined threshold for y; and A, the input image x + € is flagged
as adversarial. The choice of ¢; determines the tradeoff between
the false positive rate and the adversarial input detection rate. In
our implementation, we configure ¢; by computing the statistical
distribution of the similarity between known benign images and

kth

trapdoored images. We choose ¢; to be the percentile value of

this distribution, where 1 — 1kﬁ is the desired false positive rate.

4.2 Defending Multiple Labels

This single label trapdoor defense can be extended to multiple or all
labels in the model. Let A; = (M, 8¢, k) represent the trapdoor to
be injected for label y;. The corresponding optimization function
used to train a trapdoored model with all labels defended is then:

min £y, Fo()+A- Y]
yr€Y,yr#y

yr. Fox+ A1) (4

where y is the classification label for input x.

After injecting the trapdoors, we compute the individual trap-
door signature Sp, and detection threshold ¢; for each label y;, as
mentioned above. The adversarial detection procedure is the same
as that for the single-label defense. The system first determines the
classification result y; = Fy(x’) of the input being questioned x’,
and compare g(x”), the neuron activation vector of x’ to Sa,.

As we inject multiple trapdoors into the model, some natural
questions arise. We ask and answer each of these below.

Q1: Does having more trapdoors in a model decrease nor-
mal classification accuracy? Since each trapdoor has a dis-
tinctive data distribution, one might worry that models lack the
capacity to learn all the trapdoor information without degrading
the normal classification performance. We did not observe such

performance degradation in our empirical experiments using four
different tasks.

Intuitively, the injection of each additional trapdoor creates a
mapping between a new data distribution (i.e. the trapdoored im-
ages) and an existing label, which the model must learn. Existing
works have shown that DNN models are able to learn thousands of
distribution-label mappings [4, 19, 36], and many deployed DNN
models still have a large portion of neurons unused in normal clas-
sification tasks [46]. These observations imply that practical DNN
models should have sufficient capacity to learn trapdoors without
degrading normal classification performance.

Q2: How can we make distinct trapdoors for each label? Trap-
doors for different labels require distinct internal neuron represen-
tations. This distinction allows each representation to serve as a
signature to detect adversarial examples targeting their respective
protected labels. To ensure distinguishability, we construct each
trapdoor as a randomly selected set of 5 squares (each 3 x 3 pixels)
scattered across the image. To further differentiate the trapdoors,
the intensity of each 3 x 3 square is independently sampled from
N(p, o) with g € {0,255} and o € {0,255} chosen separately for
each trapdoor. An example image of the trapdoor is shown in Fig-
ure 11 in the Appendix.

Q3:Does adding more trapdoors increase overall model train-
ing time?  Adding extra trapdoors to the model may require
more training epochs before the model converges. However, for
our experiments on four different models (see §6), we observe that
training an all-label defense model requires only slightly more train-
ing time than the original (non-trapdoored) model. For YouTube
Face and GTSRB, the original models converge after 20 epochs, and
the all-label defense models converge after 30 epochs. Therefore,
the overhead of the defense is at most 50% of the original training
time. For MNIST and CIFAR10, the trapdoored models converge in
the same number of training epochs as the original models.

5 FORMAL ANALYSIS OF TRAPDOOR

We now present a formal analysis of our defense’s effectiveness in
detecting adversarial examples.

5.1 Overview

Our analysis takes two steps. First, we formally show that by inject-
ing trapdoors into a DNN model, we can boost the success rate of
adversarial attacks against the model. This demonstrates the effec-
tiveness of the embedded “trapdoors.” Specifically, we prove that
for a trapdoored model, the attack success rate for any input is
lower bounded by a large value close to 1. To our best knowledge,
this is the first! work providing such theoretical guarantees for ad-
versarial examples. In other words, we prove that the existence of
trapdoors in the DNN model becomes the sufficient condition (but
no necessary condition) for launching a successful adversarial at-
tack using any input.

Second, we show that these highly effective attacks share a com-
mon pattern: their corresponding adversarial input A(x) = x + €
will display feature representations similar to those of trapdoored

!Prior work [39] only provides a weaker result that in simple feature space (unit
sphere), the existence of adversarial examples is lower-bounded by a nonzero value.
Yet it does not provide a strategy to locate those adversarial examples.



inputs but different from those of clean inputs. Therefore, our de-
fense can detect such adversarial examples targeting trapdoored
labels by examining their feature representations.

Limitations. Note that our analysis does not prove that an at-
tacker will always follow the embedded trapdoors to find adversar-
ial examples against the trapdoored model. In fact, how to gener-
ate all possible adversarial examples against a DNN model is still
an open research problem. In this paper, we examine the attacker
behavior using empirical evaluation (see §6). We show that when
an attacker applies any of the six representative adversarial attack
methods, the resulting adversarial examples follow the embedded
trapdoors with a probability of 94% or higher. This indicates that
today’s practical attackers will highly likely follow the patterns of
the embedded trapdoors and thus display representative behaviors
that can be identified by our proposed method.

5.2 Detailed Analysis

Our analysis begins with the ideal case where a trapdoor is ideally
injected into the model across all possible inputs in X. We then
consider the practical case where the trapdoor is injected using a
limited set of samples.

Case 1: Ideal Trapdoor Injection. The model owner injects a
trapdoor A (to protect y;) into the model by training the model to
recognize label y; as associated with A. The result is that adding A
to any arbitrary input x € X will, with high probability, make the
trapdoored model classify x + A to the target label y; at test time.
This is formally defined as follows:

DEFINITION 1. A (y, Fp, y:)-effective trapdoor A in a trapdoored
model Fy is a perturbation added to the model input such that Vx €
X where Fg(x) # yr, we have Pr(Fg(x + A) =y;) = 1 — p. Here
1 € [0,1] is a small positive constant.

We also formally define an attacker’s desired effectiveness:

DEFINITION 2. Given a model ¥y, probability v € (0,1), and a
given x € X, an attack strategy A (-) is (v, Ty, ys)-effective on x if
Pr(Fo(A(x)) = yr # Fo(x)) 2 1-v.

The follow theorem shows that a trapdoored model 7y enables
attackers to launch a successful adversarial input attack. The de-
tailed proof is listed in the Appendix.

THEOREM 1. Let Fy be a trapdoored model, g(x) be the model’s
feature representation of input x, and u € [0, 1] be a small positive
constant. The injected trapdoor A is (u, Fg, y:)-effective.

For any x € X where y; # Fo(x), if the feature representations
of adversarial input A(x) = x + € and trapdoored input x + A are
similar, i.e. the cosine similarity cos(g(A(x)), g(x + A)) > o and o is
close to 1, then the attack A(x) is (i, Fg, yr)-effective.

Theorem 1 shows that a trapdoored model will allow attackers
to launch a highly successful attack against y; with any input x.
More importantly, the corresponding adversarial input A(x) will
display a specific pattern, i.e. its feature representation will be sim-
ilar to that of the trapdoored input. Thus by recording the “trap-
door signature” of A, i.e. Sa = Exex,y,275(x)9(x + A) as defined
by eq.(3), we can determine whether a model input is adversarial
or not by comparing its feature representation to Sa.

We also note that, without loss of generality, the above theorem
uses cosine similarity to measure the similarity between feature
representations of adversarial and trapdoored inputs. In practice,
one can consider other similarity metrics such as L, distance. We
leave the search for the optimal similarity metric as future work.

Case 2: Practical Trapdoor Injection. So far our analysis as-
sumes that the trapdoor is “perfectly” injected into the model. In
practice, the model owner will inject A using a training/testing dis-
tribution Xyrqp € X. The effectiveness of the trapdoor is defined
by Vx € Xtrap, Pr(Fg(x + A) = y;) = 1—p. On the other hand, the
attacker will use a (different) input distribution Xg;;4¢k. The fol-
low theorem shows that the attacker can still launch a highly suc-
cessful attack against the trapdoored model. The lower bound on
the success rate depends on the trapdoor effectiveness (i) and the
statistical distance between X;rqp and Xy444¢ (defined below).

DEFINITION 3. Given p € [0, 1], two distributions Px, and P,
are p-covert if their total variation (TV) distance® is bounded by p:

[IPx, = Px,|lTv = maxcca |Px, (C) = Px,(O)| < p, 5)

where Q represents the overall sample space, and C C Q represents
an event.

THEOREM 2. Let Fp be a trapdoored model, g(x) be the feature rep-
resentation of input x, p, i, o € [0, 1] be small positive constants. A
trapdoor A is injected into Fp using Xtrap, and is (i, Fp, yr )-effective
forany x € Xirap. Xirap and Xgprqck are p-covert.

For any x € X,41qck, if the feature representations of adversar-
ial input and trapdoored input are similar, i.e. the cosine similarity
cos(g(A(x)), g(x + A)) = o and o is close to 1, then the attack A(x)
is (1 + p, Fo, yr)-effective on any x € Xgppack-

The proof of Theorem 2 is in the Appendix.

Theorem 2 implies that when the model owner enlarges the di-
versity and size of the sample data X;rqp used to inject the trap-
door, it allows stronger and more plentiful shortcuts for gradient-
based or optimization-based search towards y;. This increases the
chances that an adversarial example falls into the “trap” and there-
fore gets caught by our detection.

Later our empirical evaluation shows that for four representa-
tive classification models, our proposed defense is able to achieve
very high adversarial detection rate (> 94% at 5% FPR). This means
that the original data manifold is sparse. Once there is a short-
cut created by the trapdoors nearby, any adversarial perturbation
will follow this created shortcut with high probability and thus get
“trapped”

6 EVALUATION

We empirically evaluate the performance of our basic trapdoor de-
sign against an static adversary described in §3.1. We present eval-
uation results against adaptive adversaries (skilled and oracle) in
§7. Specifically, we design experiments to answer these questions:

e Is the trapdoor-enabled detection we propose effective against
the strongest, state-of-the-art attacks?

%In this work, we use the total variation distance [11] as it has been shown to be a
natural way to measure statistical distances between distributions [11]. Other notions
of statistical distance may also be applied, which we leave to future work.



e How does the presence of trapdoors in a model impact normal
classification accuracy?

e How does the performance of trapdoor-enabled detection com-
pare to other state-of-the-art detection algorithms?

e How does the method for computing trapdoor signature impact
the attack detection?

We first consider the base scenario where we inject a trapdoor to
defend a single label in the model and then expand to the scenario
where we inject multiple trapdoors to defend all labels.

6.1 Experimental Setup

Here we introduce our evaluation tasks, datasets, and configura-
tion.

Datasets. We experiment with four popular datasets for classifi-
cation tasks. We list the details of datasets and model architectures
in Table 11 in the Appendix.

e Hand-written Digit Recognition (MNIST) — This task seeks to rec-
ognize 10 handwritten digits in black and white images [26].

o Traffic Sign Recognition (GTSRB) — Here the goal is to recognize
43 distinct traffic signs, emulating an application for self-driving
cars [44].

o Image Recognition (CIFAR10) — This is to recognize 10 differ-
ent objects and it is widely used in adversarial defense litera-
ture [23].

o Face Recognition (YouTube Face) — This task is to recognize faces
of 1, 283 different people drawn from the YouTube videos [51].

Adversarial Attack Configuration. We evaluate the trapdoor-
enabled detection using six representative adversarial attack meth-
ods: CW, ElasticNet, PGD, BPDA, SPSA, and FGSM (described in
§2.1). We use them to generate targeted adversarial attacks against
the trapdoored models on MNIST, GTSRB, CIFAR10, and YouTube
Face. More details about our attack configuration are in Table 10
in the Appendix. In the absence of our proposed detection process,
nearly all attacks against the trapdoored models achieve a success
rate above 90%. Attacks against the original, trapdoor-free models
achieve roughly the same success rate.

Configuration of Trapdoor-Enabled Detection. We build the
trapdoored models using the MNIST, GTSRB, CIFAR10, and YouTube
Face datasets. When training these models, we configure the trap-
door(s) and model parameters to ensure that the trapdoor injection
success rate (i.e. the accuracy with which the model classifies any
test instance containing a trapdoor to the target label) is above 97%
(results omitted for brevity). This applies consistently to both sin-
gle and all label defenses. Detailed defense configurations can be
found in Table 9 in the Appendix.

Evaluation Metrics. We evaluate the performance of our pro-
posed defense using (1) the adversarial detection success rate and
(2) the trapdoored model’s classification accuracy on normal inputs.
For reference, we also compute the original model’s classification
accuracy on normal inputs.

6.2 Defending a Single Label

We start with the simplest scenario. We inject a trapdoor for a
single (randomly chosen) label y;. We consider the trapdoor A =
(M, 8,x) as a 6 X 6 pixel square at the bottom right of the image,

Table 1: Adversarial detection success rate when defending
a single label at 5% FPR, averaged across all the labels.

Model CW  ElasticNet PGD BPDA SPSA FGSM
MNIST 95.0% 96.7% 100%  100% 100% 100%
GTSRB 96.3% 100% 100% 100%  93.8% 100%

CIFAR10 100% 97.0% 100%  100% 100%  96.4%
YouTube Face 97.5% 98.8% 100%  100%  96.8% 97.0%

with a mask ratio ¥ = 0.1. An example image of the trapdoor is
shown in Figure 11 in the Appendix.

Comparing Trapdoor and Adversarial Perturbation. Our
defense is driven by the insight that a trapdoor A will trick an ad-
versary into generating an x + € whose neuron activation vector
is similar to Sp, the trapdoor signature. We verify this insight by
examining the cosine similarity of g(x + €) and Sp. We show the
results for GTSRB, while the results for other tasks are consistent
(see Figure 12 and Figure 13 in the Appendix).

Figure 3(a) plots, for all six attacks against the trapdoored model,
the quantile distribution of cos(g(x +€), Sp) across x. For reference
we also include the result for benign images cos(g(x), Sa) as the
leftmost boxplot. We see that, for all six attacks, the distribution of
cosine similarity for adversarial inputs is visibly different from that
of benign inputs and thus can be detected by applying a threshold
¢;. Furthermore, the distribution of cos(g(x), Sa) can be used to
configure ¢; to maximize the adversarial example detection rate
at a given false positive rate (FPR).

Figure 3(b) shows the same quantile distribution in the origi-

nal, trapdoor-free model. As expected, the original model does not
produce a clear difference between normal and adversarial inputs.
This confirms that the trapdoor can largely affect the shape of ad-
versarial perturbations against the trapdoored model.
Accuracy of Detecting Adversarial Inputs.  For all six attacks
and all four tasks, Table 1 shows the average adversarial detection
success rate when defending a single label. Here we iteratively test
our defense on every label in the model, one at a time, and compute
the average defense success rate across all the labels®. Detection
success is > 93.8% at an FPR of 5% (> 89% at FPR of 2%). We also
show the ROC curves and AUC values in Figure 4 and Figures 7-9
in the Appendix. Across all six attacks and four tasks, detection
AUC is > 98%.

Finally, we confirm that a single label trapdoor has negligible
impact to model classification on normal inputs.

6.3 Defending All Labels

We trained MNIST, GTSRB, CIFAR10, and YouTube Face models
with a trapdoor for every outputlabel. Each trapdoor is a randomly
selected set of 5 squares (each 3 x 3 pixels?), with ¥ = 0.1. The
minimum trapdoor injection success rate across the labels is 97%
even after injecting 1, 283 trapdoors into the YouTube Face model.
Impact on Normal Classification Accuracy. We first evalu-
ate whether the presence of these trapdoors in the model affects

3Due to the large number of labels in the YouTube Face dataset, we randomly sample
100 labels out of 1,283 to defend.
4The size of each square is 21 for YouTube Face, which has higher resolution images.
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Table 2: Adversarial detection success rate at 5% FPR when
defending all labels.

Model Ccw EN PGD BPDA SPSA FGSM
MNIST 96.8% 98.6% 100% 100% 100%  94.1%
GTSRB 95.6% 96.5% 98.1% 97.6% 97.2% 98.3%
CIFAR10 94.0% 94.0% 100% 99.4% 100% 97.3%
YouTube Face 98.7% 98.2% 100% 97.5% 96.3% 94.8%

the model’s normal classification accuracy. We compare the trap-
doored model classification accuracy to the original model classifi-
cation accuracy on normal inputs in Table 12. The all-label trap-
doored model’s accuracy on normal inputs drops by at most 1.04%
when compared to the original model. This performance drop can
potentially be further reduced by optimizing the configuration of
trapdoors, which we leave as future work.

Accuracy of Detecting Adversarial Inputs. We run each of
the six attacks to find adversarial perturbations against each label
of the model and then run our trapdoor-based detection to exam-
ine whether an input is adversarial or benign. The adversarial de-
tection success rate is above 94.0% at a FPR of 5% (and 88.3% for
FPR of 2%). The detailed results are listed in Table 2.

These results show that, for the all-label defense, adversarial
detection accuracy drops slightly compared to the single-label de-
fense. The drop is more visible for YouTube Face, which has signif-
icantly more labels (1,283). We believe that as more trapdoors are
injected into the model, some of them start to interfere with each
other, thus reducing the strength of the shortcuts created in the
feature space. This could potentially be ameliorated by carefully
placing trapdoors with minimum interference in the feature space.
Here, we apply a simple strategy described in Section 4.2 to cre-
ate separation between trapdoors in the input space. This works
well with a few labels (i.e. 10, 43). For models with many labels,
one can either apply greedy, iterative search to replace “interfer-
ing” trapdoor patterns, or develop an accurate metric to capture
interference within the injection process. We leave this to future
work.

Summary of Observations. For the all-label defense, trapdoor-
enabled detection works well across a variety of models and adver-
sarial attack methods. The presence of a large number of trapdoors
only slightly degrades normal classification performance. Overall,
our defense achieves more than 94% attack detection rate against

(b) Original Model

similarity between normal
put/trapdoored inputs and adversarial inputs/trapdoored inputs on both
trapdoored and trapdoor-free GTSRB models. Boxes show inter-quartile
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tected by a trapdoor.

Table 3: Comparing detection success rate of Feature Squeez-
ing (FS), LID, and Trapdoor when defending all labels.

Model  Detector FPR. CW EN PGD BPDA SPSA FGSM Sll\x‘;gc
FS 5% 99% 100%  94% 96% 94% 98% 97%

MNIST MagNet  57% 83% 87%  100% 97% 96% 100% 94%
LID 5%  89%  86%  96% 86% 98% 95% 92%

Trapdoor 5% 97% 98% 100%  100% 100% 94% 98%

FS 5% 100% 99% 71% 73% 94% 45% 90%

GTSRB MagNet  4.7% 90% 89% 100%  100% 92% 100% 95%
LID 5%  91% 81% 100%  67% 100%  100% 90%

Trapdoor 5% 96%  97%  98% 98% 97% 98% 97%

FS 5% 100% 100%  69% 66% 97% 33% 78%

MagNet 7.4% 88% 82% 95% 96% 94% 100% 93%

CIFAR10 LID 5%  90% 88%  95% 79% 96% 92% 90%
Trapdoor 5% 94% 94%  100% 99% 100% 97% 97%

FS 5% 100% 100% 66% 59% 88% 68% 80%

YouTube MagNet 7.9% 89% 91%  98% 97% 98% 96% 95%
Face LID 5%  81% 79%  89% 72% 92% 96% 85%
Trapdoor 5% 99%  98%  100% 97% 96% 95% 98%

CW, PGD, ElasticNet, SPSA, FGSM, and more than 97% attack de-
tection rate against BPDA, the strongest known attack.

6.4 Comparison to Other Detection Methods

Table 3 lists, for all-label defenses, the attack detection AUC for our
proposed defense and for three other existing defenses (i.e. feature
squeezing (FS) [50], MagNet [33], and latent intrinsic dimension-
ality (LID) [31] described in Section 2.2). For FS, MagNet, and LID,
we use the implementations provided by [31, 33, 50]. Again we
consider the four tasks and six attack methods as above.

Feature Squeezing (FS). FS can effectively detect gradient-based
attacks like CW and ElasticNet, but performs poorly against FGSM,
PGD, and BPDA, i.e. the detection success rate even drops to 33%.
These findings align with existing observations [30, 50].

MagNet. MagNet performs poorly against gradient-based at-
tacks (CW, ElasticNet) but better against FGSM, PGD, and BPDA.
This aligns with prior work, which found that adaptive gradient-
based attacks can easily defeat MagNet [9].

Latent Intrinsic Dimensionality (LID). LID has > 72% detec-
tion success rate against all six attacks. In comparison, trapdoor-
based detection achieves at least 94% on all six attacks. Like [2],
our results also confirm that LID fails to detect high confidence
adversarial examples. For example, when we increase the “confi-
dence” parameter of the CW attack from 0 (default) to 50, LID’s
detection success rate drops to below 2% for all four models. In



comparison, trapdoor-based detection maintains a high detection
success rate (97-100%) when confidence varies from 0 to 100. De-
tection rate reaches 100% when confidence goes above 80. This is
because high confidence attacks are less likely to get stuck to local
minima and more likely to follow strong “shortcuts” created by the
trapdoors.

6.5 Methods for Computing Neuron Signatures

We study how the composition of trapdoor (neuron) signature af-
fects adversarial detection. Recall that, by default, our trapdoor-
based detection uses the neuron activation vector right before the
softmax layer as the neuron signature of an input. This “signature”
is compared to the trapdoor signatures to determine if the input is
an adversarial example. In the following, we expand the composi-
tion of neuron signatures by varying (1) the internal layer used to
extract the neuron signature and (2) the number of neurons used,
and examine their impact on attack detection.

First, Figure 10 in Appendix shows the detection success rate
when using different layers of the GTSRB model to compute neu-
ron signatures. Past the first two convolutional layers, all later lay-
ers lead to detection success greater than 96.20% at 5% FPR. More
importantly, choosing any random subset of neurons across these
later layers produces an effective activation signature. Specifically,
sampling n neurons from any but the first two layers of GTSRB
produces an effective trapdoor signature with adversarial detec-
tion success rate always above 96%. We find this to be true for a
moderate value of n~900, much smaller than a single convolutional
layer. We confirm that these results also hold for other models, e.g.
CIFAR10. It is important that small sets of neurons randomly sam-
pled across multiple model layers can build an effective signature.
We leverage this flexibility to defend against our final countermea-
sure (§7.2).

7 ADAPTIVE ATTACKS

Beyond static adversaries, any meaningful defense must withstand
countermeasures from adaptive attackers with knowledge of the
defense. As discussed in §3.1, we consider two types of adaptive
adversaries: skilled adversaries who understand the target Fp could
have trapdoors without specific knowledge of the details, and or-
acle adversaries, who know all details about embedded trapdoors,
including their trapdoor shape, location, and intensity. Since the
oracle adversary is the strongest possible adaptive attack, we use
its detection rate as the lower bound of our detection effectiveness.
We first present multiple adaptive attacks separated into two
broad categories. First, we consider removal approaches that at-
tempt to detect and remove backdoors from the target model 7y,
with the eventual intent of generating adversarial examples from
the cleaned model, and using them to attack the deployed model
Fo. Second, we consider evasion approaches that do not try to
disrupt the trapdoor, and instead focus on finding adversarial ex-
amples that cause the desired misclassification while avoiding de-
tection by the trapdoor defense. Our results show that removal
approaches fail because the injection of trapdoors largely alters
loss functions, and even adversarial examples from the original,
trapdoor-free model do not transfer to the trapdoored model.
Finally, we present advanced attacks developed in collaboration
with Dr. Nicholas Carlini during the camera ready process. We

describe two customized attacks he proposed against trapdoors
and show that they effectively break the base version of trapdoors.
We also offer preliminary results that show potential mitigation
effects via inference-time signature randomization and multiple
trapdoors. We leave further exploration of these mechanisms (and
more powerful adaptive attacks) to future work.

7.1 Trapdoor Detection and Removal

Backdoor Countermeasures (Skilled Adversary). We start

by considering existing work on detecting and removing backdoors

from DNNs [27, 28, 37, 48]. A skilled adversary who knows that

a target model ¥y contains trapdoors may use existing backdoor

removal methods to identify and remove them. First, Liu et al. pro-
poses to remove backdoors by pruning redundant neurons (neuron

pruning) [27]. As previous work demonstrates [48], normal model

accuracy drops rapidly when pruning redundant neurons. Further-
more, pruning changes the decision boundaries of the pruned model
significantly from those of the original model. Hence, adversarial

examples that fool the pruned model do not transfer well to the

original, since adversarial attacks only transfer between models

with similarly decision boundaries [14, 45].

We empirically validated this on a pruned single-label defended
MNIST, GTSRB, CIFAR10, and YouTube Face models against the
six different attacks. We prune neurons as suggested by [27]. How-
ever, we observe that normal accuracy of the model drops rapidly
while pruning (> 32.23% drop). Due to the significant discrepancy
between the pruned and the original models, adversarial samples
crafted on the pruned model do not transfer to the original trap-
doored model. Attack success is < 4.67%.

More recently proposed backdoor defenses [28, 37, 48] detect

backdoors by finding differences between normal and infected la-
bel(s). All of these assume only one or a small number of labels
are infected by backdoors, so that they can be identified as anom-
alies. Authors of Neural Cleanse [48] acknowledge that their ap-
proach cannot detect backdoors if more than 36% of the labels are
infected. Similarly, [37] uses the same technique and has the same
limitations. The authors of ABS [28] explicitly state that they do
not consider multiple backdoors. We experimentally validate this
claim with Neural Cleanse against all-label defended versions of
MNIST, GTSRB, CIFAR10, YouTube Face. All the trapdoors in our
trapdoored models avoided detection.
Black-box/Surrogate Model Attacks (Skilled Adversary). A
skilled adversary aware of trapdoors in Fy could use a black-box
model stealing attack [34], where they repeatedly query ¥y with
synthetic, generated inputs, and use the classification results to
train a local substitute model. Finally, the adversary generates ad-
versarial examples using the substitute model and used them to
attack .

Black-box attacks must walk a fine line against trapdoors. To
generate adversarial examples that successfully transfer to Fy, the
attacker must query ¥y repeatedly with inputs close to the classifi-
cation boundary. Yet doing so means that black-box attacks could
also import the trapdoors of ¥y into the substitute model.

We test the effectiveness of black box attacks by defending sin-
gle label GTSRB models as described in Section 6.2. We construct
the substitute model following [34] and use it to generate adversar-
ial attack images to attack our original model #y. In our tests, we



Table 4: Targeted transferability of Adversarial Examples
from a model restored by unlearning, to its trapdoored coun-
terpart.

Model CW EN | PGD | BPDA | SPSA | FGSM
GTSRB 1.5% | 2.6% | 2.0% 1.0% 0.0% 4.7%
CIFAR10 4.4% | 4.4% | 5.6% 0.0% 6.7% 0.0%
Youtube Face | 0.0% | 0.0% | 4.1% | 3.3% | 0.0% 0.0%

Table 5: Targeted transferability of Adversarial Examples
from a model trained on clean data to its trapdoored coun-
terpart.

Model CW EN | PGD | BPDA | SPSA | FGSM
GTSRB 0.0% | 0.0% | 2.2% 3.0% 1.0% 0.4%
CIFAR10 0.0% | 0.0% | 1.7% 0.7% 2.8% 1.2%
Youtube Face | 0.0% | 0.0% | 2.1% | 1.7% 0.0% 0.0%

consistently observe that the substitute model does indeed inherit
the trapdoors from ¥y. A trapdoored model can reliably detect
adversarial examples generated from black-box substitute models
with > 95% success at 5% false positive rate, for all six attacks
(FGSM, PGD, CW, EN, BPDA, SPSA).

If somehow an attacker obtained access to the full training dataset

used by the model and used it to build a surrogate model, they
could reproduce the original clean model. We consider this possi-
bility later in this subsection.
Unlearning the Trapdoor (Oracle Adversary). The goal of
this countermeasure is to completely remove trapdoors from the
target model Fy so that attackers can use it to generate adversar-
ial samples to attack Fy. Prior work has shown that adversarial at-
tacks can transfer between models trained on similar data [14, 45].
This implies that attacks may transfer between cleaned and trap-
doored versions of the target model.

For this we consider an oracle attacker who knows everything
about a model’s embedded trapdoors, including its exact shape and
intensity. With such knowledge, oracle adversaries seek to con-
struct a trapdoor-free model by unlearning the trapdoors.

However, we find that such a transfer attack (between y and
a version of it with the trapdoor unlearned 7“4 ") fails. We
validate this experimentally using a single-label defended model.
The high level results are summarized in Table 4. We create a new
version of each trapdoored model using backdoor unlearning tech-
niques [5, 48], which reduce the trapdoor injection success rate
from 99% to negligible rates (around 2%). Unsurprisingly, the trap-
door defense is unable to detect adversarial samples constructed on
the cleaned model F“"€%'" with only 7.42% detection success
rate at 5% FPR for GTSRB. However, these undetected adversarial
samples do not transfer to the trapdoored model Fy. For all six at-
tacks and all four models, the attack success rate on ¥y ranges from
0% to 6.7%. We hypothesize that this might be because a trapdoored
model ¥ must learn unique trapdoor distributions that F""1¢™"
does not know. This distributional shift causes significant differ-
ences that are enough to prevent adversarial examples from trans-
ferring between models.

Oracle Access to the Original Clean Model. Unlearning is
unlikely to precisely recover the original clean model (before the

trapdoor). Finally, we consider the strongest removal attack pos-
sible: an oracle attacker that has somehow obtained access to (or
perfectly reproduced) the original clean model. We evaluate the
impact of using the original clean model to generate adversarial
attacks on Fy.

We are surprised to learn that adding the trapdoor has intro-
duced significant changes in the original clean model, and has thus
destroyed the transferability of adversarial attacks between them.
In Table 5, we show the transferability from clean models to their
trapdoored counterparts. For all 6 attacks and all models, trans-
ferability is always never higher than 3%. This definitive result
states that no matter how successful an attacker is at removing
or unlearning the trapdoor, or if they otherwise rebuild the origi-
nal model, their efforts will fail because adversarial examples from
these models do not work on the trapdoored model 7y that is the
actual attack target.

7.2 Advanced Adaptive Attacks (Carlini)

In this section, we present results on two advanced attacks devel-
oped in collaboration with Dr. Nicholas Carlini, both crafted to de-
tect and leverage weaknesses in the design of trapdoors. Nicholas
approached us after the paper was accepted and offered to test the
robustness of trapdoors by developing more advanced adaptive at-
tacks. Both attacks are significantly more successful in weakening
trapdoor defenses. Here, we describe both attacks, their key ap-
proaches and their results on different types of trapdoor defenses.

We note that a prior version of the paper included results on

two other adaptive attacks: a low learning rate attack that more
carefully scans the loss landscape for adversarial examples, and
a lower-bound perturbation attack that tries to avoid trapdoors by
imposing a lower bound on the size of the perturbation. Our results
show both attacks are largely ineffective against trapdoors. Due to
space constraints, we focus on two stronger Carlini attacks here,
and refer readers to [40] for detailed results on low learning rate
and lower-bound perturbation attacks.
Generalities.
ples. First, they use different techniques to map out the boundaries
of trapdoors that exist in a protected model, i.e. their detection sig-
natures, and then devise ways to compute adversarial perturba-
tions that avoid them. Second, they leverage significant compute
power, well beyond normal experimental levels, e.g. running 10K
optimization iterations instead of terminating on convergence. We
consider these quite reasonable for an attacker and do not consider
computational overhead a mitigating factor.

Instead, we evaluaese attacks against variants of trapdoors pre-
viously discussed: randomized neuron signatures (§6.5) and multi-
ple trapdoors per label (§4.1). First, randomized neuron signatures
can effectively make the signature dynamic at run time. Since trap-
door avoidance is likely a greedy operation, the inclusion or ex-
clusion of a small number of neurons can significantly alter the
result. In practice, the defender can quickly switch between differ-
ent neuron subsets in unpredictable sequences, making attacker
optimizations difficult. Second, multiple trapdoors cover more of
the feature space, making trapdoor avoidance more difficult. In ad-
dition, we hypothesize that additional trapdoors will remove some
natural adversarial examples, much like a randomized smoothing

Nicholas’ two attacks share two general princi-
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function. When we evaluate using multiple trapdoors, we assume
the attacker knows exactly the number of trapdoors that have been
inserted into the model per label. Note that we generated 5 mod-
els for each trapdoor configuration to eliminate variance in results
due to randomness in trapdoor placement and then performed 10
attacks on each model to generate each single data point.

Oracle Signature Attack. Nicholas’ first attack uses our oracle
adversary assumptions, where the attacker knows the precise val-
ues of the trapdoor. Combined with whitebox access to the model,
the attacker is thus able to generate neuron values matching input
with the trapdoor for any layer in the model. The attacker then
jointly optimizes for maximum cosine distance from the known
trapdoor signature while searching for adversarial examples.

We plot in Figure 5 the results of the oracle signature attack on
MNIST with both neuron randomization and multiple trapdoors
per label for all label defense. The top (black) line shows the at-
tack’s ability to find successful adversarial examples. The red line
marked as 100% sample rate represents the attack success after de-
tection by trapdoor defense without neuron randomization. With-
out randomized neuron sampling, the signature attack succeeds
nearly 90% of the time, effectively breaking the trapdoor defense.
The other two lines show the attack success rate using neuron ran-
domization. We do see that neuron sampling helps to mitigate the
attack, reducing attack success to 40% after detection, by using only
5% of neuron values to build the detection signature. Recall that the
defender can update the random neuron subset in real time with
near zero computational cost. We note that additional trapdoors
have only a slight effect on detection, because the attacker always
knows the number of trapdoors present.

Trapdoor Vault Attack. Nicholas’ second attack, which we call
the vault attack, does not require knowledge of the trapdoor signa-
ture. Instead, it estimates the trapdoor signature from the results
of computing adversarial examples on multiple input images. We

extrapolate this further to target multiple trapdoors by using a his-
togram/clustering approach to approximate neuron signatures for
each of the N trapdoors. The attacker then computes joint opti-
mization that maximizes distance to known trapdoor signatures
while searching for adversarial examples. Again we assume attack-
ers know the exact number of trapdoors present in the model.

We plot in Figure 6 the results of the vault attack on MNIST with
both neuron randomization and multiple trapdoors. Again, we see
only small benefits from having multiple trapdoors in the model.
However, in this setting the trapdoor defense does detect more at-
tacks because of errors in the signature approximation (which can
likely be improved with effort). We do note that when combining
randomized neuron sampling (at 5%) with multiple trapdoors, we
can detect significantly more attacks, dropping attack success to
below 40%.

Discussion and Next Steps. Time constraints greatly limited
the amount of exploration possible in both mitigation mechanisms
and further adaptive attacks. Under base conditions (single trap-
door with 100% neuron signature sampling), both attacks effec-
tively break the trapdoor defense. While our preliminary results
show some promise of mitigation, clearly much more work is needed
to explore additional defenses (and more powerful adaptive attacks).

These attacks are dramatically more effective than other coun-
termeasures because they were custom-tailored to target trapdoors.
We consider their efficacy as validation that defense papers should
work harder to include more rigorous, targeted adaptive attacks.

8 CONCLUSION AND FUTURE WORK
In this paper, we propose using honeypots to defend DNNs against

adversarial examples. Unlike traditional defenses, our proposed method

trains trapdoors into normal models to introduce controlled vul-
nerabilities (traps) into the model. Trapdoors can defend all la-
bels or particular labels of interest. Across multiple application
domains, our trapdoor-based defense has high detection success
against adversarial examples generated by a suite of state-of-the-
art adversarial attacks, including CW, ElasticNet, PGD, BPDA, FGSM,
and SPSA, with negligible impact on normal input classification.

In addition to analytical proofs of the impact of trapdoors on ad-
versarial attacks, we evaluate and confirm trapdoors’ robustness
against multiple strong adaptive attacks, including black-box at-
tacks and unlearning attacks. Our results on Carlini’s oracle and
vault attacks show that trapdoors do have significant vulnerabil-
ities. While randomized neuron signatures help mitigation, it is
clear that further effort is necessary to study both stronger attacks
and mitigation strategies on honeypot-based defenses.
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Table 6: Model Architecture for MNIST. FC stands for fully-
connected layer.

Layer Type # of Channels Filter Size Stride Activation

Conv 16 5%5 1 ReLU
MaxPool 16 2%X2 2 -
Conv 32 5%5 1 ReLU
MaxPool 32 2X2 2 -
FC 512 - - ReLU
FC 10 - - Softmax

Table 7: Model Architecture of GTSRB.

Layer Type # of Channels Filter Size Stride Activation

Conv 32 3%x3 1 ReLU
Conv 32 3%x3 1 ReLU
MaxPool 32 2X2 2 -
Conv 64 3%x3 1 ReLU
Conv 64 3%3 1 ReLU
MaxPool 64 2X2 2 -
Conv 128 3X3 1 ReLU
Conv 128 3%x3 1 ReLU
MaxPool 128 2X2 2 -
FC 512 - - ReLU
FC 43 - - Softmax
APPENDIX

8.1 Proof of Theorem 1 & 2

Proof of Theorem 1
ProoF. This theorem assumes that after injecting the trapdoor
A into the model, we have

Vxe X, Pr(Fop(x+A)=y; # Fo(x)) > 1—p. (6)

When an attacker applies gradient-based optimization to find ad-
versarial perturbations for an input x targeting y;, the above equa-
tion (6) implies that the partial gradient from x towards x + A be-
comes the major gradient to achieve the target y;. Note that Fy(x)
is the composition of non-linear feature representation g(x) and
a linear loss function (e.g. logistic regression): Fg(x) = g(x) o L
where L represents the linear function. Therefore, the gradient of
Fo(x) can be calculated via g(x):
OlnFp(x)  dln[g(x)oL]  dlng(x)o L
ax 0x - 0x @
Here c is the constant within the linear function L. To avoid am-
biguity, we will focus on the derivative on g(x) in the rest of the
proof.
Given (7), we can interpret (6) in terms of the major gradient:
d[Ing(x) alng(x +A)] Sz 1-p ®
x
where 7 represents, for the given x, the gradient value required to
reach y; as the classification result.
Next, since Vx € X, cos(g(A(x)),g(x + A)) > o,and 0 — 1,
without loss of generality we have g(A(x)) = g(x + A) + y where

PxeX[

lyl << |g(x + A)|. Here we rewrite the adversarial input A(x) as
A(x) = x + €. Using this condition, we can prove that the follow-
ing two conditions are true. First, because the value of y does not
depend on x, we have
d(glx+A)+y)  0dg(x+A)
x T ox
Furthermore, because |y| << |g(x + A|), we have
1 - 1
gx+AN)+y - glx+ A)

©)

(10)

Leveraging eq. (8)-(10), we have

d[Ing(x) — Ing(x + €)] -
ox =1
3 1 dg(x) B 1 dg(x+e)
_PXEX[g(x) ox gix+e) Ix =1l
1 dg(x) 1 gx+A)+y)
=Prexl—= - >
g(x) 0x glx+A)+y ox
o Lag) 1 dgx+A)
“Prexl oy T g+ A) Ox =
d[lng(x) — Ing(x + AN)]

g(x) 0x
=Pyexl Ox > 7]

PxeX[

1l

il

>1—p.
[m}
Proof of Theorem 2
ProoF. This theorem assumes that, after injecting the trapdoor
A, we have

d[Ing(x) — Ing(x + A)]
PxE/\’tmp[ Ox

2nl=21-p (11)
Following the same proof procedure in Theorem 1, we have

d[Ing(x) — Ing(x + €)] Sl>1-p (12)
ox

Since X¢rqp and Xgppqck are p-covert, by definition (see eq. (5))

we have that for any event C C Q, the largest possible difference

between the following probabilities Pycx,_,,, .. [Cland Pyc Xirap [C]

Pxez\’,mp[

is bounded by p.
Next let C represent the event: (w > 7). We
have, for x € X1 acks
d[Ing(x) — Ing(x + €)]
Pxexattack[ Ox 2 n]
d[Ing(x) — Ing(x + €)]
ZPXEXtrap[ Ox > ’7] -p
21— (u+p).
[m}

8.2 Experiment Configuration

Evaluation Dataset. We discuss in details of training datasets
we used for the evaluation.

e Hand-written Digit Recognition (MNIST) - This task seeks to rec-
ognize 10 handwritten digits (0-9) in black and white images [26].
The dataset consists of 60,000 training images and 10, 000 test
images. The DNN model is a standard 4-layer convolutional neu-
ral network (see Table 6).
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Table 8: ResNet20 Model Architecture for CIFAR10.

Layer Name (type)  # of Channels Activation Connected to

conv_1 (Conv) 16 ReLU -
conv_2 (Conv) 16 ReLU conv_1
conv_3 (Conv) 16 ReLU pool_2
conv_4 (Conv) 16 ReLU conv_3
conv_5 (Conv) 16 ReLU conv_4
conv_6 (Conv) 16 ReLU conv_5
conv_7 (Conv) 16 ReLU conv_6
conv_8 (Conv) 32 ReLU conv_7
conv_9 (Conv) 32 ReLU conv_8
conv_10 (Conv) 32 ReLU conv_9
conv_11 (Conv) 32 ReLU conv_10
conv_12 (Conv) 32 ReLU conv_11
conv_13 (Conv) 32 ReLU conv_12
conv_14 (Conv) 32 ReLU conv_13
conv_15 (Conv) 64 ReLU conv_14
conv_16 (Conv) 64 ReLU conv_15
conv_17 (Conv) 64 ReLU conv_16
conv_18 (Conv) 64 ReLU conv_17
conv_19 (Conv) 64 ReLU conv_18
conv_20 (Conv) 64 ReLU conv_19
conv_21 (Conv) 64 ReLU conv_20
pool_1 (AvgPool) - - conv_21
dropout_1 (Dropout) - - pool_1

fc_ (FC) - Softmax dropout_1

o Traffic Sign Recognition (GTSRB) — Here the goal is to recog-
nize 43 different traffic signs, emulating an application for self-
driving cars. We use the German Traffic Sign Benchmark dataset

(GTSRB), which contains 35.3K colored training images and 12.6K
testing images [44]. The model consists of 6 convolution layers

Figure 9: ROC Curve of detection on
YouTube Face with single-label defense.

and 2 dense layers (see Table 7). This task is 1) commonly used as
an adversarial defense evaluation benchmark and 2) represents
a real-world setting relevant to our defense.

Image Recognition (CIFAR10) — The task is to recognize 10 differ-
ent objects. The dataset contains 50K colored training images
and 10K testing images [23]. The model is an Residual Neural
Network (RNN) with 20 residual blocks and 1 dense layer [20] (Ta-
ble 8). We include this task because of its prevalence in general
image classification and adversarial defense literature.

o Face Recognition (YouTube Face) — This task is to recognize faces
of 1,283 different people drawn from the YouTube videos [51].
We build the dataset from [51] to include 1, 283 labels, 375.6K
training images, and 64.2K testing images [13]. We use a large
ResNet-50 architecture architecture [20] with over 25 million pa-
rameters. We include this task because it simulates a more com-
plex facial recognition-based security screening scenario. De-
fending against adversarial attack in this setting is important.
Furthermore, the large set of labels in this task allows us to ex-
plore the scalability of our trapdoor-enabled detection.

Model Architecture. We now present the architecture of DNN

models used in our work.

e MNIST (Table 6) is a convolutional neural network (CNN) con-
sisting of two pairs of convolutional layers connected by max
pooling layers, followed by two fully connected layers.

o GTSRB (Table 7) is a CNN consisting of three pairs of convolu-
tional layers connected by max pooling layers, followed by two
fully connected layers.

o CIFAR10 (Table 8) is also a CNN but includes 21 sequential con-
volutional layers, followed by pooling, dropout, and fully con-
nected layers.

e YouTube Face is the ResNet-50 model trained on the YouTube
Face dataset. It has 50 residual blocks with over 25 millions pa-
rameters.

Detailed information on attack configuration. We evalu-
ate the trapdoor-enabled detection using six adversarial attacks:
CW, ElasticNet, PGD, BPDA, SPSA, and FGSM (which we have de-
scribed in Section 2.1). Details about the attack configuration are
listed in Table 10.

Sample Trapdoor Patterns. Figure 11 shows sample images
that contain a single-label defense trapdoor (a single 6 X 6 square)
and that contain an all-label defense trapdoor (five 3 X 3 squares).
The mask ratio of the trapdoors used in our experiments is fixed
tox =0.1.



Table 9: Detailed information on datasets and defense configurations for each trapdoored model when protecting all labels.

Model of ije Is lél;‘dtllslil;g ’:::tsl:;i Injection Ratio | Mask Ratio Training Configuration

MNIST 10 50,000 10,000 0.5 0.1 epochs=5, batch=32, optimizer=Adam, Ir=0.001

GTSRB 43 35,288 12,630 0.5 0.1 epochs=30, batch=32, optimizer=Adam, Ir=0.001

CIFAR10 10 50,000 10,000 0.5 0.1 epochs=60, batch=32, optimizer=Adam, 1r=0.001
YouTube Face 1,283 375,645 64,150 0.5 0.2 epochs=30, batch=32, optimizer=Adam, Ir=0.001

Table 10: Detailed information on attack configurations. For MNIST experiments, we divid the eps value by 255.

Attack Method Attack Configuration
CW binary step size = 9, max iterations = 1000, learning rate = 0.05, abort early = True
PGD max eps = 8, # of iteration = 100, eps of each iteration = 0.1
ElasticNet binary step size = 20, max iterations = 1000, learning rate = 0.5, abort early = True
BPDA max eps = 8, # of iteration = 100, eps of each iteration = 0.1
SPSA eps = 8, # of iteration = 500, learning rate = 0.1
FGSM eps =8

(a) Single Label Defense Trapdoor

(b) All Label Defense Trapdoor

Figure 11: Sample trapdoor examples used in our defense.
While the actual trapdoors we used all have a mask ratio of
k = 0.1, here we artifically increase x from 0.1 to 1.0 in order to

highlight the trapdoors from the rest of the image content.

Table 11: Dataset, complexity, model architecture for each
task.

# of Input Training Model

Task Dataset Labels Size Images Architecture

Dlg{t, MNIST 10 28x28x%1 60,000 2 Conv, 2 Dense [6]
Recognition
Traffic ?{gn GTSRB 43 32x32%x3 35,288 6 Conv, 2 Dense [7]
Recognition

I

MAEE  ClpAR10 10 32x32x3 50,000 20 Resid, 1 Dense [8]
Recognition

Facial YouTr

aca’ ouTube | 03 ppax22ax3 375645 ResNet-50 [20]

Recognition Face

Table 12: Trapdoored model and original model classifica-
tion accuracy when injecting trapdoors for all labels.

Model Original Model Trapdoored Model (All Labels)
Classification Accuracy Classification Accuracy
MNIST 99.2% 98.6%
GTSRB 97.3% 96.3%
CIFAR10 87.3% 86.9%
YouTube Face 99.4% 98.8%

Datasets and Defense Configuration. Tablel 9 lists the spe-
cific datasets and training process used to inject trapdoors into the
four DNN models.

Selecting Trapdoor Injection Ratio. As mentioned earlier, our
analysis shows that the size and diversity of the training data used
to inject a trapdoor could affect its effectivess of trapping attackers.
To explore this factor, we define trapdoor injection ratio as the ratio
between the trapdoored images and the clean images in the train-
ing dataset. Intuitively, a higher injection ratio should allow the
model to learn the trapdoor better but could potentially degrade
normal classification accuracy.

We defend the model with different trapdoor injection ratios
and examine the detection success rate. We see that only when
the injection ratio is very small (e.g. < 0.03 for GTSRB), the model
fails to learn the trapdoor and therefore detection fails. Otherwise
the trapdoor is highly effective in terms of detecting adversarial

examples. Thus when building the trapdoored models, we use an
injection ratio of 0.1 for MNIST, GTSRB, CIFAR1010, and 0.01 for

YouTube Face (see Table 10).

8.3 Additional Results on Comparing Trapdoor
and Adversarial Perturbation

Figure 12 and Figure 13 show that the neuron signatures of adver-

sarial inputs have high cosine similarity to the neuron signatures

of trapdoors in a trapdoored CIFAR10 and YouTube Face models

(left figures), and the trapdoor-free models (right figures).
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Figure 12: Comparison of cosine similarity of normal images and adversarial images to trapdoored inputs in a trapdoored
CIFAR10 model and in an original (trapdoor-free) CIFAR10 model. The boxes show the inter-quartile range, and the whiskers
denote the 5/ and 95! percentiles.
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Figure 13: Comparison of cosine similarity of normal images and adversarial images to trapdoored inputs in a trapdoored
YouTube Face model and in an original (trapdoor-free) YouTube Face model. The boxes show the inter-quartile range, and the
whiskers denote the 5! and 95! percentiles.
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