
Mitigating Network Latency in
Cloud-Based Teleoperation using Motion

Segmentation and Synthesis

Nan Tian, Ajay Kumar Tanwani, Ken Goldberg and Somayeh Sojoudi

University of California, Berkeley; Berkeley, CA 94720, USA.
{neubotech,ajay.tanwani,goldberg,sojoudi}@berkeley.edu

Abstract. Network latency is a major problem in Cloud Robotics for
human robot interactions such as teleoperation. Routing delays can be
highly variable in a heterogeneous computing environment, imposing
challenges to reliably teleoperate a robot with a closed-loop feedback
controller. By sharing Gaussian Mixture Models (GMMs), Hidden Semi-
Markov Models (HSMMs), and linear quadratic tracking (LQT) con-
trollers between the cloud and the robot. We build a motion recognition,
segmentation, and synthesis framework for Cloud Robotic teleoperation;
and we introduce a set of latency mitigation network protocols under
this framework. We use this framework in experiments with a dynamic
robot arm to perform learned hand-written letter motions. We then study
the motion recognition errors, motion synthesis errors, and the latency
mitigation performance.

Keywords: Motion Segmentation, Teleoperation, Latency Mitigation,
Cloud and Fog Robotics

1 Introduction

Recent breakthroughs in artificial intelligence (AI), augmented reality (AR), and
intelligent robots (IR) are changing the face of “Globalization”. Richard Bald-
win offers a vision of Global Robotics (“Globotics”) [2] where “telecommuting”
goes global, performed by “telemigrants: highly skilled, low-cost foreign workers
working remotely from their home countries via the Internet. These workers re-
motely perform not only service and professional jobs such as clerical work and
technical support, but also physical jobs such as security and manufacturing, the
latter achieved by remotely teleoperating robots.

Cloud Robotics can enhance such robot teleoperation by distributing com-
putation and memory to remote servers. Cloud-based Teleoperation allows both
teleoperators and robots to access computation intense machine learning (ML)
modules in the Cloud. This way, teleoperators can control robots in distant or
hazardous environment with human level intelligence; and robots can learn phys-
ical skills and sub-skills from teleoperators via the Cloud. It can provide a low
cost solution to offload tedious tasks from people to robots on a global scale. This

2 Nan Tian, Ajay Kumar Tanwani, Ken Goldberg and Somayeh Sojoudi

Fig. 1. Intelligent Motion
Segmentation and Syn-
thesis System for Latency
Mitigating: (Top) The
Cloud encodes GMM/HSMM
models for handwritten letters.
(Left) The Remote teleoper-
ator interface recognizes letters
and motion segments based on
user’s partial demonstration.
(Right) The Edge robotic
controller synthesize motion
segments based on compact
prediction information sent by
the Remote. The Edge then
executes the motion in a way
that reduces effects of network
latency.

can enable many specialized real-life tasks with high demands: minimally inva-
sive surgeries, intelligent manufacturing, warehouse management, remote patient
cares, inspection/exploration in deep underwater, space missions, and rescues in
hazardous environments [15].

Many of these applications require the teleoperator to control the robot to in-
teract with a human in a dynamic environment. Therefore, a low latency robot
controller is expected in teleoperation. However, network latency prevents us
from designing a global low latency controller for Cloud-based Teleoperations.
Caused by imperfect network protocols and long communication distances, net-
work delays are impossible to eliminate and can be unpredictable as well. A long
and unpredictable network delay in response to teleoperator command can cause
counter-intuitive human robot interactions. This would lead to sub-optimal user
experience, or even cause unsafe robot operations under human rich environ-
ments.

Previous network researches have been focusing on improving network proto-
cols to minimize network delays. In this work, we are proposing a more general
way to mitigate network latency in teleoperation by leveraging machine learning
(ML) and shared-autonomy.

The idea is: since many robotic tasks can be divided into motion segments
(or sub-skills), we can hide network latency inside these motion segments during
executions. To do this, we need an ML based controller that is shared between the
teleoperator and the robot. It should (1) recognize and predict the teleoperator’s
intended motion, and then (2) synthesize and execute similar motion segments
on the robot based these predicted motion. Such supervised shared-autonomy
system can control the robot to move to intermediate targets on time with

Mitigating Network Latency using Motion Segmentation and Synthesis 3

learned sub-skills while hiding network delays inside the robot motion executions
at the same time.

In this paper, we demonstrate a ML system prototype that assists a re-
mote teleoperator to interactively control a dynamic robotic arm for drawing
handwritten letters. This is done in four-stages: (1) learn a dictionary of Hid-
den Semi-Markov Models (HSMMs) [23, 16] for each letter by segmenting the
motion into K clusters, (2) share these models with both remote teleoperator
interface and the robot edge controller, (3) remotely command the robot to ex-
ecute these segments in response to partial human demonstration by inference
from the learned models, (4) synthesize motion segments with linear quadratic
tracker (LQT) [4, 14] at the Edge, so that the robot controller can catch up to
the remote human demonstrations during execution (Fig. 1 and Fig. 3).

We propose three network latency mitigation protocols (Fig. 3, Fig. 6, and
Fig. 8) based on this motion segment recognition and synthesis approach.

This work makes the following contributions:

1. A probabilistic learning-based motion segmentation algorithm using HSMMs
to encode hand-written letters in the Cloud.

2. An LQT controller at the Edge for stable, dynamic robot control.
3. Three network latency mitigation protocols that predict and generate mo-

tions interactively based on partial demonstrations from the teleoperator.

2 Related Work

2.1 Cloud, Edge, and Fog Robotics

Cloud Robotics, introduced by James Kuffner in 2010 [10], refers to any robot or
automation system that relies on either data or code from a network to support
its operation [8]. It can be used to provide powerful machine learning systems
for distributed robots. Network costs in the form of privacy, security latency,
bandwidth, and reliability present a challenge in Cloud Robotics. Fog Robotics,
a variant of Cloud Robotics, has been introduced recently to bring cloud com-
puting resources closer to the robot to balance storage, compute and networking
resources between the Cloud and the Edge [6, 17]. A closed-loop Cloud-Edge
hybrid controller was built to control a dynamic balancing robot in our earlier
work [20].

2.2 Latency Mitigation

Latency Mitigation is important as unpredictable network latency presents a
primary challenge in building an interactive robotic controller over the network.
Network controlled system (NCS) often encounters similar problems [24][22] [21],
and the delays can be dealt with predictive control and a delay compensator.
Previous work on intention recognition showed that intent prediction can assist
the teleoperator to perform robotic manipulation task under various network

4 Nan Tian, Ajay Kumar Tanwani, Ken Goldberg and Somayeh Sojoudi

conditions [15]. Furthermore, network latency can hide within robot motion ex-
ecution in Cloud Robotics [19]. Motion synthesis using a generative model [16]
is needed to achieve latency mitigation for interactive teleoperations.

2.3 Motion Segmentation and Synthesis

Motion Segmentation and Synthesis for robotics has been explored with dynamic
motion primitives (DMPs) [12] [11], recurrent neural networks (RNNs) [3][7],
stochastic optimal control [4], transition state clustering [9], Gaussian mixture
models (GMMs) [5], HSMM and LQT [18, 16] for trajectories, and human
skeleton movements. Learning from Demonstration (LfD) is a promising way
to learn a model from examples demonstrated by a teacher [1]. In this work,
we focus on the latency mitigation protocols for teleoperation with supervised
autonomy using existing motion segmentation and synthesis algorithms.

2.4 Teleoperation with Shared Autonomy

teleoperation controllers range from direct control to supervisory control with
shared control in the middle. The more autonomous the teleoperation system
is, the more tolerant it is against network delays [13]. We leverage generative
models such as GMM, HMM, and HSMM to build an assisted teleoperation
system between the human and robot [15]. Our system for motion segmentation
and synthesis falls into the supervisory control of the teleoperation spectrum.

3 System Design

There are three components of our system (Fig. 1): (1) the Cloud hosts ma-
chine learning (ML) modules including GMM/HSMM learning modules; (2) the
Remote predicts teleoperator’s intended motions using ML models shared from
the Cloud; (3) the Edge, upon receiving intended motion ID from the Remote,
generates trajectories using the shared models from the Cloud to control a robot.

We use a circle drawing example to illustrate that both motion segmentation
and synthesis are necessary for our teleoperation system (Fig 2 top). Typically,
drawing a circle requires the robot’s end-effector to follow a densely sampled
circle trajectory. If the samples were sent through network one-by-one, unpre-
dictable variable delays could affect the circle drawing significantly. Instead, if
we break the circle into four segments and send out only the way-points, the
Edge controller would interpret the arcs as linear paths via interpolation. The
robot would draw a square instead of a circle.

On the other hand, if both the Remote and the Edge share the shapes of these
motion segments, the Edge can fill in the trajectories between way-points to
reproduce motions similar to the teleoperator’s. These shared shapes are either
in the form of pre-stored raw motion segments in section 5 or in the form of
learned generative models that are capable of motion recognition and synthesis
in section 6.

Mitigating Network Latency using Motion Segmentation and Synthesis 5

Fig. 2. Motion Segmen-
tation. (Row I) Circle
vs. Square This toy exam-
ple shows the naive, unde-
sired, and desired trajecto-
ries that can be generated
for our system. (Row II
& III) Motion Segmen-
tation with Stationary
Points Here we show that
we can perform motion seg-
mentation using stationary
way-points from data, both
for a circle and handwritten
letter A. After segmenta-
tion, we execute these mo-
tions one-by-one to perform
teleoperation.

4 Problem Statement

Consider a teleoperator that controls a robot arm in a remote site. The teleoper-
ator performs a partial demonstration of a trajectory ξ comprising of datapoints
ξt ∈ RN at time t,

ξ = {ξ1, ξ2, ..., ξt..., ξT } t ∈ 1, 2...t (1)

where ξt is a column vector of position, velocity, and acceleration, respectively,
in 2D space, so ξt = [xt, ẋt, ẍt]

>.
We assume that the demonstration ξ comprises of the segments {zi}Di=1 ∈ Z

that constitute the latent space of the demonstrated trajectory

ξt ∈ {z1T1
, z2T2

, ...zDTD
} (2)

where zDTD
is the Dth segment index with the duration of TD. More precisely,

each motion segment is

ξDTD
= ξDtD,tD+TD

(3)

where tD is the starting time of the segment, and ξDtD and ξDtD+TD
are the

starting and ending point of the Dth segment. We define starting points ξDtD as
the way-points of trajectory.

Without loss of generality, we assume that the trajectory demonstration cor-
responds to a handwritten letter l denoted as lξ where l ∈ {A,B, . . . , Z}. In the
first stage, the objective is to learn models of motion segments from teleoperator
demonstrations for each letter. This is the encoding step. Subsequently, during
the decoding step, the learned segments are used for recognizing the intention of
the teleoperator as writing a particular letter l from the partial demonstration

6 Nan Tian, Ajay Kumar Tanwani, Ken Goldberg and Somayeh Sojoudi

sequence and synthesizing the motion for letter l on the remote robot. We denote
the generated motion sequence on the robot with a hat as

lξ̂ =l ξ̂
1

T1
,l ξ̂

2

T2
, ...lξ̂

D

TD
l ∈ {A,B,C, ..., Z} (4)

With the above definitions, we frame the motion segmentation and synthesis
for the teleoperation task over the network into these three parts (see Fig. 1):

1. The Cloud: learn models from data lξ to represent motion segments lξDTD
,

and share the learned models on both the Remote and Edge controllers.

2. The Remote: Recognize current motion segment ID D and letter ID l from
partial teleoperator demonstration ξt, and send these high level commands
to the Edge on the remote site.

3. The Edge: Given learned models, upon receiving D (segment ID), l (letter

ID), synthesize motion segments lξ̂
D

or trajectory lξ̂ so that the robot can
finish motion execution before the designated duration T .

5 MOTION SEGMENTATION FOR LATENCY
MITIGATION

5.1 Motion Segmentation with Stationary Point Criteria

To establish a motion segmentation base-line with handwritten letter demon-
strations, we first use well known minimum velocity and acceleration heuristics
H [11] to automatically identify stationary points xs.

xs ∈ {lξt | H u 0} where H = ||ẋt||2 + ||ẍt||2 (5)

We perform K-means to group these stationary points into clusters i ∈ K
with centroid-means of µi. Cluster centroid IDs are re-ordered so that they are in
the sequential order of the demonstrations. Motion segments can then be defined
as trajectories between adjacent clusters of stationary points.

ξ = {ξ1T1
, ξ2T2

, ...ξKTK
} where µi ∈ {µ1, µ2, ...µK} (6)

We then share the re-ordered k-mean clusters and example trajectories to
both the Remote and the Edge controllers, so that the Edge can replay pre-
stored motion segments based on the closest clusters:

iID := argmin
i∈{1,...,K}

||xs − µi||2 (7)

Control sequence replayed with Protocol I are shown in Fig. 2 for letter “A”.

Mitigating Network Latency using Motion Segmentation and Synthesis 7

Fig. 3. Latency Mitigation Protocol I: teleoperation commands
are sent in segments, and the robot controller executes these mo-
tions in a catch-up and wait fashion to mitigate network latency. See
video demo of Protocol I using a dynamic robot arm

5.2 Latency Mitigation Protocol I: Catch-up and Wait

Based on previous findings that robot motion executions can hide network la-
tency [19], we propose latency mitigation protocols for teleoperation using an
intelligent motion segmentation and synthesis. Fig 3 demonstrates the simplest
form of this protocol.

The Remote controller first recognizes which segment the teleoperator is
performing. It then predicts where the intermediate target, or way-point, of
this segment is. It finally sends motion segments to the Edge robot controller
to execute, with a delay that includes both network latency and recognition
delay. The Edge controller speeds up the motion execution so that the robot
can catch up to the human demonstration segment-by-segment. In the end, the
robot finishes the entire trajectory as if there were no delays in the network
transmission.

6 PROBABILISTIC MOTION SEGMENTATION AND
SYNTHESIS

With probabilistic generative models, we need to recognize which letter the tele-
operator is performing based on partial trajectory demonstrations. Therefore,
we need to encode and decode both temporal and spatial information. We use
GMM (spatial) and HSMM (temporal) to encode and decode hand-written letter
demonstrations. We then use LQT to synthesize motions [18]. This technique
generalizes well from a limited number of demonstrations than the motion seg-
mentation re-play base-line technique described in the last section.

https://tinyurl.com/yxrtbqpf

8 Nan Tian, Ajay Kumar Tanwani, Ken Goldberg and Somayeh Sojoudi

6.1 Spatial Encoding/Decoding

Given eight handwritten sample trajectories per letter represented by position
and velocity ξt = [xt; ẋt], we train a separate GMM model to encode each letter
in the alphabet.

P (ξt | θ) =
K∑
i=1

πiN(ξt, | µi, Σi) (8)

where P (ξt | θ) is the probability density function of sample point ξt conditioned
on parameters θ = {πi, µi, Σi}Ki=1, a set of prior πi, mean µi, and covariance
matrix Σi for each of the K mixtures. The GMM are learned using Expectation-
Maximization (EM) algorithms. The resulting GMM mixture models for each
letter is shown in Fig. 4 and Fig. 5I.

Fig. 4. Motion Segmentation of All Handwritten Letters using GMM for
spatial encoding/decoding: colored 2D Gaussian clusters overlaying on demonstra-
tion trajectory. GMM clusters are used to represent motion segments. They are also
used to generate synthetic motions.

During decoding, given a sample ξi and the GMM for a single letter, we decide
which mixture zt = i the sample belongs to using maximum log likelihood

izt := argmax
i∈{1,...K}

log
(
πiN(ξt | µi, Σi)

)
(9)

6.2 Temporal Encoding/Decoding for Letter Recognition

We use both hidden Markov model(HMM) or its generalization hidden semi-
Markov model(HSMM) [14] to encode and decode temporal state sequences.
GMMs obtained from above are used as latent states zt = i in HMM at time t.
The GMM-based HMM model is parameterized by θ = {{ai,j}Kj=1, Πi, µi, Σi}i.
During encoding, it learns: (a) transition probabilities ai,j , (b) emission probabil-
ities Πi, (c) mean µi and covariance Σi via EM algorithm. Here, ai,j represents

Mitigating Network Latency using Motion Segmentation and Synthesis 9

transition probabilities between the K Gaussians in GMM, and i, j ∈ {1, ...K}
are indexes of Gaussian mixtures.

We use the forward-backward Viterbi algorithm to decode latent states from
zt from forward variable α = P (zt = i, ξ1...ξt | θ). The probability of a data
point ξt to be in state i at time t given the partial observation {ξ1...ξt} can be
calculated as:

ht,i = P (zt | ξ1, ..., ξt) =
αt,i∑K

k=1 αt,k

(10)

where the forward variable α is

αt,i =
(K∑
j=1

αt−1,iaj,i
)
N(ξt | µi, Σi) (11)

HSMM generalizes to HMM by explicitly modeling an additional state dura-
tion probability, so that the state transition depends not only on current state,
but also on the elapsed time in the current state. In HSMM, forward variable
can be calculated:

αt,i =

min(smax,t−1)∑
s=1

K∑
j=1

αt−s,iaj,iN(s | µs
i , Σ

s
i) (12)

where s represents state duration steps in HSMM. For more details, please refer
to [14] and [15].

To recognize the letter ID based on the available partial trajectory {ξ1, ..., ξt},
we apply eq. (10) to all 26 HMMs with the parameters lθ where l ∈ {A,B, ...Z}.
The HMM model with the highest probabilities is selected as the letter that is
being recognized based on partial trajectory:

l := argmax
l∈{A,B,...Z}

P (zt | ξ1, ..., ξt; lθ) (13)

6.3 Motion Synthesis based on Predicted State Sequence

We compute the desired state sequence zt in future using the forward variable
at time t using the forward variable for the most likely decoded letter,

zt = {zt, ..., zTD
} = argmax

i
αt,i. (14)

The desired state sequence is used for a step-wise reference trajectory distri-
bution N(µ̂t, Σ̂t) by assigning the predicted parameters µ̂t and Σ̂t at time t as
the parameters µzt and Σzt for the predicted future states zt. Samples at time
t can be generated from this reference trajectory distribution:

ξ̂t ∼ N(µ̂t = µzt , Σ̂t = Σzt) where t ∈ {t...TD} (15)

10 Nan Tian, Ajay Kumar Tanwani, Ken Goldberg and Somayeh Sojoudi

Fig. 5. Trajectory generation
with HSMM:
(I) HSMM mixtures overlay on
data We learn a HSMM for each let-
ter from eight trajectory samples per
letter.
(II) HSMM State Probabili-
ties of a given trajectory inferred
through forward-backward Viberbi
algorithm
Generated Trajectories: (III)
from the same start positions (cir-
cle) as the original demon, and
(IV) from different start positions
(circle) to show autonomy and
robustness

The Edge robot controller uses a linear quadratic tracking (LQT) to syn-
thesize trajectory in order to follow the demonstrated observation sequence in

a smooth manner weighted by Qt = Σ̂
−1
t while minimizing the control cost u

weighted by R.

ct(ξt,ut) =
T∑

t=1

(ξt − µ̂t)
>Qt(ξt − µ̂t) + u>t Rtut (16)

s.t. ξ̇t = Aξt +But

where A and B represent the double integrator system as a simplified analogue
of robot dynamical system. For more details on LQT, refer to [14] and [16].

6.4 Latency Mitigation Protocol II: Recognize and Finish

Benchmarks of letter recognition and motion synthesis suggest that the motion
recognition is poor at the initial part of the teleoperator demonstration, which
can lead to large synthesis errors (see section 6 and Fig. 7). Therefore, we modify
Protocol I into Protocol II to make it more practical for supervised teleoperation.

In this new protocol (Fig. 6III), during the initial period when the Remote
controller is not sure about which letter the teleoperator is demonstrating, the
Edge controller follows the exact trajectory of the teleoperator, while tolerating
the network delay. As soon as the Remote controller recognizes and decides which
letter is being drawn, the Edge controller receives the letter ID, and commits
to drawing the recognized letter through motion synthesis. This way, during
the latency mitigation second phase, the Edge can catch up or surpass human
demonstration, so that it can reduce or eliminate network latency.

Mitigating Network Latency using Motion Segmentation and Synthesis 11

Fig. 6. Latency Mitigation Protocol II for teleoperating handwritten let-
ters: Phase I: the Robot performs direct teleoperation when the Cloud is not sure
about which letter the teleoperator is demonstrating. There are network delays associ-
ated with this phase. Phase II: the robot finishes the letter motions when the Cloud
recognizes the letter from partial demonstration. In this phase, the robot motion is
generated locally at the robot with GMM/HSMM. The motion is also executed at an
accelerated speed automatically so that it can counter network latency. See video
demo of Protocol II: in simulation and teleoperating a dynamic robot arm.

7 EXPERIMENTS AND RESULTS

We use a handwritten letter dataset to train the GMM based HSMM model.
The dataset contains eight sample trajectories per letter in the alphabet. Each
sample trajectory contains 200 sample points with 2D position in the range
of [−10, 10] cm. We extract additional velocity and acceleration features from
position data via differentiation. Together with position, they are used to encode
motion segmentation and synthesis models. We learn 26 HSMM models (one for
each letter) in the encoding/training stage. We then use the models to decode
the state sequences so that we can regenerate trajectories for the Edge robot
controller. To show the advantage of regenerating a trajectory over replaying
pre-recorded trajectory, we put the initial state as either the same or different
starting points as the original trajectory. (Fig. 5 III and IV).

7.1 Recognition vs. Synthesis Error

There are two stages in the decoding phase: 1) recognition of letter given partial
trajectory for HSMM model selection; 2) prediction of future state sequences so
that a trajectory can be generated using LQT. Each is associated with recogni-
tion and synthesis phase in the latency mitigation protocol.

https://youtu.be/fjlx5kXiMhc
https://tinyurl.com/yxrtbqpf

12 Nan Tian, Ajay Kumar Tanwani, Ken Goldberg and Somayeh Sojoudi

Fig. 7. (I) Interactive Recognition and Synthesis Trials: (Top) Uniformly
Distributed Noise Injected to position (left, σ = 2 cm) and velocity (left, σ = 20
cm/sample) of trajectory “G” for benchmarks. (Bottom) Synthesized Trajectory
(red trajectory) based partial noisy demonstrations (black trajectory with green noise).
(bottom left) Shorter partial demonstration causes the model to falsely recog-
nize the trajectory as “E”. (bottom right) Longer partial demonstration provides
correct recognition and generates intended trajectory “G”. (II) Recognition (top)
and Synthesis (bottom) Errors vs. Length of Trajectory shows that both errors
reduce dramatically as demonstration progresses passing the 30% (red line) (III) Syn-
thesis Error is much lower when recognition is correct, therefore, recognition error
contributes to the majority of the synthesis error. See video demo in simulation.

Recognition Error = 1− NSuccess

NTotal
, (17)

Synthesis Error =
||ξ̂t,T − ξt,T ||2

T − t
. (18)

Note that the synthesis error, accounts for only second part of the trajectory, is
normalized by the number of generated samples. This way, L2 distance of each
sample contributes equally to synthesis error, so that we can compare synthesis
error across partial trajectories generated with different lengths.

We conducted 10 trials per letter on partial trajectories with variable length
(0− 100%) injected with uniformly distributed random noise (variance σpos = 2
cm, σvel = 2 cm/sample, Fig. 7I (top)). Fig. 7I (bottom) shows examples of
generated trajectory based on correct and wrong recognition results. In Fig. 7II,
we plot both recognition and synthesis error of all trials against the length of
the partial trajectory shown to the system.

We observe that both recognition and synthesis errors drop dramatically
around 30% trajectory demonstration length. This suggests that recognition is
not reliable for short trajectories with 30% length, and it becomes more reliable
as the demonstration progresses (Fig. 7II bottom).

https://youtu.be/fjlx5kXiMhc

Mitigating Network Latency using Motion Segmentation and Synthesis 13

This also suggests a strong correlation between recognition and synthesis
error, as, naturally, synthesis error would grow dramatically if the letter recog-
nition is wrong. We show that recognition error contributes to the majority of
the synthesis error in Fig. 7III where the synthesis errors of all the trials with
correct and wrong recognition are compared against each other.

7.2 Latency Mitigation Effects

We want to observe how much latency the system can tolerate for the two latency
protocols. Protocol I with stationary point segmentation is used as base-line.
Intuitively, Protocol I can tolerate delays at most to a fraction of the length of
segments. The duration of the four segments of the letter “A” are 63, 43, 81, 12
steps. Assuming that the robot can move twice as fast as the demonstrator, then
the system can tolerate up to 31, 21, 40, and 6 sample points. Consequently, it
can mitigate up to 0.5, 0.3, 0.7, and 0.1 seconds of delays respectively when a 60
Hz sample rate is assumed. Any delay that is lower than the estimated duration,
unpredictable it might be, is going to be eliminated.

Protocol II can tolerate more delays as motion synthesis allows it to be au-
tonomous over the entire second phase of the protocol, after successful letter
recognition. In the video demos of Protocol II in simulation:, we show the inter-
action between the Remote demonstrator and the Edge controller when drawing
letters “G”, “H”, “B”, “P”, and “K”. The synthesized trajectory is red during
first phase, and it changes when the system is not sure which letter it is early
on in the demonstration. After recognize the letter with high confidence, the
Remote controller execute the motion at 2x speed, so that the dynamic robot
arm can finish the motion even before the teleoperator, as can be seen from
video: teleoperating a dynamic robot arm with Protocol II.

The second phase lasts for 153, 107, 83, 61, and 127 steps for letters: “G”,
“H”, “B”, “P”, and “K”, which lasts 2.6, 2.8, 1.4, 1.0, and 2.1 seconds. Half of
that period, or 1.3, 1.4, 0.7, 0.5, and 1.0 seconds, is used to mitigate latency.
Protocol II naturally has more tolerance against unpredictable latency than Pro-
tocol I because of the autonomous motion generation phase.

To gain high confidence in letter recognition, we use a 40 sample window (0.6
seconds) during which the recognition result needs to be the same letter in order
to enter the second phase. This recognition delay is introduced to trade for the
price to eliminate network delays during the second phase. We believe that the
benefit of eliminating not only unpredictable network delays, but also potential
instabilities in a dynamical system is justified at the cost of recognition delay.

8 DISCUSSION AND FUTURE WORK

We present an intelligent latency mitigation teleoperation system for handwrit-
ten letter drawing. Motion segmentation and synthesis are used to reduce the
effects of network latency by hiding network delays inside generated synthetic

https://youtu.be/fjlx5kXiMhc
https://tinyurl.com/yxrtbqpf

14 Nan Tian, Ajay Kumar Tanwani, Ken Goldberg and Somayeh Sojoudi

Fig. 8. (Left) Protocol III that recognizes both letters and motion segments for
intelligent latency mitigation (Right) future hierarchical GMMs/HSMMs that
can recognize and generate longer motion segments for the entire alphabet. These
videos of ‘B,P’ and ‘C, S’ illustrate the concept. Notice that the model should decide
to continue drawing ‘B’ or to stop and finish ‘P’ at super-node {B,P}. Ideally, a single
hierarchical GMM/HSMM model should represent all 26 letters in the alphabet.

motion segments. We use two different algorithms to perform motion segmenta-
tion based on either (1) stationary points heuristics with K-means or (2) HSMM
state sequences. The HSMM method is more desirable for motion synthesis. We
introduce and evaluate latency mitigation communication protocols based on
recognition and synthesis errors for drawing hand-written letters.

There are trade-offs in the latency mitigation system. Although we reduce
the effect of unpredictable network latency on a dynamical system, we introduce
recognition delays into the system that reduce the time period for robot con-
troller to catch up to the teleoperator. Consequently, longer motion segments
are more desirable, leaving more room for the Remote to recognize the segment
and for the Edge controller to autonomously generate the movement.

We further generalize Protocol II into a concept Protocol III (without actual
implementation). As illustrated in Fig. 8 left, the Edge controller in Protocol III
would synthesize and execute motion in segments instead of finishing the entire
motion all at once during the second phase when the correct letter is recognized.

In future work, we plan to hierarchically group Gaussian mixtures and HSMMs
to represent mega-segments of the entire dataset, so that they can be recognized
and regenerated mega-segments based on a execution tree (Fig. 8 Right). For
example, in the letter set {B,C, P, S}, super-nodes {B,P} and {C, S} contain
letters that are partially similar in the drawing process. Under this setting, when
drawing the letter B, the model should traverse top-to-bottom in the tree to com-
mand the Edge controller to execute motion segment P first–the meta-segment
shared by B and P . The controller should then decide whether to finish drawing
letter B with an additional motion segment or not at super-node {B,P}, upon
additional demonstration given by the teleoperator.

Moreover, we can use the existing motion segmentation and generation sys-
tem to generate synthetic trajectory samples to train a hierarchical variational
auto-encoder (VAE)[7] so that a single model can (1) handle position invariants

https://www.youtube.com/watch?v=769PBu_V4IQ
https://www.youtube.com/watch?v=ptxpGqE7zpE

REFERENCES 15

better to improve recognition and (2) encode and decode motion datasets with
more sophisticate and general motion concepts. Lastly, we plan to use our system
to imitate 3D human-skeleton-based HRI interactions leveraging human-human
interaction datasets.

ACKNOWLEDGMENTS

We thank Prof. Joseph Gonzalez for discussions on hybrid synchronous and
asynchronous Systems. We thank William Wong, Shivin Devgon, Ryan Hoque,
and Andy Yan for proof-reading the manuscript. We also thank Matthew Tesch,
David Rollinson, Curtis Layton, and Prof. Howie Choset from HEBI robotics for
supports on the robot arm.

Fundings from Office of Naval Research, NSF EPCN, and NSF ECDI Secure
Fog Robotics Project are acknowledged. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the Sponsors.

References

[1] Brenna D Argall et al. “A survey of robot learning from demonstration”.
In: Robotics and autonomous systems 57.5 (2009), pp. 469–483.

[2] Richard Baldwin. Globotics Upheaval: globalisation, robotics and the future
of work. Oxford University Press, 2019.

[3] Daniel Berio et al. “Calligraphic stylisation learning with a physiologically
plausible model of movement and recurrent neural networks”. In: Proceed-
ings of the 4th International Conference on Movement Computing. ACM.
2017, p. 25.

[4] Francesco Borrelli, Alberto Bemporad, and Manfred Morari. Predictive
control for linear and hybrid systems. Cambridge University Press, 2011.

[5] S. Calinon et al. “Learning and reproduction of gestures by imitation: An
approach based on Hidden Markov Model and Gaussian Mixture Regres-
sion”. In: IEEE Robotics and Automation Magazine 17.2 (2010), pp. 44–
54.

[6] SLKC Gudi et al. “Fog robotics: An introduction”. In: IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems. 2017.

[7] David Ha and Douglas Eck. “A neural representation of sketch drawings”.
In: arXiv preprint arXiv:1704.03477 (2017).

[8] Ben Kehoe et al. “A survey of research on cloud robotics and automa-
tion”. In: IEEE Transactions on Automation Science and Engineering 12.2
(2015), pp. 398–409.

[9] Sanjay Krishnan et al. “Transition State Clustering: Unsupervised Surgi-
cal Trajectory Segmentation for Robot Learning”. In: Robotics Research:
Volume 2. Ed. by Antonio Bicchi and Wolfram Burgard. Cham: Springer
International Publishing, 2018, pp. 91–110. doi: 10.1007/978-3-319-60916-

4 6.

https://doi.org/10.1007/978-3-319-60916-4_6
https://doi.org/10.1007/978-3-319-60916-4_6

16 REFERENCES

[10] James J Kuffner et al. “Cloud-enabled robots”. In: IEEE-RAS interna-
tional conference on humanoid robotics, Nashville, TN. 2010.

[11] Franziska Meier, Evangelos Theodorou, and Stefan Schaal. “Movement
segmentation and recognition for imitation learning”. In: Artificial Intelli-
gence and Statistics. 2012, pp. 761–769.

[12] Franziska Meier et al. “Movement segmentation using a primitive library”.
In: 2011 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE. 2011, pp. 3407–3412.

[13] D. Song, A. K. Tanwani, and K. Goldberg. “Networked-, Cloud- and Fog-
Robotics”. In: Robotics Goes MOOC. Ed. by B. Siciliano. Springer, 2019.

[14] A. K. Tanwani. “Generative Models for Learning Robot Manipulation
Skills from Humans”. PhD thesis. Ecole Polytechnique Federale de Lau-
sanne, Switzerland, 2018.

[15] A. K. Tanwani and S. Calinon. “A generative model for intention recog-
nition and manipulation assistance in teleoperation”. In: IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, IROS. 2017,
pp. 43–50. doi: 10.1109/IROS.2017.8202136.

[16] A. K. Tanwani et al. Generalizing Robot Imitation Learning with Invariant
Hidden Semi-Markov Models. 2018. arXiv: 1811.07489 [cs.RO].

[17] Ajay Kumar Tanwani et al. “A Fog Robotics Approach to Deep Robot
Learning: Application to Object Recognition and Grasp Planning in Sur-
face Decluttering”. In: IEEE International Conference on Robotics and
Automation (ICRA). 2019.

[18] A.K. Tanwani and S. Calinon. “Learning Robot Manipulation Tasks With
Task-Parameterized Semitied Hidden Semi-Markov Model”. In: Robotics
and Automation Letters, IEEE 1.1 (2016), pp. 235–242. doi: 10 . 1109 /

LRA.2016.2517825.
[19] Nan Tian et al. “A Cloud-Based Robust Semaphore Mirroring System for

Social Robots”. In: 2018 IEEE 14th International Conference on Automa-
tion Science and Engineering (CASE). IEEE. 2018, pp. 1351–1358.

[20] Nan Tian et al. “A Fog Robotic System for Dynamic Visual Servoing”. In:
arXiv preprint arXiv:1809.06716 (2018).

[21] HP Wang, Y Tian, and N Christov. “Event-triggered observer based con-
trol of networked visual servoing control systems”. In: Journal of Control
Engineering and Applied Informatics 16.1 (2014), pp. 22–30.

[22] Haiyan Wu et al. “Cloud-based networked visual servo control”. In: IEEE
Transactions on Industrial Electronics 60.2 (2013), pp. 554–566.

[23] S.-Z. Yu. “Hidden semi-Markov models”. In: Artificial Intelligence 174
(2010), pp. 215–243.

[24] Wei Zhang, Michael S Branicky, and Stephen M Phillips. “Stability of
networked control systems”. In: IEEE Control Systems 21.1 (2001), pp. 84–
99.

https://doi.org/10.1109/IROS.2017.8202136
http://arxiv.org/abs/1811.07489
https://doi.org/10.1109/LRA.2016.2517825
https://doi.org/10.1109/LRA.2016.2517825

	Mitigating Network Latency in Cloud-Based Teleoperation using Motion Segmentation and Synthesis

