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Abstract—Performance impacts are commonly observed in
cellular networks and are induced by several factors, such as
software upgrade and configuration changes. The variability in
traffic patterns across different granularities can lead to impact
cancellation or dilution. As a result, performance impacts are
hard to capture if not aggregated over problematic features.
Analyzing performance impact across all possible feature com-
binations is too expensive. On the other hand, the set of features
that causes issues is unpredictable due to the highly dynamic
and heterogeneous cellular networks. In this paper, we propose
a novel algorithm that dynamically explores those network
feature combinations that are likely to have problems by using a
summary structure Sketch. We further design a neural network
based algorithm to localize root cause. We achieve high scalability
in neural network by leveraging the Lattice and Sketch structure.
We demonstrate the effectiveness of our impact detection and
diagnosis through extensive evaluation using data collected from
a major tier-1 cellular carrier in US and synthetic traces.

I. INTRODUCTION

Motivation: Cellular networks have been a phenomenal
success. The orders of magnitude growth in the number
of connected devices and base stations calls for not only
innovation in wireless communication but also advances in
network management and analytics. Timely detection and
diagnosis is required to accurately capture any unexpected
impacts and resolve them. Today, network operation teams
can detect and diagnose massive service impacts introduced
by network changes. Performance impact is a statistically sig-
nificant change in form of a degradation, or an improvement.
An impact is categorized as massive based on its severity and
is typically actionable by the operation teams (e.g., bug fixes
or reboots to resolve a degradation).

Cellular networks are very heterogeneous due to different
locations, parameters, and user behaviors. Each base station
in the network is associated with a vector of features (e.g.,
base station software, hardware, radio parameters, handover
parameters, carrier frequencies, and phone types). It is easy
to catch impact at the entire network level or an individual
base station using statistical analysis. Existing capabilities
are well equipped to deal with massive impacts that are
observed at coarse granularities (e.g., network-wide impacts)
or finer granularities (e.g., individual base stations or edge
routers) as relevant alarms are raised. However, if an impact is
induced due to a specific feature combination and such impact
is not large enough at the network-wide level, the impact
can go unnoticed. Motivated by this observation, we explore
how to automatically discover the feature combinations that
experience significant change and pinpoint root causes.

Challenges: Analyzing performance impact over every fea-
ture subset can be very expensive as search space is expo-
nential. Ideally, we want to restrict ourselves to only ex-
plore “promising” subsets — subsets which show significant
performance impact. The main problem is how to extract
these promising subsets. If we start our analysis from coarse
granularity, performance impact can be diluted and canceled
by other traffic that does not experience major changes or
experiences opposite performance impact. Moreover, at the
base station, the impact may not be significant enough to raise
a statistical alarm.

Localizing the set of features that contribute to the per-
formance impact is also very challenging in such scenarios.
This is because the aggregate that is a subset or superset of
problematic features can also show significant performance
impact. Suppose we have two problematic features A and
B. If we aggregate performance impact over data points
with feature A or B only, we might see similar performance
impact. Moreover, analysis of performance over aggregate
A, B,C where C' is another feature will also show strong
performance impact. In such scenarios, we want to find the
set that most accurately characterizes the performance impact
(i.e., the intersection of A and B in this case).

Our approach: In this paper, we develop principled ap-
proaches for multi-dimensional impact detection and root
cause analysis. We first propose an analysis structure Lattice-
Sketch, which maintains statistics over feature combinations
and on-demand zooms into a fine-grained level if an impact is
observed at a higher level. This on-demand zoom-in is enabled
using summary algorithm Sketch, which reveals the impact of
a fine-grained level at a coarse granularity.

After the performance impacts are identified, the operators
need to diagnose the set of features that lead to the impacts.
We develop an algorithms based on neural network. It takes the
performance associated with various feature combinations as
the input and output the root cause by learning a function that
maps from the feature values to the performance. We choose
neural network because it can learn non-linear functions. We
further leverage the Lattice-Sketch to reduce dimensionality of
our root cause analysis.

To demonstrate the effectiveness of our work, we evaluate
our approaches using both real and synthetic data. Our results
show that using a sketch dimension of 5 allows us to accurately
detect anomalies involving multiple features in carrier data.
We stress test different parameters in our algorithm to show



how our algorithm scales with varying numbers of features
and anomalies. Moreover, we observe high accuracy of root
cause detection using our neural network approach.

II. MULTI-DIMENSIONAL ANOMALY DETECTION

Performance anomalies can be very challenging to detect in
cellular networks due to a high heterogeneity, and different
scales at which they affect the network. Some anomalies
affect only a subset of network and cannot be captured by
statistical analysis applied to overall traffic. Current practice
used by the operation team is ad-hoc. Some providers just
keep track of statistics associated with individual features (e.g.,
number of dropped calls for certain hardware version), but fail
to detect anomalies when they occur due to an interaction
between multiple features. One may try to keep track of
statistics corresponding to all possible feature combinations,
and apply a standard change detection technique to detect if
any feature combination experiences an anomaly. For N binary
features, there are a total of Y ,_, 2" % C = 3V feature
combinations, which is prohibitively expensive for a large
N. For simplicity and understanding, we use binary features
for mathematical analysis. However, as we will show later
that we apply our algorithm on carrier data which has non-
binary features. As networks densify in 5G, the number and
cardinality of features is bound to increase, which exacerbates
the scalability issue.

A. Problem Formulation

Input: Input to an anomaly detection engine is a stream
of records where each record is defined by a set of feature
values and associated performance metric for that record:
(f1, f2y -y fN|D), Where f; is the i-th feature value and p is
the associated performance metric. Numerical features can be
converted into categorical features using domain knowledge.
For example, throughput can be mapped to high/low traffic.
Depending on the data, the performance metric can be call
dropping probability, latency, throughput, or loss rates etc.
Network operators also have historical records, which can be
used for comparison. An epoch can be minutes, hours, days
or weeks and it depends on the time granularity at which
the anomalies need to be detected. So a final record becomes
(f1, f2s s fulp—K:—1,P0), Where p_r. 1 and py denote the
performance over the previous K epochs and the current
epoch, respectively. Our goal is to build a detection engine that
automatically detects these combinations without exploring the
whole search space which is exponential.

B. Lattice based Anomaly Detection

Lattice is used to explore performance for multi-way feature
interactions. Lattice starts with a root at level 0, splits into
multiple branches based on one feature value at level 1, and
splits into more branches based on a combination of two
features at level 2, and so on. In general, the nodes at level n
capture the statistics for combinations of n features. Building a
complete lattice can be expensive for large number of features
or features with high cardinality. To improve the scalability, we

explore only those branches that see anomalies. Specifically,
we start with only the first level of lattice and use the incoming
data to update the statistics for the first level only. If a node
becomes anomalous (statistics cross a threshold), then we
expand our statistics collection to next level. Our goal is
to grow the lattice to include all possible anomalies while
minimizing the lattice size.

Limitations: The above approach is intuitive, but anomalies
involving multiple features may not be big enough to show up
at a coarse level. For example, consider there is an anomaly
in a 3-way feature combination: f; = 0,fo = 0,f3 = 0.
Aggregation at f; = 0 dilutes the effect of anomalous traffic
if there is a lot of non-anomalous traffic. This does not trigger
further lattice expansion and thus fail to detect anomalies.

C. Lattice-Sketch based Anomaly Detection

In order to efficiently catch smaller anomalies, we seek to
represent the incoming data in such a way that we can reliably
detect the existence of anomalies. There has been works on
analyzing massive data streams (e.g., counting the number of
flows [1], heavy hitter detection [2], change detection [3])
without keeping lots of state. In these works, a flow is a key
value pair (k,v). Since the number of flows can be massive,
one can’t afford to keep per-flow state. Instead, summary
structures are used that can answer queries in an approximate
fashion with provable probabilistic accuracy guarantees. These
data structures are effective in detecting heavy hitters. But for
anomaly detection, we need to detect a large change. Unlike
heavy hitters, where an ancestor of a heavy hitter is also a
heavy hitter, an ancestor of a node that experiences a large
change may not see a large change due to dilution and/or
cancellation. Therefore the existing works do not apply in our
context. We use Skefch to detect changes in performance at
higher lattice layers.

Linear sketch: Linear sketch is a streaming algorithm that
projects the original data into a much smaller dimension by
computing Az where A is an n x D matrix, x is incoming data
of size D, and n << D. A classic linear sketch [4] maintains n
counters ¢; and n independent hash functions %; that maps the
key to —1, 1. When a new data record (key, value) arrives, it
updates each counter as follows: ¢; = ¢;+h;(key)value. Then
it estimates the second moment of the data as ¢ = Y, ¢Z/n.
Averaging across the sketch dimensions helps reduce the
variance. Then one can determine if there is an anomaly by
checking if the second moment estimator is larger than a
threshold. The intuition is that non anomalous data are likely
cancelled out since their coefficients are on average evenly
distributed over 1, —1. According to the Chebyshev inequality,
it can be shown that the classic sketch has false positive and
false negative to be 1/k? when we use |z — u| > ko to detect
anomalies where 1 and o are the mean and standard deviation.
However, we find the classic sketch works well when there are
very few anomalies, but its accuracy degrades significantly
when there are more anomalies because the anomalous data
may partially cancel each other and reduce variance.



Our sketch: We develop a variant of sketch to detect
if an aggregate of flows contains one or more anomalous
flows. Instead of mapping h;(key) to —1,1, we map the
key into [0,1). Anomalies are detected whenever any of the
sketch dimensions has c¢; larger than a threshold. By using
non-negative coefficients, we avoid cancellation in anomalous
records. By checking individual sketch dimension, we increase
the chance of catching anomalies.

Lattice-sketch: We apply our sketch to lattice. Each lattice
node is associated with a multi-dimensional sketch, where each
dimension is a random linear combination of performance
metrics of the records matching that node. For example,
consider a lattice node fy = 0. Any records that match fo =0
will be used to update the lattice node as follows. For the -
th sketch dimension and j-th record, we hash the complete
feature vector to a random coefficient (c; ;) and increment the
corresponding sketch dimension by c¢; ;p;, where p; is the
performance associated with the incoming record. In this way,
the K -dimensional sketch is essentially

> C0Pjs Y C1Pjs s D CKIPj
j=1 j=1 =1

Consider a dataset with 2 binary features (fo, f1), it has
4 possible feature vectors: (fo = 0, f1 = 0),(fo = 0, f1 =
1),(fo = 1,f1 = 0),(fo = 1, f1 = 1). For each sketch di-
mension, we have a random coefficient corresponding to each
feature vector. When a new record (fo = 1, f;1 = 1,p = 0.1)
comes in, we update the sketch value associated with three
lattice nodes: fo =1, f1 =1, and (fo = 1, fy = 1). For each
lattice node, we increment each of its sketch dimension k£ by
Ck,jp = ck,j * 0.1,

Detection rule: An anomaly is detected if any sketch
dimension ¢; sees a change greater than u; + 3 * 0;. Here
w; and o; denote the mean and standard deviation of sketch
values for dimension ¢ over the previous epochs. For example,
consider 3 binary features. There is an anomaly in (fy =
0, f1 =0, fo = 0), abbreviated as (0,0, 0). The anomaly only
accounts for 10% traffic. If we sum up the performance of all
traffic matching (0, *, x) at fy = 0, the anomaly is hidden since
most traffic is normal. In comparison, by using k dimension
summary, we generate k£ random coefficients for each feature
combination. If (0,0, 0) is assigned a large random coefficient
in at least one of the k£ dimensions, the anomaly will show up
at a coarse level and trigger in-depth analysis. Moreover, as
long as any of the ancestors of (0,0, 0) (e.g., (0, , %), (x,0, %),
or (*, x,0)) detects an anomaly, the lattice will be expanded as
desired. Therefore, sketch significantly increases the likelihood
of catching anomalies involving multiple features.

Exploration strategies: Once a lattice node A sees a large
change in at least one sketch dimension, we explore this branch
further. For example, when a node f, = O detects a large
change in some of its sketch dimensions, it will explore the
2-way feature combinations that involves fy = 0.

The above condition alone may lead to exploring the lattice
unnecessarily deep since children of anomaly nodes tend to

also experience anomalies. For example, if the anomaly is
fo = 0, more fine-grained feature combinations involving
fo =0 (e.g., fo =0, f1 =0) may also see anomalies.

To address the issue, we propose if a node and its parent
see similar performance distributions, we do not expand the
branch further even if the anomaly detection threshold is
reached at the child. We experiment with different methods to
test the similarities between two distributions (e.g., KS-test,
Anderson-Darling tests), and find the simple z-statistics based
on the mean (u,, 1) and variance (o, 0.) works quite well.

z-statistics is computed as EpPe | where n, and n.
op/Np+oc/ne

correspond to the total number of samples at the parent and
child, respectively. If it is larger than 2.5, we consider the
distributions are different. After adding this check, it is rare
for a lattice to grow beyond the level at which the anomaly is
present, thereby improving scalability.

If we have additional information about the feature interac-
tion (e.g., from domain knowledge or historical information),
we can further enhance the scalability. In particular, instead
of blindly expanding all branches underneath the feature A,
we can skip exploring the branches that are known to have no
interactions with A.

Initialization: When we find a node has an anomaly, we
go down one layer deeper in the lattice to explore more fine-
grained combinations. Since we did not keep statistics for the
new combination until its creation, we need to consider how
to initialize them. A simple option is to initialize the new
node to 0. But it may take a long time for the new node
to converge to the actual value. Instead, we initialize using
the parents’ values based on the independence assumption,
i.e., the dropping probability at the child is the product of the
dropping probabilities at its parents. Our evaluation shows that
this simple initialization works quite well.

III. RoOT CAUSE LOCALIZATION

Given the anomalies, we seek to determine their root cause.
A problematic configuration will induce anomalous behavior
in multiple feature combinations. Consider that feature A is the
primary problem, then whenever A appears with another fea-
ture say B, the combination (A,B) will also show an anomaly.
One possible approach for root cause localization is to examine
the relationship between a node and its children in the lattice.
For example, if most children experience anomalies, their
parent (or ancestor) is likely to be the root cause. However,
this heuristic is not reliable due to measurement noise and
probabilistic nature of anomalies. We propose a neural network
based approach to learn the model that maps performance at
various feature combinations to root causes. Neural network
is flexible and can handle non-linear relationships. Therefore,
we use it for our root cause localization.

We start with a simple NN model. Its input is the perfor-
mance corresponding to each feature combinations from 0..0
to 1..1. If the performance of certain feature combinations is
unknown, the input is 0. For binary features, the input size
is O(2V). The output is probability that the corresponding



feature combination is the root cause. Based on the above input
and output, we generate data by injecting synthetic anomalies
to either the real or synthetic data. Refer to Section IV for
details about anomaly injection. We use 80%/20% data split
for training/testing. Each sample is an instance containing
different datasets with unique root cause feature combinations.
During training, we feed the performance across various
feature combinations as the input and adapt the neural network
to match the corresponding root causes at the output. For
training, the output for root cause feature combinations are
set to 1 and the remaining feature combinations are set to 0.

Neural network: We build a neural network where each
layer is fully connected. Sigmoid activation function is used
at the last layer so that the output is a probability between
0 and 1 and use Relu activation at the other layers. We use
ADAM as the optimizer to train the network. We define the
loss function as the sum of categorical cross-entropy loss
and L2 regularization penalty to avoid overfitting. We find
5 layers and 100 iterations give good performance. Further
increasing the number of layers and number of iterations does
not significantly improve the performance.

# Features in Anomalies 2 3 4 5
Accuracy 099 | 0.99 | 097 | 0.97
TABLE T

BASIC NN: TOTAL # FEATURES IS 10. # ANOMALIES IS 1.

As shown in Table I, this approach can identify the root
cause of anomalies in the data with an accuracy higher than
97% under a wide range of scenarios. While this approach has
high accuracy, it does not scale with the number of features,
since the input and output growth is exponential with the
number of features.

Sketch-based neural network: Encouraged by performance
of the above neural network, we seek to address its scalability
issue. In particular, the 2V input size not only consumes
significant storage, but also takes a long time to train and
test due to a large neural network size. To enhance scalability,
instead of using raw records as the input, we use the sketch
at the first layer of the lattice as the input. Specifically, as
described in Section II, a sketch at each node consists of
multiple random linear combinations of all the records that
match the node. Let K denote the sketch dimension and N
denote the number of features. Without loss of generality,
consider binary features. Each lattice has K dimension, and
there are 2N nodes at the first layer. So the input size is 2N K
and much smaller than 2V as K is a small constant.
Intuitively, sketch is essentially a summary of the database
by projecting 2V dimension onto 2NK dimension. While
there are only 2N nodes at the first dimension, the multi-
dimensional sketch at these nodes captures the variation across
different feature combinations to some degree. How much it
captures the original records depends on the sketch dimension
K. We can trade off between the compression rate vs. accuracy
by adapting K. As we will expect, the accuracy increases
with the sketch dimension. For example, as we will show in
Section IV, using K = 5 allows us to accurately diagnose 1
anomaly, and using K = 12 allows us to accurately diagnose

5 simultaneous anomalies. Important lesson that we learn here
is that transformation and compression could be used on the
input before feeding to neural networks to improve efficiency
and sketch could be a useful transformation to consider.

IV. EVALUATION METHODOLOGY

We evaluate our approaches in three ways: (i) real data
with real anomalies, (ii) real data with synthetic anomalies,
and (iii) synthetic data with synthetic anomalies. (i) reveals
the actual anomalies and root causes in the carrier data and
demonstrates the utility in real network operation. (ii) helps
us to systematically evaluate the impact of different factors
(e.g., the number of anomalies and the number of features
involved in the anomalies) and also allows us to quantify false
negatives, which requires knowledge about all ground truth
anomalies and is not available in (i). (iii) further stress tests
the scalability of our scheme.

Real Data: We obtain data from a major tier-1 cellular
service provider in US. The service provider captures call
detail records (CDRs) for voice calls and data sessions. CDRs
are collected in real-time at core network switches (MSC, S-
GW/P-GW). From this data, we extract #successful/dropped
phone calls for each phone type at each base station. We have
57 phone types. These records are indexed by date and time
of the day. The configuration snapshot for each base station
is logged into an Oracle database on a daily basis. The con-
figuration captures information such as the software version
(8), hardware version (11), carrier frequency (6), morphology
(3), RX-state (5) and TX-state (4), carrier aggregation (4)
and phone type (57). Morphology is whether it is an urban,
suburban or rural area. Numbers in () are the number of
different values for each feature. In our formulation, the key
performance indicator (KPI) is computed for a given epoch,
which lasts for a day/week. We use Retainability as KPI which
is the ratio of dropped calls to total calls. After combining
features from CDR data with base station configuration data
and calculating KPI values (current and previous K epochs),
our record takes the following form, which has a feature value
vector and KPI vector, namely feature sets: fo, f1,...., fv and
KPI sets: KPI_i,KPI_4,...,KPIj.

For evaluation, a stream of records for a week are fed as
an input to our algorithm. We use the data collected during
October 2018 — March 2019 from 5 markets in different
regions of US. We use a total of 8 features as described
and their cardinalities vary from 3 to 57. The operators
examine these features first when facing any major problem.
We have around 20,000 unique combinations of 8 features in
our dataset. Since not all configurations are present in our data,
the complete lattice has 100,000+ nodes.

Synthetic Data: To stress test our approach, we also generate
synthetic data. Without loss of generality, we generate only
binary features. We collected records over multiple months
using real carrier data. Each record has the number of dropped
calls as well as total number of calls. We use this data to build
normal distributions for the number of calls per record and



degradation probability associated with records. We then use
random sampling to generate data for synthetic records from
these distributions. For synthetic traces, we vary the number
of features and the number of features involved in anomalies.
We usually generate 10,000 records per experiment if the
number of features is small. For a large number of features,
we generate more records for better coverage.

Anomaly injection : For both real and synthetic data, we inject
synthetic anomalies so that we can quantify the coverage (i.e.,
fraction of anomalies that can be detected). Without loss in
generality, we only insert anomalies that degrade performance.
From our discussion with operations and experience with
carrier data, we find that degradation across elements with
same configuration/problem can vary a lot. So we use a
random sampling to inject anomalies.

We inject a specified number of k-way anomalies where
k varies from 1 to the total number of features. For any
record that has an anomalous combination, we perturb its
dropped/successful calls as follows. We compute mean (i)
and standard deviation (o) of the dropping probability corre-
sponding to that feature combination in the data. We derive a
new dropping probability as p+random(5, 10) x o. To model
sampling error, we derive the actual number of dropped calls in
a record using the target dropping probability by doing random
uniform sampling over the total number of calls. For example,
if the target dropping probability is 10%, we randomly drop
each call at 10% and count the total dropped calls.

Performance metric: We quantify the accuracy of anomaly
detection using coverage. Coverage denotes the fraction of
real anomalies are detected. We quantify the accuracy of root
cause analysis based on the number of real root causes that
we detect. We sort the probabilities of the root causes output
by the NN and the top K feature combinations that have the
highest probabilities are the root causes we detect. In all cases,
we consider our anomaly detection and root cause analysis is
correct only when the exact feature combinations match with
the real ones.

V. EVALUATION RESULTS

In this section, we present evaluation results for anomaly
detection and root cause analyses.

A. Real Data with Real Anomalies

We captured several large anomalies from applying our
approach to carrier data over a period of 6 months. We gave
our results to the operation team and they were very interested
in our findings. These anomalies were not big enough to show
up at a coarse granularity. However, they affected a small
subset of network with some specific features. We present a
few cases in Table II where the KPI aggregated over feature
combinations shows significant change but does not exhibit
noticeable changes when looking at individual features or
combinations of fewer features.

The first column in the table shows the features involved
in the actual anomalies. For confidentiality, we omit the
feature values. The anomalies that we captured have a diverse

set of feature values, which means it is hard to pinpoint
specific feature values that induce anomalies. The second
column shows whether impact was degradation/improvement.
The other columns show the maximum percentage change
in drop call ratio when we look at records matching k-way
combinations. For example, if anomaly is due to 3 features,
2-way column captures the maximum degradation effect when
considering interaction between 2 out of 3 anomalous features.
The main point is that when the performance is aggregated
over fewer features than the actual number of features in
the anomaly, the effect is not visible. For example, consider
the first row. When aggregating at the anomalous feature
combination involving 3 features, there is 813% change in the
degradation probability. But the largest changes in the 1-way
and 2-way combinations are only 10% and 47%, respectively.
While 10% and 47% may appear high, but because the
degradation probability in commercial cellular networks is
very low and such increases are small in terms of the absolute
value and likely to be ignored.

B. Anomaly Detection

In this section, we systematically evaluate our anomaly
detection by injecting synthetic anomalies to the real and
synthetic data. Synthetic anomalies are used so that we can
precisely quantify the accuracy (i.e., the fraction of the injected
anomalies that can be accurately detected).

1) Real Data with Synthetic Anomalies: We first evaluate
using the real data with synthetic anomalies injected by the
method described in Section IV. We vary several parameters to
understand their impact. We report the average of 50 random
runs for each data point. We use coverage as our accuracy
metric, which denotes the fraction of injected anomalies that
we detect.
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Fig. 1. Accuracy with varying # features, anomalies and sketch dimensions.
Varying the number of features in anomalies: Intuitively,
the number of features in anomalies can have significant
impact on the accuracy. The anomalies involving only 1 feature
(e.g., fo = 0) are easier to detect than the anomalies with
many features (e.g., fo = 0,f1 = 0,f2 = 0,...,fy = 0).
As shown in Figure 1(a), the accuracy decreases considerably
with the number of features in the anomalies when the sketch
dimension is 1, which corresponds to a simple pruning scheme.
In comparison, by using 5 or more dimensions in sketch, we
can sustain high accuracy even when the anomaly involves 7
features.

Varying number of anomalies: Next, we vary the number
of anomalies from 1 to 5, where each anomaly involves up to
5 features and the total number of features is 10. As shown



[ Features in Anomaly [ Tmpact [ 4-way(%) [ 3-way(%) | 2-way(%) [ 1-way(%) |
Hardware Version, Carrier Aggregation, Morphology Degradation 813 47 10
Hardware Version, Carrier Aggregation, RX-State Degradation 70 15 4
Software Version, Carrier Aggregation, Morphology Degradation 115 18 3
RX-State, Carrier Frequency Degradation 167 2
Baseband Unit Version, Carrier Frequency, RX-State Degradation 236 54 9
Hardware Version, Carrier Aggregation, Morphology, TX-State | Degradation 1370 148 73 4
Phone Type, Carrier Frequency Improvement -35 -1
Carrier Frequency, Carrier Aggregation, Morphology, TX-State | Degradation 740 118 71 3
Carrier Frequency, Carrier Aggregation, Morphology Degradation 400 54 2
TX-State, Carrier Frequency Degradation 140 30
Baseband Unit Version, Carrier Frequency, RX-State Degradation 255 54 9

TABLE I
ANOMALIES FROM CARRIER DATA

in Figure 1(b), using a sketch dimension of 5 allows us to
accurately detect all 5 anomalies, whereas using 1-D sketch
performs considerably worse.

Running time and space: We further compare the running
time and space between our lattice and complete lattice.
Complete lattice contains ~100,000 nodes and takes around
170 minutes to construct. In comparison, our lattice has
1600 nodes (45x space saving) and takes around 30 seconds
(340x speedup) to build. Using 1-D sketch saves space but
significantly degrades accuracy. The space required for 1-D,
3-D, and 5-D sketch are similar for 5 or fewer anomalous
features, and become 188 KB, 240 KB, and 297 KB for 7
anomalous features, respectively. Storage size does not grow
linearly with the sketch dimensions due to metadata storage.
2) Synthetic Data: We now evaluate using synthetic data.
First, we vary the number of features in the anomalies while
fixing the total number of features to 10 and the number of
anomalies to 1. As shown in Figure 2(a), anomaly detection
accuracy is high when sketch dimension of 5 or more is used.
Reducing sketch dimension significantly degrades the accu-
racy. Next we vary the total number of features. Figure 2(b)
shows we can detect nearly all anomalies using 5-D sketch.
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Fig. 2. Impact of # anomalous/total features on accuracy.
C. Root Cause Analyses

Here, we evaluate our root cause diagnosis algorithm using
real and synthetic data. We randomly generate 10000 samples
and use 8000 of them for training. Accuracy is computed as
the fraction of ground-truth anomalies that appear among top
5 feature combinations output from the diagnosis algorithms.

Unless stated otherwise, we use 8 features for real data and
10 features for synthetic data. NN uses a sketch dimension of
18 for real data and 12 for synthetic. We get these numbers
empirically by finding out the minimum number of sketch
dimensions required to get good accuracy. Real data requires
more dimensions because features in real data take non-binary
values. Root cause diagnosis requires larger sketch dimensions

than anomaly detection because NN only uses sketch values
from the first layer whereas anomaly detection has complete
pruned lattice. Sketch dimensions of 12 and 18 are affordable
since the input size grows linearly with sketch dimensions.
We insert 1 anomaly involving 5 features by default. We
comprehensively test our approach by varying number of
anomalies, features in anomalies and sketch dimensions.

1) Real Data with Synthetic Anomalies: Overall perfor-
mance: As shown in Figure 3, NN using 18 sketch
dimensions consistently achieves close to 99% accuracy when
diagnosing up to 5 anomalies, each with up to 5 features.

Impact of sketch dimension: Increasing the sketch dimen-
sion improves the accuracy of NN since it more accurately
captures the performance distribution across various feature
combinations. Fig. 3(a) shows the diagnosis accuracy as the
sketch dimension varies from 14 to 20. For 1 anomaly, NN can
diagnose 99% across all sketch dimensions. For 5 anomalies,
the accuracy of NN drops to only 70% when the sketch
dimension is 14, but increasing the dimension to 18 helps
to improve the accuracy to 99%. This result suggests that we
can select the sketch dimension according to the maximum
number of features that are likely to interact.

Impact of # features in anomalies: Fig. 3(b) shows the
diagnosis accuracy when the number of features in anomalies
varies from 1 to 6 features in a single anomaly. The accuracy
of NN is around 99% when the the number of features in
anomalies is within 5 and drops to around 87% if it goes to 6.
Diagnosis accuracy improves to 92% if the sketch dimension
becomes 22. This shows that more features in anomalies
require a higher sketch dimension for accurate diagnosis.

We also compare against a statistical testing scheme. For

all lattice nodes, we compute zscore: <P
Vd(1—d)(1/ne+1/np)
where d./d, is the degradation probability of nodes in the

current/previous epochs, d is the combined degradation prob-
ability over all epochs, n./n, is the total number of calls in
current/previous epochs. This metric captures the difference
in performance between the current and previous epochs. We
then sort the nodes in a descending order of zscores to capture
the nodes with the largest performance difference. It performs
considerably worse due to its sensitivity to measurement noise
and approximation errors.

Impact of the number of anomalies: In Fig. 3(c), we vary
the number of anomalies from 1 to 5. By using a sketch
dimension of 18, NN can achieve an accuracy close to 99%.



- T E > 1 1 > 1F
[$) [$) Q
o © L ~ o
5 0.8/—— 5 080 -._ ] z 08
< 2 R g
= 06 1 = 06| = 06|
2 2 T il
g 0.4 g 04 g 04
E} El Ei
S 0.2 NN, # Anomalies=5 —— | 9 02 NN —— S 0.2t
0 NN, # Anomalies=1 - - - 0 Sorted Zscores - - - 0 NN ——
14 15 16 17 18 19 20 1 2 3 4 5 6 1 15 2 25 3 35 4 45 5
Number of Sketch Dimensions Anomalous Combination Size Number of anomalies
(a) Vary sketch dimension (b) Vary # features in anomaly (c) Vary # anomalies
Fig. 3. Root cause diagnosis accuracy for different schemes and parameters in real data.
> 1 > 1 > 1
o o o
3 08 3 08 "=l 3 08¢
< 2 Tl g
= 06 = 06 X S = 06|
2 2 il
_g 0.4 g 0.4 g 04
E] P K] El
5 02 .~ °NN, # Anomalies=1 —— | ] 027 NN —— 9 027
0 -7 NN, # Anomalies=5 - - - 0 Sorted Zscores - - - 0 NN ——
0 2 4 6 8 10 12 14 1 15 2 25 3 35 4 45 5 1 15 2 25 3 35 4 45 5

Number of Sketch Dimensions

(a) Vary sketch dimension

Anomalous Combination Size

(b) Vary # features in anomaly

Number of anomalies

(c) Vary # anomalies

Fig. 4. Root cause diagnosis accuracy for different schemes and parameters in synthetic data.

2) Synthetic Data: Qverall Performance : For synthetic
data, Figure 4(b) shows that 12 sketch dimensions enable the
NN to identify 99% of the root causes, each involving up to
5 features. When we increase the number of anomalies to 5,
the NN can still accurately identify the root causes.

D. Result Summary

Our Lattice-Sketch can consistently detect all anomalies
using 5D sketch over wide range of scenarios while exploring
only < 1% of the lattice space. 1D sketch performs consid-
erably worse due to cancellation and dilution, which make
fine-grained anomalies disappear at a coarse-grained level. Our
neural network based root cause diagnosis achieves close to
100% accuracy when using large enough sketch dimensions.

VI. RELATED WORK

Anomaly detection: Statistical anomaly detection is an exten-
sively studied topic. Various algorithms have been proposed,
including time series forecast [5], smoothing, ARIMA mod-
eling [6], and wavelet [7]. [8], [9], [10] develop probabilistic
summaries to identify heavy hitters without keeping per-
flow state. [2] focuses on online 2D hierarchical heavy hitter
(HHH) identification where each dimension is prefix match.
[11] develops both deterministic sample-based and randomized
sketch-based algorithms to find HHHs using small space. [12],
[13], [14] develop iterative search in lattice, but they assume
that deep lying anomalies are always visible at a coarser-
granularity. In HHH detection, a parent of a heavy hitter is also
a heavy hitter as its traffic is the total traffic of all its children
and there is no cancellation effect, which simplifies the search
and pruning. In our context, a change may only be observable
at a finer-granularity, but not at a coarser-granularity due to
dilution and cancellation, so pruning becomes challenging.
Our work is the first that addresses these concerns.

Multidimensional Anomaly Search: Research on OLAP
models has developed various solutions for efficient computa-
tion of lattices[15], [16]. There are several works to make mul-
tidimensional anomaly detection scalable and efficient [17],
[18], [19], [20]. They use data cubes or other structures like
K-d trees to reduce dimensionality and only explore relevant
subspaces in the original high-dimensional space. However,
these approaches do not consider the cancellation effect that
we tackle as they do not explore how performance changes
across parent and child nodes. [21] presented an effective
method to detect multi-dimensional heavy hitters, however it
is designed for offline computation. [22], [23], [24] present
algorithms to detect anomalies in multi-dimensional time
series data by converting the data into multiple univariate time
series. These algorithms lose information when projecting into
1D space and miss the interaction across different dimensions.

Network monitoring and diagnosis: Network performance
monitoring and diagnosis has been extensively studied. Many
works first build a normal profile of the service and then check
divergent trends. DiffProv [25] uses differential analysis to
compare anomalous and normal system behavior. [26] studies
control-plane interactions in cellular networks. [27], [28], [29]
use ML techniques to diagnose problems in networks but
requires training on known problematic patterns. [30] develops
a platform to monitor LTE radio performance using control
channel. Several works study statistical dependencies between
the network profile and performance [31], [32], [33], [34],
[35], [36], [37]. [38] is a protocol level cellular network
analytics system that deals with only UEs and base stations
instead of detailed features. None of these works study multi-
dimensional anomalies.

Neural networks: Neural networks have been widely used
for traffic classification [39], [40], network intrusion detec-



tion [41], and video coding [42], [43]. Most existing works
focus on improving the accuracy. A few recent works improve
the efficiency and storage of neural networks. For example,
[44], [45] propose interesting algorithms to compress the
neural network structure (e.g., learning only important connec-
tions, weights quantization, using Huffman coding). Our work
is complimentary to these works in that we compress the input
data and can be combined with the approaches that compress
the neural network structure to enhance the efficiency.

VII. CONCLUSION

In this paper, we propose a Lattice-Sketch based structure to
efficiently detect multi-dimensional performance impacts. We
further develop a neural network based algorithm to determine
the root cause for anomalies. Our extensive evaluation using
real and synthetic data shows that our lattice sketch can
identify nearly all impacts in our data and our sketch based
Neural Network approach can diagnose root causes as long
as the sketch dimension is large enough. Our technique of
using Sketch to compress the input to neural network can be
potentially useful beyond network diagnosis.
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