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Abstract—We prove tight upper and lower bounds on ap-
proximation ratios of all Boolean Max-2CSP problems in the
streaming model. Specifically, for every type of Max-2CSP
problem, we give an explicit constant α, s.t. for any ε > 0
(i) there is an (α − ε)-streaming approximation using space
O(log n); and (ii) any (α + ε)-streaming approximation re-
quires space Ω(

√
n). This generalizes the celebrated work of

[Kapralov, Khanna, Sudan SODA 2015; Kapralov, Krachun
STOC 2019], who showed that the optimal approximation ratio
for Max-CUT was 1/2.

Prior to this work, the problem of determining this ratio
was open for all other Max-2CSPs. Our results are quite
surprising for some specific Max-2CSPs. For the Max-DICUT
problem, there was a gap between an upper bound of 1/2
and a lower bound of 2/5 [Guruswami, Velingker, Velusamy
APPROX 2017]. We show that neither of these bounds is
tight, and the optimal ratio for Max-DICUT is 4/9. We also
establish that the tight approximation for Max-2SAT is

√
2/2,

and for Exact Max-2SAT it is 3/4. As a byproduct, our result
gives a separation between space-efficient approximations for
Max-2SAT and Exact Max-2SAT. This is in sharp contrast
to the setting of polynomial-time algorithms with polynomial
space, where the two problems are known to be equally hard
to approximate. Finally, we prove that the tight streaming
approximation for Max-kSAT is

√
2/2 for every k ≥ 2.

Keywords-Streaming Algorithms; Approximation Algo-
rithms; Constraint Satisfaction.

I. INTRODUCTION

Maximum Boolean Constraint Satisfaction Problems, or

Max-CSPs, are a central class of optimization problems,

including as special cases problems such as Max-CUT,

3SAT, Graph Coloring, and Vertex Cover [2]. Given a

set of allowed predicates F , Max-CSP(F) is the opti-

mization problem defined as follows. Every instance Ψ of

the problem consists of a set of Boolean variables X , and

a set of constraints applied to them. Each constraint is a

predicate from F applied to the variables from X or their

negations. The goal is to compute the maximum number

of simultaneously satisfiable constraints. For example, Max-
kSAT is Max-CSP

(FOR≤k

)
where FOR≤k

is the set of OR
predicates on at most k variables.

All proofs are deferred to the full version of the paper [1]

Schaefer’s famous dichotomy theorem [3], [4] states that

for any set of allowed predicates F , solving Max-CSP(F)
exactly is either in P or NP-hard. However, the landscape

of approximation algorithms for Max-CSPs is much more

complex (see [5] and references therein).
The Max-2CSP problem—Max-CSP where all con-

straints have length at most 2—is the most studied case of

Max-CSP, and it generalizes many optimization problems

on graphs. Starting with the seminal work of Goemans and

Williamson [6], a series of works [7], [8], [9] developed

a 0.87401-approximation algorithm for all Max-2CSPs,

while under the P �= NP and Unique Games conjectures

some Max-2CSPs do not admit 0.9001- and 0.87435-

approximations, respectively [10], [11], [12].
In this paper, we follow the line of work [13], [14], [15],

[16], [17], [18] that studies the unconditional hardness of

approximating Max-2CSP through the lens of streaming
algorithms. Over the last decade, there has been a lot of

interest in designing algorithms for processing large streams

of data using limited space (see [19], [20] and references

therein). The streaming model was formally defined in [21],

[22].
A streaming algorithm for a Max-2CSP problem makes

one pass through the list of constraints and uses space that is

sub-linear (ideally, poly-logarithmic) in the input size.1 Since

the algorithm is space bounded, it cannot even store an as-

signment to the input variables. Thus, a streaming algorithm

is required to output an estimate of the maximum number

of simultaneously satisfiable constraints. Specifically, for

α ∈ [0, 1], an α-approximate streaming algorithm outputs

a value v for which the following two conditions hold with

probability 3/4: (i) there exists an assignment σ satisfying

at least v constraints, and (ii) v ≥ α · val, where val is the

maximum number of simultaneously satisfiable constraints.
Prior to this work, the only Max-2CSP for which we

knew the optimal streaming approximation factor was Max-
CUT. Max-CUT asks us to find a bipartition of the n
vertices of an undirected graph that maximizes the number

1In this work we focus on randomized streaming algorithms that make
one pass over the input in a fixed (adversarial) order, and return the correct
answer with probability 3/4.



of edges crossing the partition—called the “cut”. Note

that Max-CUT corresponds to the Max-CSP(F) where F
contains the binary XOR predicate.2 [23] shows that exact

streaming algorithms for Max-CUT require quadratic space

Ω(n2). Since a random partition of a graph with m edges has

cut of expected size m/2, a trivial streaming algorithm 1/2-

approximates Max-CUT with O(logm) space. It is also easy

to see that for every ε > 0, it suffices to store Õ(n) random

edges of the graph to compute a (1 − ε)-approximation of

Max-CUT. A recent line of work [14], [13], [15], [17] shows

that these two trivial bounds are optimal, i.e., any (1/2+ε)-
approximation algorithm requires linear space Ω(n).

However, the case for directed graphs is not nearly so well

understood. In the Max-DICUT problem (another special

case of Max-2CSP), given a directed graph, one needs to

compute the maximum number of edges going from the

first to the second part of the graph under any bipartition.

While [17], [14] rules out a (1/2 + ε)-approximation for

Max-DICUT too, the trivial algorithm gives only a 1/4-

approximation here. [16] gives a 2/5-approximation for

Max-DICUT, still leaving a gap between the upper and

lower bounds.

Even the hardness of Max-2SAT is not known in the

streaming setting. Recall that in Max-2SAT the only al-

lowed predicates are variables and pairwise ORs. A random

assignment gives a 1/2-approximation, and the classical

(
√
5 − 1)/2 ≈ 0.61-approximate algorithm of [24] can

be implemented in O(log n) space using �1-sketching [25],

[26]. No non-trivial upper bounds are known for Max-2SAT.

A. Our contribution

In this work, we resolve a natural question about the

approximation guarantees of streaming algorithms for every
Max-2CSP problem.

Before presenting our results, we need a way to classify

Boolean functions of two variables. Let f : {0, 1}2 → {0, 1}
be a function, then

• f is of TR-type, or trivial, if f depends on at most

one of its inputs (trivial functions are the two constant

functions, and the four functions which depend on one

of the inputs);

• f is of OR-type if the truth table of f has exactly one

0 and three 1s;

• f is of XOR-type if f depends on both inputs, and the

truth table of f has exactly two 0s and two 1s;

• f is of AND-type if the truth table of f has exactly

three 0s and one 1.

If a set of allowed predicates F contains only constraints

of a type Λ ∈ {OR,XOR,AND}, then the correspond-

ing Max-2CSP problem is called Max-2EΛ (2-Exact-Λ,

2Although formally Max-CUT is a special case of Max-2XOR where
all constraints are of the form xi⊕xj = 1, it can be shown that these two
problems are equivalent.

meaning that all constraints have length exactly 2). If F
contains only Λ-type constraints and trivial constraints, then

the corresponding Max-2CSP problem is called Max-2Λ.

We abuse notation by identifying a set of allowed pred-

icates F with the set of types of its predicates. Also,

for a set F = {Λ} containing one element, we write

F = Λ. Therefore, a Max-CSP(F) problem is defined by

F ⊆ {TR,OR,XOR,AND}. Note that every Max-2CSP
problem corresponds to one such F .

For every Max-CSP(F) problem, we give an explicit

constant αF such that (αF − ε)-approximation can be

computed in O(log n) space, while (αF + ε)-approximation

requires space Ω(
√
n), for every ε > 0.

Theorem 1. Let F ⊆ {TR,OR,XOR,AND} be a set of
allowed binary predicates. Let αF = minG⊆F αG , where αG
is given in Table I.

For every ε > 0, there exists an (αF − ε)-
approximate streaming algorithm for Max-CSP(F) that
uses space O(ε−2 log n). On the other hand, any (αF + ε)-
approximate streaming algorithm for Max-CSP(F) requires
space Ω(

√
n).

Type G Tight bound Previous bound

αG α
pr
G Reference

TR 1 1 Folklore

OR 3
4

[ 3
4
, 1] Folklore

{TR,OR}
√
2
2

[
√

5−1
2

, 1] [24]

XOR 1
2

1
2

[17]

AND 4
9

[ 2
5
, 1
2
] [16]

Table I
SUMMARY OF KNOWN AND NEW APPROXIMATION FACTORS αG FOR

MAX-CSP(G). WE HAVE SUPPRESSED (1± ε) MULTIPLICATIVE

FACTORS.

Discussion: Interestingly, Theorem 1 identifies five

Max-2CSP problems which completely characterize the

hardness of any Max-2CSP problem. Namely, we show

that Max-CSP(F) is precisely as hard to approximate as

the hardest of the problems from Table I expressible by

predicates from F .

In particular, Theorem 1 closes the gap between 2/5 [16]

and 1/2 [14] for the streaming approximation ratio of Max-
DICUT. We prove that neither of these bounds is tight, and

that the correct bound is 4/9.3 Similarly, it shows that the

(
√
5 − 1)/2-approximate algorithm of [24] for Max-2SAT

can be improved further, and that the optimal approximation

ratio is
√
2/2.

Many streaming problems have space-accuracy trade-

offs allowing for better approximations with more space

(e.g., [20], [27]). Curiously, Theorem 1 shows that every

3While Theorem 1 states the bound for the Max-2AND problem only,
it is easy to see that the proof in Section IV-C gives the same bound even
for Max-DICUT.



Max-2CSP(F) problem exhibits sharp threshold behavior:

it needs only logarithmic space to be approximated up to

some constant αF , and it requires polynomial space for

every larger approximation factor.
In the classical setting, approximation algorithms for

Max-CSPs use space-inefficient techniques including

semidefinite and linear programming, and network flow

computations [28], [29], [6], [30], [31], [32], [5]. On the

other hand, the best streaming algorithms for Max-CSPs

(except for the work [16]) used only random assignments

to the variables of the instance, including Max-CUT, Max-
2SAT, and Unique Games problems. We design streaming

algorithms for the Max-2AND and Max-2OR problems

(i.e., F = {TR,AND} and F = {TR,OR}) which sig-

nificantly improve on the approximation ratios guaranteed

by a random assignment to the variables.
Additionally, Theorem 1 reveals a curious difference

between streaming approximation of the cases G = OR
and G = {TR,OR} (i.e., Exact Max-2SAT and Max-
2SAT). The former problem can be 3/4-approximated, while

the latter does not admit better than
√
2/2-approximations.

This shows that adding trivial constraints to Exact Max-
2SAT actually makes the problem harder to approxi-

mate. This is in sharp contrast to the classical setting of

polynomial-time algorithms with polynomial space, where

approximation-preserving reductions between the two prob-

lems are known [28]. While 3/4-approximation for Exact
Max-2SAT is trivial, many 3/4-approximation algorithms

for Max-2SAT use non-efficient (though polynomial) lin-

ear programming routines. This led Williamson to pose a

question in 1998 whether there exists an algorithm for Max-
2SAT which does not use linear programming and at least

matches the trivial 3/4-approximation guarantee for Exact
Max-2SAT [33]. The affirmative answer to this question

was given by Poloczek and Schnitger in 2011 [34], [35],

[36], [37]. Theorem 1 complements this result by showing

that there is no
√
2/2 < 3/4-approximation for Max-2SAT

in the streaming setting, thus, separating space-efficient

approximations for Max-2SAT and Exact Max-2SAT.
Our final contribution is a tight bound on the approx-

imation ratio of streaming algorithms for all Max-kSAT
problems. We generalize the

√
2/2-approximation algorithm

for Max-2SAT from Theorem 1 to an algorithm for Max-
SAT, and a matching hardness result trivially follows from

the hardness of Max-2SAT.

Theorem 2. For every ε > 0, there exists an (
√
2/2 − ε)-

approximate streaming algorithm for Max-SAT that uses
space O(ε−2 log n). On the other hand, for any k ≥ 2, ε > 0
any (

√
2/2+ ε)-approximate streaming algorithm for Max-

kSAT requires space Ω(
√
n).

B. Related Work
Classical setting: For every Max-2CSP(F) problem,

a random assignment satisfies in expectation a constant frac-

tion αtr
F of the constraints (this algorithm can be easily de-

randomized via the method of conditional expectations). In

particular, this algorithm gives 1/2- and 1/4-approximations

for Max-CUT and Max-2CSP. On one hand, Håstad [10]

used the PCP theorem to show that some Max-CSP prob-

lems, e.g., MAX-E3SAT, do not admit better than αtr
F -

approximations unless P = NP. On the other hand, Goemans

and Williamson [6] used semidefinite programming (SDP)

to significantly improve the bounds for Max-CUT and

Max-2CSP to 0.87856 and 0.79607. Håstad [30] proved

that there is an SDP-based approximation algorithm with

a better than αtr
F approximation guarantee for every Max-

2CSP. Many of the SDP-based approximation algorithms

are optimal under the Unique Games Conjecture [38], [39].

We refer the reader to [5] for an up-to-date overview of the

literature.

Streaming setting: While there is a trivial 1/2-

approximation for Max-CUT using space O(log n),
Kapralov et al. [14] showed that for any constant ε > 0,

a (1/2 + ε)-approximation requires space Ω̃(
√
n). Inde-

pendently, Kogan and Krauthgamer [13] showed that (i)

(1 − ε)-approximation requires space Ω(n1−ε) and (ii)

4/5-approximation requires Ω(nτ ) space for some constant

τ > 0. In a subsequent work, [15] showed that (1 − ε)-
approximation requires Ω(n) space. This line of work cul-

minated in a recent result by Kapralov and Krachun [17]

showing that any (1/2 + ε)-approximation for Max-CUT
requires Ω(n) space.

Recently Guruswami et al. [16] gave a (2/5 − ε)-
approximate algorithm for Max-DICUT for any constant ε >
0, significantly improving on the trivial 1/4-approximation.

For k-SAT, Kogan and Krauthgamer [13] showed that there

is a (1 − ε)-approximation using Õ(ε−2kn) space. The

hardness side has been widely open prior to this work and,

to the best of our knowledge, the only other hardness result

is by Guruswami and Tao [18] showing that (1/p + ε)-
approximation for Unique Games with alphabet size p
requires Ω̃(

√
n) space for any constant ε > 0.

C. Techniques

Streaming algorithms: The first step of our proof of

Theorem 1 is two new algorithms for Max-2OR and Max-
2AND that improve on the naive approximations for these

problems. For these algorithms, we generalize the notion of

bias [16] to all Max-2CSP problems, and prove a series of

bounds on the value of Max-2CSP w.r.t. the bias (and the

numbers of trivial and non-trivial constraints in the instance).

This results in log-space streaming algorithms that sketch the

bias (and some additional information about the instance),

and compute good estimates of the value of the instance.

It is not hard to see that Max-2AND is the “hardest”

Max-2CSP problem, i.e., an α-approximation for Max-
2AND implies α-approximations for all Max-2CSPs (see

the full version of the paper). Therefore, the hardness result



of [17] for Max-CUT holds for Max-2AND as well, ruling

out the possibility of (1/2 + ε)-approximations. On the

other hand, a random assignment for Max-2AND formulas

only guarantees a 1/4-approximation. A recent work [16]

improves the approximation ratio to (2/5− ε) as follows.

Let Ψ be a Max-2EAND instance with m constraints, and

val be the maximum number of simultaneously satisfiable

constraints in Ψ. [16] defines the bias of a variable x as

the absolute difference between the number of positive and

negative occurrences of x, and the bias of the instance as

the sum of biases of its variables. It is easy to see that for

every instance, val ≤ (m + bias)/2. [16] proves that the

assignment of the input variables according to their biases

satisfies at least bias constraints (see Lemma 10). Then they

conclude that max(bias,m/4) is a 2/5-approximation of

val:
max(bias,m/4)

val
≥ bias/5 + (m/4)(4/5)

(m+ bias)/2
= 2/5 .

The upper and lower bounds of [16] are shown in red and

blue in Figure 1, and the gap between the bounds indeed

achieves 2/5 when bias = m/4. While both lower bounds

val ≥ max(bias,m/4) are tight as functions of bias and

m, we show that in the important regime of low bias ∈
[0,m/3], these bounds can be improved to

val ≥ m

4
+

bias2

4(m− 2bias)
. (3)

Unlike the lower bound of val ≥ bias from [16], our lower

bound cannot be achieved by a greedy assignment to the

input variables. Instead, we design a distribution of assign-

ments, whose expected value is at least (3). This improved

lower bound on val (shown in green in Figure 1) leads

to a 4/9-approximation by a sketch for the expression (3).

Namely, we give a O(log n)-space streaming algorithm that

approximates the green and red bounds in Figure 1, and

returns their maximum.

Perhaps surprisingly, the optimal approximation ra-

tio for Max-2OR significantly differs from both the

3/4-approximation for Max-2EOR, and the trivial 1/2-

approximation. The classical algorithm of [24] can be im-

plemented in the streaming setting, but it only provides a

(
√
5 − 1)/2 ≈ 0.61-approximation. We prove that the tight

bound for Max-2OR is even larger—
√
2/2. Proofs of these

upper and lower bounds are perhaps the most technical parts

of this work. It can be shown that various naive random

assignments to the variables used in 1/2- and (
√
5− 1)/2-

approximations cannot lead to better bounds. Instead we

construct a family of distributions of assignments which

depend on individual biases of the variables. We use these

distributions to prove the existence of assignments of some

high value v, and finally we show a way to approximate v in

logarithmic space. We remark that it is not always possible

to satisfy m
√
2/2 constraints, thus, we also prove non-trivial

0 0.2m 0.4m 0.6m 0.8m m0

0.2m

0.4m

0.6m

0.8m

m

bias(Ψ)

R
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o
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Figure 1. Upper and lower bounds on the maximum number val of
simultaneously satisfiable constraints of Max-2AND as a function of bias.

The blue line is the upper bound m+bias
2

, and the red line is the lower bound

max
(
m
4
, bias

)
from [16] (see Lemma 10). The green line is the new lower

bound m
4

+ bias2
4(m−2bias) from Lemma 11 in the interval bias ∈ [0,m/3].

upper bounds on val for the case when our estimate v is low

v < m
√
2/2. (See Lemma 13 and Lemma 14 for formal

statements of these results.)

Hardness results: We develop a framework for proving

hardness results for various Max-2CSP problems, and use

it to establish tight bounds for every Max-2CSP. This

framework is based on the communication complexity lower

bound of [14] for the Distributional Boolean Hidden Parti-

tion problem (DBHP) (which, in turn, extends the results

of [40], [41] for Boolean Hidden Matching and Boolean

Hidden Hypermatching). In DBHP, Alice holds a random

bipartition of [n], and Bob has a (random) graph G on n
vertices with some edges marked. Their goal is to use min-

imal communication to distinguish between the following

two cases: in the YES case, the set of Bob’s marked edges

is exactly the edges of G that cross Alice’s bipartition; while

in the NO case, a random subset of the edges is marked. [14]

proved a lower bound of Ω(
√
n) on the randomized one-way

communication complexity of DBHP.

For a set of allowed predicates G, we construct a reduc-

tion from DBHP to Max-CSP(G), which naturally induces

distributions DY and DN of Max-CSP(G) instances. Then

by a careful analysis we show that the gap between the

optimal solutions of instances from DY and DN achieves

αG + ε with high probability. This, amplified by a series of

repetitions, lets us conclude that a space-efficient (αG + ε)-
approximate algorithm would contradict the lower bound on

the communication complexity of DBHP.

In our framework, we give separate reductions from

DBHP to Max-2EAND and Max-2OR with approximation

ratios 4/9+ε and
√
2/2+ε, respectively. For the Max-2EOR



problem, we give an efficient streaming reduction from Max-
CUT to Max-2EOR which asserts that an α-approximation

for Max-2EOR implies an α/(3 − 2α)-approximation for

Max-CUT. This, equipped with the lower bound from [17],

proves a linear lower bound Ω(n) on the space complexity

of (3/4 + ε)-approximations of Max-2EOR.

Putting it all together: Finally, we show that our algo-

rithms for the five problems from Table I can be combined

together to handle every Max-2CSP problem. Similarly,

we prove that the established lower bounds for these five

problems cover all possible Max-2CSPs. This implies that

every Max-2CSP problem Max-CSP(F) is precisely as

hard to approximate as the hardest problem from Max-
TR, Max-2EOR, Max-2OR, Max-2EXOR, Max-2EAND
expressible in F , and finishes the proof of Theorem 1.

D. Structure

In Section II, we review some necessary background

knowledge. In Section III, we provide streaming algorithms

with optimal approximation ratios for all Max-2CSP prob-

lems. Sections IV and V are devoted to proving tight

bounds on the approximation ratios of streaming algorithms

from Section III. In particular, Section IV contains the

general framework for our lower bounds, and the reduc-

tions from Distributional Boolean Hidden Partition to Max-
2CSP problems. Section V provides a tight analysis of the

approximation ratios resulting from these reductions. We

defer all the proofs (including the proofs of Theorem 1 and

Theorem 2) to the full version of the paper [1].

II. PRELIMINARIES

Let N = {1, 2, . . . , } be the set of natural numbers, and

[n] = {1, 2, . . . , n} for any n ∈ N. We use 
 for the disjoint

union of two sets. For an 0 < ε < 1, B ∈ (1±ε) is shorthand

for 1− ε ≤ B ≤ 1+ ε. For ease of exposition we will abuse

notation and associate a vector X ∈ {0, 1}n with the set

X ⊆ [n], X = {i : Xi = 1}.

As we explained in Section I, we will

primarily consider Max-CSP(G) where G ∈
{TR,OR, {TR,OR},XOR,AND}. In order to get familiar

with these problems, we provide several examples in

Table II.

For an instance Ψ of a Max-2CSP problem, we denote

the number of clauses (constraints) in Ψ by m = |Ψ|.
We denote the set of Boolean variables of Ψ by X =
{x1, . . . , xn}. A literal � is called positive if � = xi, and

negative if � = ¬xi for some variable xi. A 1-clause is a

clause (constraint) which depends only on one variable. We

use pos
(1)
i (Ψ) and pos

(2)
i (Ψ) for the number of 1- and 2-

clauses where the variable xi appears positively. Similarly,

neg
(1)
i (Ψ) and neg

(2)
i (Ψ) denote the number of 1- and 2-

clauses containing ¬xi.

For an assignment σ : X → {0, 1} of the variables of

Ψ, we denote the number of clauses of Ψ satisfied by σ as

type G problem name special case

OR Max-2EOR Exact Max-2SAT

{TR,OR} Max-2OR Max-2SAT

XOR Max-2EXOR Max-CUT

AND Max-2EAND Max-DICUT

Table II
FOR EACH CASE G ∈ {OR, {TR, OR}, XOR, AND}, WE GIVE THE

NAME OF THE MAX-CSP(G) PROBLEM, AS WELL AS ONE

WELL-STUDIED SPECIAL CASE/ALTERNATIVE NAME OF THE PROBLEM.

valΨ(σ). We denote the maximum number of simultaneously

satisfiable clauses in Ψ as valΨ:

valΨ = max
σ

valΨ(σ) .

For α ∈ [0, 1] and a set of allowed predicates F , an

algorithm A is an α-approximation to the Max-CSP(F)
problem if on any input Ψ, A outputs v, such that with

probability 3/4, it holds that valΨ ≥ v ≥ α · valΨ . For

example, when α = 1, the algorithm solves Max-CSP(F)
exactly (with probability 3/4).

We will use the following definition of the bias of Ψ,

which generalizes the definition from [16] to all Max-
2CSPs with clauses of length 1 or 2.4

Definition 4 (Bias). The bias of a variable xi of an instance
Ψ is defined as

biasi(Ψ) =

1

2
·|2pos(1)i (Ψ) + pos

(2)
i (Ψ)− 2neg

(1)
i (Ψ)− neg

(2)
i (Ψ)| .

The bias vector of Ψ is a vector b ∈ R
n, where bi =

biasi(Ψ). Finally, the bias of the formula Ψ is defined as
the sum of biases of its variables:

bias(Ψ) =

n∑
i=1

biasi(Ψ)

Note that for every formula Ψ with |Ψ| = m clauses,

0 ≤ bias(Ψ) ≤ m.

In order to approximate the bias of a formula Ψ, we will

use a streaming algorithm for approximating the �1 norm of

the bias vector of Ψ.

Theorem 5 ([25], [26]). Given a stream S of poly(n)
updates (i, v) ∈ [n] × {1,−1}, let xi =

∑
(i,v)∈S v for

i ∈ [n]. There exists a 1-pass streaming algorithm, which
uses O(log n/ε2) bits of memory and outputs a (1 ± ε)-
approximation to the value �1(x) =

∑
i |xi| with probabil-

ity 3/4.

4For uniformity reasons, our definition of bias differs from the definition
in [16] by a multiplicative factor of 2.



Finally, we will use the lower bound on the space com-

plexity of streaming algorithms for approximate Max-CUT
from [17].

Theorem 6. For any constant ε > 0, any streaming algo-
rithm that (1/2 + ε)-approximates Max-CUT with success
probability at least 3/4 requires Ω(n) space.

A. Total variation distance

Definition 7 (Total variation distance of discrete random

variables). Let Ω be a finite probability space and X,Y
be random variables with support Ω. The total variation
distance between X and Y is defined as follows.

‖X − Y ‖tvd :=
1

2

∑
ω∈Ω

|Pr[X = ω]− Pr[Y = ω]| .

We will use the two following properties of the total

variation distance .

Proposition 8 ([14, Claim 6.5]). Let Ω be a finite probability
space and X,Y be random variables with support Ω.

1) (Triangle inequality) Let W be an arbitrary random
variable, then we have ‖X−Y ‖tvd ≥ ‖X−W‖tvd−
‖Y −W‖tvd.

2) (Data processing inequality) Let W be a random vari-
able that is independent of both X and Y , and f be
a function, then we have ‖f(X,W )− f(Y,W )‖tvd ≤
‖X − Y ‖tvd.

III. STREAMING ALGORITHMS

In this section, we present optimal approximation algo-

rithms for Max-2CSPs using O(log n) space. In Theorem 1

we will prove that it is actually sufficient to design optimal

algorithms for Max-CSP(G) in the following five cases

G ∈ {TR,OR, {TR,OR},XOR,AND}. In Section III-A,

we present the trivial algorithm for Max-2CSPs, this algo-

rithm turns our to be optimal for G ∈ {TR,OR,XOR}. Then

we develop and analyze optimal algorithms for the cases

G = AND and G = {TR,OR} in Sections III-B and III-C,

respectively.

For ease of exposition, we will assume that input instances

never contain unsatisfiable and tautological clauses (e.g.,
(x∧¬x), (x∨¬x)). This assumption is without loss of gener-

ality, because a streaming algorithm can ignore unsatisfiable

clauses and have a separate counter for tautological clauses.

A. Trivial Algorithm

First we present the trivial algorithm: this algorithm takes

a Max-2CSP instance Ψ, counts the number of clauses

m = |Ψ| in it, and outputs the expected number of clauses

satisfied by a uniform random assignment to the variables

of Ψ. In Section IV we will show that this algorithm gives

the best streaming approximation not only in the case of

Max-2XOR (the Max-CUT problem), but also in the case

of Max-2EOR.

Proposition 9 (Folklore). For a function f : {0, 1}2 →
{0, 1}, let αf ∈ [0, 1] denote the fraction of 1s in its truth
table. Then for a set of allowed predicates F , we define
αtr
F = minf∈F αf . There exists a streaming algorithm that

uses O(log n) space, and computes αtr
F -approximation for

Max-CSP(F) with success probability 1.

For example, for the problem Max-2EOR (i.e., F =
{OR}), we have αOR = 3/4, as every clause is satisfied

by 3 out of 4 possible assignments to its variables. Since

the problem Max-2OR (i.e., F = {TR,OR}) also allows

clauses of length 1 (which are satisfied by 1 out of 2 possible

assignments to the variable), we have α{TR,OR} = 1/2.

Algorithm 1 αtr
F -approximation streaming algorithm for

Max-CSP(F)

Input: Ψ—an instance of Max-CSP(F).
1: Use O(log n) bits to compute m = |Ψ|.

Output: v = αtr
F ·m.

Remark. For an (αtr
F − ε)-approximation, one can reduce

the space usage of Algorithm 1 to O (log logn+ log(1/ε))
bits by using the approximate counting algorithm of Mor-
ris [42], [43].

Remark. Formally, Algorithm 1 only guarantees a 1/2-
approximation for the problem Max-CSP(TR), i.e., the
problem where all clauses have length 1. In this case, in
order to achieve a (1 − ε)-approximation using O(log n)
space for arbitrary constant ε > 0, one can use an �1-sketch
(Theorem 5) to approximate the bias vector of the input
formula. Indeed, it is easy to see that for an instance Ψ of
Max-CSP(TR) with m clauses, valΨ = (m+ bias(Ψ))/2.

We give αtr
G for relevant sets of predicates in Table III.

Type G TR OR {TR,OR} XOR AND

αtr
G 1 3

4
1
2

1
2

1
4

α
opt
G 1 3

4

√
2
2

1
2

4
9

Table III
FOR VARIOUS SETS OF PREDICATES G , THE TABLE PRESENTS (I)
αTR
G —THE APPROXIMATION RATIO GUARANTEED BY THE TRIVIAL

ALGORITHM FOR MAX-CSP(G), AND (II) αOPT
G —THE OPTIMAL

APPROXIMATION RATIO OF STREAMING ALGORITHMS, PROVEN IN

SECTIONS III AND IV FOR MAX-CSP(G). WE HAVE SUPPRESSED

(1− ε) MULTIPLICATIVE FACTORS FOR THE CASE G = TR.

As we show in the following sections, this trivial approx-

imation algorithm can be improved for the Max-2AND and

Max-2OR problems.

B. Algorithm for Max-2AND and Max-2EAND

Consider a Max-2AND instance Ψ′ where all clauses

are of length 1 or 2. Note that Ψ′ can be written as



an equivalent Max-2AND instance Ψ, where 1-clauses of

Ψ′ are replaced with 2-clauses containing the same literal

twice.5 In this section, we will consider such representation

of every instance of Max-2AND, i.e., we assume that all

clauses have exactly 2 (not necessarily distinct) literals. Note

that in this case, the bias (see Definition 4) of Ψ is simply

bias(Ψ) =
1

2

n∑
i=1

|pos(2)i (Ψ)− neg
(2)
i (Ψ)| ,

where pos
(2)
i (Ψ) and neg

(2)
i (Ψ) are the numbers of occur-

rences of xi and ¬xi in 2-clauses.

[16] gave lower and upper bounds for the maximum

number of satisfied clauses valΨ in terms of bias(Ψ) and

m (the number of clauses in Ψ). For the sake of being

self contained, and to verify that these bounds hold for

our slightly more general case where 2-clauses may contain

repeated literals, we present the proofs of these bounds in

the full version of the paper.

Lemma 10 ([16]). Let Ψ by a Max-2AND instance with m
clauses. Then

bias(Ψ) ≤ valΨ ≤ m+ bias(Ψ)

2
.

We improve the lower bound of [16] in the important

regime of bias(Ψ) ≤ m/3 in the following lemma.

Lemma 11. biaslb Let Ψ by a Max-2AND instance with m
clauses and bias(Ψ) ≤ m/3. Then

valΨ ≥ m

4
+

bias(Ψ)2

4(m− 2bias(Ψ))
≥ 2(m+ bias(Ψ))

9
.

The proof of Lemma 11 is based on biased random
sampling, and appears in the full version of the paper. For

a pictorial view of this improvement, see Figure 1.

We are now ready to present a streaming algorithm that

(4/9)-approximates Max-2AND and Max-2EAND.

Theorem 12 ( 49–approximation for Max-2AND and

Max-2EAND). For any ε ∈ (0, 0.01), there exists a stream-
ing algorithm that uses space O(ε−2 log n) and computes(
4
9 − ε

)
-approximation for Max-2AND and Max-2EAND

with success probability at least 3/4.

C. Algorithm for Max-2OR

For the case of Max-2OR, it is crucial to distinguish 1-

and 2-clauses. Therefore, we treat clauses containing two

5We only apply this transformation to Max-2AND instances, because
here it plays in our favor. For example, an AND clause with repeated literals
is satisfied by a uniform random assignment with probability 1/2, while an
AND clause with distinct variables is satisfied with probability only 1/4.
For the case of OR, a clause with repeated literals would be satisfied only
with probability 1/2, while an OR clause with distinct variables would be
satisfied with probability 3/4.

Algorithm 2
(
4
9 − ε

)
-approximation streaming algorithm

for Max-2AND
Input: Ψ—an instance of Max-2AND. Error parameter ε ∈

(0, 0.01).
1: Approximate the �1-norm of the bias vector with error

δ = ε/2 (Theorem 5):

Compute B ∈ (1± δ) bias(Ψ).
2: Count the number of clauses m = |Ψ|.
3: if B ∈ [

0, m
3 (1− δ)

]
then

Output: v = 2(m+B)
9(1+δ) .

4: else
Output: v = B

(1+δ) .

identical literals as 1-clauses. We denote the number of 1-

clauses of Ψ by m1, and the number of 2-clauses by m2.

In particular, the total number of clauses is m = m1 +m2.

In Lemmas 13 and 14 we give upper and lower bounds on

valΨ in terms of m1,m2, and bias(Ψ). In this section we

prove that the ratio between the presented lower and upper

bounds is bounded by
√
2
2 , and that there is a O(log n)-space

algorithm that sketches the lower bounds of Lemma 14 on

valΨ.

When the bias of Ψ is large (say, bias(Ψ) = m), it might

be possible to satisfy all m clauses of Ψ, so no non-trivial

upper bounds on valΨ can be proven in terms of bias in this

case. Even if the bias is low (say, bias(Ψ) = 0), but the

formula does not contain 1-clauses, it might still be possible

to satisfy all clauses of Ψ. (E.g., if all clauses of Ψ contain

one positive and one negative literal.) It turns out that for the

optimal approximation ratio, we need to bound from above

valΨ in the case of low bias and large number of 1-clauses.

Lemma 13. Let Ψ be a Max-2OR instance with m1 1-
clauses, and m2 2-clauses. Then

val(Ψ) ≤ min

{
m1 +m2,

m1 + 2m2 + bias(Ψ)

2

}
.

The trivial algorithm guarantees that for every Max-2OR
instance Ψ, valΨ ≥ m1/2 + 3m2/4. While this bound is

tight in terms of m1 and m2, for instances with high bias >
m2/2, we prove a better lower bound of val ≥ (m1+m2+
bias(Ψ))/2. Clearly, this bound is not sufficient for a better

than 1/2-approximation in the case of low bias(Ψ) = 0.

In order to handle this case, we design a distribution of

assignments which in expectation satisfy a large number of

clauses in formulas with low bias.

Lemma 14. Let Ψ be a Max-2OR instance with m1 1-
clauses, and m2 2-clauses. Then leftmargin=*

1) valΨ ≥ m1+m2+bias(Ψ)
2 ;

2) if bias(Ψ) ≤ m2, then

valΨ ≥ m1

2
+

3m2

4
+

bias(Ψ)2

4m2
.



We will also use the following simple claim.

Claim 15. For every x ≥ 0, y > 0:

2x+ 3y + x2/y

4(x+ y)
≥

√
2

2
.

Now we are ready to present an approximation algorithm

for the Max-2OR problem.

Theorem 16 (
√
2
2 –approximation for Max-2OR). For any

ε ∈ (0, 0.01), there exists a streaming algorithm that uses
space O(ε−2 log n) and computes

(√
2
2 − ε

)
-approximation

for Max-2OR with success probability at least 3/4.

Algorithm 3
(√

2
2 − ε

)
-approximation streaming algorithm

for Max-2OR
Input: Ψ—an instance of Max-2OR. Error parameter ε ∈

(0, 0.01).
1: Approximate the �1-norm of the bias vector with error

δ = ε/4 (Theorem 5):

Compute B ∈ (1± δ) bias(Ψ).
2: Count the number of 1- and 2- clauses m1 and m2.

3: if B ∈ [0, (1− δ)m2] then
Output: v = (1−δ)2(2m1+3m2+B2/m2)

4 .

4: else
Output: v = (1−δ)(m1+m2+B)

2 .

D. Algorithm for for Max-kSAT

We first extend the notion of bias which we defined in

Section II to Max-kSAT instances. Similarly, neg
(r)
i (Ψ)

denotes the number of r-clauses containing ¬xi.

Definition 17. The bias of a variable xi of an instance Ψ
of Max-kSAT is defined as

biasi(Ψ) =

∣∣∣∣∣∑
r

1

2r−1

(
pos

(r)
i (Ψ)− neg

(r)
i (Ψ)

)∣∣∣∣∣ .
The bias vector of Ψ is a vector b ∈ R

n, where bi =
biasi(Ψ). Finally, the bias of the formula Ψ is defined as the
sum of biases of its variables: bias(Ψ) =

∑n
i=1 biasi(Ψ).

In the full version of the paper we show that Algorithm 4

finds a (
√
2/2 − ε)-approximation for Max-kSAT. This,

together with the (
√
2/2 + ε) lower bound for Max-2SAT

from Theorem 1, finishes the proof of Theorem 2.

IV. SPACE LOWER BOUNDS FOR APPROXIMATING

BOOLEAN MAX-2CSP

In this section, we establish space lower bounds for

streaming approximations for all Max-2CSPs. In The-

orem 1 we will show that it suffices to prove lower

bounds for Max-CSP(G) for the following four cases

G ∈ {OR, {TR,OR},XOR,AND}. A linear space lower

Algorithm 4 (
√
2/2−ε)-approximation streaming algorithm

for Max-kSAT)
Input: Ψ—an instance of Max-kSAT. Error parameter ε ∈

(0, 0.01).
1: Approximate the �1-norm of the bias vector with error

δ = ε/8 (Theorem 5):

Compute B ∈ (1± δ) bias(Ψ).
2: Use three counters to count the number of 1-clauses,

m1, the number of 2-clauses, m2, and the number of

clauses that depend on at least three variables, m≥3.

3: if B ∈
[
0, (1− δ)(m2 ·

√
2
2 +m≥3 · 5

√
2

8 )
]

then

Output: v =
(1−δ)2(4m1+6m2+7m≥3)

8 + (1−δ)2B2

4(m2+2.5m≥3)
.

4: else
Output: v =

(1−δ)(m1+m2+m≥3+B)

2 .

bound for the case G = XOR is proven by Kapralov and

Krachun [17]. We use this result to prove a linear lower

bound for the case F = OR in Section IV-A. We prove the

two remaining lower bounds by reductions from the commu-

nication complexity problem DBHP [14]. In Section IV-B,

we present a general framework for proving such lower

bounds, while in Sections IV-C and IV-D we give specific

reductions for the Max-2AND and Max-2OR problems.

Finally, some technical results used in the framework in are

deferred to the full version of the paper.

A. From Max-2EXOR to Max-2EOR
In this section, we give a simple streaming reduction from

Max-CUT to Max-2EOR, which asserts that a better than

trivial 3/4-approximation for Max-2EOR would lead to a

better then trivial 1/2-approximation for Max-CUT. Since

the latter is known to require linear space [17], we get a

linear lower bound on the space complexity of (3/4 + ε)-
approximations of Max-2EOR.

Lemma 18 (Folklore). Let ΨXOR be a Max-2EXOR in-
stance with m clauses. Consider the following reduction
from ΨXOR to ΨOR, a Max-2EOR instance: For every clause
(x⊕ y) in ΨXOR, we add clauses (x∨ y) and (¬x∨¬y) to
ΨOR. Then

valΨOR = m+ valΨXOR .

Corollary 19. For any constant ε > 0, any streaming
algorithm that (3/4 + ε)-approximates Max-2EOR with
success probability at least 3/4 requires Ω(n) space.

B. Distributional Boolean Hidden Partition (DBHP) Prob-
lem

We prove lower bounds for Max-2EAND and Max-2OR
in two steps. Recall that the goal of the players in DBHP
is to distinguish between two distributions YES and NO.

First, we show a reduction from DBHP to Max-CSP(G).
This induces a YES and a NO distributions of instances



of Max-CSP(G), corresponding to the YES and NO cases

of DBHP. Next, we show that with high probability there

is a gap between the optimal value of instances from the

YES and NO distributions. The ratio α between these

optimal values will be the upper bound on the approximation

ratio of space-efficient streaming algorithms. Informally,

any (α + ε)-approximate streaming algorithm with space s
distinguishes the distributions YES and NO, and, therefore,

can be converted into a communication protocol for DBHP
that uses s bits of communication. Since Kapralov, Khanna,

and Sudan [14] proved that any communication protocol for

DBHP requires at least Ω(
√
n) bits of communication, the

corresponding space lower bound for streaming algorithms

follows.

Before presenting the framework for streaming lower

bounds, we need to define DBHP and adjust it to our setting.

For n ∈ N and p ∈ [0, 1], by G(n, p) we denote the Erdös-

Rényi distribution of undirected graphs with n vertices,

where each edge is chosen independently with probability p.

Definition 20 (DBHP). Let n ∈ N, β ∈ (0, 1/16) be
parameters. Let X∗ ∈ {0, 1}n be a uniformly random vector,
and G be a random graph sampled from G(n, 2β/n). Let r
be the number of edges in G, and M ∈ {0, 1}r×n be the
edge-vertex incidence matrix of G. We will consider the
following three distributions of a vector w ∈ {0, 1}r.

• (YES distribution) w = MX∗ ∈ {0, 1}r, where the
arithmetic is over F2;

• (NO distribution) w = 1 + MX∗ ∈ {0, 1}r, where
1 ∈ F

r
2 is the all 1s vector, and the arithmetic is over

F
r
2;

• (NO distribution) w be uniformly sampled from {0, 1}r.

For a pair of distinct distributions D �= D′ ∈
{YES,NO,NO}, we consider the following decisional 2-
player one-way communication problem DBHPD,D′(n, β).
Alice receives X∗ ∈ {0, 1}n, and Bob receives (M,w)
as their private inputs, where w is sampled from D
or D′ with probability 1/2. A communication proto-
col Π for DBHPD,D′(n, β) consists of a message m
sent from Alice to Bob. The complexity of the pro-
tocol Π is the length of the message m: |Π| :=
|m|. The goal of the players is to distinguish between
the distributions D and D′, and the success probabil-
ity of Π is defined as Pr(M,w)∼D[Bob outputs D]/2 +
Pr(M,w)∼D′ [Bob outputs D′]/2.

[14] showed that for any constant δ > 0, any proto-

col that solves DBHPYES,NO(n, β) with success probability

(1/2 + δ) requires Ω(β3/2
√
n) bits of communication. The

next lemma shows that the same lower bound extends to

the DBHPYES,NO problem by an application of the triangle

inequality.

Lemma 21 (A modification of [14, Lemma 5.1]). Let
β ∈ (n−1/10, 1/16) and s ∈ (n−1/10, 1) be parameters.

Any protocol Π for DBHPYES,NO(n, β) that uses s
√
n

bits of communication cannot distinguish between the YES
and NO distributions with success probability more than
1/2 + c · (β3/2 + s) for some constant c > 0 and all large
enough n.

For ease of exposition, now we will use DBHP(n, β) to

denote DBHPYES,NO(n, β).

Finally, note that the graph G in the definition of DBHP
is extremely sparse (in expectation it has r ≈ βn < 0.1n
edges), and, thus, it is not immediately useful for designing

hard instances of Max-2CSP problems. In order to over-

come this issue, [14] used DBHP where Bob receives a

collection of T messages all sampled either from the YES
or NO distribution. Now the union of the T sparse graphs

received by Bob can be used in reductions to Max-2CSPs.

Definition 22 (DBHP with T messages). For any β ∈
(0, 1/16) and n, T ∈ N, we define DBHP(n, β, T ) as
follows. Let X∗ ∈ {0, 1}n be a uniformly random vector,
and for 1 ≤ t ≤ T , let Gi be a random graph sampled
from G(n, 2β/n), and Mi be the edge-vertex incidence
matrix of Gi. Alice receives X∗, and Bob receives a list
(M1, w1), . . . , (MT , wT ), where with probability 1/2 all
wt = MtX

∗ (YES case), and with probability 1/2 all
wt = 1 + MtX

∗ (NO case). The goal of the players
is to have a non-trivial advantage over a random guess
in distinguishing between the two distributions, while only
communication from Alice to Bob is allowed.

Reduction from DBHP: A reduction from

DBHP(n, β, T ) to Max-CSP(G) is defined by a pair

of algorithms, A and B. Alice receives her input vector

X∗ ∈ {0, 1}n, runs A on the input X∗, and outputs a set

of Max-CSP(G)-clauses. Bob receives a collection of T
pairs (Mt, wt), applies B to each of them, and outputs T
sets of Max-CSP(G)-clauses. Finally, the resulting instance

of the Max-CSP(G) problem is the union of clauses from

A(X∗),B(M1, w1), . . . ,B(MT , wT ).

The reduction above naturally induces two distributions

DY (β, T,A,B) and DN (β, T,A,B) of Max-CSP(G) in-

stances, corresponding to the YES and NO distributions

of (Mt, wt). Let us pick some vY and vN , such that

PrΨ∼DY [valΨ ≥ vY ] > 1 − o(1) and PrΨ∼DN [valΨ ≤
vN ] > 1 − o(1). Note that for any α > vN/vY ,

an α-approximate streaming algorithm for Max-CSP(G)
distinguishes the two distributions DY (β, T,A,B) and

DN (β, T,A,B) with high probability. The following the-

orem states that any streaming algorithm that distinguishes

these two distributions, requires space Ω(
√
n). In particular,

any streaming α-approximation for Max-CSP(G) requires

space at least Ω(
√
n).

Theorem 23 (Reduction from DBHP with T messages).
Let c > 0 be the constant from Lemma 21. For every
T ∈ N, 0 < β ≤ 1/(10cT )2/3, and reduction (A,B)



from DBHP to Max-CSP(G), any streaming algorithm
that distinguishes DY (β, T,A,B) and DN (β, T,A,B) with
success probability at least 3/4 requires space at least

1
40cT · √n.

The proof of Theorem 23 follows the proofs in [14] by

using the standard hybrid argument as well as the data

processing inequality for total variation. First we describe

reductions from DBHP to Max-2EAND and Max-2OR in

Sections IV-C and IV-D, respectively.

C. From DBHP to Max-2EAND

Now, we describe the reduction from DBHP to Max-
2EAND. To describe the reduction, it suffices to specify the

parameters β and T , and the algorithms AEAND and BEAND.

Recall that we associate a vector X∗ ∈ {0, 1}n with the

set of its ones: X ⊆ [n], X = {i : Xi = 1} . Also, recall

that the input of Bob, (M,w), consists of an edge-vertex

incidence matrix M ∈ {0, 1}r×n and a vector w ∈ {0, 1}r.

In particular, every row of M has exactly two ones.

Reduction from DBHP to Max-2EAND

• Let c > 0 be the constant from Lemma 21.

For a given error parameter ε ∈ (0, 1), let T =
(10000/ε2)3 · (10c)2 and β = 1

(10cT )2/3
such

that βT = 10000/ε2.

• AEAND(X∗): Sample βnT/4 independent pairs

(i, j) ∈ X∗ ×X∗, and for each of them output

the clause (xi ∧ ¬xj).
• BEAND(M,w): Let r be the number of rows in

M . For each 1 ≤ k ≤ r with wk = 1, let the

1s in the kth row of M be at the ith and jth

positions, then output two clauses: (xi ∧ ¬xj)
and (¬xi ∧ xj).

Lemma 24. lemma For any ε ∈ (0, 1), let
(β, T,AEAND,BEAND) be the parameters described in
the above reduction. For a Max-2EAND instance Ψ, let
mΨ denote the number of clauses in Ψ. Then

Pr
Ψ∼DY (β,T,AEAND,BEAND)

[
valΨ <

(
3

5
− ε

)
·mΨ

]
= o(1)

and

Pr
Ψ∼DN (β,T,AEAND,BEAND)

[
valΨ >

(
4

15
+ ε

)
·mΨ

]
= o(1) .

An immediate corollary of Theorem 23 and Lemma 24

is the desired lower bound for streaming approximation of

Max-2EAND.

Corollary 25. For any constant ε ∈ (0, 1), any streaming
algorithm that (4/9 + ε)-approximates Max-2EAND with
success probability at least 3/4 requires Ω(

√
n) space.

D. From DBHP to Max-2OR

Now, we describe the reduction from DBHP to

Max-2OR. Again, it suffices to specify the parameters β
and T , and the algorithms AOR and BOR.

Reduction from DBHP to OR

• Let c > 0 be the constant from Lemma 21.

For a given error parameter ε ∈ (0, 1), let T =
(10000/ε2)3 · (10c)2 and β = 1

(10cT )2/3
such

that βT = 10000/ε2.

• AOR(X∗): Sample
√
2−1
2 · βnT independent

copies of i ∈ X∗, and for each of them output

the 1-clause (xi). Sample another
√
2−1
2 · βnT

independent copies of j ∈ X∗, and for each of

them output the 1-clause (¬xj).
• BOR(M,w): Let r be the number of rows in

M . For each 1 ≤ k ≤ r with wk = 1, let the

the 1s in the kth row of M be at the ith and

jth positions, then output two clauses: (xi∨xj)
and (¬xi ∨ ¬xj).

Lemma 26. For any ε ∈ (0, 1), let (β, T,AOR,BOR) be
the parameters described in the above reduction. For a
Max-2OR instance Ψ, let mΨ denote the number of clauses
in Ψ. Then

Pr
Ψ∼DY (β,T,AOR,BOR)

[valΨ = mΨ] = 1

and

Pr
Ψ∼DN (β,T,AOR,BOR)

[
valΨ >

(√
2

2
+ ε

)
·mΨ

]
= o(1) .

Now, the desired lower bound for any streaming approx-

imations for Max-2OR immediately follows from Theo-

rem 23 and Lemma 26.

Corollary 27. For any constant ε ∈ (0, 1), any streaming
algorithm that (

√
2/2 + ε)-approximates Max-2OR with

success probability at least 3/4 requires Ω(
√
n) space.

V. ANALYSIS FOR THE GAP OF MAX-2EAND AND

MAX-2OR INSTANCES

In order to prove Lemma 24 and Lemma 26, we present an

intuitive and graphical view of the reductions. In this section,

we interchangeably work with one of the following represen-

tations for σ in order to simplify the presentation. Previously,

σ was defined as a function that maps {x1, x2, . . . , xn} to

{0, 1}. It can be represented by a vector in {0, 1}n which

has σ(xi) as its ith coordinate. It can also be represented by

the set {i ∈ [n] : σ(xi) = 1}.

Recall that in DBHP, Bob has private inputs M ∈ {0, 1}r
and w ∈ {0, 1}r, where M is the edge-incidence matrix of



an n-vertex graph G and w is an indicator vector. Specifi-

cally, M corresponds to a graph sampled from G(n, 2β/n)
and r denotes the number of edges in this graph. We focus

on the subgraph H ⊆ G that contains only those edges

from M whose corresponding entry in w is 1. We examine

the distributions of this subgraph H under different input

distributions to DBHP. Recall that we are interested in

two input distributions to DBHP: YES and NO. In both

of these distributions, we first sample a hidden partition

X∗ ∈ {0, 1}∗ and then sample T independent graphs

from G(n, 2β/n) where the edge-vertex incidence matrices

of these graphs are denoted as {Mt}t∈[T ]. In the YES
distribution, wt = MtX

∗ and in the NO distribution,

wt = 1 − MtX
∗. We will abuse notation and call the

corresponding distributions of the subgraph H as YES and

NO respectively. We summarize the properties of these

distributions in the following lemma.

Figure 2. For a random graph on vertex set [n], we partition the edges
into two sets: (i) edges that lie across X∗ and X∗ and (ii) edges that lie
in X∗ or X∗. In the YES distribution, only the (i) type edges are present
in H . In the NO distribution, only the (ii) type edges are present in H .

Lemma 28 (Graphical view of DBHP). For any n ∈ N large
enough and ε ∈ (0, 0.25), let T = (10000/ε2)3 · (10c)2 and
β = 1

(10cT )2/3
such that βT = 10000/ε2. Let YES and

NO be the distributions of the subgraph H induced from
DBHP(n, β, T ) as described above, and let mDBHP denote
the total number of edges in H . For every X∗, σ ∈ {0, 1}n,
define mcross(σ) to be the number of edges (i, j) such that
(i) σ(xi) �= σ(xj) and (ii) X∗

i = X∗
j . We have the following.

• (Size of X∗) For each distribution YES,NO and for any
constant ε′ ∈ (0, 1) such that ε′ ≥ ε/10, we have

Pr
[∣∣∣|X∗| − n

2

∣∣∣ > ε′ · n
]
= o(1) .

• (Number of edges) For each distribution YES,NO and for
any constant ε′ ∈ (0, 1) such that ε′ ≥ ε/10, we have

Pr

[∣∣∣∣mDBHP − βnT

2

∣∣∣∣ > ε′ · βnT
]
= o(1) .

• (NO distribution) For any constant ε′ ∈ (0, 1) such that
ε′ ≥ ε/10, we have

Pr
NO

[∃σ ∈ {0, 1}, mcross(σ) > M ] = o(1) ,

where

M =

( |σ ∩X∗| · |σ ∩X∗|+ |σ ∩X∗| · |σ ∩X∗|
n2

)
· 2βnT

+ ε′ · βnT .

OPEN QUESTIONS

Our work gives optimal approximation ratios for all

Boolean maximum constraint satisfaction problems with

constraints of length at most two. It would be interesting

to understand the complexity of constraint languages with

arity greater than two, and larger alphabet sizes.

In terms of lower bounds, we show that better than
4
9 - and

√
2
2 -approximations for Max-2-AND and Max-2-

OR require space Ω(
√
n). Can we improve these space

lower bounds to Ω(n), matching the space requirements of

standard algorithms that give 1− ε approximation?
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[30] J. Håstad, “Every 2-CSP allows nontrivial approximation,”
Comput. Complex., vol. 17, no. 4, pp. 549–566, 2008.

[31] P. Raghavendra, “Optimal algorithms and inapproximability
results for every CSP?” in STOC 2008, 2008, pp. 245–254.

[32] P. Raghavendra and D. Steurer, “Graph expansion and the
unique games conjecture,” in STOC 2010, 2010, pp. 755–764.

[33] D. P. Williamson, “Lecture notes on approximation algo-
rithms,” Technical Report RC–21409, IBM, Tech. Rep., 1999.

[34] M. Poloczek and G. Schnitger, “Randomized variants of
Johnson’s algorithm for MAX SAT,” in SODA 2011. SIAM,
2011, pp. 656–663.

[35] M. Poloczek, “Bounds on greedy algorithms for MAX SAT,”
in ESA 2011. Springer, 2011, pp. 37–48.

[36] A. Van Zuylen, “Simpler 3/4-approximation algorithms for
MAX SAT,” in WAOA 2011. Springer, 2011, pp. 188–197.

[37] M. Poloczek, G. Schnitger, D. P. Williamson, and
A. Van Zuylen, “Greedy algorithms for the maximum sat-
isfiability problem: Simple algorithms and inapproximability
bounds,” SIAM J. Comput., vol. 46, no. 3, pp. 1029–1061,
2017.

[38] S. Khot and N. K. Vishnoi, “On the unique games conjecture,”
in FOCS 2005, vol. 5, 2005, p. 3.

[39] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell, “Optimal
inapproximability results for MAX-CUT and other 2-variable
CSPs?” SIAM J. Comput., vol. 37, no. 1, pp. 319–357, 2007.

[40] D. Gavinsky, J. Kempe, I. Kerenidis, R. Raz, and R. De Wolf,
“Exponential separations for one-way quantum communica-
tion complexity, with applications to cryptography,” in STOC
2007, 2007, pp. 516–525.

[41] E. Verbin and W. Yu, “The streaming complexity of cycle
counting, sorting by reversals, and other problems,” in SODA
2011. SIAM, 2011, pp. 11–25.

[42] R. Morris, “Counting large numbers of events in small
registers,” Commun. ACM, vol. 21, no. 10, pp. 840–842, 1978.

[43] A. Gronemeier and M. Sauerhoff, “Applying approximate
counting for computing the frequency moments of long data
streams,” Theory Comput. Syst., vol. 44, no. 3, pp. 332–348,
2009.


