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Abstract: This paper investigates asymptotic properties of algorithms that can

be viewed as robust analogues of the classical empirical risk minimization. These

strategies are based on replacing the usual empirical average by a robust proxy

of the mean, such as a variant of the median of means estimator. It is well

known by now that the excess risk of resulting estimators often converges to zero

at optimal rates under much weaker assumptions than those required by their

classical counterparts. However, less is known about the asymptotic properties

of the estimators themselves, for instance, whether robust analogues of the max-

imum likelihood estimators are asymptotically e�cient. We make a step towards

answering these questions and show that for a wide class of parametric problems,

minimizers of the appropriately defined robust proxy of the risk converge to the

minimizers of the true risk at the same rate, and often have the same asymptotic

variance, as the estimators obtained by minimizing the usual empirical risk. Fi-

nally, we discuss the computational aspects of the problem and demonstrate the

numerical performance of the methods under consideration in numerical experi-

ments.
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totic normality, adversarial contamination.

1. Introduction.

The concept of robustness addresses stability of statistical estimators under

various forms of perturbations, such as the presence of corrupted/atypical

observations (“outliers”) in the data. The questions related to robustness

in the framework of statistical learning theory have seen a surge in interest,

both from the theoretical and practical perspectives, and resulted in the

development of novel algorithms. These new robust algorithms are charac-

terized by the fact that they provably work under minimal assumptions on

the underlying data-generating mechanism, often requiring the existence of

moments of low order only. Majority of the existing works focused on the

upper bounds for the risk of the estimators (such as the classification or

prediction error) produced by the algorithms, while in this paper we are

interested in the asymptotic properties of the estimators themselves. The

asymptotic viewpoint allows one to gauge e�ciency of the estimators and

understand the magnitude of constants appearing in the bounds, as opposed

to just studying the form of dependence of the bounds on the parameters

of interest (sample size, dimension, etc.) The mean estimators at the core

of the approach under consideration are non-linear and are defined as so-
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lutions of optimization problems, which makes the analysis more technical.

Navigation through the technical details and development of the tools such

as Bahadur-type representations needed to tackle the non-linearities occu-

pies a large part of the analysis. Therefore, the main contributions of the

paper are technical in nature.

Next, we introduce the mathematical framework used in the exposition.

Let pS,Sq be a measurable space, and let X P S be a random variable with

distribution P . Suppose that X1, . . . , XN are i.i.d. copies of X. Moreover,

assume that L “
 
`p✓, ¨q, ✓ P ⇥ Ñ Rd

(
is a class of measurable functions

from S to R indexed by an open subset of Rd. Population versions of many

estimation problems in statistics and statistical learning, such as maximum

likelihood estimation and regression, can be formulated as risk minimization

of the form

E `p✓, Xq Ñ min
✓P⇥

. (1.1)

In particular, when tp✓, ✓ P ⇥u is a family of probability density functions

with respect to some �-finite measure µ and `p✓, ¨q “ ´ log p✓p¨q, the re-

sulting problem corresponds to maximum likelihood estimation. In what

follows, we will set Lp✓q to be the risk associated with the parameter ✓,

namely Lp✓q “ E`p✓, Xq. Throughout the paper, we will assume that the

minimum in problem (1.1) is attained at a unique point ✓0 P ⇥. The true
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distribution P is typically unknown, and an estimator of ✓0 is obtained via

minimizing the empirical risk, namely,

r✓N :“ argmin
✓P⇥

LNp✓q, (1.2)

where LNp✓q :“ 1
N

∞N
j“1 ` p✓, Xjq. If the marginal distributions of the pro-

cess t`p✓, ¨q, ✓ P ⇥u are heavy-tailed, meaning that they possess finite mo-

ments of low order only, then the error |LNp✓q ´ Lp✓q| can be large with

non-negligible probability, motivating the need for alternative proxies for

the risk Lp✓q. Another scenario of interest corresponds to the adversar-

ial contamination framework, where the initial dataset of cardinality N 1 is

merged with a set of O † N 1 outliers generated by an adversary who has

complete knowledge of the underlying distribution and an opportunity to

inspect the data, and the combined dataset of cardinality N “ N 1 ` O

is presented to the algorithm responsible for constructing the estimator of

✓0. In what follows, the proportion of outliers will be denoted by  :“ O

N .

Similarly to the heavy-tailed scenario, the empirical loss LNp✓q is not a

robust proxy for E`p✓, Xq in this case, therefore estimation and inference

results based on minimizing LNp✓q may be unreliable. One may approach

the problem of estimating ✓0 robustly from di↵erent angles. One class

of popular methods consists of robust versions of the gradient descent al-

gorithm for the optimization problem (1.1), where the gradient rLp✓kq is
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estimated on each iteration k; for example, this approach has been explored

by Prasad et al. (2020); Chen et al. (2017); Alistarh et al. (2018), among

others. Another technique (the one that we investigate in this paper) is

based on replacing the average LNp¨q by a robust proxy of Lp✓q. Its advan-

tage is the fact that we only need to estimate a real-valued quantity Lp✓q,

as opposed to the high-dimensional gradient vector rLp✓q. On the other

hand, favorable properties, such as convexity, that are “inherited” by the

formulation (1.2) from (1.1), are usually lost in this case. Several repre-

sentative papers that explore this direction include the works by Audibert

et al. (2011); Lerasle and Oliveira (2011); Brownlees et al. (2015); Lugosi

and Mendelson (2019b); Lecué and Lerasle (2020); Cherapanamjeri et al.

(2019); Mathieu and Minsker (2021); also, see an excellent survey paper

by Lugosi and Mendelson (2019a). Instead of the empirical risk LNp✓q,

these works employ robust estimators of the risk such as the median of

means estimator (Nemirovski and Yudin, 1983; Alon et al., 1996; Devroye

et al., 2016) or Catoni’s estimator and its variants (Catoni, 2012; Li et al.,

2021). In this paper, we study estimators based on the modification of the

median of means principle introduced by Minsker (2019a) combined with

the idea behind the so-called “median of means tournaments” (Lugosi and

Mendelson, 2019b) and the closely related “min-max” robust estimators
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(Audibert et al., 2011; Lecué and Lerasle, 2020). The latter are based on

an observation that ✓0 can be alternatively obtained via

✓0 “ argmin
✓P⇥

max
✓1P⇥

pLp✓q ´ Lp✓1qq . (1.3)

Therefore, an estimator of ✓0 can be constructed by replacing the di↵erence

Lp✓, ✓1q :“ Lp✓q ´ Lp✓1q by its robust proxy constructed as follows. Let

k § N{2 be an integer, and assume that G1, . . . , Gk are disjoint subsets of

the index set t1, . . . , Nu of cardinality |Gj| “ n • tN{ku each. For ✓ P ⇥,

let

sLjp✓q :“ 1

n

ÿ

iPGj

`p✓, Xiq

be the empirical risk evaluated over the subsample indexed by Gj. Assume

that ⇢ : R fiÑ R` is a convex, even function that is increasing on p0,8q

and such that its (right) derivative is bounded. Let t�nun•1 be a non-

decreasing positive sequence of “scaling factors” such that �n “ op?
nq and

�8 :“ limnÑ8 �n P p0,8s, and define

pLp✓, ✓1q P argmin
zPR

kÿ

j“1

⇢

ˆ?
n

sLjp✓q ´ sLjp✓1q ´ z

�n

˙
. (1.4)

For example, the choice �n — logpnq su�ces for all results of the paper to

hold (in fact, it su�ces for �8 to be a su�ciently large constant); we will

make a remark regarding the practical aspects of setting �n below. The es-

timator pLp✓, ✓1q is what we referred to as the robust proxy of Lp✓, ✓1q, where



1. INTRODUCTION.

robustness is justified by the fact that the error
ˇ̌
ˇpLp✓, ✓1q ´ Lp✓, ✓1q

ˇ̌
ˇ satisfies

non-asymptotic exponential deviation bounds under minimal assumptions

on the tails of the random variables `p✓, Xq ´ `p✓1, Xq and the ability of

pLp✓, ✓1q to resist adversarial outliers. For example, Theorem 3 in (Minsker,

2019a) essentially states that whenever�n Á Var1{2 p`p✓, Xq ´ `p✓1, Xqq and

for all s À k,

ˇ̌
ˇpLp✓, ✓1q ´ Lp✓, ✓1q

ˇ̌
ˇ À �p✓, ✓1q

c
s

N
` �n

ˆ
k

N
` O

?
n

N

˙

with probability at least 1 ´ e´s, assuming that E|`p✓, Xq ´ `p✓1, Xq|3 † 8

and where À denotes the inequality up to absolute numerical constants;

similar guarantees also hold uniformly over ✓, ✓1 P ⇥; note that setting

�n — �p✓, ✓1q yields the most robust estimator. Given the robust proxy

pLp✓, ✓1q of Lp✓, ✓1q, an analogue of the classical empirical risk minimizer r✓N

can be obtained via

p✓n,k “ argmin
✓P⇥

sup
✓1P⇥

pLp✓, ✓1q. (1.5)

Simple su�cient conditions for the existence of p✓n,k are discussed in the

supplementary material; in principle, one could consider near-minimizers

instead, however, we avoid this route due to the extra layer of technical-

ities it brings. The idea behind considering di↵erences of the risks and

defining ✓0 via (1.3) is related to the fact that the estimators (1.4) of
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Lp✓q, unlike their traditional counterparts LNp✓q, are non-linear: if we set

pLp✓q “ argminzPR
∞k

j“1 ⇢
´?

n
sLjp✓q´z

�n

¯
, then pLp✓, ✓1q ‰ pLp✓q ´ pLp✓1q.

Related approaches based on direct minimization of pLp✓q have been pre-

viously investigated by Brownlees et al. (2015); Holland and Ikeda (2017);

Lecué et al. (2020); Mathieu and Minsker (2021), where the main object of

interest was the excess risk Epp✓n,kq :“ Lpp✓n,kq ´ Lp✓0q. It has been recog-

nized however that non-linearity of pLp✓q often results in sub-optimal rates,

while the tournament-type procedures avoid these shortcomings. In the

present work, we will be interested in the asymptotic behavior of the er-

ror p✓n,k ´ ✓0, rather than the excess risk: in particular, we will establish

asymptotic normality of the sequence
?
N

´
p✓n,k ´ ✓0

¯
and demonstrate that

robust estimators can still be e�cient under essentially the same set of suf-

ficient conditions as required by the standard M-estimators (van der Vaart,

2000). The nonlinear nature of the estimator pLp✓, ✓1q makes the proofs sig-

nificantly more technical compared to the classical theory of M-estimators

based on usual empirical risk minimization. To tackle these challenges, our

arguments rely on Bahadur-type representations for pLp✓, ✓1q whose remain-

der terms admit tight uniform bounds.
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1.1 Notation.

Absolute constants will be denoted c, c1, C, C1, C 1, etc., and may take dif-

ferent values in di↵erent parts of the paper. Given a, b P R, we will write

a^b for minpa, bq and a_b for maxpa, bq. For a function f : Rd fiÑ R, define

argmin
yPRd

fpyq :“ ty P Rd : fpyq § fpxq for all x P Rdu,

and }f}8 :“ ess supt|fpyq| : y P Rdu. Moreover, Lippfq will stand for the

Lipschitz constant of f ; if d “ 1 and f is m times di↵erentiable, f pmq will

denote the m-th derivative of f . For a function gp✓, xq mapping Rd ˆ R

to R, B✓g will denote the vector of partial derivatives with respect to the

coordinates of ✓; similarly, B2
✓g will denote the matrix of second partial

derivatives. For x P Rd, }x} will stand for the Euclidean norm of x, }x}8 :“

maxj |xj|, and for a matrix A P Rdˆd, }A} will denote the spectral norm

of A. We will frequently use the standard big-O and small-o notation, as

well as their in-probability siblings oP and OP . For vector-valued sequences

txjuj•1, tyjuj•1 Ä Rd, asymptotic relations xj “ opyjq and xj “ Opyjq are

assumed to hold coordinate-wise. We will write xj ! yj if xj “ opyjq and

xj " yj if yj “ opxjq. For a square matrix A P Rdˆd, trA :“ ∞d
j“1 Aj,j

denotes the trace of A. Given a function g : R fiÑ R, measure Q and

1 § p † 8, we set }g}pLppQq :“
≥
R |gpxq|pdQ. For i.i.d. random variables
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X1, . . . , XN distributed according to P , PN :“ 1
N

∞N
j“1 �Xj will stand for the

empirical measure; here, �Xpgq :“ gpXq. The expectation with respect to a

probability measure Q will be denoted EQ; if the measure is not specified,

it will be assumed that the expectation is taken with respect to P , the

distribution of X. Given f : S fiÑ Rd, we will write Qf for
≥
fdQ P Rd,

assuming that the last integral is calculated coordinate-wise. For ✓, ✓1 P ⇥,

let �2p✓, ✓1q “ Var p`p✓, Xq ´ `p✓1, Xqq and for ⇥1 Ñ ⇥, define �2p⇥1q :“

sup✓,✓1P⇥1 �2p✓, ✓1q.

Finally, we will adopt the convention that the infimum over the empty

set is equal to `8. Additional notation and auxiliary results are introduced

on demand.

2. Statements of the main results.

We begin by listing the assumptions on the model; these conditions are

similar to the standard assumptions made in the parametric estimation

framework (van der Vaart, 2000; van der Vaart and Wellner, 1996). The

first assumption lists the requirements for the loss function ⇢ (note that the

choice of this function is completely determined by the statistician).

Assumption 1. The function ⇢ : R fiÑ R is convex, even, and such that

(i) ⇢1pzq “ z for |z| § 1 and ⇢1pzq “ const for z • 2.
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(ii) z ´ ⇢1pzq is nondecreasing;

(iii) ⇢p5q
is bounded and Lipschitz continuous.

An example of a function ⇢ satisfying required assumptions is given by

“smoothed” Huber’s loss defined as follows. Let

Hpyq “ y2

2
It|y| § 3{2u ` 3

2

ˆ
|y| ´ 3

4

˙
It|y| ° 3{2u

be the usual Huber’s loss. Moreover, let  be the mollifier

 pxq “ C exp

ˆ
´ 4

1 ´ 4x2

˙ "
|x| § 1

2

*

where C is chosen so that
≥
R  pxqdx “ 1. Then ⇢ given by the convolution

⇢pxq “ ph ˚  qpxq satisfies Assumption 1.

Remark 1. The classical median of means estimator (Nemirovski and

Yudin, 1983; Alon et al., 1996) corresponds to the choice ⇢pxq “ |x| that

does not satisfy smoothness assumptions imposed above. Asymptotic be-

havior of the estimators corresponding to this loss is left as an open problem;

numerical evidence suggesting that asymptotic normality does not hold in

this case is presented in (Minsker and Yao, 2025).

Assumption 2. The Hessian B2
✓Lp✓0q exists and is strictly positive definite.

This assumption ensures that in a su�ciently small neighborhood of ✓0,

cp✓0q}✓´✓0}2 § Lp✓q´Lp✓0q § Cp✓0q}✓´✓0}2 for some 0 † cp✓0q § Cp✓0q †



2. STATEMENTS OF THE MAIN RESULTS.

8. The following two conditions allow one to control the “complexity” of

the class t`p✓, ¨q, ✓ P ⇥u.

Assumption 3. For every ✓ P ⇥, the map ✓1 fiÑ `p✓1, xq is di↵erentiable

at ✓ for P -almost all x (where the exceptional set of measure 0 can depend

on ✓), with derivative B✓`p✓, xq. Moreover, @✓ P ⇥, the envelope function

Vpx; �q :“ sup}✓̃´✓}§�

›››B✓`p✓̃, xq
››› of the class

!
B✓`p✓̃, ¨q : }✓̃ ´ ✓} § �

)
satis-

fies EV2pX; �q † 8 for su�ciently small � “ �p✓q.

An immediate implication of this assumption is the fact that the func-

tion ✓ fiÑ `p✓, xq is locally Lipschitz. It other words, for any ✓ P ⇥, there

exists a ball Bp✓, rp✓qq of radius rp✓q such that for all ✓1, ✓2 P Bp✓, rp✓qq,

|`p✓1, xq ´ `p✓2, xq| § Vpx; rp✓qq}✓1 ´ ✓2}. In particular, this condition suf-

fices to prove consistency of the estimators considered in this work and is

similar to the classical assumptions used in the analysis of M-estimators,

e.g. see the book by van der Vaart (2000). The final assumption that we

impose allows us to treat non-compact parameter spaces. Essentially, we

require that the estimator p✓n,k defined via (1.5) belongs to a compact set

of su�ciently large diameter with high probability, namely,

lim
RÑ8

lim sup
n,kÑ8

P
´›››p✓n,k ´ ✓0

››› • R
¯

“ 0 and

The following condition is su�cient for the display above to hold:
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Assumption 4. Let X1, . . . , Xn be i.i.d. Given t, R ° 0 and a positive

integer n, define

Bpn,R, tq :“ P
˜

inf
✓P⇥, }✓´✓0}•R

1

n

nÿ

j“1

`p✓, Xjq † E`p✓0, Xq ` t

¸
.

Then limRÑ8 lim supnÑ8 Bpn,R, tq “ 0 for some t ° 0.

Let us emphasize that the data X1, . . . , Xn in Assumption 4 do not

contain outliers. Requirements similar to this assumption are commonly

imposed in the classical framework of M-estimation, (e.g see van der Vaart,

2000). Of course, when ⇥ is compact, Assumption 4 holds automatically;

another general scenario when Assumption 4 is true occurs if the class

t`p✓, ¨q : ✓ P ⇥u is Glivenko-Cantelli (van der Vaart and Wellner, 1996).

Otherwise, it can usually be verified on a case-by-case basis. For instance,

consider the framework of linear regression, where the data consist of i.i.d.

copies of the random couple pZ, Y q P Rd ˆ R such that Y “ xZ, ✓˚y ` "

for some ✓˚ P Rd and a noise variable " that is independent of Z and has

variance �2. Moreover, assume that Z is centered and has positive definite

covariance matrix ⌃. In this case, `p✓, Z, Y q “ pY ´ xZ, ✓yq2, and it is easy

to see that 1
n

∞n
j“1 `p✓, Zj, Yjq “ 1

n p}~"}2 ` }Zp✓ ´ ✓˚q}2 ´ 2x~",Zp✓˚ ´ ✓qyq,

where ~" “ p"1, . . . , "nqT and Z P Rnˆd has Z1, . . . , Zn as rows. Cauchy-

Schwarz inequality combined with a simple relation 2|ab| § a2{2` 2b2 that
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holds for all a, b P R yield that

1

n

nÿ

j“1

`p✓, Zj, Yjq • 1

2n
}Zp✓ ´ ✓˚q}2 ´ 1

n
}~"}2,

hence inf}✓´✓˚}•R
1
n

∞n
j“1 `p✓, Zj, Yjq • R2

2 inf}u}“1x⌃nu, uy ´ 1
n}~"}2 where

⌃n “ 1
n

∞n
j“1 ZjZT

j is the sample covariance matrix. Since inf}u}“1x⌃nu, uy •

�minp⌃q ´ }⌃n ´⌃} “ �minp⌃q ´ oP p1q and 1
n}~"}2 “ Opp1q, it is easy to con-

clude that Assumption 4 holds; here, we used the fact that }⌃n´⌃} “ oP p1q

in view of the law of large numbers.

We are ready to state the main results regarding consistency and asymp-

totic normality of the estimator (1.5). Recall the adversarial contamination

framework defined in section 1. In all statements below, we assume that the

sequences tkjuj•1 and tnjuj•1, corresponding the the number of subgroups

and their cardinality respectively, are non-decreasing and converge to 8 as

j Ñ 8, and that the total sample size is Nj :“ kjnj.

Theorem 1. Let assumptions 1, 2, 3 and 4 be satisfied. Suppose that

the number of outliers Oj is such that lim sup
jÑ8

Oj

kj
§ c for a su�ciently

small absolute constant c ° 0. Then the estimator p✓nj ,kj defined in (1.5) is

consistent: p✓nj ,kj Ñ ✓0 in probability as j Ñ 8.

We remark that the contamination framework considered in Theorem

1 is quite general: for instance, in the framework if linear regression, X “
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pZ, Y q P Rd ˆ R, hence outliers can occur among both the predictor Z and

response variable Y . On the other hand, many classical robust regression

methods, such as Huber’s regression, only allow the outliers among the

responses. The following theorem constitutes the main contribution of the

paper.

Theorem 2. Let assumptions 1, 2, 3 and 4 be satisfied, and suppose that

the number of outliers Oj is such that lim sup
jÑ8

Oj

kj
§ c for a su�ciently

small absolute constant c ° 0. Moreover, assume that t↵nj ,kjuj•1 is a non-

increasing sequence such that

↵2
nj ,kj • 1

njkj
and ↵2

nj ,kj " Oj

kj

1?
nj

.

Then

lim
MÑ8

lim sup
nj ,kjÑ8

P
´

}p✓nj ,kj ´ ✓0} • M ¨ ↵nj ,kj

¯
“ 0.

In addition, if the sample is free of adversarial contamination (that is, Oj “

0), then

a
Nj

´
p✓nj ,kj ´ ✓0

¯
d›Ñ N

`
0, D2p✓0q

˘
as j Ñ 8,

where D2p✓0q “ rB2
✓Lp✓0qs´1 ⌃ rB2

✓Lp✓0qs´1
and ⌃ “ E

“
B✓`p✓0, XqB✓`p✓0, XqT

‰
.

This result goes one step further compared to Theorem 1 and establishes

the rate of convergence of p✓n,k to ✓0. Moreover, it implies that in the “ideal,”

outlier-free scenario, ↵n,k “ 1?
nk

“ 1?
N

is the standard parametric rate
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(and the rate is strictly slower if Oj • 1), and that no loss of asymptotic

e�ciency occurs compared to the standard M-estimator based on empirical

risk minimization. For example, maximum likelihood estimator corresponds

to the case when tp✓, ✓ P ⇥u is a family of probability density functions with

respect to some �-finite measure µ and `p✓, ¨q “ ´ log p✓p¨q. If it holds that

´B2
✓ E log p✓0pXq “ Ip✓0q :“ E

“
B✓ log p✓0pXqB✓ log p✓0pXqT

‰
,

then it follows that p✓nj ,kj is asymptotically equivalent to the maximum like-

lihood estimator. The proof of Theorem 2 is presented in section 3.2 below,

while the proof of Theorem 1 is outlined in section S2 of the supplementary

material.

Remark 2. One may wonder whether the second claim of Theorem 2 re-

mains valid in the presence of outliers (that is, Oj ° 0). To the best of

our knowledge, this is not the case. One possible path to constructing es-

timators that remain asymptotically normal in the presence of adversarial

contamination is to consider an approach based on the gradient descent

algorithm applied to the optimization problem (1.1), where the gradient

rLp✓kq is robustly estimated on each iteration k; we refer the reader to

the list of references investigating such methods and listed in section 1. In-

vestigation of the asymptotic properties of such methods is an interesting

direction for future research.
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2.1 Computational aspects.

Here, we briefly discuss some of the more practical aspects of the pro-

posed estimators, including the choice of the scaling factors �n. Note that,

while pLp✓, ✓1q itself is defined as a minimizer of a convex function, it is

not a convex-concave function itself, and the problem (1.5) is not guaran-

teed to be convex-concave or have a unique solution. However, the gra-

dient of pLp✓, ✓1q, both with respect to ✓ and ✓1, is easily computable: as

∞k
j“1 ⇢

1
´?

n
sLjp✓q´sLjp✓1q´pLp✓,✓1q

�n

¯
“ 0, di↵erentiating this expression yields

that

B✓pLp✓, ✓1q “
∞k

j“1 B✓sLjp✓q⇢2
´?

n
sLjp✓q´sLjp✓1q´pLp✓,✓1q

�n

¯

∞k
j“1 ⇢

2
´?

n
sLjp✓q´sLjp✓1q´pLp✓,✓1q

�n

¯ .

Due to this fact, gradient descent-ascent type methods for solving the prob-

lems closely related to (1.5) have been proposed and have shown good per-

formance in extended simulation studies; we refer the reader to (Lecué and

Lerasle, 2020; Mathieu and Minsker, 2021) for the details.

The problem of choosing the scaling factor for robust estimators of

location has been studied since the seminal work of Huber (1964). Here,

we suggest setting �n in a data-dependent way using the “median absolute

deviation” (MAD) estimator; this idea has been suggested and numerically

tested in (Mathieu and Minsker, 2021). We start with �n :“ �n,0 being

a fixed number (e.g., �n,0 “ 1q. Given an approximate solution p✓t, ✓1
tq,
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e.g., obtained via the gradient descent-ascent iteration, set xMp✓t, ✓1
tq :“

median
`sL1p✓t, ✓1

tq, . . . , sLkp✓t, ✓1
tq

˘
, and

MADp✓t, ✓1
tq “ median

´ˇ̌
ˇsL1p✓t, ✓1

tq ´ xMp✓t, ✓1
tq

ˇ̌
ˇ , . . . ,

ˇ̌
ˇsLkp✓t, ✓1

tq ´ xMp✓t, ✓1
tq

ˇ̌
ˇ
¯
.

Finally, define p�n,t`1 :“ MADp✓t,✓1
tq

�´1p3{4q , where � is the distribution function of

the standard normal law and the normalizing factor comes from the fact

that for a sample from the normal distribution Npµ, �2q, the expected value

of MAD equals �´1p3{4q�. The scaling factor can be updated again after a

fixed number of iterations. Our theoretical results do not allow for a data-

dependent choice of �n however, and it would be an interesting avenue

for further investigation. We include a simple proof-of-concept numerical

simulation in section S8 of the supplementary material.

3. Proofs.

The proof of Theorem 2 uses characterization of p✓n,k as the solution of the

min-max problem, and follows a standard pattern of consequently establish-

ing consistency, rate of convergence and finally the asymptotic normality.

The arguments are quite general and can be extended beyond the classes

that satisfy Lipschitz property imposed by Assumption 3. Since pLp✓1, ✓2q

is defined implicitly as a solution of the convex minimization problem, we

rely on the Bahadur-type linear representation of pLp✓1, ✓2q ´ Lp✓1, ✓2q with
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uniform control of the remainder terms.

3.1 Preliminaries.

Below, we state several results that our proofs frequently rely upon.

Lemma 1. Let F : R fiÑ R be a function such that F 2
is bounded and

Lipschitz continuous. Moreover, suppose that ⇠1, . . . , ⇠n are independent

centered random variables such that E|⇠j|2 † 8 for all j, and that Zj, j “

1, . . . , n are independent with normal distribution N p0,Varp⇠jqq. Then
ˇ̌
ˇ̌
ˇEF

˜
nÿ

j“1

⇠j

¸
´ EF

˜
nÿ

j“1

Zj

¸ˇ̌
ˇ̌
ˇ § CpF q

nÿ

j“1

E
“
⇠2j ¨ minp|⇠j|, 1q

‰
.

In particular, if E|⇠j|2`⌧ † 8 for some ⌧ P p0, 1s and all j, then

ˇ̌
ˇ̌
ˇEF

˜
nÿ

j“1

⇠j

¸
´ EF

˜
nÿ

j“1

Zj

¸ˇ̌
ˇ̌
ˇ § CpF q

nÿ

j“1

E|⇠j|2`⌧ .

The proof is given in section S3 of the supplementary material.

Lemma 2. Let F “
 
f✓, ✓ P ⇥1 Ñ Rd

(
be a class of functions that is Lip-

schitz in parameter, meaning that |f✓1pxq ´ f✓2pxq| § Mpxq}✓1 ´ ✓2}. More-

over, assume that EMppXq † 8 for some p • 1. Finally, suppose that

X1, . . . , Xn are i.i.d. Then

E sup
✓1,✓2P⇥1

˜
1?
n

ˇ̌
ˇ̌
ˇ

nÿ

j“1

pf✓1pXjq ´ f✓2pXjq ´ P pf✓1 ´ f✓2qq
ˇ̌
ˇ̌
ˇ

¸p
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§ Cppqdp{2diampp⇥1, } ¨ }qE}M}pL2pPnq

and

E sup
✓P⇥1

˜
1?
n

ˇ̌
ˇ̌
ˇ

nÿ

j“1

pf✓pXjq ´ Pf✓1q
ˇ̌
ˇ̌
ˇ

¸p

§ Cppq
´
dp{2diampp⇥1, } ¨ }qE}M}pL2pPnq ` E1^ p

2 |f✓0pXq ´ Pf✓0 |2_p
¯

for any ✓0 P ⇥1
.

The proof is outlined in section S4 of the supplementary material. The

following result that can be viewed as a weak Bahadur representation of

pLp✓, ✓0q is one of the key technical components that the proof of Theorem

2 relies on.

Lemma 3. Assume that adversarial contamination framework, and let O

denote the number of outliers. Let L “ t`p✓, ¨q, ✓ P ⇥u be a class of func-

tions, and, given ✓0 P ⇥, set �2p�q :“ sup}✓´✓0}§� Var p`p✓, Xq ´ `p✓0, Xqq.

Moreover, let Assumption 3 hold. Then for every � § rp✓0q , the following

representation holds uniformly over }✓ ´ ✓0} § �:

?
N

´
pLp✓, ✓0q ´ Lp✓, ✓0q

¯

“ �n

E⇢2
´?

n
�n

`
L̄1p✓, ✓0q ´ Lp✓, ✓0q

˘¯ 1?
k

kÿ

j“1

⇢1
ˆ?

n

�n

`
L̄jp✓, ✓0q ´ Lp✓, ✓0q

˘˙

rp✓0q was defined in the paragraph following Assumption 3.
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` Rn,kp✓q, (3.6)

where

sup
}✓´✓0}§�

|Rn,kp✓q| § Cpd, ✓0q
ˆ
�2

s2?
k

`
?
k�3 ` O

2

k3{2

˙

with probability at least 1 ´ 3
s .

The proof is contained in section S5 of the supplementary material.

3.2 Proof of Theorem 2.

As in the proof of Theorem 1, we will omit subscript j and write “k, n”

instead of “kj, nj” to denote the increasing sequences of the number of sub-

groups and their cardinalities. The argument is divided into two steps. The

first step consists in establishing the fact that the estimator p✓n,k converges

to ✓0 at
?
N -rate, while on the second step we prove asymptotic normal-

ity by “zooming” to the resolution level N´1{2; this proof pattern is quite

standard in the empirical process theory (van der Vaart and Wellner, 1996).

Step one. Similar to the proof of Theorem 1, we set

p✓p✓1q :“ argmax
✓P⇥

pLp✓1, ✓q “ argmin
✓P⇥

pLp✓, ✓1q

and define p✓p1q
n,k :“ p✓n,k and p✓p2q

n,k :“ p✓pp✓p1q
n,kq. We present a detailed argument

establishing the convergence rate for p✓p1q
n,k, and outline the modifications
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necessary to establish the result for p✓p2q
n,k. Our goal can be equivalently

stated as showing that

lim
MÑ8

lim sup
n,kÑ8

P
´

}p✓p1q
n,k ´ ✓0} • 2M↵n,k

¯
“ 0. (3.7)

Define

SN,j : “
 
✓ : 2j´1↵n,k † }✓ ´ ✓0} § 2j↵n,k

(
,

S̄N,j :“
 
✓ : 0 § }✓ ´ ✓0} § 2j↵n,k

(
,

and observe that

}p✓p1q
n,k´✓0} • 2M↵n,k ùñ inf

✓PSN,j

´
pLp✓, p✓p✓qq ´ pLp✓0, p✓p✓0qq

¯
§ 0 for some j ° M,

where p✓p✓1q :“ argmax✓P⇥ pLp✓1, ✓q. As pLp✓, p✓p✓qq • pLp✓, ✓0q for any ✓, the in-

equality }p✓p1q´✓0} • 2M↵n,k implies that inf✓PSN,j

´
pLp✓, ✓0q ´ pLp✓0, p✓p✓0q

¯
§

0 for some j ° M, which in turn entails that

inf
✓PSN,j

´
pLp✓, ✓0q ´ Lp✓, ✓0q ´ pLp✓0, p✓p✓0qq ` Lp✓0, p✓p✓0qq

¯

§ Lp✓0, p✓p✓0qq ´ inf
✓PSN,j

Lp✓, ✓0q

for some j ° M . Since Lp✓0, p✓p✓0qq ´ inf✓PSN,j Lp✓, ✓0q § 0 by the definition

of ✓0, the previous display yields that

sup
✓PSN,j

ˇ̌
ˇpLp✓, ✓0q ´ Lp✓, ✓0q ´ pLp✓0, p✓p✓0qq ` Lp✓0, p✓p✓0qq

ˇ̌
ˇ
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• inf
✓PSN,j

Lp✓, ✓0q ´ Lp✓0, p✓p✓0qq • inf
✓PSN,j

Lp✓, ✓0q,

which further implies that either

sup
✓PSN,j

ˇ̌
ˇpLp✓, ✓0q ´ Lp✓, ✓0q

ˇ̌
ˇ • inf

✓PSN,j

Lp✓, ✓0q
2

,

or
ˇ̌
ˇpLp✓0, p✓p✓0qq ´ Lp✓0, p✓p✓0qq

ˇ̌
ˇ • inf✓PSN,j

Lp✓,✓0q
2 . Let 0 † ⌘1 § rp✓0q be

small enough so that Lp✓q ´ Lp✓0q • c}✓ ´ ✓0}2 for ✓ such that }✓ ´

✓0} § ⌘1 (existence of ⌘1 follows from Assumption 2), and observe that

P
´

}p✓p1q
n,k ´ ✓0} • ⌘1

¯
Ñ 0 as n, k Ñ 8 due to consistency of the estimator

under assumptions of the theorem. We then have

P
´

}p✓p1q
n,k ´ ✓0} • 2M↵n,k

¯
§ P

´
}p✓p1q

n,k ´ ✓0} • ⌘1
¯

` P
´ˇ̌

ˇpLp✓0, p✓p✓0qq ´ Lp✓0, p✓p✓0qq
ˇ̌
ˇ • c 22M↵2

n,k

¯

` P

¨

˝
§

j:j•M`1, 2j↵n,k§⌘1

sup
✓PSN,j

ˇ̌
ˇpLp✓, ✓0q ´ Lp✓, ✓0q

ˇ̌
ˇ • c 22j´2↵2

n,k

˛

‚. (3.8)

We will now estimate the second and third terms on the right-hand side of

the display above, starting with the third term.

‚ Estimating P
´î

j:j•M`1, 2j↵n,k§⌘1
sup✓PSN,j

ˇ̌
ˇpLp✓, ✓0q ´ Lp✓, ✓0q

ˇ̌
ˇ • c 22j´2↵2

n,k

¯
.

Let us invoke Lemma 3 applied to the class
 
`p✓, ¨q ´ `p✓0, ¨q, ✓ P S̄N,j

(
. To-

gether with the union bound applied over M † j § Jmax :“ tlogp
?
N⌘1qu`1

with sj :“ j2, it implies that for all ✓ P SN,j, M ` 1 § j § Jmax,
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?
N

´
pLp✓, ✓0q ´ Lp✓, ✓0q

¯
“ �n

E⇢2
´?

n
�n

`
L̄1p✓q ´ L̄1p✓0q ´ Lp✓, ✓0q

˘¯

ˆ 1?
k

kÿ

i“1

⇢1
ˆ?

n

�n

`
L̄ip✓q ´ L̄ip✓0q ´ Lp✓, ✓0q

˘˙
` Rn,k,jp✓q, (3.9)

where

sup
✓PS̄N,j

|Rn,k,jp✓q| § Cpd, ✓0q
ˆ
22j

N

j4?
k

`
?
k

23j

N3{2 ` O
2

k3{2

˙

uniformly over allM § j § Jmax with probability at least 1´3
∞

j:j•M`1 j
´2 •

1 ´ C
M . Let E denote the event of probability at least 1 ´ C

M on which the

previous representation holds. Moreover, observe that, in view of Lemma

1, for ⌘1 small enough and N large enough,

sup
}✓´✓0}§⌘1

ˇ̌
ˇ̌E⇢2

ˆ?
n

�n

`
L̄1p✓q ´ L̄1p✓0q ´ Lp✓, ✓0q

˘˙
´ ⇢2p0q

ˇ̌
ˇ̌ § ⇢2p0q

2
“ 1

2
.

Taking this fact into account and noting that (i) 2j?
N

j4?
k

`
?
k 22j

N § c̃2j for

any j § Jmax and any c̃ ° 0 given that n is large enough and that the

relation (ii) O
2

k3{2 “ op↵2
n,k

?
Nq follows from assumptions of the theorem, we

see that the remainder term Rn,k,jp✓q is smaller than c̃22j
´

1?
N

` ↵2
n,k

?
N

¯

on event E , hence

P

¨

˚̋ §

j:j•M`1, 2j?
N

§⌘1

sup
✓PSN,j

ˇ̌
ˇpLp✓, ✓0q ´ Lp✓, ✓0q

ˇ̌
ˇ • c 22j´2↵2

n,k

˛

‹‚§ C

M

`
ÿ

j:j•M`1, 2j↵n,k§⌘1

P
˜

sup
✓PSN,j

ˇ̌
ˇ̌
ˇ
1?
k

kÿ

i“1

⇢1
ˆ?

n

�n

`
L̄ip✓q ´ L̄ip✓0q ´ Lp✓, ✓0q

˘˙ˇ̌
ˇ̌
ˇ • c12

2j↵2
n,k

?
N

¸
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where we used the fact that whenever c̃ is small enough,

c22j´2↵2
n,k ´ c̃22j

ˆ
1

N
` ↵2

n,k

˙
• c12

2j↵2
n,k for c1 ° 0.

Invoking Lemma 1 again, we see that (assuming that L̄1p¨q is based on a

contamination-free sample)

sup
✓PS̄N,j

ˇ̌
ˇ̌E⇢1

ˆ?
n

�n

`
L̄1p✓q ´ L̄1p✓0q ´ Lp✓, ✓0q

˘˙ˇ̌
ˇ̌ § C

22j

N
.

Let us denote ⇢1
n,ip✓, ✓0q “ ⇢1

´?
n

�n

`
L̄ip✓q ´ L̄ip✓0q ´ Lp✓, ✓0q

˘¯
, i “ 1, . . . , k

for brevity. Moreover, let ⇢̃1
n,ip✓, ✓0q be a version of ⇢1

n,ip✓, ✓0q based on

a contamination-free i.i.d. sample X̃1, . . . , X̃N such that X̃j “ Xj for

j R J where J Ä t1, . . . , Nu contains the indices of the outliers among

X1, . . . , XN . As (i)
ˇ̌
ˇ 1?

k

∞k
i“1p⇢1

n,ip✓, ✓0q ´ ⇢̃1
n,ip✓, ✓0qq

ˇ̌
ˇ § 2}⇢1}8 O?

k
, (ii) O?

k
!

↵2
n,k

?
N by assumption, and (iii)

?
k 22j

N § c2
22j?
N

§ c222j↵2
n,k

?
N for any

c2 ° 0 and su�ciently large n, it is easy to check that

P
˜

sup
✓PSN,j

ˇ̌
ˇ̌
ˇ
1?
k

kÿ

i“1

⇢1
n,ip✓, ✓0q

ˇ̌
ˇ̌
ˇ • c12

2j↵2
n,k

?
N

¸

§ P
˜

sup
✓PSN,j

ˇ̌
ˇ̌
ˇ
1?
k

kÿ

i“1

˜
⇢̃1
n,ip✓, ✓0q ´ E⇢̃1

n,ip✓, ✓0q
¸ˇ̌

ˇ̌
ˇ • c22

2j↵2
n,k

?
N

¸

§ 1

c222j↵2
n,k

?
N
E sup

✓PSN,j

ˇ̌
ˇ̌
ˇ
1?
k

kÿ

i“1

˜
⇢̃1
n,ip✓, ✓0q ´ E⇢̃1

n,ip✓, ✓0q
¸ˇ̌

ˇ̌
ˇ

where we used Markov’s inequality on the last step. To bound the expected

supremum, we proceed in exactly the same fashion using symmetrization,
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contraction and desymmetrization inequalities as in the proof of Lemma 3

(see the supplementary material), and deduce that

E sup
✓PSN,j

ˇ̌
ˇ̌
ˇ
1?
k

kÿ

i“1

˜
⇢̃1
n,ip✓, ✓0q ´ E⇢̃1

n,ip✓, ✓0q
¸ˇ̌

ˇ̌
ˇ

§ C

�n
E sup

✓PSN,j

ˇ̌
ˇ̌
ˇ
1?
N

Nÿ

j“1

´
`p✓, X̃jq ´ `p✓0, X̃jq ´ Lp✓, ✓0

¯ˇ̌
ˇ̌
ˇ .

The right side of the display above can be bounded by Cpd,✓0q
�n

2j?
N

(using

Lemma 2), implying that

P
˜

sup
✓PSN,j

ˇ̌
ˇ̌
ˇ
1?
k

kÿ

i“1

˜
⇢̃1
n,ip✓, ✓0q ´ E⇢̃1

n,ip✓, ✓0q
¸ˇ̌

ˇ̌
ˇ • c22

2j↵2
n,k

?
N

¸
§ C1pd, ✓0q

�n

1

2j
,

where we used the fact that ↵2
n,k • 1

N . Therefore,

P

¨

˚̋ §

j:j•M`1, 2j?
N

§⌘1

sup
✓PSN,j

ˇ̌
ˇpLp✓, ✓0q ´ Lp✓, ✓0q

ˇ̌
ˇ • c 22j´2↵2

n,k

˛

‹‚

§ C

M
` C1pd, ✓0q

�n

ÿ

j•M

2´j § C

M
` C1pd, ✓0q

�n
2´M`1 Ñ 0 as M Ñ 8

whenever n, k are large enough.

‚ Estimating P
´ˇ̌

ˇpLp✓0, p✓p✓0qq ´ Lp✓0, p✓p✓0qq
ˇ̌
ˇ • c 22M↵2

n,k

¯
.

In view of (3.8), it only remains to show that

P
´?

N
ˇ̌
ˇpLp✓0, p✓p✓0qq ´ Lp✓0, p✓p✓0qq

ˇ̌
ˇ • c 22M↵2

n,k

¯
Ñ 0 as n, k Ñ 8. (3.10)

To this end, it su�ces to repeat the argument presented above, with several

simplifications. First, we will start by proving that

lim
MÑ8

lim sup
n,kÑ8

P
´

}p✓p✓0q ´ ✓0} • 2M↵n,k

¯
“ 0.
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We have already shown in the course of the proof of Theorem 1 that p✓p✓0q

is a consistent estimator of ✓0, so that P
´

}p✓p✓0q ´ ✓0} • ⌘2
¯

Ñ 0 for any

⌘2 ° 0. If }p✓p✓0q ´ ✓0} • 2M↵2
n,k, then p✓p✓0q P SN,j for some j ° M ,

implying that sup✓PSN,j
pLp✓0, ✓q • pLp✓0, ✓0q “ 0, which entails the inequality

sup✓PSN,j

´
pLp✓0, ✓q ´ Lp✓0, ✓q

¯
• ´ sup✓PSN,j

Lp✓0, ✓q “ inf✓PSN,j Lp✓, ✓0q •

c 22j´2↵2
n,k whenever 2j↵n,k § ⌘2 and ⌘2 is small enough. Therefore,

P
´

}p✓p✓0q ´ ✓0} • 2M↵n,k

¯
§ P

´
}p✓p✓0q ´ ✓0} • ⌘2

¯

` P

¨

˝
§

j:j•M`1, 2j↵n,k§⌘2

sup
✓PSN,j

ˇ̌
ˇpLp✓0, ✓q ´ Lp✓0, ✓q

ˇ̌
ˇ • c 22j´2↵2

n,k

˛

‚.

The probability of the union is estimated as before using Lemma 3, implying

that it converges to 0 as M Ñ 8. To complete the proof of (3.10), observe

that

P
´ˇ̌

ˇpLp✓0, p✓p✓0qq ´ Lp✓0, p✓p✓0qq
ˇ̌
ˇ ° c 22M↵2

n,k

¯
§ P

´
}p✓p✓0q ´ ✓0} • 2M↵n,k

¯

` P
˜

sup
}✓´✓0}§2M↵n,k

ˇ̌
ˇpLp✓0, ✓q ´ Lp✓0, ✓q

ˇ̌
ˇ • c 22M↵2

n,k

¸

and that

P
˜

sup
}✓´✓0}§2M↵n,k

ˇ̌
ˇpLp✓0, ✓q ´ Lp✓0, ✓q

ˇ̌
ˇ • c 22M↵2

n,k

¸
§ C

M
` Cpd, ✓0q

�n
2´M Ñ 0

as M Ñ 8, which follows from the representation (3.9) in the same fashion

as before. This completes the proof of relation (3.7). To establish that

lim
MÑ8

lim sup
n,kÑ8

P
´

}p✓p2q
n,k ´ ✓0} • 2M↵n,k

¯
“ 0,
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we begin by observing that the inequality }p✓p2q
n,k ´ ✓0} • 2M↵n,k implies that

sup✓PSN,j
pLpp✓p1q

n,k, ✓q • pLpp✓p1q
n,k, ✓0q for some j ° M . If 2j↵n,k § ⌘3 for su�-

ciently small constant ⌘3 ° 0, we see that it further entails the inequality

sup
✓PSN,j

´
pLpp✓p1q

n,k, ✓q ´ Lpp✓p1q
n,k, ✓q ´ pLpp✓p1q

n,k, ✓0q ` Lpp✓p1q
n,k, ✓0q

¯

• ´ sup
✓PSN,j

Lpp✓p1q
n,k, ✓q ` Lpp✓p1q

n,k, ✓0q “ inf
✓PSN,j

Lp✓, p✓p1q
n,kq ` Lpp✓p1q

n,k, ✓0q

“ inf
✓PSN,j

Lp✓, ✓0q • c 22j´2↵2
n,k.

We deduce from the display above that

P
´

}p✓p2q
n,k ´ ✓0} • 2M↵n,k

¯
§ P

´
}p✓p2q

n,k ´ ✓0} • ⌘3
¯

`P
´

}p✓p1q
n,k ´ ✓0} • 2M↵2

n,k

¯

` P

¨

˝
§

j:j•M`1, 2j↵n,k§⌘3

sup
✓PSN,j ,✓1PS̄N,M{2

ˇ̌
ˇpLp✓1, ✓q ´ Lp✓1, ✓q

ˇ̌
ˇ • c1 2

2j´2↵2
n,k

˛

‚

` P
˜

sup
✓PS̄N,M{2

ˇ̌
ˇpLp✓, ✓0q ´ Lp✓, ✓0q

ˇ̌
ˇ • c1 2

2M↵n,k

¸
.

We have shown before that the first and second term on the right side of

the previous display converge to 0 as M , n and k tend to infinity, while the

last term converges to 0 in view of argument presented previously in detail

(see representation (3.9) and the bounds that follow). It remains to estimate

P
´î

j:j•M`1, 2j↵n,k§⌘3
sup✓PSN,j ,✓1PS̄N,M{2

ˇ̌
ˇpLp✓1, ✓q ´ Lp✓1, ✓q

ˇ̌
ˇ • c1 22j´2↵2

n,k

¯
. To

this end, we again invoke Lemma 3 applied to the class

 
`p✓1, ¨q ´ `p✓2, ¨q, ✓1 P S̄N,M{2, ✓2 P S̄N,j

(
.
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Here, the “reference point” is p✓0, ✓0q. Since

|`p✓, xq ´ `p✓1, xq| § V px; rp✓0qqp2j ` 2M{2q↵n,k,

it is easy to see that �2p�q § EM2
✓0pXq

`
22j ` 2M

˘
↵2
n,k § Cp✓0q22j↵2

n,k, and

to deduce that

?
N

´
pLp✓1, ✓q ´ Lp✓1, ✓q

¯

“ �n

E⇢2
´?

n
�n

`
L̄1p✓1q ´ L̄1p✓q ´ Lp✓1, ✓q

˘¯ 1?
k

kÿ

i“1

⇢1
ˆ?

n

�n

`
L̄ip✓1q ´ L̄ip✓q ´ Lp✓1, ✓q

˘˙

` Rn,k,jp✓1, ✓q,

where

sup
✓PS̄N,j ,✓1PS̄N,M{2

|Rn,k,jp✓1, ✓q| § Cpd, ✓0q
ˆ
22j

N

j4?
k

`
?
k

23j

N3{2 ` O
2

k3{2

˙

uniformly over all M § j § Jmax with probability at least 1 ´ C
M . The

remaining steps again closely mimic the argument outlined in detail after

display (3.9) and yield that

P

¨

˝
§

j:j•M`1, 2j↵n,k§⌘3

sup
✓PSN,j ,✓1PS̄N,M{2

ˇ̌
ˇpLp✓1, ✓q ´ Lp✓1, ✓q

ˇ̌
ˇ • c1 2

2j´2↵2
n,k

˛

‚

§ Cpd, ✓0q
�n

2´M`1 Ñ 0

as M Ñ 8, therefore implying the last claim in the first part of the proof.
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Step two. Now we are ready to establish the asymptotic normality of p✓p1q
n,k

and p✓p2q
n,k. To this end, observe that the first claim of the theorem holds with

↵n,k “ 1?
nk

“ 1?
N
, and consider the stochastic process MNph, qq indexed by

h, q P Rd and defined via

MNph, qq :“ N
´

pLp✓0 ` h{
?
N, ✓0 ` q{

?
Nqq ´ Lp✓0 ` h{

?
N, ✓0 ` q{

?
Nq

¯
.

Below, we will show that MNph, qq converges weakly to the Gaussian pro-

cess W ph, qq :“ W T ph ´ qq, h, q P Rd, where W „ Np0,⌃W q and ⌃W “

E
“
B✓`p✓0, XqB✓`p✓0, XqT

‰
. Let us deduce the conclusion assuming that weak

convergence has already been established. We have that

N ¨ pLp✓0 `h{
?
N, ✓0 ` q{

?
Nqq “ N ¨Lp✓0 `h{

?
N, ✓0 ` q{

?
Nq `MNph, qq.

Note that, in view of Assumption 2 and the fact that ✓0 minimizes Lp✓0q,

N ¨ Lp✓0 ` h{
?
N, ✓0 ` q{

?
Nq Ñ 1

2
hTB2

✓Lp✓0qh ´ 1

2
qTB2

✓Lp✓0qq as N Ñ 8,

therefore

N ¨pLp✓0`h{
?
N, ✓0`q{

?
Nqq d›Ñ W Th`1

2
hTB2

✓Lp✓0qh´
ˆ
W T q ´ 1

2
qTB2

✓Lp✓0qq
˙
.

It is easy to see that

´
´

“
B2
✓Lp✓0q

‰´1
W,´

“
B2
✓Lp✓0q

‰´1
W

¯

“ argmin
h

max
q

W Th ` 1

2
hTBd

✓Lp✓0qh ´
ˆ
W T q ´ 1

2
qTBd

✓Lp✓0qq
˙
,
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where ´ rB2
✓Lp✓0qs´1 W „ N

´
0, rB2

✓Lp✓0qs´1 ⌃W rB2
✓Lp✓0qs´1

¯
. Therefore,

since

´?
N

´
p✓p1q
n,k ´ ✓0

¯
,
?
N

´
p✓p2q
n,k ´ ✓0

¯¯
“ argmin

h
max

q
pLp✓0`h{

?
N, ✓0`q{

?
Nqq,

continuous mapping theorem yields the desired conclusion. Next, we will

establish the required weak convergence.

‚ Establishing weak convergence. To this end, we apply Lemma 3 to

the class

rLN :“

$
’’&

’’%
r̀
Nph, q, ¨q :“ `p✓0 ` h{

?
N, ¨q ´ `p✓0 ` q{

?
N, ¨q,

››››››››

¨

˚̊
˝
h

q

˛

‹‹‚

››››››››
§ R

,
//.

//-
,

(3.11)

and note that

››››››››

¨

˚̊
˝
✓0 ` h{

?
N

✓0 ` q{
?
N

˛

‹‹‚´

¨

˚̊
˝
✓0

✓0

˛

‹‹‚

››››››››
§ R?

N
. We will also introduce the

following notation for brevity (that will be used only in this part of the

proof):

L̄jph, qq :“ 1

n

ÿ

iPGj

r̀
Nph, q,Xiq, rLph, qq :“ Er̀

Nph, q,Xq. (3.12)

The quantities � and �2p�q defined in Lemma 3 admit the bounds � § R?
N

and, in view of Assumption 3,

�2p�q :“ sup
}ph,qqT }§R

Var
´

r̀
Nph, q,Xq

¯
§ 2EV 2pX; rp✓0qqR

2

N
, (3.13)

hence Lemma 3 yields that
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MNph, qq “ �n

E⇢2
´?

n
�n

´
L̄1ph, qq ´ rLph, qq

¯¯
?
N?
k

kÿ

j“1

⇢1
ˆ?

n

�n

´
L̄jph, qq ´ rLph, qq

¯˙

` oP p1q

uniformly over
››ph, qqT

›› § R. In view of Assumption 1,

P
ˆˇ̌

ˇ̌
?
n

�n

´
L̄jph, qq ´ rLph, qq

¯ˇ̌
ˇ̌ § 1

˙
§ E⇢2

ˆ?
n

�n

´
L̄1ph, qq ´ rLph, qq

¯˙
§ 1.

As sup}ph,qqT }§R P
´ˇ̌

ˇ
?
n

�n

´
L̄jph, qq ´ rLph, qq

¯ˇ̌
ˇ • 1

¯
§ sup}ph,qqT }§R

Varpr̀ph,q,Xq
�2

n
Ñ

0 as n, k Ñ 8, we deduce that E⇢2
´?

n
�n

´
L̄1ph, qq ´ rLph, qq

¯¯
Ñ 1 and

MNph, qq “ �n

?
N?
k

kÿ

j“1

⇢1
ˆ?

n

�n

´
L̄jph, qq ´ rLph, qq

¯˙
` oP p1q. (3.14)

It remains to establish convergence of the finite dimensional distributions

as well as asymptotic equicontinuity. Convergence of finite dimensional

distributions will be deduced from Lindeberg-Feller’s central limit theorem.

As ⇢1pxq “ x for |x| § 1 by Assumption 1,

⇢1
ˆ?

n

�n

´
L̄jph, qq ´ rLph, qq

¯˙
“

?
n

�n

´
L̄jph, qq ´ rLph, qq

¯

on the event Cj :“
!ˇ̌

ˇ
?
n

�n

´
L̄jph, qq ´ rLph, qq

¯ˇ̌
ˇ § 1

)
. Chebyshev’s inequality

and Assumption 3 imply that

P
`
C̄j

˘
§ Var

ˆ?
n

�n

´
L̄jph, qq ´ rLph, qq

¯˙

§ Er̀2ph, q,Xq
�2

n

§ EV2pX; rp✓0qq}h ´ q}2
�2

nN
,
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therefore, P
´îk

j“1 C̄j

¯
§ EV2pX;rp✓0qq}h´q}2

�2
nn

Ñ 0 as n Ñ 8, and

MNph, qq “ �n

?
N?
k

kÿ

j“1

?
n

�n

´
L̄jph, qq ´ rLph, qq

¯
` oP p1q

“ 1?
N

Nÿ

j“1

?
N

´
r̀
Nph, q,Xjq ´ rLph, qq

¯
` oP p1q

on the event
ìk

j“1 Cj. Hence, the limits of the finite dimensional distribu-

tions of the processes MNph, qq and

xMNph, qq :“ 1?
N

Nÿ

j“1

?
N

´
r̀
Nph, q,Xjq ´ rLph, qq

¯

coincide. It is easy to conclude from the Lindeberg-Feller’s theorem that

the finite dimensional distributions of the process ph, qq fiÑ xMNph, qq are

Gaussian, with covariance function

lim
NÑ8

cov
´

xMNph1, q1q, xMNph2, q2q
¯

“ ph1 ´ q1qT E
”
B✓`p✓0, Xq pB✓`p✓0, XqqT

ı
ph2 ´ q2q , (3.15)

Indeed, the aforementioned relation follows from the dominated conver-

gence theorem, where pointwise convergence and the “domination” hold

due to Assumption 3. Lindeberg’s condition is also easily verified, as
´?

N r̀
Nph, q,Xq

¯2

§ V
2pX; rp✓0qq}h ´ q}2, implying that the sequence

"´a
Nj

r̀
Njph, q,Xq

¯2
*

j•1

is uniformly integrable, where Nj “ nj ¨ kj.
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Finally, we will establish the asymptotic equicontinuity of the process

MNph, qq. To this end, it su�ces to prove that for any " ° 0,

lim
�Ñ0

lim sup
n,kÑ8

P
˜

sup
}ph1,q1qT ´ph2,q2qT }§�

|MNph1, q1q ´ MNph2, q2q| • "

¸
Ñ 0,

which would follow, in view of Lemma 3, from the relation

lim
�Ñ0

lim sup
n,kÑ8

E sup
}ph1,q1qT ´ph2,q2qT }§�

ˇ̌
ˇ̌
ˇ�n

?
N?
k

kÿ

j“1

˜
⇢1

ˆ?
n

�n

´
L̄jph1, q1q ´ rLph1, q1q

¯˙

´ ⇢1
ˆ?

n

�n

´
L̄jph2, q2q ´ rLph2, q2q

¯˙ ¸ˇ̌
ˇ̌
ˇ “ 0. (3.16)

To estimate the expected supremum in (3.16), we first observe that for any

h, q,

?
Nk

ˇ̌
ˇ̌E⇢1

ˆ?
n

�n

´
L̄1ph, qq ´ rLph, qq

¯˙ˇ̌
ˇ̌ “ op1q (3.17)

as k, n Ñ 8 by Lemma 1 and inequality (3.13). Therefore, we only need to

show that

lim sup
n,kÑ8

E sup
}ph1,q1qT ´ph2,q2qT }§�

|MNph1, q1q ´ MNph2, q2q´

pEMNph1, q1q ´ EMNph2, q2qq| �Ñ0››Ñ 0.

Next, we will apply symmetrization inequality with Gaussian weights (van der

Vaart and Wellner, 1996). Specifically, let g1, . . . , gk be i.i.d. Np0, 1q ran-

dom variables independent of the data X1, . . . , XN . Then, setting Bp�q :“
 

ph1, q1q, ph2, q2q : }ph1, q1qT ´ ph2, q2qT } § �
(
, we have that



3. PROOFS.

E sup
Bp�q

|MNph1, q1q ´ MNph2, q2q ´ pEMNph1, q1q ´ EMNph2, q2qq| §

Cp⇢q�nE sup
Bp�q

ˇ̌
ˇ̌
ˇ

?
N?
k

kÿ

j“1

gj

˜
⇢1

ˆ?
n

�n

´
L̄jph1, q1q ´ rLph1, q1q

¯˙

´ ⇢1
ˆ?

n

�n

´
L̄jph2, q2q ´ rLph2, q2q

¯˙ ¸ˇ̌
ˇ̌
ˇ.

Let us condition everything on X1, . . . , XN ; we will write Eg to denote the

expectation with respect to g1, . . . , gk only. Consider the Gaussian process

Yn,kptq defined via Rk Q t fiÑ Yn,kptq :“ 1?
k

∞k
j“1 gj

?
N⇢1ptjq, where

tj :“ tjph, qq “
?
n

�n

´
L̄jph, qq ´ rLph, qq

¯
, j “ 1, . . . , k.

In what follows, we will rely on the ideas behind the proof of Theorem

2.10.6 in van der Vaart and Wellner (1996). Let us partition the set tph, qq :

}ph, qq} § Ru into the subsets Sj, j “ 1, . . . , Np�q of diameter at most �

with respect to the Euclidean distance } ¨ }, and let tpjq :“ tpjqphpjq, qpjqq P

Sj j “ 1, . . . , Np�q be arbitrary points; we also note that Np�q §
`
6R
�

˘2d
.

Next, set T pjq :“ ttph, qq : ph, qq P Sju. Our goal will be to show that

lim sup
n,kÑ8

E max
j“1,...,Np�q

sup
tPT pjq

ˇ̌
Yn,kptq ´ Yn,kptpjqq

ˇ̌
Ñ 0 as � Ñ 0,

whence the desired conclusion would follow from Theorem 1.5.6 in van der

Vaart and Wellner (1996). By Lemma 2.10.16 in van der Vaart and Wellner

(1996),
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Eg max
j“1,...,Np�q

sup
tPT pjq

ˇ̌
Yn,kptq ´ Yn,kptpjqq

ˇ̌

§ C

˜
max

j“1,...,Np�q
Eg sup

tPT pjq

ˇ̌
Yn,kptq ´ Yn,kptpjqq

ˇ̌

`
a
logNp�q max

1§j§Np�q
sup
tPT pjq

Var1{2
g

`
Yn,kptq ´ Yn,kptpjqq

˘
¸
. (3.18)

Observe that Varg
`
Yn,kptq ´ Yn,kptpjqq

˘
“ N

k

∞k
i“1

´
⇢1ptiq ´ ⇢1ptpjq

i qq
¯2

, hence

E max
1§j§Np�q

sup
tPT pjq

Var1{2
g

`
Yn,kptq ´ Yn,kptpjqq

˘
§ E1{2 sup

tp1q,tp2q

N

k

kÿ

i“1

´
⇢1ptp1q

i q ´ ⇢1ptp2q
i q

¯2

§
?
NLp⇢1qE1{2 sup

tp1q,tp2q

´
tp1q
1 ´ tp2q

1

¯2

“ Lp⇢1qE1{2 sup
}ph1,q1q´ph2,q2q}§�

˜?
nN

�n

´
L̄1ph1, q1q ´ L̄1ph2, q2q

´ prLph1, q1q ´ rLph2, q2q
¯¸2

,

where the supremum is taken over all tp1qph1, q1q, tp2qph2, q2q such that

}ph1, q1q´ph2, q2q} § �. To estimate the last expected supremum, we invoke

Lemma 2 with fh,qpXq :“ `p✓0 `h{
?
N,Xq ´ `p✓0 ` q{

?
N,Xq, noting that,

in view of Assumption 3,

?
N |fh1,q1pXq ´ fh2,q2pXq| § VpX; rp✓0qq p}h1 ´ h2} ` }q1 ´ q2}q

§ 2VpX; rp✓0qq }ph1, q1q ´ ph2, q2q} . (3.19)

Therefore,
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E1{2 sup
}ph1,q1q´ph2,q2q}§�

ˆ?
nN

�n

´
L̄1ph1, q1q ´ L̄1ph2, q2q ´ prLph1, q1q ´ rLph2, q2q

¯˙2

§ C
?
dE1{2

V
2pX; rp✓0qq ¨ �,

yielding that the second term on the right side of (3.18) converges in prob-

ability to 0 as � Ñ 0. It remains to show that the first term

max
j“1,...,Np�q

Eg sup
tPT pjq

ˇ̌
Yn,kptq ´ Yn,kptpjqq

ˇ̌

converges to 0 in probability. As ⇢1 is Lipschitz continuous, the covariance

function of Yn,kptq satisfies

E
`
Yn,kptp1qq ´ Yn,kptp2qq

˘2 § L2p⇢1qN
k

kÿ

j“1

´
tp1q
j ´ tp2q

j

¯2

,

where the right side corresponds to the variance of increments of the process

Zn,kptq “ Lp⇢1q?
k

kÿ

j“1

gj
?
Ntj.

Therefore, Slepian’s lemma (Ledoux and Talagrand, 1991) implies that for

any j,

Eg sup
tPT pjq

ˇ̌
Yn,kptq ´ Yn,kptpjqq

ˇ̌

§ Eg sup
ph,qqPSj

1?
k

ˇ̌
ˇ̌
ˇ

?
Nn

�n

kÿ

i“1

gj
´
L̄iph, qq ´ L̄iphpjq, qpjqq ´ prLph, qq ´ Lphpjq, qpjqqq

¯ˇ̌
ˇ̌
ˇ .

In turn, it yields the inequality
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E max
j“1,...,Np�q

Eg sup
tPT pjq

ˇ̌
Yn,kptq ´ Yn,kptpjqq

ˇ̌

§ E sup
}ph1,q1q´ph2,q2q}§�

1?
k

ˇ̌
ˇ̌
ˇ

?
Nn

�n

kÿ

i“1

gj
´
L̄iph1, q1q ´ L̄iph2, q2q

´ prLph1, q1q ´ rLph2, q2qq
¯ˇ̌

ˇ̌
ˇ.

To complete the proof, we will apply the multiplier inequality (Lemma

2.9.1 in van der Vaart and Wellner, 1996) to deduce that the last display is

bounded, up to a multiplicative constant, by

max
m“1,...,k

E sup
}ph1,q1q´ph2,q2q}§�

1?
m

ˇ̌
ˇ̌
ˇ

?
Nn

�n

mÿ

i“1

"j
´
L̄iph1, q1q ´ L̄iph2, q2q

´ prLph1, q1q ´ rLph2, q2qq
¯ˇ̌

ˇ̌
ˇ

where "1, . . . , "k are i.i.d. Rademacher random variables. Next, desym-

metrization inequality (Lemma 2.3.6 in van der Vaart and Wellner, 1996)

implies that for any m “ 1, . . . , k,

E sup
}ph1,q1q´ph2,q2q}§�

1?
m

ˇ̌
ˇ̌
ˇ

?
Nn

�n

mÿ

i“1

"j
´
L̄iph1, q1q ´ L̄iph2, q2q

´ prLph1, q1q ´ rLph2, q2qq
¯ˇ̌

ˇ̌
ˇ

§ 2E sup
}ph1,q1q´ph2,q2q}§�

1?
mn

ˇ̌
ˇ̌
ˇ

?
N

�n

mnÿ

i“1

´
r̀
Nph1, q1, Xiq ´ r̀

Nph2, q2, Xiq

´ prLph1, q1q ´ rLph2, q2qq
¯ˇ̌

ˇ̌
ˇ
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where r̀
Nph, q,Xq and rLph, qq were defined in (3.11) and (3.12) respec-

tively. It remains to apply Lemma 2 in exactly the same way as before

(see (3.19)) to deduce that the last display is bounded from above by

C
?
dE1{2

V
2pX; rp✓0qq ¨ � Ñ 0 as � Ñ 0. This completes the proof of asymp-

totic equicontinuity, and therefore weak convergence, of the sequence of

processes MNph, qq.

Supplementary Materials

The online supplementary material includes the proof of Theorem 1, the

proofs of technical results and outcomes of numerical simulation.
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Supplementary Material

This documents contains additional technical details and numerical results that were omitted

from the main text of the manuscript.

S1 Auxiliary results.

In the exposition below, we will often refer to the lemmas stated in section

3.1 of the main document.

1.3 Existence of solutions.

In this section, we discuss simple su�cient conditions for existence of the

estimator p✓n,k defined in display (1.5) of the main document.

Proposition 1. Assume that ⇥ Ä Rd is compact and that `p✓, xq is con-

tinuous with respect to the first variable for P-almost all x. Moreover, let ⇢

be a convex function such that ⇢2pxq ° 0 for all x P R. Then p✓n,k exists.

Proof. It su�ces to show that pLp✓, ✓1q is continuous. The existence claim
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then easily follows as pLp✓, ✓1q must be uniformly continuous on ⇥ ˆ ⇥ due

to compactness, which in turn implies, via a standard argument, continuity

of the function ✓ fiÑ max✓1P⇥ pLp✓, ✓1q, hence the existence of p✓n,k, again in

view of compactness. To establish the continuity of ✓ fiÑ max✓1P⇥ pLp✓, ✓1q

when pLp✓, ✓1q is uniformly continuous, note that for any ✓ P ⇥ and any

" ° 0, pLp✓, ✓1q ´ " § pLp✓̃, ✓1q § pLp✓, ✓1q ` " for all ✓
1 P ⇥ as long as

}✓̃´✓} § �p"q. It easily implies that max✓1P⇥ pLp✓, ✓1q´" § max✓1P⇥ pLp✓̃, ✓1q §

max✓1P⇥ pLp✓, ✓1q ` ", and the conclusion follows.

All that remains is to establish the continuity of pLp✓, ✓1q. To this end, fix

" ° 0 and let

Rpz; ✓, ✓1q “ 1

k

kÿ

j“1

⇢

ˆ?
n

sLjp✓q ´ sLjp✓1q ´ z

�n

˙
.

Since R
1pz; ✓, ✓1q is strictly increasing in z, there exist z`p"q and z´p"q

such that R
1pz`p"q; ✓, ✓1q “ " and R

1pz´p"q; ✓, ✓1q “ ´". In particular,

pLp✓, ✓1q P pz´p"q, z`p"qq. As R
2ppLp✓, ✓1q; ✓, ✓1q ° 0 in view of the assump-

tion ⇢
2 ° 0, |z`p"q ´ z´p"q| Ñ 0 as " Ñ 0. Since sLjp✓q ´ sLjp✓1q is

continuous in ✓, ✓
1 by assumption, R is continuous in ✓, ✓

1 as well, hence
ˇ̌
ˇRpz`p"q; ✓̃, ✓̃1q ´ Rpz`p"q; ✓, ✓1q

ˇ̌
ˇ † " and

ˇ̌
ˇRpz´p"q; ✓̃, ✓̃1q ´ Rpz´p"q; ✓, ✓1q

ˇ̌
ˇ †

" whenever }p✓, ✓1q ´ p✓̃, ✓̃1q} § �p"q for some �p"q small enough. In this

case, we see that the inequalities Rpz`p"q; ✓̃, ✓̃1q ° 0 and Rpz´p"q; ✓̃, ✓̃1q † 0

hold, hence pLp✓̃, ✓̃1q P pz´p"q, z`p"qq, implying that
ˇ̌
ˇpLp✓̃, ✓̃1q ´ pLp✓, ✓1q

ˇ̌
ˇ §
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|z`p"q ´ z´p"q| Ñ 0 as " Ñ 0, yielding the desired conclusion.

We remark that elsewhere in this work, we choose ⇢ with the second

derivative vanishing outside of a neighborhood of 0. However, R2ppLp✓, ✓1q; ✓, ✓1q °

0 holds with high probability uniformly over ✓, ✓
1 P ⇥ when ⇥ is compact

and the class t`p✓, ¨q, ✓ P ⇥u satisfies the assumptions made. We sketch

the steps needed to show this fact; all the required tools have already been

established in the paper. First, note that in view of Lemma A.1 and the

triangle inequality, sup✓,✓1P⇥
ˇ̌
ˇpLp✓, ✓1q ´ Lp✓, ✓1q

ˇ̌
ˇ “ OP pn´1{2q as n, k Ñ 8

with high probability, hence

inf
✓,✓1

R
2ppLp✓, ✓1q; ✓, ✓1q • inf

✓,✓1,|z|§D{?
n
R

2pLp✓, ✓1q ` z; ✓, ✓1q

for a large constant D, again with high probability. Next, the relation

1

n
sup

✓,✓1,|z|§D{?
n

|R2pLp✓, ✓1q ` z; ✓, ✓1q ´ ER2pLp✓, ✓1q ` z; ✓, ✓1q| “ oP p1q

as n, k Ñ 8 follows from an argument identical to the one used to prove

Lemma A.2 and Lemma 2. Finally,

E⇢2
ˆ?

n

sLjp✓q ´ sLjp✓1q ´ Lp✓, ✓1q ´ z

�n

˙
“ E⇢2

ˆ
Zp✓, ✓1q ´ z

?
n

�n

˙
` op1q

in view of Lemma 1, where Zp✓, ✓1q is a centered and normally distributed

random variable with variance �2p✓, ✓1q. As ⇢2pxq • It|x| § 1u, we see that

inf✓,✓1,|z|§D{?
n E⇢2

´
Zp✓,✓1q´z

?
n

�n

¯
° 0, yielding the result.
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S2 Proof of Theorem 1 (main text).

2.4 Preliminaries.

Let us recall some basic facts and existing results required in the proof.

Given a metric space pT, ⇢q, the covering number NpT, ⇢, "q is defined as

the smallest N P N such that there exists a subset F Ñ T of cardinality

N with the property that for all z P T , ⇢pz, F q § ". Let tY ptq, t P T u be

a stochastic process indexed by T . We will say that it has sub-Gaussian

increments with respect to some metric ⇢ if for all t1, t2 P T and s P R,

EespYt1´Yt2 q § e
s2⇢2pt1,t2q

2 .

Theorem (Dudley’s entropy bound). Let tY ptq, t P T u be a centered

stochastic process with sub-Gaussian increments. Then the following in-

equality holds:

E sup
tPT

|Y ptq ´ Y pt0q| § 12

DpT qª

0

a
logNpT, ⇢, "qd",

where DpT q is the diameter of the space T with respect to ⇢.

Proof. See the book by Talagrand (2005).

The following bound allows one to control the error
ˇ̌
ˇpLp✓, ✓0q ´ Lp✓, ✓0q

ˇ̌
ˇ

uniformly over compact subsets ⇥1 Ñ ⇥. Recall the adversarial contamina-
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tion framework introduced in section 1, and define

r� :“ max

ˆ
�n, sup

✓P⇥1
�p✓, ✓0q

˙
.

Lemma A.1. Let L “ t`p✓, ¨q, ✓ P ⇥u be a class of functions mapping S

to R, and assume that sup✓P⇥1 E |`p✓, Xq ´ `p✓0, Xq ´ Lp✓, ✓0q|2`⌧ † 8 for

some ⌧ P r0, 1s. Then there exist absolute constants c, C ° 0 and a function

g⌧ px, ✓q satisfying g⌧ px, ✓q xÑ8“

$
’’’&

’’’%

op1q, ⌧ “ 0,

Op1q, ⌧ ° 0

such that for all s ° 0, n

and k satisfying

s?
k�n

E sup
✓P⇥1

1?
N

ˇ̌
ˇ̌
ˇ

Nÿ

j“1

p`p✓, Xjq ´ `p✓0, Xjq ´ Lp✓, ✓0qq
ˇ̌
ˇ̌
ˇ

` sup
✓P⇥1

«
g⌧ pn, ✓qE |`p✓, Xq ´ `p✓0, Xq ´ Lp✓, ✓0q|2`⌧

�2`⌧
n n⌧{2

�
` O

k
§ c,

the following inequality holds with probability at least 1 ´ 1
s :

sup
✓P⇥1

ˇ̌
ˇpLp✓, ✓0q ´ Lp✓, ✓0q

ˇ̌
ˇ

§ C

«
s ¨

r�
�n

E sup
✓P⇥1

ˇ̌
ˇ̌
ˇ
1

N

Nÿ

j“1

´
`p✓, Xjq ´ `p✓0, Xjq ´ Lp✓, ✓0q

¯ˇ̌
ˇ̌
ˇ

` r�
˜

1?
n

O

k
` 1?

n
sup
✓P⇥1

«
g⌧ pn, ✓qE |`p✓, Xq ´ `p✓0, Xq ´ Lp✓, ✓0q|2`⌧

�2`⌧
n n⌧{2

�¸ �
.

We will only use the bound of the lemma with ⌧ “ 0. The proof of this

bound is similar to the argument behind Theorem 3.1 in (Minsker, 2019b);

for the readers’ convenience, we present the details in section 2.4 below.
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For the illustration purposes, assume that O “ 0, whence the result above

implies that as long as

E sup
✓P⇥1

1?
N

Nÿ

j“1

|`p✓, Xjqq ´ `p✓0, Xjq ´ Lp✓, ✓0q| “ Op1q

and �p⇥1q À �n “ Op1q,

sup
✓P⇥1

ˇ̌
ˇpLp✓, ✓0q ´ Lp✓, ✓0q

ˇ̌
ˇ “ Op

`
N

´1{2 ` n
´p1`⌧q{2�´p2`⌧q

n

˘
.

Moreover, if O “ N and �n “ Op1q, then, setting k — N
2

2`⌧ , we see that

sup
✓P⇥1

ˇ̌
ˇpLp✓, ✓0q ´ Lp✓, ✓0q

ˇ̌
ˇ “ Op

´
N

´1{2 ` 
1`⌧
2`⌧

¯
.

Lemma A.2. Assume that X1, . . . , Xn are i.i.d. Let ✓ P ⇥, and set �0 :“

rp✓q, where rp✓q is defined in Assumption 3. Then for all 0 † � § �0,

E sup
}✓1´✓}§�

ˇ̌
ˇ̌
ˇ
1

k

kÿ

j“1

⇢
2

ˆ?
n

�n

`
L̄jp✓1

, ✓0q ´ Lp✓1
, ✓0q

˘˙

´ E⇢2
ˆ?

n

�n

`
L̄1p✓1

, ✓0q ´ Lp✓1
, ✓0q

˘˙ ˇ̌
ˇ̌
ˇ

§ 8

�n

?
k
E sup

}✓1´✓}§�

ˇ̌
ˇ̌
ˇ
1?
N

Nÿ

j“1

p`p✓1
, Xjq ´ `p✓0, Xjq ´ Lp✓1

, ✓0qq
ˇ̌
ˇ̌
ˇ

As a consequence,

sup
}✓1´✓}§�

ˇ̌
ˇ̌
ˇ
1

k

kÿ

j“1

⇢
2

ˆ?
n

�n

`
L̄jp✓1

, ✓0q ´ Lp✓1
, ✓0q

˘˙

´ E⇢2
ˆ?

n

�n

`
L̄1p✓1

, ✓0q ´ Lp✓1
, ✓0q

˘˙ ˇ̌
ˇ̌
ˇ

§ 8s

�n

?
k
E sup

}✓1´✓}§�

ˇ̌
ˇ̌
ˇ
1?
N

Nÿ

j“1

p`p✓1
, Xjq ´ `p✓0, Xjq ´ Lp✓1

, ✓0qq
ˇ̌
ˇ̌
ˇ
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with probability at least 1´ 1
s , where C ° 0 is an absolute constant. More-

over, the bound still holds if ⇢
2 is replaced by ⇢

3, up to the change in

constants.

The proof is given in section 2.4.

Lemma A.3. Let tAnp✓q, ✓ P ⇥u, tBnp✓q, ✓ P ⇥ Ñ Rdu be sequences of

stochastic processes such that for every ✓ P ⇥, the sequences of random

variables tAnp✓qun•1 and tBnp✓qun•1 are stochastically bounded, and for

any " ° 0,

lim sup
nÑ8

P
˜

sup
}✓´✓0}§�

|Anp✓q ´ Anp✓0q| • "

¸
Ñ 0 as � Ñ 0,

lim sup
nÑ8

P
˜

sup
}✓´✓0}§�

|Bnp✓q ´ Bnp✓0q| • "

¸
Ñ 0 as � Ñ 0.

Then

lim sup
nÑ8

P
˜

sup
}✓´✓0}§�

|Anp✓qBnp✓q ´ Anp✓0qBnp✓0q| • "

¸
Ñ 0 as � Ñ 0.

Moreover, if there exists c ° 0 such that

lim inf
nÑ8

Pp|Bnp✓0q| • cq “ 1,

then the following also holds:

lim sup
nÑ8

P
˜

sup
}✓´✓0}§�

ˇ̌
ˇ̌Anp✓q
Bnp✓q ´ Anp✓0q

Bnp✓0q

ˇ̌
ˇ̌ • "

¸
Ñ 0 as � Ñ 0.
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Proof. The result follows in a straightforward manner from the triangle

inequality hence the details are omitted.

Let us commence the proof of the theorem. To simplify and clarify the

notation, we will omit subscript j in most cases and simply write “k, n”

instead of “kj, nj” to denote the increasing sequences of the number of

subgroups and their cardinalities. For every ✓
1 P ⇥, define

p✓p✓1q :“ argmax
✓P⇥

pLp✓1
, ✓q “ argmin

✓P⇥
pLp✓, ✓1q

Above, we assumed that the maximum is attained so that p✓p✓1q is well

defined; however, the argument also holds with p✓p✓1q replaced by a near-

maximizer. We will set p✓p1q
n,k :“ p✓n,k and p✓p2q

n,k :“ p✓pp✓p1q
n,kq. Observe that

pL
´

p✓p1q
n,k,

p✓p2q
n,k

¯
§ pL

´
✓0,

p✓p✓0q
¯
, hence whenever }p✓pjq

n,k ´ ✓0} § R, j “ 1, 2,

Lpp✓p1q
n,kq ´ Lpp✓p2q

n,kq “ Lpp✓p1q
n,kq ´ Lpp✓p2q

n,kq ˘ pLpp✓p1q
n,k,

p✓p2q
n,kq

§ pL
´
✓0,

p✓p✓0q
¯

` sup
}✓j´✓0}§R,j“1,2

ˇ̌
ˇpLp✓1, ✓2q ´ Lp✓1, ✓2q

ˇ̌
ˇ

§ Lp✓0q ´ Lpp✓p✓0qq ` 2 sup
}✓j´✓0}§R,j“1,2

ˇ̌
ˇpLp✓1, ✓2q ´ Lp✓1, ✓2q

ˇ̌
ˇ

§ 2 sup
}✓j´✓0}§R,j“1,2

ˇ̌
ˇpLp✓1, ✓2q ´ Lp✓1, ✓2q

ˇ̌
ˇ ,

where we used the fact that Lp✓0q ´ Lpp✓p✓0qq § 0 in the last step. On the

other hand, for any " ° 0,

inf
}✓1´✓0}•"

sup
✓2

pLp✓1q ´ Lp✓2qq ° Lp✓0q ` � ´ Lp✓0q “ �
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where � :“ �p"q ° 0 exists in view of Assumption 2. Therefore,

P
´

}p✓p1q
n,k ´ ✓0} • "

¯
§ P

˜
sup

}✓j´✓0}§R,j“1,2

ˇ̌
ˇpLp✓1, ✓2q ´ Lp✓1, ✓2q

ˇ̌
ˇ ° �{2

¸

` P
´›››p✓p1q

n,k ´ ✓0

››› ° R or
›››p✓p2q

n,k ´ ✓0

››› ° R

¯
.

It follows from Lemma A.1 that

sup
}✓j´✓0}§R,j“1,2

ˇ̌
ˇpLp✓1, ✓2q ´ Lp✓1, ✓2q

ˇ̌
ˇ Ñ 0 in probability

as long as lim supk,nÑ8
Opk,nq

k § c as n, k Ñ 8. Indeed, to verify this, it

su�ces to show that

lim sup
NÑ8

E sup
}✓j´✓0}§R,j“1,2

ˇ̌
ˇ̌
ˇ
1?
N

Nÿ

j“1

p`p✓1, Xjq ´ `p✓2, Xjq ´ Lp✓1, ✓2qq
ˇ̌
ˇ̌
ˇ † 8,

which follows from the triangle inequality and the relation

lim sup
NÑ8

E sup
}✓1´✓0}§R

ˇ̌
ˇ̌
ˇ
1?
N

Nÿ

j“1

p`p✓1, Xjq ´ `p✓0, Xjq ´ Lp✓1, ✓0qq
ˇ̌
ˇ̌
ˇ † 8. (2.1)

To establish the latter, we use a well-known argument based on symmetriza-

tion inequality and Dudley’s entropy integral bound (see section 2.4). Let

"1, . . . , "N be i.i.d. random signs, independent of the data X1, . . . , XN .

Then symmetrization inequality (van der Vaart and Wellner, 1996) yields

that

E sup
✓P⇥:}✓´✓0}§R

1?
N

ˇ̌
ˇ̌
ˇ

Nÿ

j“1

p`p✓, Xjq ´ `p✓0, Xjq ´ Lp✓, ✓0qq
ˇ̌
ˇ̌
ˇ
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§ 2E sup
✓P⇥:}✓´✓0}§R

1?
N

ˇ̌
ˇ̌
ˇ

Nÿ

j“1

"j p`p✓, Xjq ´ `p✓0, Xjqq
ˇ̌
ˇ̌
ˇ .

Conditionally on X1, . . . , XN , the process

`p✓, ¨q fiÑ 1?
N

Nÿ

j“1

"j p`p✓, Xjq ´ `p✓0, Xjqq

has sub-Gaussian increments with respect to the semi-metric d
2
Np✓1, ✓2q :“

1
N

∞N
j“1 p`p✓1, Xjq ´ `p✓2, Xjqq2. It follows from compactness of the setBp✓0, Rq “

t✓ : }✓ ´ ✓0} § Ru and Assumption 3 that there exist ✓1, . . . , ✓NpRq such

that
îNpRq

j“1 Bp✓j, rp✓jqq Ö Bp✓0, Rq and

|`p✓1
, xq ´ `p✓2

, xq| § Vpx; rp✓jqq}✓1 ´ ✓
2}

for all ✓1
, ✓

2 P Bp✓j, rp✓jqq. To cover Bp✓0, Rq by the balls of dN -radius ⌧ ,

it su�ces to cover each of the NpRq balls Bp✓j, rp✓jqq. It is easy to see

that the latter requires at most
´

6rp✓jq}Vp¨;rp✓jqq}L2pPN q
⌧

¯d

balls of radius ⌧ .

Therefore,

log1{2
NpBp✓0, Rq, dN , ⌧q § log1{2

˜
NpRqÿ

j“1

«ˆ
6rp✓jq}Vp¨; rp✓jqq}L2pPN q

⌧

˙d

_ 1

�¸
.

Note that for any x1, . . . , xm • 1,
∞m

j“1 xj § m
±m

j“1 xj, or log
´∞m

j“1 xj

¯
§

logm ` ∞m
j“1 log xj, so that

log1{2
˜

NpRqÿ

j“1

«ˆ
6rp✓jq}Vp¨; rp✓jqq}L2pPN q

⌧

˙d

_ 1

�¸

§ log1{2
NpRq `

NpRqÿ

j“1

?
d log1{2

`

ˆ
6rp✓jq}Vp¨; rp✓jqq}L2pPN q

⌧

˙
,
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where log`pxq :“ maxplog x, 0q. Moreover, the diameter DN of the set

Bp✓0, Rq is at most 2
∞NpRq

j“1 rp✓jq}Vp¨; rp✓jqq}L2pPN q. Therefore,

ª DN

0

log1{2
NpBp✓0, Rq, dN , ⌧qd⌧

§ C

˜
DN log1{2

NpRq `
?
d

NpRqÿ

j“1

rp✓jq}V p¨; rp✓jqq}L2pPN q

ª 1

0

log1{2p1{⌧qd⌧
¸

and

E sup
✓P⇥:}✓´✓0}§R

1?
N

ˇ̌
ˇ̌
ˇ

Nÿ

j“1

"jp`p✓, Xjq ´ `p✓0, Xjqq
ˇ̌
ˇ̌
ˇ

§ C log1{2pNpRqq
NpRqÿ

j“1

rp✓jq}Vp¨; rp✓jqq}L2pP q † 8.

It remains to establish that P
´›››p✓p1q

n,k ´ ✓0

››› ° R or
›››p✓p2q

n,k ´ ✓0

››› ° R

¯
Ñ 0. To

this end, notice that by the definition of p✓p1q
n,k,

0 § pLpp✓p1q
n,k,

p✓p2q
n,kq § pL

´
✓0,

p✓p✓0q
¯

§ Lp✓0q ´ L

´
p✓p✓0q

¯

loooooooooomoooooooooon
§0

` sup
}✓´✓0}§R

ˇ̌
ˇpLp✓0, ✓q ´ Lp✓0, ✓q

ˇ̌
ˇ

on the event
!

}p✓p✓0q ´ ✓0} § R

)
. It has already been established that

sup
}✓´✓0}§R

ˇ̌
ˇpLp✓0, ✓q ´ Lp✓0, ✓q

ˇ̌
ˇ Ñ 0 in probability.

To show that P
´

}p✓p✓0q ´ ✓0} ° R

¯
Ñ 0 for R large enough and as n, k Ñ 8,

recall that

Bpn,R, tq “ P
˜

inf
}✓´✓0}•R

1

n

nÿ

j“1

`p✓, Xjq † Lp✓0q ` t

¸
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and that limRÑ8 lim supnÑ8 Bpn,R, tq “ 0 for some t ° 0 in view of As-

sumption 4. As moreover 1
n

∞n
j“1 `p✓0, Xjq Ñ Lp✓0q in probability, one can

choose R0 and n0 such that

B̃pn,R, tq “ P
˜

inf
}✓´✓0}•R

1

n

nÿ

j“1

`p✓, Xjq ´ 1

n

nÿ

j“1

`p✓0, Xjq † t{2
¸

† �

for all n • n0p�q and R • R0p�q for any � ° 0. As

pLp✓, ✓0q “ argmin
zPR

kÿ

j“1

⇢

ˆ?
n

�n
pL̄jp✓q ´ L̄jp✓0q ´ zq

˙
,

it solves the equation
∞k

j“1 ⇢
1
´?

n
�n

pL̄jp✓q ´ L̄jp✓0q ´ pLp✓, ✓0qq
¯

“ 0. As-

sumption 1 implies that ⇢1pxq “ }⇢1}8 for x • 2. Therefore, pLp✓, ✓0q † t{4

only if L̄jp✓q´ L̄jp✓0q † t{4`2�n?
n for j P J such that |J | • k{2. To see this,

suppose that there exists a subset J 1 Ñ t1, . . . , ku of cardinality |J 1| ° k{2

such that L̄jp✓q ´ L̄jp✓0q • t{4 ` 2�n?
n for j P J

1 while pLp✓, ✓0q † t{4. In

turn, it implies that L̄jp✓q ´ L̄jp✓0q ° 2�n?
n , j P J

1, whence

kÿ

j“1

⇢
1
ˆ?

n

�n
pLjp✓q ´ L̄jp✓0q ´ pLp✓, ✓0qq

˙

° k

2
}⇢}8 `

ÿ

jRJ 1
⇢

1
ˆ?

n

�n
pLjp✓q ´ L̄jp✓0q ´ pLp✓, ✓0qq

˙
° 0,

leading to a contradiction. Therefore,

P
ˆ

inf
}✓´✓0}•R

pLp✓, ✓0q † t{4
˙

§ P
ˆ

DJ Ñ t1, . . . , ku, |J | • k{2 : inf
}✓´✓0}•R

L̄jp✓q ´ L̄jp✓0q † t{4 ` 2
�n?
n
, j P J

˙
.

(2.2)
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Let E be the event

E “
"

DJ Ñ t1, . . . , ku, |J | • k{2 : inf
}✓´✓0}•R

L̄jp✓q ´ L̄jp✓0q † t{4 ` 2
�n?
n
, j P J

*
.

Since at most O out of k blocks of data may contain outliers, for E to hold

there must be a set of indices J
1 among the contamination-free blocks of

data such that the cardinality of J 1 satisfies |J 1| • k{2 ´ O and such that

for all j P J
1,

inf
}✓´✓0}•R

L̄jp✓q ´ L̄jp✓0q † t{4 ` 2
�n?
n
.

Probability of the latter is bounded by, in view of the union bound, by

ˆ
k ´ O

tk{2u ´ O

˙ ´
B̃pn,R, tq

¯tk{2u´O

§ C̃
tk{2u´O

´
B̃pn,R, tq

¯tk{2u´O

whenever 2�n?
n § t{2 and where we used the inequality

`
M
l

˘
§ pMe{lql

together with the fact that O

k § c for a su�ciently small absolute con-

stant c ° 0 and n, k large enough. Here, C̃ • pk´Oqe
tk{2u´O

is another absolute

constant whose value depends on c. Moreover, if n • n0p0.25{C̃q and

R • R0p0.25{C̃q, we deduce that PpEq † 0.25kp1{2´cq´1 Ñ 0 as k Ñ 8 since

c is chosen to be small.

As pLp✓0, ✓0q “ 0 a.s., preceding discussion implies that P
´

}p✓p✓0q ´ ✓0} † R

¯
Ñ

1 as n, k, R Ñ 8. We have thus shown that

pLpp✓p1q
n,k,

p✓p2q
n,kq Ñ 0 in probability. (2.3)
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On the other hand, by the definition of p✓p2q
n,k, it holds that pLpp✓p1q

n,k,
p✓p2q
n,kq •

pLpp✓p1q
n,k, ✓0q. Now, assume that }p✓p1q

n,k ´ ✓0} ° R while pLpp✓p1q
n,k, ✓0q † Lp✓0q `

t{2´Lp✓0q “ t{2. Arguing as before, we see that there exists J 1 Ä t1, . . . , ku

such that |J 1| ° k{2 and L̄jpp✓p1q
n,kq ´ L̄jp✓0q † Lp✓0q ` t{2 ´ Lp✓0q ` 2�n?

n for

j P J
1, which implies the inequalities

inf
}✓´✓0}°R

L̄jp✓q † Lp✓0q ` t{2 ` 2
�n?
n

`
`
L̄jp✓0q ´ Lp✓0q

˘
, j P J

1
.

Clearly, P
`ˇ̌`

L̄jp✓0q ´ Lp✓0q
˘ˇ̌

• t{4
˘

§ 16
nt2Var p`p✓0, Xqq, therefore, for n

and R large enough,

P
ˆ

inf
}✓´✓0}°R

L̄jp✓q † Lp✓0q ` t{2 ` 2
�n?
n

`
`
L̄jp✓0q ´ Lp✓0q

˘˙
† 0.01

for any j. Reasoning as in (2.2), we see that

P
´

pLpp✓p1q
n,k, ✓0q † t{2 and }p✓p1q

n,k ´ ✓0} ° R

¯
Ñ 0 as k, n Ñ 8.

We deduce that on the one hand,

P
´

pLpp✓p1q
n,k, ✓0q • t{2

£
}p✓p1q

n,k ´ ✓0} ° R

¯
Ñ P

´
}p✓p1q

n,k ´ ✓0} ° R

¯
.

In view of (2.3), we see that on the other hand,

P
´

pLpp✓p1q
n,k, ✓0q • t{2

£
}p✓p1q

n,k ´ ✓0} ° R

¯
§ P

´
pLpp✓p1q

n,k, ✓0q • t{2
¯

Ñ 0,

implying that P
´

}p✓p1q
n,k ´ ✓0} ° R

¯
Ñ 0 for R large enough as n, k Ñ 8.

Finally, assume that }p✓p2q
n,k ´ ✓0} ° R and that pLpp✓p1q

n,k,
p✓p2q
n,kq ° Lpp✓p1q

n,kq ´

Lp✓0q ´ t{2. Repeating the reasoning behind (2.2), we see that the latter
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implies that there exists J 1 Ä t1, . . . , ku such that |J 1| ° k{2 and L̄jpp✓p1q
n,kq ´

L̄jpp✓p2q
n,kq ° Lpp✓p1q

n,kq ´
´
Lp✓0q ` t{2 ` 2�n?

n

¯
for j P J

1, yielding that on the

event
!

}p✓p1q
n,k ´ ✓0} § R

)
,

inf
}✓´✓0}°R

L̄jp✓q † Lp✓0q ` t{2 ` 2
�n?
n

`
´
L̄jpp✓p1q

n,kq ´ Lpp✓p1q
n,kq

¯

§ Lp✓0q ` t{2 ` 2
�n?
n

` sup
}✓1´✓0}§R

ˇ̌
L̄jp✓1q ´ Lp✓1q

ˇ̌

for j P J
1. We have shown before that P

´
}p✓p1q

n,k ´ ✓0} ° R

¯
Ñ 0 for R large

enough as n, k Ñ 8. As E sup}✓1´✓0}§R

ˇ̌
L̄jp✓1q ´ Lp✓1q

ˇ̌
Ñ 0 for any R ° 0

as n Ñ 8 (indeed, this follows from (2.1) and the triangle inequality), for

n and R large enough, the argument similar to (2.2) implies that

P
˜

sup
}✓´✓0}°R

pLpp✓p1q
n,k, ✓q ° Lpp✓p1q

n,kq ´ Lp✓0q ´ t{2
¸

Ñ 0 as k Ñ 8,

therefore P
´

}p✓p2q
n,k ´ ✓0} ° R

ì pL
´

p✓p1q
n,k,

p✓p2q
n,k

¯
§ Lpp✓p1q

n,kq ´ pLp✓0q ` t{2q
¯

Ñ

P
´

}p✓p2q
n,k ´ ✓0} ° R

¯
. On the other hand,

P
´

pL
´

p✓p1q
n,k,

p✓p2q
n,k

¯
§ Lpp✓p1q

n,kq ´ pLp✓0q ` t{2q
¯

§ P
´

pL
´

p✓p1q
n,k, ✓0

¯
§ Lpp✓p1q

n,kq ´ pLp✓0q ` t{2q
¯

§ P
´

}p✓p1q
n,k ´ ✓0} ° R

¯

`P
˜
Lpp✓p1q

n,kq ´ Lp✓0q ´ sup
}✓´✓0}§R

ˇ̌
ˇpLp✓, ✓0q ´ pLp✓q ´ Lp✓0qq

ˇ̌
ˇ § Lpp✓p1q

n,kq ´ pLp✓0q ` t{2q
¸

“ P
˜

sup
}✓´✓0}§R

ˇ̌
ˇpLp✓, ✓0q ´ pLp✓q ´ Lp✓0qq

ˇ̌
ˇ • t{2

¸
`P

´
}p✓p1q

n,k ´ ✓0} ° R

¯
Ñ 0

for R large enough as n, k Ñ 8, therefore completing the proof of consis-

tency.
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S3 Proof of Lemma 1 (main text).

We will apply the standard Lindeberg’s replacement method (see for ex-

ample O’Donnell, 2014, chapter 11). For 1 § j § n ` 1, define Tj :“

F

´∞j´1
i“1 ⇠i ` ∞n

i“j Zj

¯
. Then

ˇ̌
ˇ̌
ˇEF

˜
nÿ

j“1

⇠j

¸
´ EF

˜
nÿ

j“1

Zj

¸ˇ̌
ˇ̌
ˇ “ |ETn`1 ´ ET1| §

nÿ

j“1

|ETj`1 ´ ETj|.

Moreover, Taylor’s expansion formula gives that there exists (random) µ P

r0, 1s such that

Tj`1 “ F

˜
j´1ÿ

i“1

⇠i `
nÿ

i“j`1

Zj

¸
` F

1
˜

j´1ÿ

i“1

⇠i `
nÿ

i“j`1

Zj

¸
⇠j

` F
2

˜
j´1ÿ

i“1

⇠i `
nÿ

i“j`1

Zj

¸
⇠
2
j

2

`
˜
F

2
˜

j´1ÿ

i“1

⇠i `
nÿ

i“j`1

Zj ` µ⇠j

¸
´ F

2
˜

j´1ÿ

i“1

⇠i `
nÿ

i“j`1

Zj

¸¸
⇠
2
j

2
.

Similarly,

Tj “ F

˜
j´1ÿ

i“1

⇠i `
nÿ

i“j`1

Zj

¸
` F

1
˜

j´1ÿ

i“1

⇠i `
nÿ

i“j`1

Zj

¸
Zj

` F
2

˜
j´1ÿ

i“1

⇠i `
nÿ

i“j`1

Zj

¸
Z

2
j

2

`
˜
F

2
˜

j´1ÿ

i“1

⇠i `
nÿ

i“j`1

Zj ` µ
1
Zj

¸
´ F

2
˜

j´1ÿ

i“1

⇠i `
nÿ

i“j`1

Zj

¸¸
Z

2
j

2
.

Lipschitz continuity and boundedness of F 2 imply that

|F 2pxq ´ F
2pyq| § CpF qminp1, |x ´ y|q
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with CpF q “ max p2}F }8, LpF 2qq. Therefore,

|ETj`1 ´ ETj|

§
ˇ̌
ˇ̌
ˇE

˜
F

2
˜

j´1ÿ

i“1

⇠i `
nÿ

i“j`1

Zj ` µ⇠j

¸
´ F

2
˜

j´1ÿ

i“1

⇠i `
nÿ

i“j`1

Zj

¸¸
⇠
2
j

2

ˇ̌
ˇ̌
ˇ

`
ˇ̌
ˇ̌
ˇE

˜
F

2
˜

j´1ÿ

i“1

⇠i `
nÿ

i“j`1

Zj ` µ
1
Zj

¸
´ F

2
˜

j´1ÿ

i“1

⇠i `
nÿ

i“j`1

Zj

¸¸
Z

2
j

2

ˇ̌
ˇ̌
ˇ

§ C1pF qE
“
⇠
2
j minp|⇠j|, 1q

‰
,

and the first claim follows. To establish the second inequality, it su�ces to

observe that for all j, E
“
⇠
2
j minp|⇠j|, 1q

‰
“ E|⇠j|3It|⇠j| § 1u ` E|⇠j|2It|⇠j| °

1u. Clearly, |⇠j|3 § |⇠j|2`⌧ on the event t|⇠j| § 1u, whereas |⇠j|2 § |⇠j|2`⌧

on the event t|⇠j| ° 1u.

S4 Proof of Lemma 2 (main text).

Symmetrization inequality yields that

E sup
✓1,✓2P⇥1

˜
1?
n

ˇ̌
ˇ̌
ˇ

nÿ

j“1

pf✓1pXjq ´ f✓2pXjq ´ P pf✓1 ´ f✓2qq
ˇ̌
ˇ̌
ˇ

¸p

§ CppqE sup
✓1,✓2P⇥1

˜
1?
n

ˇ̌
ˇ̌
ˇ

nÿ

j“1

"j pf✓1pXjq ´ f✓2pXjqq
ˇ̌
ˇ̌
ˇ

¸p

“ CppqEXE" sup
✓1,✓2P⇥1

˜
1?
n

ˇ̌
ˇ̌
ˇ

nÿ

j“1

"j pf✓1pXjq ´ f✓2pXjqq
ˇ̌
ˇ̌
ˇ

¸p

.

As the process f fiÑ 1?
n

∞n
j“1 "j pf✓1pXjq ´ f✓2pXjqq is sub-Gaussian con-

ditionally on X1, . . . , Xn, its (conditional) Lp-norms are equivalent to L1
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norm. Hence, Dudley’s entropy bound (see Theorem 2.2.4 in van der Vaart

and Wellner (1996)) implies that

E" sup
✓1,✓2P⇥1

˜
1?
n

ˇ̌
ˇ̌
ˇ

nÿ

j“1

"j pf✓1pXjq ´ f✓2pXjqq
ˇ̌
ˇ̌
ˇ

¸p

§ Cppq
˜
E" sup

✓1,✓2P⇥1

1?
n

ˇ̌
ˇ̌
ˇ

nÿ

j“1

"j pf✓1pXjq ´ f✓2pXjqq
ˇ̌
ˇ̌
ˇ

¸p

§ Cppq
˜ª Dnp⇥1q

0

log1{2
Npz, Tn, dnqdz

¸p

,

where

d
2
npf✓1 , f✓2q “ 1

n

nÿ

j“1

pf✓1pXjq ´ f✓2pXjqq2 ,

Tn “ tpf✓pX1q, . . . , f✓pXnqq, ✓ P ⇥1u Ñ Rn

and Dnp⇥1q is the diameter of ⇥ with respect to the distance dnp¨, ¨q. As

f✓p¨q is Lipschitz in ✓, we have that d2npf✓1 , f✓2q § 1
n

∞n
j“1 M

2pXjq}✓1 ´ ✓2}2,

implying that Dnp⇥1q § }M}L2p⇧nqdiamp⇥1
, } ¨ }q and

logNpz, Tn, dnq § logN
`
z{}M}L2p⇧nq,⇥

1
, } ¨ }

˘
§ log

ˆ
C
diamp⇥1

, } ¨ }q }M}L2p⇧nq
z

˙d

.

Therefore,
˜ª Dnp⇥1q

0

log1{2
Npz, Tn, dnqdz

¸p

§ Cd
p{2 `

diamp⇥1
, } ¨ }q ¨ }M}L2p⇧nq

˘p

and

EXE" sup
✓1,✓2P⇥1

˜
1?
n

ˇ̌
ˇ̌
ˇ

nÿ

j“1

"j pf✓1pXjq ´ f✓2pXjqq
ˇ̌
ˇ̌
ˇ

¸p

§ Cd
p{2diampp⇥1

, }¨}qE}M}pL2p⇧nq.
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Proof of the second bound follows from the triangle inequality

E sup
✓P⇥1

˜ˇ̌
ˇ̌
ˇ

nÿ

j“1

1?
n

pf✓pXjq ´ Pf✓1q
ˇ̌
ˇ̌
ˇ

¸p

§ Cppq
˜
E

ˇ̌
ˇ̌
ˇ
1?
n

nÿ

j“1

pf✓0pXjq ´ Pf✓0q
ˇ̌
ˇ̌
ˇ

p

` E sup
✓P⇥1

˜ˇ̌
ˇ̌
ˇ
1?
n

nÿ

j“1

pf✓pXjq ´ f✓0pXjq ´ P pf✓ ´ f✓0qq
ˇ̌
ˇ̌
ˇ

¸p ¸
,

and Rosenthal’s inequality (Ibragimov and Sharakhmetov, 2001) applied to

the term E
ˇ̌
ˇ 1?

n

∞n
j“1pf✓0pXjq ´ Pf✓0q

ˇ̌
ˇ
p

.

S5 Proof of Lemma 3 (main text).

First, observe that in view of Assumption 3,

�
2p�q § sup

}✓´✓0}§�
E|`p✓, Xq ´ `p✓0, Xq|2 § EV2pX; rp✓0qq �2.

Next, define

pGkpz; ✓q :“ 1

k

kÿ

j“1

⇢
1
ˆ?

n

�n

`
L̄jp✓, ✓0q ´ Lp✓, ✓0q ´ z

˘˙

so that pGkppLp✓, ✓0q ´ Lp✓, ✓0q; ✓q “ 0, and let

Gkpz; ✓q :“ E⇢1
ˆ?

n

�n

`
L̄1p✓, ✓0q ´ Lp✓, ✓0q ´ z

˘˙

In the definition of Gkpz; ✓q, we also assumed that L̄1p✓, ✓0q is based on the

contamination-free sample. Next, consider the stochastic process

Rkp✓q “ pGkp0; ✓q ` BzGkpz; ✓q
ˇ̌
z“0

´
pLp✓, ✓0q ´ Lp✓, ✓0q

¯
.
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We claim that for any ✓ P ⇥,

?
N

Rkp✓1q
BzGkpz; ✓1q|z“0

“ OP

ˆ
�
2

?
k

`
?
k�

3 ` O
2

k3{2

˙
(2.4)

uniformly over ✓1 in the neighborhood of ✓0. Taking this claim for granted

for now, we see that

?
N

´
pLp✓, ✓0q ´ Lp✓, ✓0q

¯
“ ´

?
N

pGkp0; ✓q
BzGkpz; ✓q|z“0

`
?
N

Rkp✓q
BzGkpz; ✓q|z“0

,

and in particular it follows from the claim above that the weak limits of

?
NppLp✓, ✓0q ´ Lp✓, ✓0qq and

´
?
N

pGkp0; ✓q
BzGkpz; ✓q|z“0

“ �n?
k

∞k
j“1 ⇢

1
´?

n
�n

`
L̄jp✓, ✓0q ´ Lp✓, ✓0q

˘¯

E⇢2
´?

n
�n

`
L̄1p✓, ✓0q ´ Lp✓, ✓0q

˘¯ .

coincide whenever � is su�ciently small (note that we can change the order

of di↵erentiation and expectation in the denominator as ⇢2 is bounded). It

remains to establish the relation (2.4) that implies the bound for sup}✓´✓0}§� |Rn,kp✓q|

in the statement of the lemma. To this end, define

peNp✓q :“ pLp✓, ✓0q ´ Lp✓, ✓0q

so that ĜkppeNp✓q; ✓q “ 0. Recall the definition of Rkp✓q and observe that

the following identity is immediate via Taylor’s expansion:

Rkp✓q “ pGk ppeNp✓q; ✓qloooooomoooooon
“0

`BzGkpz; ✓q
ˇ̌
z“0

peNp✓q ´
´

pGk ppeNp✓q; ✓q ´ pGkp0; ✓q
¯
.

For any ✓ P ⇥ and j “ 1, . . . , k, there exists ⌧j “ ⌧jp✓q P r0, 1s such that



Robust Risk Minimizers

⇢
1
ˆ?

n

�n

`
L̄jp✓, ✓0q ´ Lp✓, ✓0q ´ peNp✓q

˘˙
“ ⇢

1
ˆ?

n

�n

`
L̄jp✓, ✓0q ´ Lp✓, ✓0q

˘˙

´
?
n

�n
⇢

2
ˆ?

n

�n

`
L̄jp✓, ✓0q ´ Lp✓, ✓0q

˘˙
¨ peNp✓q

` n

�2
n

⇢
3

ˆ?
n

�n

`
L̄jp✓, ✓0q ´ Lp✓, ✓0q ´ ⌧jpeNp✓q

˘˙
¨ ppeNp✓qq2 .

Therefore,

pGk ppeNp✓q; ✓q´ pGkp0; ✓q “ ´
?
n

k�n

kÿ

j“1

⇢
2

ˆ?
n

�n

`
L̄jp✓, ✓0q ´ Lp✓, ✓0q

˘˙
¨peNp✓q

` n

k�2
n

kÿ

j“1

⇢
3

ˆ?
n

�n

`
L̄jp✓, ✓0q ´ Lp✓, ✓0q

˘˙
¨ ppeNp✓qq2

` n

k�2
n

kÿ

j“1

˜
⇢

3
ˆ?

n

�n

`
L̄jp✓, ✓0q ´ Lp✓, ✓0q ´ ⌧jpeNp✓q

˘˙

´ ⇢
3

ˆ?
n

�n

`
L̄jp✓, ✓0q ´ Lp✓, ✓0q

˘˙ ¸
¨ ppeNp✓qq2

and

Rkp✓q “
?
n

�n

1

k

kÿ

j“1

˜
⇢

2
ˆ?

n

�n

`
L̄jp✓, ✓0q ´ Lp✓, ✓0q

˘˙

´ E⇢2
ˆ?

n

�n

`
L̄jp✓, ✓0q ´ Lp✓, ✓0q

˘˙ ¸
¨ peNp✓q

´ n

�2
n

1

k

kÿ

j“1

⇢
3

ˆ?
n

�n

`
L̄jp✓, ✓0q ´ Lp✓, ✓0q

˘˙
¨ ppeNp✓qq2

´ n

�2
n

1

k

kÿ

j“1

ˆ
⇢

3
ˆ?

n

�n

`
L̄jp✓, ✓0q ´ Lp✓, ✓0q ´ ⌧jpeNp✓q

˘˙

´⇢
3

ˆ?
n

�n

`
L̄jp✓, ✓0q ´ Lp✓, ✓0q

˘˙˙
¨ ppeNp✓qq2 “ R

1p✓q ` R
2p✓q ` R

3p✓q.

(2.5)
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It follows from Lemma A.1 (with O “ 0) and Lemma 2 (see the main paper)

that

sup
}✓´✓0}§�

|peNp✓q| § Cpd, ✓0q
ˆ

�?
N
s ` �

2

?
n

` O

k
?
n

˙

with probability at least 1´s
´1 whenever s À

?
k^?

n. Moreover, Lemma

A.2 combined with Lemma 2 yields that

sup
}✓´✓0}§�

ˇ̌
ˇ̌
ˇ
1

k

kÿ

j“1

˜
⇢

2
ˆ?

n

�n

`
L̄jp✓, ✓0q ´ Lp✓, ✓0q

˘˙

´ E⇢2
ˆ?

n

�n

`
L̄jp✓, ✓0q ´ Lp✓, ✓0q

˘˙ ¸ˇ̌
ˇ̌
ˇ § Cpd, ✓0q

ˆ
�?
k
s ` O

k

˙

with probability at least 1 ´ s
´1 (here, we also used the fact that at most

O out of k blocks may contain outliers). Therefore, the first term R
1p✓q in

(2.5) satisfies

sup
}✓´✓0}§�

|R1p✓q| § Cpd, ✓0q
ˆ
�
2

k
s
2 ` �

3

?
k
s ` �

2O

k
` O

2

k2

˙

on event E of probability at least 1 ´ 2
s . Observe that

sup
}✓´✓0}§�

ˇ̌
ˇ̌
ˇ
1

k

kÿ

j“1

˜
⇢

3
ˆ?

n

�n

`
L̄jp✓, ✓0q ´ Lp✓, ✓0q

˘˙

´ E⇢3
ˆ?

n

�n

`
L̄jp✓, ✓0q ´ Lp✓, ✓0q

˘˙ ¸ˇ̌
ˇ̌
ˇ § Cpd, ✓0q

ˆ
�?
k
s ` O

k

˙

with probability at least 1 ´ s
´1, again by Lemma A.2, and

ˇ̌
ˇ̌E⇢3

ˆ?
n

�n

`
L̄jp✓, ✓0q ´ Lp✓, ✓0q

˘˙ˇ̌
ˇ̌ § C�

2
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by Lemma 1. Therefore, the term R
2p✓q admits an upper bound

sup
}✓´✓0}§�

|R2p✓q| § Cpd, ✓0q
ˆ
�
3 ` O

3

k3

˙

which holds with probability at least 1 ´ s
´1 (here, we again used the

inequality s À
?
kq to simplify the expression). Finally, as ⇢3 is Lipschitz

continuous by assumption, the third term R
3p✓q can be estimated via

sup
}✓´✓0}§�

|R3p✓q| § Cpd, ✓0q n

�2
n

|peNp✓q|3 § Cpd, ✓0q?
n

ˆ
�
3 ` O

3

k3

˙

on event E (note that this upper bound is smaller than the upper bound

for sup}✓´✓0}§� |R2p✓q| by the multiplicative factor of
?
n). Combining the

estimates above and excluding all the higher order terms, it is easy to

conclude that

?
N sup

}✓´✓0}§�

ˇ̌
ˇ̌ Rkp✓q
BzGkpz; ✓q|z“0

ˇ̌
ˇ̌ § Cpd, ✓0q

˜
�
2 s

2

?
k

`
?
k�

3 ` O
2

k3{2

¸

with probability at least 1 ´ 3
s .

S6 Proof of Lemma A.1.

Define

Ĝkpz; ✓q “ 1?
k

kÿ

j“1

⇢
1
ˆ?

n

sLjp✓q ´ sLjp✓0q ´ Lp✓, ✓0q ´ z

�n

˙
,

and recall that the contaminated sample X1, . . . , XN contains O outliers;

let I Ä t1, . . . , Nu denote the index set of the outliers. Moreover, let
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X̃1, . . . , X̃N be an i.i.d. sample from P such that X̃j ” Xj for j R I, and

let G̃kpz; ✓q be a version of Ĝkpz; ✓q based on the uncontaminated sample.

Clearly,
ˇ̌
ˇĜkpz; ✓q ´ G̃kpz; ✓q

ˇ̌
ˇ § 2}⇢}8 O?

k
almost surely, for all z P R.

Suppose that z1, z2 P R are such that on an event of probability close to

1, Ĝkpz1; ✓q ° 0 and Ĝkpz2; ✓q † 0 for all ✓ P ⇥ simultaneously. Since Ĝk is

non-increasing in z, it is easy to see that on this event, pLp✓, ✓0q ´Lp✓, ✓0q P

pz1, z2q for all ✓ P ⇥, implying that

sup
✓P⇥1

ˇ̌
ˇpLp✓, ✓0q ´ Lp✓, ✓0q

ˇ̌
ˇ § maxp|z1|, |z2|q. (2.6)

Our goal is to find z1, z2 satisfying conditions above and such that |z1|, |z2|

are as small as possible. Let W p✓q stand for a centered normally distributed

random variable with variance �
2p✓, ✓0q, and observe that

Ĝkpz; ✓q “ A0 ` A1 ` A2 ` A3,

where

A0p✓q “ Ĝkpz; ✓q ´ G̃kpz; ✓q,

A1p✓q “ 1?
k

kÿ

j“1

˜
⇢

1
ˆ?

n

sLjp✓q ´ sLjp✓0q ´ Lp✓, ✓0q ´ z

�n

˙

´ E⇢1
ˆ?

n

sLjp✓q ´ sLjp✓0q ´ Lp✓, ✓0q ´ z

�n

˙ ¸
,

A2p✓q “
?
k

ˆ
E⇢1

ˆ?
n

sL1p✓q ´ sL1p✓0q ´ Lp✓, ✓0q ´ z

�n

˙
´ E⇢1

ˆ
W p✓q ´ ?

nz

�n

˙˙
,

A3p✓q “
?
kE⇢1

ˆ
W p✓q ´ ?

nz

�n

˙
.
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With some abuse of notation, we assume that A1p✓q and A2p✓q are evaluated

based on the contamination-free sample X̃1, . . . , X̃N . Next, suppose that

"0, "1, "2 are positive and such that

inf
✓P⇥1

A0p✓q ° ´"0, inf
✓P⇥1

A1p✓q ° ´"1

with high probability and inf✓P⇥1 A2p✓q ° ´"2. Then z1 satisfying

inf
✓P⇥1

E⇢1
ˆ
W p✓q ´ ?

nz1

�n

˙
• "0 ` "1 ` "2?

k

will conform to our requirements. Since

E⇢1
ˆ
W p✓q ´ ?

nz1

�n

˙
« E⇢1

ˆ
W p✓q
�n

˙

loooooomoooooon
“0

´E⇢2
ˆ
W p✓q
�n

˙ ?
nz1

�n

for small z1, a natural choice is z1 « �n

inf✓P⇥1 E⇢2pW p✓q
�n q

"0`"1`"2?
nk

. This argument

is made precise in (Minsker, 2019b, Lemma 4.3) which shows that the choice

z1 “ ´"0 ` "1 ` "2

0.09

r�?
nk

is su�cient whenever "j, j “ 0, 1, 2 are not too large (specifically, when

"0`"1`"2?
k

§ 0.045 - this is precisely the main condition needed for the bound

of lemma to hold). It remains to provide the values for "j, j “ 0, 1, 2. We

have already shown above that "0 can be chosen as "0 “ 2}⇢}8 O?
k
. To find

a feasible value of "1, we will apply Markov’s inequality stating that with

probability at least 1 ´ 1{s,
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sup
✓P⇥1

|A1p✓q| § sE sup
✓P⇥1

ˇ̌
ˇ̌
ˇ
1?
k

kÿ

j“1

⇢
1
ˆ?

n

�n

`
L̄jp✓q ´ L̄jp✓0q ´ Lp✓, ✓0q ´ z

˘˙

´E⇢1
ˆ?

n

�n

`
L̄1p✓q ´ L̄1p✓0q ´ Lp✓, ✓0q ´ z

˘˙ˇ̌
ˇ̌ .

The expected supremum can be estimated in a standard way using the

symmetrization, contraction and desymmetrization inequalities (e.g. see

the proof of Lemma A.2), yielding that

E sup
✓P⇥1

ˇ̌
ˇ̌
ˇ
1?
k

kÿ

j“1

⇢
1
ˆ?

n

�n

`
L̄jp✓q ´ Ljp✓0q ´ Lp✓, ✓0q ´ z

˘˙

´E⇢1
ˆ?

n

�n

`
L̄1p✓q ´ L̄1p✓0q ´ Lp✓, ✓0q ´ z

˘˙ˇ̌
ˇ̌

§ 8Lp⇢1q
�n

E sup
✓P⇥1

1?
N

ˇ̌
ˇ̌
ˇ

Nÿ

j“1

p`p✓, Xjq ´ `p✓0, Xjq ´ Lp✓, ✓0qq
ˇ̌
ˇ̌
ˇ .

It remains to obtain an appropriate value for "2. Note that for any bounded

non-negative function g : R fiÑ R` and any signed measure Q,

ˇ̌
ˇ̌
ª

R
gpxqdQ

ˇ̌
ˇ̌ “

ˇ̌
ˇ̌
ˇ

ª }f}8

0

Q px : gpxq • tq dt
ˇ̌
ˇ̌
ˇ § }g}8 max

t•0
|Q px : gpxq • tq| .

Moreover, if g is monotone, the sets tx : gpxq • tu and tx : gpxq § tu are

half-intervals. Note that ⇢1 “ maxp⇢1
, 0q ´maxp´⇢

1
, 0q is a di↵erence of two

non-negative monotone functions. Therefore,

ˇ̌
ˇ̌
ª

R
⇢

1
ˆ
x ´ ?

nz

�n

˙
dQpxq

ˇ̌
ˇ̌

§ }⇢1}8

ˆ
max
t•0

|Q px : ⇢1pxq • tq| ` max
t§0

|Q px : ⇢1pxq § tq|
˙
.
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TakeQ to be the di↵erence of the distributions of
?
n

`sL1p✓q ´ sL1p✓0q ´ Lp✓, ✓0q
˘

and W p✓q, denoted �pn,kq
✓ and �✓ respectively, so that

?
k

ˆ
E⇢1

ˆ?
n

sL1p✓q ´ sL1p✓0q ´ Lp✓, ✓0q ´ z

�n

˙
´ E⇢1

ˆ
W p✓q ´ ?

nz

�n

˙˙

§ 2
?
k}⇢1}8 sup

tPR

ˇ̌
ˇ�pn,kq

✓ ptq ´ �✓ptq
ˇ̌
ˇ .

A well-known result by Feller (1968) states that suptPR
ˇ̌
ˇ�pn,kq

✓ ptq ´ �✓ptq
ˇ̌
ˇ §

6g✓pnq, where

g✓pnq :“ 1?
n
E

« ˆ
`p✓, Xq ´ `p✓0, Xq ´ Lp✓, ✓0q

�p✓, ✓0q

˙2

ˆ min

ˆˇ̌
ˇ̌`p✓, Xq ´ `p✓0, Xq ´ Lp✓, ✓0q

�p✓, ✓0q

ˇ̌
ˇ̌ ,

?
n

˙ �
,

It is easy to see that g✓pnq Ñ 0 as n Ñ 8 if Varp`p✓, Xqq † 8, and distribu-

tions with finite variance, and moreover g✓pnq § CE
ˇ̌
ˇ `p✓,Xq´`p✓0,Xq´Lp✓,✓0q

�p✓,✓0q

ˇ̌
ˇ
⌧

n
´⌧{2

if E
ˇ̌
ˇ `p✓,Xq´`p✓0,Xq´Lp✓,✓0q

�p✓,✓0q

ˇ̌
ˇ
2`⌧

† 8 for some ⌧ P p0, 1s. Therefore, the function

g⌧ pn, ✓q in the statement of the lemma can be chosen as g⌧ pn, ✓q “ g✓pnq

when ⌧ “ 0 and g⌧ pn, ✓q “ C when ⌧ ° 0. We conclude that the choice

"2 “ 12
?
k}⇢1}8 sup✓P⇥1 g✓pnq satisfies the desired requirements.

It remains to recall the bound (2.6) and that z1 “ ´ "0`"1`"2
0.09

r�?
nk
. The

matching bound for z2 is obtained in an identical fashion.

Remark 2. The bound for "2 that we established above is slightly weaker

than the one used in the statement of the lemma; an improved version can
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be obtained using the non-uniform version of the Berry-Esseen bound with

additional e↵ort, and we refer the reader to (Minsker, 2019b, Lemma 4.2)

for the technical details.

S7 Proof of Lemma A.2.

Let "1, . . . , "k be i.i.d. Rademacher random variables independent ofX1, . . . , XN ,

and note that by symmetrization and contraction inequalities for the Rademacher

sums (Ledoux and Talagrand, 1991),

E sup
}✓1´✓}§�

ˇ̌
ˇ̌
ˇ
1

k

kÿ

j“1

⇢
2

ˆ?
n

�n

`
L̄jp✓1

, ✓0q ´ Lp✓1
, ✓0q

˘˙

´ E⇢2
ˆ?

n

�n

`
L̄1p✓1

, ✓0q ´ Lp✓1
, ✓0q

˘˙ ˇ̌
ˇ̌
ˇ

§ 2E sup
}✓1´✓}§�

1

k

ˇ̌
ˇ̌
ˇ

kÿ

j“1

"j

ˆ
⇢

2
ˆ?

n

�n

`
L̄jp✓1

, ✓0q ´ Lp✓1
, ✓0q

˘˙
´ ⇢

2p0q
˙ˇ̌

ˇ̌
ˇ

§ 4Lp⇢2q
�n

?
k
E sup

}✓1´✓}§�

ˇ̌
ˇ̌
ˇ

kÿ

j“1

"j

?
n?
k

`
L̄jp✓1

, ✓0q ´ Lp✓1
, ✓0q

˘
ˇ̌
ˇ̌
ˇ ,

where we used the fact that �pxq :“ ⇢
2

´?
n

�n
x

¯
´ ⇢

2 p0q is Lipschitz contin-

uous (in fact, Assumption 1 implies that the Lipschitz constant is equal to

1) and satisfies �p0q “ 0. Now, desymmetrization inequality (Lemma 2.3.6

in van der Vaart and Wellner, 1996) implies that

E sup
}✓1´✓}§�

ˇ̌
ˇ̌
ˇ

kÿ

j“1

"j

?
n?
k

`
L̄jp✓1

, ✓0q ´ Lp✓1
, ✓0q

˘
ˇ̌
ˇ̌
ˇ
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§ 2?
N
E sup

}✓1´✓}§�

ˇ̌
ˇ̌
ˇ

Nÿ

j“1

p`p✓1
, Xjq ´ `p✓0, Xjq ´ Lp✓1

, ✓0qq
ˇ̌
ˇ̌
ˇ ,

hence the claim follows.

The fact that ⇢2 can be replaced by ⇢
3 follows along the same lines as

⇢
3 is Lipschitz continuous and }⇢3}8 † 8 by Assumption 1.

S8 Numerical experiment: logistic regression.

As a simple proof of concept, we implemented the gradient descent-ascent

algorithm mentioned in section 2.1 for the problem of logistic regression;

for a detailed discussion of closely related methods, we refer the reader

to (Lecué and Lerasle, 2020; Mathieu and Minsker, 2021). In the present

setup, the dataset consists of pairs pZj, Yjq P R2ˆt˘1u, where the marginal

distribution of the labels is uniform on t˘1u, while the conditional distri-

butions of Zj’s are normal, that is, Law pZ1 |Y1 “ 1q “ N
`
p´1,´1qT , 4I2

˘
,

Law pZ |Y “ ´1q „ N pp1, 1q, 4I2q, and PpY “ 1q “ PpY “ ´1q “ 1{2;

here, I2 stands for the 2 ˆ 2 identity matrix. The loss function is defined

as `p✓, Z, Y q “ log
`
1 ` e

´Y x✓,Zy˘
, ✓ P R2. The dataset includes 40 out-

liers for which Yj ” 1 and Z „ N pp25, 10q, 0.25I2q. The sample of 500

“informative” observations was generated, along with 40 outliers, and we

compared the performance of robust method proposed in this paper with
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the standard logistic regression, as implemented in the Scikit-learn package

(Pedregosa et al., 2011), that is known to be sensitive to outliers. Results

of the experiment are presented in figure 1 and illustrate the robustness of

proposed approach.

Figure 1: Scatter plot of N “ 540 samples from the training dataset (500 informative

observations and 40 outliers). The color of the points correspond to their labels and the

background color – to the predicted labels (gray region corresponds to yellow labels and

green – to purple labels).
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