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Abstract: This paper investigates asymptotic properties of algorithms that can
be viewed as robust analogues of the classical empirical risk minimization. These
strategies are based on replacing the usual empirical average by a robust proxy
of the mean, such as a variant of the median of means estimator. It is well
known by now that the excess risk of resulting estimators often converges to zero
at optimal rates under much weaker assumptions than those required by their
classical counterparts. However, less is known about the asymptotic properties
of the estimators themselves, for instance, whether robust analogues of the max-
imum likelihood estimators are asymptotically efficient. We make a step towards
answering these questions and show that for a wide class of parametric problems,
minimizers of the appropriately defined robust proxy of the risk converge to the
minimizers of the true risk at the same rate, and often have the same asymptotic
variance, as the estimators obtained by minimizing the usual empirical risk. Fi-
nally, we discuss the computational aspects of the problem and demonstrate the
numerical performance of the methods under consideration in numerical experi-

ments.
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totic normality, adversarial contamination.

1. Introduction.

The concept of robustness addresses stability of statistical estimators under
various forms of perturbations, such as the presence of corrupted/atypical
observations (“outliers”) in the data. The questions related to robustness
in the framework of statistical learning theory have seen a surge in interest,
both from the theoretical and practical perspectives, and resulted in the
development of novel algorithms. These new robust algorithms are charac-
terized by the fact that they provably work under minimal assumptions on
the underlying data-generating mechanism, often requiring the existence of
moments of low order only. Majority of the existing works focused on the
upper bounds for the risk of the estimators (such as the classification or
prediction error) produced by the algorithms, while in this paper we are
interested in the asymptotic properties of the estimators themselves. The
asymptotic viewpoint allows one to gauge efficiency of the estimators and
understand the magnitude of constants appearing in the bounds, as opposed
to just studying the form of dependence of the bounds on the parameters
of interest (sample size, dimension, etc.) The mean estimators at the core

of the approach under consideration are non-linear and are defined as so-
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lutions of optimization problems, which makes the analysis more technical.
Navigation through the technical details and development of the tools such
as Bahadur-type representations needed to tackle the non-linearities occu-
pies a large part of the analysis. Therefore, the main contributions of the
paper are technical in nature.

Next, we introduce the mathematical framework used in the exposition.
Let (S, S) be a measurable space, and let X € S be a random variable with
distribution P. Suppose that X;,..., Xy are i.i.d. copies of X. Moreover,
assume that £ = {((6,-), € © < R?} is a class of measurable functions
from S to R indexed by an open subset of R¢. Population versions of many
estimation problems in statistics and statistical learning, such as maximum
likelihood estimation and regression, can be formulated as risk minimization

of the form

E (6, X) = min (1.1)

In particular, when {pg, 0 € O} is a family of probability density functions
with respect to some o-finite measure p and £(0,-) = —logpy(-), the re-
sulting problem corresponds to maximum likelihood estimation. In what
follows, we will set L(f) to be the risk associated with the parameter 6,
namely L(0) = E{(0, X). Throughout the paper, we will assume that the

minimum in problem (1.1) is attained at a unique point 6, € ©. The true
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distribution P is typically unknown, and an estimator of 6, is obtained via

minimizing the empirical risk, namely,

GNN := argmin Ly (0), (1.2)
0e©

where Ly(0) := & Z;V:I ¢(0,X;). If the marginal distributions of the pro-
cess {£(0,-), 0 € O} are heavy-tailed, meaning that they possess finite mo-
ments of low order only, then the error |Ly(6) — L(#)| can be large with
non-negligible probability, motivating the need for alternative proxies for
the risk L(6). Another scenario of interest corresponds to the adversar-
ial contamination framework, where the initial dataset of cardinality N’ is
merged with a set of @ < N’ outliers generated by an adversary who has
complete knowledge of the underlying distribution and an opportunity to
inspect the data, and the combined dataset of cardinality N = N’ + O
is presented to the algorithm responsible for constructing the estimator of
0. In what follows, the proportion of outliers will be denoted by k := %
Similarly to the heavy-tailed scenario, the empirical loss Ly(f) is not a
robust proxy for E/(6, X) in this case, therefore estimation and inference
results based on minimizing Ly (#) may be unreliable. One may approach
the problem of estimating 6, robustly from different angles. One class
of popular methods consists of robust versions of the gradient descent al-

gorithm for the optimization problem (1.1), where the gradient VL(6y) is
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estimated on each iteration k; for example, this approach has been explored
by Prasad et al. (2020); Chen et al. (2017); Alistarh et al. (2018), among
others. Another technique (the one that we investigate in this paper) is
based on replacing the average Ly (-) by a robust proxy of L(). Its advan-
tage is the fact that we only need to estimate a real-valued quantity L(6),
as opposed to the high-dimensional gradient vector VL(6). On the other
hand, favorable properties, such as convexity, that are “inherited” by the
formulation (1.2) from (1.1), are usually lost in this case. Several repre-
sentative papers that explore this direction include the works by Audibert
et al. (2011); Lerasle and Oliveira (2011); Brownlees et al. (2015); Lugosi
and Mendelson (2019b); Lecué and Lerasle (2020); Cherapanamjeri et al.
(2019); Mathieu and Minsker (2021); also, see an excellent survey paper
by Lugosi and Mendelson (2019a). Instead of the empirical risk Ly(6),
these works employ robust estimators of the risk such as the median of
means estimator (Nemirovski and Yudin, 1983; Alon et al., 1996; Devroye
et al., 2016) or Catoni’s estimator and its variants (Catoni, 2012; Li et al.,
2021). In this paper, we study estimators based on the modification of the
median of means principle introduced by Minsker (2019a) combined with
the idea behind the so-called “median of means tournaments” (Lugosi and

Mendelson, 2019b) and the closely related “min-max” robust estimators
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(Audibert et al., 2011; Lecué and Lerasle, 2020). The latter are based on

an observation that 6y can be alternatively obtained via

6y = argmin max (L(0) — L(0)) . (1.3)
pce® 0'€O

Therefore, an estimator of 6y can be constructed by replacing the difference
L(6,0") := L(0) — L(¢') by its robust proxy constructed as follows. Let
k < N/2 be an integer, and assume that Gy, ..., Gy are disjoint subsets of
the index set {1,..., N} of cardinality |G;| = n > |N/k| each. For 0 € ©,

let

L6) = - 3 10 X))
ieGy

be the empirical risk evaluated over the subsample indexed by G;. Assume
that p : R — R, is a convex, even function that is increasing on (0, o0)
and such that its (right) derivative is bounded. Let {A,},>1 be a non-
decreasing positive sequence of “scaling factors” such that A,, = o(4/n) and

Ay = lim, A, € (0,00], and define

L(6,0") € argmin Z p (\/ﬁ Lj(6) = ;%) Z) ) (1.4)
zeR j=1 An
For example, the choice A,, = log(n) suffices for all results of the paper to
hold (in fact, it suffices for A, to be a sufficiently large constant); we will

make a remark regarding the practical aspects of setting A,, below. The es-

timator ZA}(H, ') is what we referred to as the robust proxy of L(0,6"), where
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robustness is justified by the fact that the error 2(6, 0") — L(0,0")| satisfies
non-asymptotic exponential deviation bounds under minimal assumptions
on the tails of the random variables £(6, X) — ¢(#', X) and the ability of
2(9, 6') to resist adversarial outliers. For example, Theorem 3 in (Minsker,

2019a) essentially states that whenever A,, = Var'/? (¢(4, X) — £(#, X)) and

for all s < k,

L(6,6") — L(6,0)

< 0(0,0)4 /% +A, <% + O]:[/ﬁ)

with probability at least 1 — ™%, assuming that E[£(0, X) — £(¢/, X)|? < o0
and where < denotes the inequality up to absolute numerical constants;
similar guarantees also hold uniformly over 6,6’ € ©; note that setting
A, = 0(0,0") yields the most robust estimator. Given the robust proxy
L(6,8) of L(6,0'), an analogue of the classical empirical risk minimizer 6y
can be obtained via

A~ ~

O, = argminsup L(0,6'). (1.5)
60 0'cO

Simple sufficient conditions for the existence of énk are discussed in the
supplementary material; in principle, one could consider near-minimizers
instead, however, we avoid this route due to the extra layer of technical-
ities it brings. The idea behind considering differences of the risks and

defining 6, via (1.3) is related to the fact that the estimators (1.4) of



1. INTRODUCTION.

L(6), unlike their traditional counterparts Ly(6), are non-linear: if we set

~

L(9) = argmin,z Y*_, p (ﬁ “A&) then L(6,0') # L(0) — L(#").
Related approaches based on direct minimization of 2(9) have been pre-
viously investigated by Brownlees et al. (2015); Holland and ITkeda (2017);
Lecué et al. (2020); Mathieu and Minsker (2021), where the main object of
interest was the excess risk E(gnk) = L(é\nk) — L(6p). It has been recog-
nized however that non-linearity of 2(9) often results in sub-optimal rates,
while the tournament-type procedures avoid these shortcomings. In the
present work, we will be interested in the asymptotic behavior of the er-
ror gnk — 0y, rather than the excess risk: in particular, we will establish
asymptotic normality of the sequence v/ N (@Lk — 00> and demonstrate that
robust estimators can still be efficient under essentially the same set of suf-
ficient conditions as required by the standard M-estimators (van der Vaart,
2000). The nonlinear nature of the estimator 2(0, 0’) makes the proofs sig-
nificantly more technical compared to the classical theory of M-estimators
based on usual empirical risk minimization. To tackle these challenges, our

arguments rely on Bahadur-type representations for ZAL(Q, 0’) whose remain-

der terms admit tight uniform bounds.
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1.1 Notation.

Absolute constants will be denoted ¢, ¢, C, Cy, C’, etc., and may take dif-
ferent values in different parts of the paper. Given a,b € R, we will write

a Ab for min(a, b) and a v b for max(a,b). For a function f : R? — R, define

argmin f(y) := {y e R?: f(y) < f(z) for all z € RY},

yeRd
and | f]. := esssup{|f(y)| : vy € RY}. Moreover, Lip(f) will stand for the
Lipschitz constant of f; if d = 1 and f is m times differentiable, f(™ will
denote the m-th derivative of f. For a function g(#,z) mapping R? x R
to R, 0pg will denote the vector of partial derivatives with respect to the
coordinates of 6; similarly, d5¢g will denote the matrix of second partial
derivatives. For z € R¢, |z| will stand for the Euclidean norm of z, |z| 4 :=
max; |z;], and for a matrix A € R™? |A| will denote the spectral norm
of A. We will frequently use the standard big-O and small-o notation, as
well as their in-probability siblings op and Op. For vector-valued sequences
{z;}i=1, {y;}i>1 = R% asymptotic relations x; = o(y;) and z; = O(y;) are
assumed to hold coordinate-wise. We will write z; « y; if x; = o(y;) and
z; » y; if y; = o(z;). For a square matrix A € R™¢ tr A := ijl Aj;
denotes the trace of A. Given a function g : R — R, measure ) and

1 <p <o, weset g o = [zlg(2)[PdQ. For iid. random variables
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Xq,..., Xy distributed according to P, Py := % Zjvzl (5Xj will stand for the
empirical measure; here, dx(g) := g(X). The expectation with respect to a
probability measure ) will be denoted Eq; if the measure is not specified,
it will be assumed that the expectation is taken with respect to P, the
distribution of X. Given f : S — R? we will write Qf for { fdQ € R,
assuming that the last integral is calculated coordinate-wise. For 6,6’ € ©,
let 02(0,0") = Var (£(0,X) — (¢, X)) and for © < O, define ¢%(0’) :=
SUDPg prcr a?(0,0").

Finally, we will adopt the convention that the infimum over the empty
set is equal to +00. Additional notation and auxiliary results are introduced

on demand.

2. Statements of the main results.

We begin by listing the assumptions on the model; these conditions are
similar to the standard assumptions made in the parametric estimation
framework (van der Vaart, 2000; van der Vaart and Wellner, 1996). The
first assumption lists the requirements for the loss function p (note that the

choice of this function is completely determined by the statistician).
Assumption 1. The function p: R — R s convex, even, and such that

(1) p'(2) = z for|z| <1 and p'(2) = const for z > 2.
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(ii) z — p/(z) is nondecreasing;
(i4i) p®) is bounded and Lipschitz continuous.

An example of a function p satisfying required assumptions is given by

“smoothed” Huber’s loss defined as follows. Let

HG) = 5100l <3723+ 5 (= ) 1ol = 372

be the usual Huber’s loss. Moreover, let ¢/ be the mollifier

ota) = Coxp (— =) {lel < 5}

where C' is chosen so that SRw(x)dx = 1. Then p given by the convolution

p(x) = (h=1)(x) satisfies Assumption 1.

Remark 1. The classical median of means estimator (Nemirovski and
Yudin, 1983; Alon et al., 1996) corresponds to the choice p(z) = |z| that
does not satisfy smoothness assumptions imposed above. Asymptotic be-
havior of the estimators corresponding to this loss is left as an open problem,;
numerical evidence suggesting that asymptotic normality does not hold in

this case is presented in (Minsker and Yao, 2025).
Assumption 2. The Hessian 02 L(0y) exists and is strictly positive definite.

This assumption ensures that in a sufficiently small neighborhood of 6,

c(00)]0—0o]* < L(0) — L(0y) < C(6p)]0—6|? for some 0 < ¢(6p) < C(6y) <
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0. The following two conditions allow one to control the “complexity” of

the class {£(6,-), 6 € ©}.

Assumption 3. For every 0 € O, the map 0" — ((0,x) is differentiable
at @ for P-almost all = (where the exceptional set of measure 0 can depend

on 0), with derivative 0gl(0,x). Moreover, Y0 € ©, the envelope function

V(z;0) := Supjj_g|<s 2pl(, JJ)H of the class {&96(5, i 0—6] < 5} satis-

fies EV2(X;0) < oo for sufficiently small § = §(0).

An immediate implication of this assumption is the fact that the func-
tion 6 — ¢(0,x) is locally Lipschitz. It other words, for any 6 € ©, there
exists a ball B(0,7(0)) of radius r(#) such that for all 6y, 65 € B(0,r(0)),
[0(01, 2) — (02, x)| < V(2;7(0))|01 — 02. In particular, this condition suf-
fices to prove consistency of the estimators considered in this work and is
similar to the classical assumptions used in the analysis of M-estimators,
e.g. see the book by van der Vaart (2000). The final assumption that we
impose allows us to treat non-compact parameter spaces. Essentially, we
require that the estimator énk defined via (1.5) belongs to a compact set

of sufficiently large diameter with high probability, namely,

lim lim supIP’( énk — HOH > R) =0 and

R—0 n,k—00

The following condition is sufficient for the display above to hold:
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Assumption 4. Let Xy,..., X, be i.i.d. Given t,R > 0 and a positive

integer n, define

1 n
B(n,R,t) := IP’( inf — > 0,X;) <El(y, X) + t>.

0€0, [0—0o|=R N *
J=1

Then limg_, limsup,, .., B(n, R,t) = 0 for some t > 0.

Let us emphasize that the data Xi,..., X, in Assumption 4 do not
contain outliers. Requirements similar to this assumption are commonly
imposed in the classical framework of M-estimation, (e.g see van der Vaart,
2000). Of course, when © is compact, Assumption 4 holds automatically;
another general scenario when Assumption 4 is true occurs if the class
{€(0,-) : 0 €0} is Glivenko-Cantelli (van der Vaart and Wellner, 1996).
Otherwise, it can usually be verified on a case-by-case basis. For instance,
consider the framework of linear regression, where the data consist of i.i.d.
copies of the random couple (Z,Y) € R? x R such that Y = (Z,0,) + ¢
for some 6, € R? and a noise variable ¢ that is independent of Z and has
variance o2. Moreover, assume that Z is centered and has positive definite
covariance matrix Y. In this case, £(0, Z,Y) = (Y —(Z,0))*, and it is easy
to see that 237, £(6,2,Y;) = L (18 + |Z(0 — 0,)|* — 2 (6, - 6))),
where &€ = (g1,...,6,)7 and Z € R4 has Z,...,Z, as rows. Cauchy-

Schwarz inequality combined with a simple relation 2|ab| < a?/2 + 2b* that
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holds for all a,b € R yield that

1 & 1 , 1
— . . 2 - — Uy R ,
D U0, 7;,Y;) 5 1200 = 0.)|" = —|]

j=1
hence inflg_g, 1>k 21—y 000, Z;,Y;) = B inf =1 Snu, u) — 2|82 where
Sp=1 Y1 Z;Z] is the sample covariance matrix. Since infj,—1{(X,u, uy >
Amin(2) = [Z5 = Z] = Amin(X) — 0p(1) and L[] = O,(1), it is easy to con-
clude that Assumption 4 holds; here, we used the fact that |, —X| = op(1)
in view of the law of large numbers.

We are ready to state the main results regarding consistency and asymp-
totic normality of the estimator (1.5). Recall the adversarial contamination
framework defined in section 1. In all statements below, we assume that the
sequences {k;},;>1 and {n;};>1, corresponding the the number of subgroups
and their cardinality respectively, are non-decreasing and converge to oo as

J — 0, and that the total sample size is N; := k;n;.

Theorem 1. Let assumptions 1, 2, 3 and /J be satisfied. Suppose that

the number of outliers O; 1is such that lim sup% < ¢ for a sufficiently
joo

small absolute constant ¢ > 0. Then the estimator éwj defined in (1.5) is

~

consistent: Oy, r. — 0o in probability as j — 0.

We remark that the contamination framework considered in Theorem

1 is quite general: for instance, in the framework if linear regression, X =
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(Z,Y) e R? x R, hence outliers can occur among both the predictor Z and
response variable Y. On the other hand, many classical robust regression
methods, such as Huber’s regression, only allow the outliers among the

responses. The following theorem constitutes the main contribution of the

paper.

Theorem 2. Let assumptions 1, 2, 3 and 4 be satisfied, and suppose that

the number of outliers O; is such that lirjn S;)lp% < ¢ for a sufficiently

small absolute constant ¢ > 0. Moreover, assume that {O‘njvkj }i=1 1s a non-
increasing sequence such that

9 1

o >
nj,k]- =

O; 1
and Oéij,k]- P .
njk; kj /1

Then

A}im limsupIP(Hénj,kj — 0| = M - anj,kj) =0.

—© nj,k‘j—>00

In addition, if the sample is free of adversarial contamination (that is, O; =

0), then
W/Nj (é\nj,kj — 60) i) N (O,DQ(G())) (ISj — 00,
where D2(0) = [02L(00)] " S [03L(6)] " and = = E [89¢(80, X)3a(00, X)T].
This result goes one step further compared to Theorem 1 and establishes

the rate of convergence of é\nk to 6. Moreover, it implies that in the “ideal,”

outlier-free scenario, a,, = \/Lnik = \/1_N is the standard parametric rate
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(and the rate is strictly slower if O; > 1), and that no loss of asymptotic
efficiency occurs compared to the standard M-estimator based on empirical
risk minimization. For example, maximum likelihood estimator corresponds
to the case when {py, 6 € O} is a family of probability density functions with

respect to some o-finite measure p and £(6,-) = —log pg(-). If it holds that
—05 Elog pg, (X) = I(6) := E [y log ps, (X) g log pa, (X)" ],

then it follows that én].,kj is asymptotically equivalent to the maximum like-
lihood estimator. The proof of Theorem 2 is presented in section 3.2 below,
while the proof of Theorem 1 is outlined in section S2 of the supplementary

material.

Remark 2. One may wonder whether the second claim of Theorem 2 re-
mains valid in the presence of outliers (that is, @; > 0). To the best of
our knowledge, this is not the case. One possible path to constructing es-
timators that remain asymptotically normal in the presence of adversarial
contamination is to consider an approach based on the gradient descent
algorithm applied to the optimization problem (1.1), where the gradient
V L(6) is robustly estimated on each iteration k; we refer the reader to
the list of references investigating such methods and listed in section 1. In-
vestigation of the asymptotic properties of such methods is an interesting

direction for future research.
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2.1 Computational aspects.

Here, we briefly discuss some of the more practical aspects of the pro-
posed estimators, including the choice of the scaling factors A,,. Note that,
while E(Q,Q’ ) itself is defined as a minimizer of a convex function, it is
not a convex-concave function itself, and the problem (1.5) is not guaran-
teed to be convex-concave or have a unique solution. However, the gra-

dient of E(G,G’ ), both with respect to 6 and @', is easily computable: as

Zle 0 <\/ﬁ L (0)-@2@’)%(0,0’)) = 0, differentiating this expression yields

n

that

k T L:(0)—L.(6 72079/
2j—1 0oL (0)p" (ﬁ 1(0) Jin) ( ))
r L;(0)—L;(0)—L(0.0/
Zj:l p" (\/ﬁ i) Jin) ( ))

Due to this fact, gradient descent-ascent type methods for solving the prob-

0pL(0,0') =

lems closely related to (1.5) have been proposed and have shown good per-
formance in extended simulation studies; we refer the reader to (Lecué and
Lerasle, 2020; Mathieu and Minsker, 2021) for the details.

The problem of choosing the scaling factor for robust estimators of
location has been studied since the seminal work of Huber (1964). Here,
we suggest setting A, in a data-dependent way using the “median absolute
deviation” (MAD) estimator; this idea has been suggested and numerically
tested in (Mathieu and Minsker, 2021). We start with A, := A, being

a fixed number (e.g., A, = 1). Given an approximate solution (6;,6;),
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e.g., obtained via the gradient descent-ascent iteration, set M (04,0;) =

median (Z_Ll(ét, 0, ..., Li(6y, 92)), and

MAD(6,,0,) = median (‘Zl(et, 0)) — M (6,,6.)

,...,‘Ek(et,eg) ~ M(6,.6))

).

A MAD(O“%), where ® is the distribution function of

Finally, define A, 441 1= =T
the standard normal law and the normalizing factor comes from the fact
that for a sample from the normal distribution N (u, 0?), the expected value
of MAD equals ®!(3/4)o. The scaling factor can be updated again after a
fixed number of iterations. Our theoretical results do not allow for a data-
dependent choice of A, however, and it would be an interesting avenue
for further investigation. We include a simple proof-of-concept numerical

simulation in section S8 of the supplementary material.

3. Proofs.

The proof of Theorem 2 uses characterization of gnk as the solution of the
min-max problem, and follows a standard pattern of consequently establish-
ing consistency, rate of convergence and finally the asymptotic normality.
The arguments are quite general and can be extended beyond the classes
that satisfy Lipschitz property imposed by Assumption 3. Since E(Hl, 2]
is defined implicitly as a solution of the convex minimization problem, we

rely on the Bahadur-type linear representation of 2(61, 0y) — L(0y,05) with
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uniform control of the remainder terms.

3.1 Preliminaries.

Below, we state several results that our proofs frequently rely upon.

Lemma 1. Let F : R — R be a function such that F" is bounded and
Lipschitz continuous. Moreover, suppose that &1, ...,&, are independent
2

centered random variables such that E|&;|* < oo for all j, and that Z;, j =

1,...,n are independent with normal distribution N (0, Var(&;)). Then

o (Se) o () <

In particular, if E|&;[*™™ < oo for some 7 € (0,1] and all j, then

EF (Z §j> —~EF (2 Zj> F) Z El¢, 2.

The proof is given in section S3 of the supplementary material.

Z &7 - min(Jg;], 1)] -

Lemma 2. Let F = {f@, e ® c Rd} be a class of functions that is Lip-
schitz in parameter, meaning that | fg, () — fo,(x)| < M(x)||61 — 62|. More-
over, assume that EMP(X) < oo for some p = 1. Finally, suppose that

Xi,..., X, are v.i.d. Then

Eefef?@/ ( Z (fo, (X5) = fo,(X5) — P(fo, — feg))D
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< C(p)d”*diam” (&', | - )E| M|,

Pr)

< C(p) (@2 diam?(©, | - DEIME, 5, + % | foo(X) = P, ")
for any 0y € ©'.

The proof is outlined in section S4 of the supplementary material. The
following result that can be viewed as a weak Bahadur representation of
E(Q, 0p) is one of the key technical components that the proof of Theorem

2 relies on.

Lemma 3. Assume that adversarial contamination framework, and let O
denote the number of outliers. Let L = {{(0,-), 0 € ©} be a class of func-
tions, and, given 6y € ©, set 0*(0) 1= supjy_g <5 Var (£(0, X) — £(6o, X)).
Moreover, let Assumption 3 hold. Then for every 6 < r(6y) , the following

representation holds uniformly over |0 — 6y < ¢
VN (2(9, 8y) — L(0, 00)>
A, _
- Zp( (L;(0.60) - (%)))

B (%2 (La(6.60) — L(6,60)) ) VF

r(6p) was defined in the paragraph following Assumption 3.
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+ Rnr(0), (3.6)

where

2 02
sup  [Ron(0)] < C(d,0 528—+\/%53+—>
||0—9OIH)<5’ +(0)] (o) < vk k3/2

with probability at least 1 — %

The proof is contained in section S5 of the supplementary material.

3.2 Proof of Theorem 2.

As in the proof of Theorem 1, we will omit subscript 7 and write “k,n”
instead of “k;,n;” to denote the increasing sequences of the number of sub-
groups and their cardinalities. The argument is divided into two steps. The
first step consists in establishing the fact that the estimator énk converges
to 0, at v/N-rate, while on the second step we prove asymptotic normal-
ity by “zooming” to the resolution level N=2: this proof pattern is quite

standard in the empirical process theory (van der Vaart and Wellner, 1996).

Step one. Similar to the proof of Theorem 1, we set

0(0') := argmax L(¢', 0) = argmin (0,0
0cO 0cO

and define @(11,1 = é\nk and 57(121)9 = 5(@(11,1) We present a detailed argument

)

(

establishing the convergence rate for gnll)c, and outline the modifications
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necessary to establish the result for @(12,1 Our goal can be equivalently

stated as showing that

lim lim sup]P(Hé“) — 0| = 2Man,k) —0. (3.7)

n7
=0 pn ko

Define

SN,]' P = {9 : 2j_105n,k < ||9 - 90” < Qan,k},

Snji={0: 0<[0—06o] <2ani},
and observe that

18 —60] = 2Y ) —> mf(ma&@y—ﬂ%ﬁ@m)gommmmj>ﬂa

0eSnN,j

where 5(9’) = argmax,cg 2(9’, 0). As 2(9, 5(9)) > E(@, 0p) for any 0, the in-
equality H@(l)_eOH > 2M v, ; implies that infoeg, | (E(Q, o) — ZA}(GO, 5(90)> <

0 for some j > M, which in turn entails that

mf(ﬂaao—Lwﬁ@—iwm&%»+me&%D)

GESNJ

~

< L(@O,Q(GO)) — inf L(O,OO)

QESN,J'

~

for some j > M. Since L(6y,0(6)) — infges, , L(0,0p) < 0 by the definition

of 6y, the previous display yields that

~ ~ A~ ~

sup |L(0,60) — L(0,60) — L(6o,0(60)) + L(60,0(0))
0eSN,;
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~

> inf L(G,Qo)—L(eo,e(eo)) > inf L(G,Ho),

QESN,]' GESNJ

which further implies that either

R L(8,6
sup (L(e, 90)—L(9,90)‘ > i H0%)
GESN,]' OESN,]' 2

)

~ A~ ~

or ‘L(GO,G(HO)) —L(eo,ewo))) > infgegy, 240 Let 0 < m < 7(6p) be

small enough so that L(0) — L(6y) = c|0 — 6y|* for 6 such that |6 —
Ool| < m1 (existence of 7y follows from Assumption 2), and observe that
P(Hé\gz — 6] = 771) — 0 as n,k — oo due to consistency of the estimator

under assumptions of the theorem. We then have

P18}~ ol > 2 a0ni) < P(1A) — ol = )

+ B (|26, 800)) — L(60.0600))| > c2a2,,)

+P | sup ‘E(@,@@ - L(G,Go)‘ >c2922, | (3.8)

JiEMA1, 2ay y<m PSS

We will now estimate the second and third terms on the right-hand side of

the display above, starting with the third term.

e Estimating P(Uj:j>M+1, 2iar p<m SUPGESy ‘2(9, 0o) — L(0, 90)‘ > 0223‘—20[2’,6).
Let us invoke Lemma 3 applied to the class {¢(6, ) — €(6y,-), 0 € Sx;}. To-
gether with the union bound applied over M < j < Jyax := [log(\/ﬁ m)|+1

with s; := j2, it implies that for all 8 € Sy j, M + 1 < j < Jiax,
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~ An
VN (L(6,06) — L(6,00) ) = Ep (3§ (L1(9) — La(60) — L(6,60)))

X
‘ -
b\
N
5
—~
i
=
|
Sbu
5
N
|
=
)
>
()
=
~__
+
&
,k
<.
—~
=
—~
W
L

where

92j j4 937 (92>
sup [Rori(0)] < C(d,00) [ =L + Vi—— + —
S Rus(0)] < ) (572 + Vi +

uniformly over all M < j < Jyax with probability at least 1—3 )] jisMi1d 2>
1- % Let £ denote the event of probability at least 1 — % on which the
previous representation holds. Moreover, observe that, in view of Lemma

1, for 1, small enough and N large enough,

NG

Ep// <A_n (E1<9) - E1<00) o L(Q, 90))> o p//(0> p//(O)

sup < =z,
16—60<m 2 2

Taking this fact into account and noting that (i) j—%\% + \/E% < ¢ for

any j < Jpax and any ¢ > 0 given that n is large enough and that the

relation (ii) k?—/i = o(a vV N) follows from assumptions of the theorem, we

see that the remainder term R, x,;(#) is smaller than ¢2% <\/LN + a2 VN )

on event £, hence

~ , C

P U sup ‘L(@,@O) - L(Q,Qo)‘ > 0227_2047217k < W
. 25 QGSN’J'

Jii=M+1, WSm

+ Z ]P’( sup
<M J

Jig=M+1, 2jo¢n,k

1 Zp’ <\A/—f (Ls(0) — Ls(6o) — L(0, 90)))

= 0122jai7k\/ﬁ>
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where we used the fact that whenever ¢ is small enough,
21242 o2 1 2 2j .2
2% g, — €2 N + gy | = a2Va,, for ¢ > 0.

Invoking Lemma 1 again, we see that (assuming that L(-) is based on a

contamination-free sample)

B <@ (L1(6) — Lu(60) — L (6, eo))> ‘ <2

sup A N

96§N7j

Let us denote ), (6, 0p) = ¢/ ( (Li(0) — Li(6y) — L(@,@O))) Ci=1,.. .k
for brevity. Moreover, let f,;(6,600) be a version of pf ;(6,60y) based on
a contamination-free ii.d. sample Xi,..., Xy such that Xj = X, for

j ¢ J where J < {1,..., N} contains the indices of the outliers among

Xiyoo, X As (1) | X021 (04(0,60) — 7,40, 60))| < 2010|055 (i) G <«

227

a; VN by assumption, and (iii) k% < o2t < 0222j0éi7k\/ﬁ for any

co > 0 and sufficiently large n, it is easy to check that

su (0, 60)
<p LS00
< <Sup Z (pnz 9 90 pnz(e 00))
GESN]
1 ~
E sup Z (pm (0,6) Epn,i(9700)>'

S —/—F—=
922 aik\/N 0eSn.;
where we used Markov’s inequality on the last step. To bound the expected

0122ja,21’k\/ﬁ>

supremum, we proceed in exactly the same fashion using symmetrization,
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contraction and desymmetrization inequalities as in the proof of Lemma 3

(see the supplementary material), and deduce that

E sup Z <,0m (6,6) Eﬁ;,i(9,90)>‘
GESN,J
CEsu ! i(z(e X;)— (6 X-)—L(ee)
n 96515) \/7 = y g 0y <Xj » Y0 .
The right side of the display above can be bounded by C(d 90) jﬁ (using

Lemma 2), implying that

(9815110 Z (pm (6, 60) Eﬁ;,i(9,90)>

- Ci(d, 0y) 1
> cz22fai,kﬁ> = %_‘

no 2
where we used the fact that o , > > +. Therefore,
P U sup ‘L (0,00) — (9,90)‘ > c277%al
GGSN j

Ji=M+1, Ze<m

B C N C1(d, 0o) Z 97 < C  Oi(d, '90)2—M+1

X S 5 < —
M A, *

i A —0as M —

j=M

whenever n, k are large enough.
o Estimating P()E(@O, 0(60)) — L6, 5(90))‘ > c22Mg gk)

In view of (3.8), it only remains to show that
p(\/ﬁ‘i(eo,é(eo)) . L(&O,é(é)o))‘ > ¢22Mg nk) S 0asn,k— . (3.10)

To this end, it suffices to repeat the argument presented above, with several

simplifications. First, we will start by proving that

hm hmsupIP’(H@(@o) — 0| = 2Mozn7k) = 0.

M- 5 ko0
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We have already shown in the course of the proof of Theorem 1 that 5(«90)
is a consistent estimator of 6y, so that IP’(H@(@O) — G| = 772> — 0 for any
e > 0. 1f [6(6) — o] = 2Ma2,, then §(6y) € Sy for some j > M,
implying that supgeg, | L(6o,60) = L(6y, 6y) = 0, which entails the inequality
SUPpes,, (i(eo,e) - L(HO,Q)) > — SUpges,,, L(00,0) = infoesy, L(0,00) >

c2%72a2 | whenever 2/ oy, . < 75 and 7 is small enough. Therefore,
P(10(00) — 0] > 2" ar) < B(10(06) — 0] > )

+P U sup ‘E(é’o, 0) — L(0o, «9)’ > c2%7%a2
0eSn.; ’

JiiZMA+1, 2, | <ne
The probability of the union is estimated as before using Lemma 3, implying

that it converges to 0 as M — oo. To complete the proof of (3.10), observe

that

P()E(@O, 8(60)) — L(6o, 5(90))‘ > c22Ma7217k) < P<\|§(90) — 0| = QMamk)

+P sup
l6—60[<2M an, o

~

L(007 0) - L(007 9)‘ = CQQM@?L,k)

and that

P sup
[0—60]<2M v,

as M — oo, which follows from the representation (3.9) in the same fashion

I/:(QO’ 0) - L(e()) 9)‘ = C22M047217k> < g + C<d’ 60)

2~M _,
M A,

as before. This completes the proof of relation (3.7). To establish that

im lim supIP’(Hé\g,l — 0] = 2MOén,k> =0,

1
M- 4 koo
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we begin by observing that the inequality H@(f,)g — 0| = 2M v, 1, implies that
SUDgesy E(égl,l,e) > f/(é\s,)q,ﬁo) for some j > M. If 2/, < n3 for suffi-
ciently small constant 13 > 0, we see that it further entails the inequality

sup (LB 0) — LOL).0) — L), 06) + LB 00))

BGSN,J'

> — sup L(OY),0) + L(6).00) = inf L(6,6.)) + L(6.}). 60)

0eSn; 0eSN,j

= inf L(6,0y) = c2¥ %2 ,.
GGSNJ‘ ’

We deduce from the display above that

P02 — 0ol = 2" anr) < P12, — boll = ns ) +P(101) — o]l = 2¥a2 )

n,

+ P U sup L0, 6) — L(#, 9)‘ > 2970,

JiM41, 2y, j<ng 09N.5.0'€5N a1/2

+ P( sup ‘Z(@, 60) — L((‘), ‘90)‘ = C 22MOén’k) .

OESN,M/Q

We have shown before that the first and second term on the right side of
the previous display converge to 0 as M, n and k tend to infinity, while the
last term converges to 0 in view of argument presented previously in detail
(see representation (3.9) and the bounds that follow). It remains to estimate
P(Uj:j>M+l, Yan o< SUPGES N 0€Sn 11/ 2(9’, 0) — L(¢, 9)‘ > 22j_2047217k). To

this end, we again invoke Lemma 3 applied to the class

{5(917 ) —L(0s, ), 01 € SN,M/Qa 0, € gN,j} .
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Here, the “reference point” is (6, 6p). Since
1000, 2) — 68", )| < V(:7(80))(2 + 2V ),

it is easy to see that o2(0) < EMj (X) (2% +2M) a2, < C(6)2% a2, and

to deduce that

VN (E(e’, 0) — L(, 9))

where

92 44 93j 0?2
sup Rk (0,0)] < C(d, b) (—— + Vs + —)
N | i N Vk N3/2 " k3/2

uniformly over all M < j < Jya.x with probability at least 1 — % The
remaining steps again closely mimic the argument outlined in detail after

display (3.9) and yield that

P U sup ‘Z(@’, 0) — L(6,0)| = ¢, 2922,

JiEMA1, Vay, <z 965N, 0'€5N, M2

as M — oo, therefore implying the last claim in the first part of the proof.
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Step two. Now we are ready to establish the asymptotic normality of 97(11,1
and 57(12,1 To this end, observe that the first claim of the theorem holds with
Qpjp = \/Lnik = \/LN’ and consider the stochastic process My (h, q) indexed by

h,q € R? and defined via
My(h,q) := N (2(90 + h/V'N, 8y + ¢/VN)) — L(6o + h/VN o + q/\/N)) .

Below, we will show that My(h,q) converges weakly to the Gaussian pro-
cess W(h,q) := WT(h —q), h,q € R?, where W ~ N(0,Xy) and By =
E [09¢(60, X)pl(0, X)T]. Let us deduce the conclusion assuming that weak

convergence has already been established. We have that

N L6+ h/vN, 0y +q/vN)) = N - L(6y + h/'N, 60+ q/V'N) + My (h, q).
Note that, in view of Assumption 2 and the fact that 6y minimizes L(6,),

N - L(6y + h/V'N,0 + ¢/VN) — %hTagL(Go)h - %qTagL(Ho)q as N — oo,
therefore

- 1 1
N-L(6o+h/VN, 6g+q/vVN)) WTh+§hT&§L(00)h— <WTq - 5qTango)q) .

It is easy to see that

(= [e3Lee0)] " W= [G3L(00)] ' W)
1

1
= argmin max W7h + éhTé’gL(Qo)h - (WTq ~3
h q

qTaszo)q) |
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where — [02L(0,)] ' W ~ N(o,[agL(e@]*l S [agL(eo)]*l). Therefore,

since

<\/N (é,\(ll)€ B 90> /N (57(1211 — «90)> = arglrlnin m(?x f/(00+h/\/ﬁ, Qo—i-q/\/ﬁ)),

n,

continuous mapping theorem yields the desired conclusion. Next, we will
establish the required weak convergence.
e Establishing weak convergence. To this end, we apply Lemma 3 to

the class

Ly :=<0Cx(h,q,) =00+ h/VN,) =0+ q/VN,"), <R},

(3.11)

0o + h/vN 6o

and note that < %. We will also introduce the

N
90 + C]/\/N 90

following notation for brevity (that will be used only in this part of the
proof):

_ 1 ~ N -

L;(h,q) := - > On(h.q, X:),  L(h,q) := Ely(h,q,X). (3.12)

iGGj
The quantities § and ¢%(d) defined in Lemma 3 admit the bounds § < \/—RN
and, in view of Assumption 3,
~ R2
0%(8):= sup Var (éN(h,q,X)) <2EVAXir(f) 5 (313)

()T I<R

hence Lemma 3 yields that
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M) = A, S (L (1o - 0

+ Op(l)

uniformly over |(h, q)”| < R. In view of Assumption 1,

}P’(‘X—f (Ej(h,q) fZ(h,q)>‘ < 1) < Ep’ (X; (Ll(h q) — L(h, q)>) 1.

Assupygri<n P(| %2 (Li(hig) = L(h, o)) | > > < sy grjen g —
0 as n, k — oo, we deduce that Ep” <A£ < — L(h, q)>) — 1 and
My (h,q 2 ( (Litha) - z(h,q))> +op(l).  (3.14)

It remains to establish convergence of the finite dimensional distributions
as well as asymptotic equicontinuity. Convergence of finite dimensional
distributions will be deduced from Lindeberg-Feller’s central limit theorem.

As p/'(z) = z for |x| < 1 by Assumption 1,

7 (5" (B - L) ) = X (Latho) - L)

on the event C; := { o (Ej(h,q) —I(h,q) ‘ < 1}. Chebyshev’s inequality

and Assumption 3 imply that

P(C;) < Var <\A/—f (Ej(h, q) — L(h, Q)>)

_ E(h,q,X) _ EVA(Xsr(60))[h — qf?
R A2 = A2N ’
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therefore, ]P’(U?:l C_]> < IEV2(X;192071)Hh—q||2 L 0asn o0, and

My (h,q) = Ang]\; Z \/—f (Ej(fu q) — N(h,Q)) +op(1)
1 & ~ ~
- SNV (Tn(h, 0. X5) = Lh,0)) + 0p(1)

j=1
on the event ﬂle C;. Hence, the limits of the finite dimensional distribu-

tions of the processes My (h,q) and

My(h,q) == \/LN Z VN <ZN(h7Q> Xj) — z(h7Q))

coincide. It is easy to conclude from the Lindeberg-Feller’s theorem that
the finite dimensional distributions of the process (h,q) — M, ~(h,q) are

Gaussian, with covariance function

lim cov (M\N(hh ), M\N(h2> Q2)>

N—o

= (h—q)"E [a(,e(eo, X) (00(6o, X))T] (hs — q2), (3.15)

Indeed, the aforementioned relation follows from the dominated conver-
gence theorem, where pointwise convergence and the “domination” hold

due to Assumption 3. Lindeberg’s condition is also easily verified, as

~ 2
<\/N€N(h,q,X)) < V3(X;7(6p))|h — ¢|?, implying that the sequence

i>1

~ 2
{(«/Nj In,(h,q, X)) } is uniformly integrable, where N; = n; - k;.
J
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Finally, we will establish the asymptotic equicontinuity of the process

My (h,q). To this end, it suffices to prove that for any ¢ > 0,

lim hmsupIP’( sup |My(hy,q1) — My (ha, go)| = 8) — 0,
[(R1,q1)

020 nk—oo T—(ha,q2)T <5

which would follow, in view of Lemma 3, from the relation
lim limsup E sup
020 nk—o | (h1,q1) T~ (h2,g2) T <0

2 ( (X" (2tma) - Zua)
Ly (X_f (L2 ) - E(h2,q2))> )‘ _0. (3.16)

To estimate the expected supremum in (3.16), we first observe that for any
h.q,

VR%me(%?

n

(B - Z) )| o)) )

as k,n — oo by Lemma 1 and inequality (3.13). Therefore, we only need to

show that
limsup E sup |MN(h1,CI1) - MN(h%QQ)_
nk—0 | (h1,q1)T—(h2,92)T||<é

(EMy (h1,q1) — EMy(ha, g2))| <=5 0.

Next, we will apply symmetrization inequality with Gaussian weights (van der
Vaart and Wellner, 1996). Specifically, let ¢, ..., gy be i.i.d. N(0,1) ran-

dom variables independent of the data X,..., Xy. Then, setting B(J) :=

{(h1,q1), (ha, q2) = (P, 1) = (2, q2)" || < 6}, we have that
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Esup [My(h1,q1) — My(he, q2) — (EMy(h1,q1) — EMy(he, q2))| <

B(5)
C(p)AE Sél(lg g; ( (A£ jh, @) — (hl,%)))
(A£ E (h2, q2) — z(h27 Q2>>> ) ‘
Let us condition everything on X, ..., Xx; we will write £, to denote the
expectation with respect to gy, ..., gr only. Consider the Gaussian process

Y, x(t) defined via R* 5 ¢ — Y, 4(t) := WZJ L9V Np'(t;), where

tj :=t;(h,q) = \A/—ﬁ (Ej(h,q) - z(h, q)) L j=1,... k.

In what follows, we will rely on the ideas behind the proof of Theorem
2.10.6 in van der Vaart and Wellner (1996). Let us partition the set {(h,q) :
|(h,q)|| < R} into the subsets S;, 7 = 1,...,N(0) of diameter at most ¢
with respect to the Euclidean distance | - |, and let t0) := ¢t0) (b1 ¢l0)) e
2d

S; j =1,...,N(0) be arbitrary points; we also note that N(§) < (%£)

Next, set TW := {t(h,q) : (h,q) € S;}. Our goal will be to show that

limsupE  max  sup [V, x(t) — Yn,k(t(j)ﬂ —0asd— 0,
nk—oo  J=1N(8) ()

whence the desired conclusion would follow from Theorem 1.5.6 in van der
Vaart and Wellner (1996). By Lemma 2.10.16 in van der Vaart and Wellner

(1996),
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E, max sup |V, x(t) =Y, x(tV
=ty N(é)teﬂ%‘ #(0) = Yoult)

< C< _max E, sup |Yox(t) — Y, (t9))|
]:

----- N@) 7 eT()

1<GN(O) 4e7()

++/log N(§) max sup Var;/2 (Yor(t) — Ymk(t(j))) > (3.18)

N2
Observe that Varg (Y, x(t) — Yo (tW)) = & SE (p’(ti) — p’(tﬁ”))) , hence

2

1<GENEG) gty 7 NORT)

. N &
E max sup Var’/? (Yn,k(t) — Ymk(t(”)) <EY? sup T Z <p'(t£1)) — p’(t§2))>
=1

2
< VNL(p)EY? sup (tgl) - t?))

t(1) ¢(2)
vVnN /- -
CLE”  sup = (Lahs, 1) = Li(hs, 2)
[(h1,q1)—(h2,q2)[ <0 n

- (Z(hhm) - z(hm(h))) )

where the supremum is taken over all t()(hy,q1), t®(hy,q) such that
|(h1,q1) — (ha,q2)| < 0. To estimate the last expected supremum, we invoke
Lemma 2 with f, ,(X) := (6 +h/v/N, X) — (6 + q/+/N, X), noting that,

in view of Assumption 3,

VN i (X) = Fraiae ()] < VX57(60)) (11 = haf| + lar — @)

<2V(X57(00)) [|(h1,q1) — (R2,g2)] - (3.19)

Therefore,
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E'/2 sup ( niN

[(h1,q1)—(h2,q2)[ <6 A,

< OVAEY V(X r(6y)) - 6,

yielding that the second term on the right side of (3.18) converges in prob-

ability to 0 as 6 — 0. It remains to show that the first term

max [E, sup |V, x(t) =Y, t0)
j=1,...N(8) teTE)‘ #() x )‘

converges to 0 in probability. As p’ is Lipschitz continuous, the covariance

function of Y,, 1 (¢) satisfies

N i 2
B () = Yould®)” < 27 3 (67 - 7).

where the right side corresponds to the variance of increments of the process

/

I k
= \</%) jZlg]\/th

Therefore, Slepian’s lemma (Ledoux and Talagrand, 1991) implies that for

Zn,k: (t)

any j,

E sup ‘Ynk Yn’k(t(j))|
teT(9)

In turn, it yields the inequality

<L1(h17Q1) - Ll(hQaQZ) - (Z(hh(h) - Z(thQQ)>)

2



3. PROOFS.

E max E, sup ‘Ynk() Yn7k(t(j))|

J=1NG) o)
VNn & - .
A—Zgj <Li(h176h) — Li(h2, ¢2)

i=1

1
<E sup i
I(h1sa1)—(hasa2) <0 VE

- (E(hl,ﬂh) - Z(h27Q2))> |

To complete the proof, we will apply the multiplier inequality (Lemma
2.9.1 in van der Vaart and Wellner, 1996) to deduce that the last display is

bounded, up to a multiplicative constant, by

max E sup
m=bek(ha)

i (E thI) E(hm%)

- (z(thI) - z(hm(h)))'

where €q,...,e; are i.i.d. Rademacher random variables. Next, desym-
metrization inequality (Lemma 2.3.6 in van der Vaart and Wellner, 1996)

implies that for any m =1,...,k,

E sup —
[(h1,q1)—(h2,92)

Z <L thl I_zz‘(hm(h)

- (Z(hh Q1) - Z(h2, QQ))>’

1 \/Nmn N N
< 2F sup Z (fN(thh,Xi) — Un(ha, g2, X;)

[(h1,q1)—(ha,g2) <8 V1T

- (Z(hl,fh) - Z(@J]z)))'
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where fy(h,q,X) and L(h,q) were defined in (3.11) and (3.12) respec-
tively. It remains to apply Lemma 2 in exactly the same way as before
(see (3.19)) to deduce that the last display is bounded from above by
CVAEY*V?(X:r(6y)) -6 — 0 as § — 0. This completes the proof of asymp-
totic equicontinuity, and therefore weak convergence, of the sequence of

processes My (h, q).

Supplementary Materials

The online supplementary material includes the proof of Theorem 1, the

proofs of technical results and outcomes of numerical simulation.
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Supplementary Material

This documents contains additional technical details and numerical results that were omitted

from the main text of the manuscript.

S1 Auxiliary results.

In the exposition below, we will often refer to the lemmas stated in section
3.1 of the main document.
1.3 Existence of solutions.

In this section, we discuss simple sufficient conditions for existence of the

estimator énk defined in display (1.5) of the main document.

Proposition 1. Assume that © < R? is compact and that £(0,z) is con-
tinuous with respect to the first variable for P-almost all x. Moreover, let p

be a convex function such that p"(x) > 0 for all x € R. Then gnk exists.

Proof. 1t suffices to show that 2(6, ') is continuous. The existence claim
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then easily follows as L(6, 6') must be uniformly continuous on © x © due
to compactness, which in turn implies, via a standard argument, continuity
of the function 0 — maxyce 2(0, 0'), hence the existence of é\n,k’a again in
view of compactness. To establish the continuity of # — maxgco 2\}(0, o)
when E(@,Q’ ) is uniformly continuous, note that for any § € © and any
e >0, L0.0) —e < L(6,0) < L(6,0) + ¢ for all @ € O as long as
|6—6] < 6(c). Tt easily implies that maxgee L(0,0)—¢ < maxgeo L(6,0') <
maxgeo E(@, 0') + ¢, and the conclusion follows.

All that remains is to establish the continuity of L(6,6'). To this end, fix

e >0 and let

1< L Li(0) — =z
R(z0,0) EZ< Ai() )
Since R/(z;0,0") is strictly increasing in z, there exist z;(¢) and z_(e)
such that R'(z.();0,0') = ¢ and R'(z_(€);0,0') = —e. In particular,
i(@,@’) € (z_(g),24(¢)). As R'(L L(6, 0);60,0') > 0 in view of the assump-
tion p” > 0, |z4(e) — 2_(e)] — 0 as ¢ — 0. Since L;(0) — L;(#) is
continuous in 6,6 by assumption, R is continuous in #,6" as well, hence

R(24():0,0') — R(z+(): 0,8

< cand )R £);0,8") — R(_(c);0,8)| <

e whenever |(6,60) — (6,0)| < d(¢) for some §(¢) small enough. In this
case, we see that the inequalities R(z;(¢):;0,0") > 0 and R(z_(£);6,0') <0

hold, hence L(0,0) € (+_(¢), 24 (c)), implying that )E(é, g — 10,0
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|z, (e) — 2_(e)] — 0 as € — 0, yielding the desired conclusion. O

We remark that elsewhere in this work, we choose p with the second
derivative vanishing outside of a neighborhood of 0. However, R” (Z(@, 0);6,0") >
0 holds with high probability uniformly over 8,60 € © when © is compact
and the class {{(6,-), 0 € O} satisfies the assumptions made. We sketch
the steps needed to show this fact; all the required tools have already been
established in the paper. First, note that in view of Lemma A.1 and the
triangle inequality, supgg.e L(6,0) — L(0,6")| = Op(n~Y2) as n,k — o

with high probability, hence

inf R"(L(6.6'):6.6) > inf  R"(L(6.6) + 6.6
nf (L(6,6);0,0) por il (L(6,6") + 2;0,0)

for a large constant D, again with high probability. Next, the relation

1
=  sup |R"(L(60,0) + 2;0,0") —ER"(L(6,0) + 2;0,0")| = op(1)
79,0 |21<D/v/n

as n, k — oo follows from an argument identical to the one used to prove

Lemma A.2 and Lemma 2. Finally,

By (\/H L,(0) - zngn— L(6.6) - z> gy <Z(9, egn— z\/ﬁ) + o)

in view of Lemma 1, where Z(0,6’) is a centered and normally distributed

random variable with variance 02(6,0"). As p"(x) > I{|x] < 1}, we see that

infg g1 |21<pyym Ep” (W) > 0, yielding the result.
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S2 Proof of Theorem 1 (main text).

2.4 Preliminaries.

Let us recall some basic facts and existing results required in the proof.
Given a metric space (T, p), the covering number N (T, p,¢) is defined as
the smallest N € N such that there exists a subset F' < T of cardinality
N with the property that for all z € T, p(z, F') < e. Let {Y(t), t € T} be
a stochastic process indexed by T. We will say that it has sub-Gaussian

increments with respect to some metric p if for all t1,t, € T and s € R,

s2p2(t1,t0)
EesYa—Yi) < o= 2

Theorem (Dudley’s entropy bound). Let {Y(t), t € T} be a centered
stochastic process with sub-Gaussian increments. Then the following in-

equality holds:

D(T)
Esup|V(£) — Y ()] < 12 f Vlog N(T, p, 2)ds,

teT
0

where D(T) is the diameter of the space T" with respect to p.

Proof. See the book by Talagrand (2005). O]

The following bound allows one to control the error E(Q, 0o) — L(0,60)

uniformly over compact subsets © < ©. Recall the adversarial contamina-
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tion framework introduced in section 1, and define

A := max (An,sup 0(9,90)> .
0c©’

Lemma A.1. Let £ = {{(0,-), 6 € ©} be a class of functions mapping S
to R, and assume that supy.e B [€(6, X) — £(6y, X) — L(6,60)]*" < oo for
some 7 € [0, 1]. Then there exist absolute constants ¢, C' > 0 and a function

o(l), 7=0,
such that for all s > 0, n

o), >0

T—0

g-(x,0) satisfying g, (z,6)
and k satisfying

S B 1
VEA, 965 VN

i (6(97)(]) - €<607X]') - L(eu 90))

E|0(0,X) — (6, X) — L(6,6) """

A%"r‘l‘nT/Q

+9<c
E o7

+ sup [gT(n, 0)
9o’

the following inequality holds with probability at least 1 — %:

sup
0o’

2(97 90) - L(ea 90)‘

A
- —IE sup
Apn geor

+A (LQ + =S sup [%(n, H)E 1406, %) = 100, X) = L{0, QO)IZHD ]

<C

% i (z(e, X;) — (60, X;) — L0, 90))

\/ﬁ k \/ﬁ 0O’ A%+Tn7/2
We will only use the bound of the lemma with 7 = 0. The proof of this
bound is similar to the argument behind Theorem 3.1 in (Minsker, 2019b);

for the readers’ convenience, we present the details in section 2.4 below.
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For the illustration purposes, assume that O = 0, whence the result above

implies that as long as

N

1
E sup — Z 100, X)) — £(6o, X;) — L(,60)| = O(1)
966’

and 0(©) < A, = 0(1),

sup
0’

3(9, 0o) — L(0, 90)‘ =0, (Nfl/Z + n—(1+7)/2A;(2+r)) .

Moreover, if O = kN and A,, = O(1), then, setting k = Nm%f, we see that

L(9,00) - L(Qﬁo)‘ = O <N_1/2 + f@éi{) .

sup
00’

Lemma A.2. Assume that Xi,..., X, are i.i.d. Let 6 € ©, and set §y :=

r(0), where r(0) is defined in Assumption 3. Then for all 0 < ¢ < o,
1k
P (50

By (X—ﬁ (L+(6',60) — L(e’,eo») '

sup
He' 0 <5

(0,60) — (9’,9@))

TL

8
< sup
An\f 6] <5

AS a consequence,
1 k
EZ ( (0, 60) — L(@’,@O))>

By (X_ﬁ (La(0'.60) - L(e',eo))) '

% S (e (6, X;) — L(8,00))

7j=1

sup
o—6]}<5

sup

8s 1
< R N, X;) — 6, L0, 0
An\/E Hg/_g”s(; /72 0 ) ( 0))
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with probability at least 1 — %, where C' > 0 is an absolute constant. More-

over, the bound still holds if p” is replaced by p”, up to the change in

constants.
The proof is given in section 2.4.

Lemma A.3. Let {A,(), 0 € ©},{B,(0), § € © < R} be sequences of
stochastic processes such that for every 6 € O, the sequences of random
variables {A,(0)},>1 and {B,(0)},>1 are stochastically bounded, and for

any € > 0,

limsup]P’( sup |An(0) — A, (6p)] = 8) —0asd — 0,

n—w 10—6o <o

1imsupIP’< sup |Bn(0) — B,(6p)| = 5) — 0as d — 0.
|

- 10—0o]1<5

Then

lim sup]P’( sup |A,(0)B,(0) — A, (00)Bn(00)| = 6) —0asd — 0.

n—o 10—60] <6

Moreover, if there exists ¢ > 0 such that

liminf P(|B,(6y)| = ¢) = 1,

n—0o0

then the following also holds:

limsup P ( sup

n—o 10—60 <5

- >c| ->0asd— 0.
Bn(e) Bn(QO) )
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Proof. The result follows in a straightforward manner from the triangle

inequality hence the details are omitted. O]

Let us commence the proof of the theorem. To simplify and clarify the
notation, we will omit subscript 7 in most cases and simply write “k,n”
instead of “kj,n;” to denote the increasing sequences of the number of

subgroups and their cardinalities. For every €' € O, define

0(0') := argmax L(6, ) = argmin L (0,0
0O (JSC]

Above, we assumed that the maximum is attained so that 5(9’ ) is well

~

defined; however, the argument also holds with 6(6’) replaced by a near-
maximizer. We will set 57(11,)6 = é\n,k and 57(1211 = 5(57(11,1) Observe that

L (é\(l) @(2)> <L (00,5((90)>, hence whenever Hggi — 0| <R, j=1,2,

n,k? “nk
L) — L(O2) = LO) — L)) + L(8Y),6%)

<L (90, 5(90)> + sup )2(91, 02) — L(6:, 92)‘

[6;—60]|<R,j=1,2

< L(6y) — L(@(Qo)) + 2 sup ‘2(91, 02) — L(1, 92)‘

16;—60|<R,j=1,2

<2 sup ‘2(91, 6s) — L(64, 92)‘ )

10;—00|<R.j=1,2

~

where we used the fact that L(6y) — L(6(6p)) < 0 in the last step. On the

other hand, for any € > 0,

inf  sup (L(6y) — L(0)) > L(6y) + 0 — L(6p) =6

[61—00]=¢ o,
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where 0 := d(¢) > 0 exists in view of Assumption 2. Therefore,

(Hé(” — G| = e) < IP’( sup ‘E(el, 6,) — L(6, eg‘ > 5/2)

16;—b0[|<R,j=1,2

+ P(Ha?;{; _ 90H > Ror H@(f; _ QOH > R).
It follows from Lemma A.1 that

sup ‘E(el, 0,) — L(61, 92)’ — 0 in probability
16, ~60] <R.j=1.2

O(k,n)

as long as limsupy, , o, =%

< c as n, k — . Indeed, to verify this, it

suffices to show that

limsup E sup
N—ao  [6;=bo|<R,j=1,2

\/LZ (€(0r, X;) — £(62, X;) — L(61,62))| < 0

which follows from the triangle inequality and the relation

limsupE sup
N—o ”01 790H<R

i 001, X;) — (00, X;) — L(61,00))| < 0. (2.1)

To establish the latter, we use a well-known argument based on symmetriza-
tion inequality and Dudley’s entropy integral bound (see section 2.4). Let
€1,...,6n be i.i.d. random signs, independent of the data Xi,..., Xx.
Then symmetrization inequality (van der Vaart and Wellner, 1996) yields

that

E sup

sy <R\/LN Z (£(6, X;) — €(60, X;) — L(6,6p))
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< 2E

1
sup €j Oo, .
0c6:0—00|<rR VIV Z ’ ( ° ))

Conditionally on Xi, ..., Xy, the process

|
(0,-) = —= ) & (L0, X;) — £(6o, X;))
7N &
has sub-Gaussian increments with respect to the semi-metric d% (61, 6s) :=
v ZJ L (061, X5) — £(0s, Xj))z. It follows from compactness of the set B(6y, R) =
{0 : |0 — 0y < R} and Assumption 3 that there exist 6, ..., 0y ) such

that UMY B(6;,7(0;)) 2 B(6, R) and
00, z) = £(0", )] < V(a;r(6;))]0" — 6"

for all #',60" € B(0;,7(0;)). To cover B(6y, R) by the balls of dy-radius 7,
it suffices to cover each of the N(R) balls B(6;,7(6;)). It is easy to see
d

balls of radius 7.

that the latter requires at most <6T(ej)HV( 5 ))”LQ(PN)>

Therefore,
N(R) d
6r(0;)|V(;7(0;
log"? N(B(6y, R), dy, 7) < log"/? (Z [( OVt J))’L“PN’) v 1])
T
=1
Note that for any @1, ..., 2, > 1, 37 x5 < m[[j_, x;, or log (ZJ 1xj> <

logm + 377 logx;, so that

N(R) _ d
log!” (Z [(m@-)v<-,:<ej>>||L2<pN>> y 1])
0

N(R)
, (0
<log"? N(B) + 3 Vilog!? (67"( VL) '“(P“) ,
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where log, (z) := max(logx,0). Moreover, the diameter Dy of the set

B(by, R) is at most 22‘;\;(?)7’(0‘7‘)“])(‘; (0;))|| La(Py)- Therefore,

Dy

J log'? N(B(bo, R),dn, T)dT

0
N(R)

<C (DN log"? N(R) + Vd Z 0,)|V (-7 (0 '))|L2(PN)L logl/Q(l/T)dT>

and

E sup
0€O:|6—6o| <R

e
Qﬁ)

00, X;) —5(907Xj))|

N(R)
< Clog"*(N(R)) D r(0)V(:7(0)) ey < 0.
j=1
It remains to establish that IP’( - QOH > R or @(12,1 — HOH > R) — 0. To

this end, notice that by the definition of t9n .

< L(6) - L (é(eo)) + sup ‘2(90, 8) — L(6o, )

- L 0=bol<R

on the event {H§(90) — G| < R}. It has already been established that

sup
10— <R

L(66,0) — L(60, 9)’ 0 in probability.
To show that IP’(H@(@O) — ol > R) — 0 for R large enough and as n, k — o0,

recall that

[0—60|=R 1 “
j=1

B(n,R,t)=IP’< inf lie(e,xj)<L(90)+t>
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and that limg_, limsup,,_,., B(n, R,t) = 0 for some ¢t > 0 in view of As-
sumption 4. As moreover %22;1 0(60, X;) — L(6p) in probability, one can

choose Ry and ng such that

- 1 &
B(n,R,t) = (9 lg;ﬁ>Rn2”X ZZ:: (60, X <t/2>

for all n = ng(y) and R = Ry(y) for any v > 0. As

L(6,6y) = argmlnz <\f (L;(6) — L;(6) — z)) ,

=R T

it solves the equation Z] P (*f(f/ (0) — L;(6o) — E(G,Go))> = 0. As-
sumption 1 implies that p/(x) = ||p/||e for x = 2. Therefore, 2(0,90) <t/4
only if L;(0)— L;(6y) < t/4+2§—% for j € J such that |J| = k/2. To see this,
suppose that there exists a subset J' < {1,...,k} of cardinality |J'| > k/2

such that L;(6) — L;(6y) = t/4 + 222 for j € J' while L(6,6,) < t/4. In

I
turn, it implies that L;(0) — L;(6) > 27, j e J', whence
k — ~
27 ( ~ L;(00) - L. eo»)
> Slole+ 30 (200 - Lo - 20.0)) >0
JgJ’

leading to a contradiction. Therefore,

[6—60|=R

IP’( inf E(9,90)<t/4)
<P(3Jc{1,... .k}, |[J|=k/2: inf E-(e)—i<(90)<t/4+2ﬁ jeld).
’ lo—0o=R " ’ NG
(2.2)
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Let &€ be the event

. _ A,
= {ajg (Lo k112 /20 inf L500) = Li6) < t/4+2 2, jeJ}.

Since at most O out of k blocks of data may contain outliers, for £ to hold
there must be a set of indices J' among the contamination-free blocks of
data such that the cardinality of J’ satisfies |J'| = k/2 — O and such that

for all j € J',

I 7 A
inf  L;(0) — L;(6 t/4 4 920
0—b0]> R i(0) — L;j(6o) < t/4+ NG

Probability of the latter is bounded by, in view of the union bound, by

([kl;if)@) <B’(n, R, t))lk/zj—o < (lk2l-0 (B(n, R t>>[k/21_@

whenever 23—% < t/2 and where we used the inequality (') < (M e/l)!

together with the fact that % < ¢ for a sufficiently small absolute con-

stant ¢ > 0 and n, k large enough. Here, C' > [(:/;J(z)é is another absolute

constant whose value depends on c¢. Moreover, if n > n(0.25/C) and
R > Ry(0.25/C), we deduce that P(£) < 0.25¥(1/2-9-1 _, (0 as k — oo since
c is chosen to be small.
As 2(90, 0p) = 0 a.s., preceding discussion implies that IP’(H@(@O) — 6| < R) —

1 as n,k, R — co. We have thus shown that

LAY 8®)) — 0 in probability. (2.3)

n,k’ V' n,k
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On the other hand, by the definition of ) it holds that E(éfj,l, @(12,1) >

n,k’

L(B).60). Now, assume that [0\) — 6y| > R while L(8\),6) < L(6p) +
t/2—L(0y) = t/2. Arguing as before, we see that there exists J' < {1, ..., k}
such that [J'| > k/2 and L;(0\)) — L;(6) < L(6o) + t/2 — L(6o) + 252 for

j € J', which implies the inequalities

, - A R
HGJHI}]ﬁ;R LJ(Q) < L(@Q) + t/2 + 2\/_ﬁ + (LJ(G()) — L(e())) , ] € J.

Clearly, P(|(L;(60) — L(6p))| = t/4) < 15 Var (€(6,, X)), therefore, for n

and R large enough,

. A,
P(9_1£f>RLj(e) <L) +1/2+2 2+ (L;(60) — L(@o))) <0.01

for any j. Reasoning as in (2.2), we see that

T 1
P(L(@).

6o) < t/2 and [ — 6| > R) S 0as k,n — o,
We deduce that on the one hand,

P(L@),00) = t/2( V18 — 6ol > R) — P81, — 6ol > R).

n,

In view of (2.3), we see that on the other hand,
P(L@). 00) = t/2( V184 — 00l > R) < (L)), 00) = 1/2) =0,

implying that IP’(H@S,)C — 0o > R) — 0 for R large enough as n, k — .
Finally, assume that H@f,)g — 6|l > R and that E(éﬁ}}c, é\ff,)ﬂ) > L(g(l,)g) -

n,

L(6y) — t/2. Repeating the reasoning behind (2.2), we see that the latter
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implies that there exists J' < {1,..., k} such that |J'| > k/2 and E](é:(j,)g) -
Ej(gf,)f) > L(@SI)‘:) - (L(@o) +t/2 + 23—%) for j € J', yielding that on the

event {H@S,)ﬁ — 6] < R},

. - A, = 1) ~1)
oint Ls(0) < L(00) + /24222 (Lj(e )y L(ank)>

A _
< LO) +t/2+2—= + su L0 — L6
B0 + /24222 swp  |L(#) ~ L)

for j € J'. We have shown before that ]P’(Hg(nl,)C — 0| > R) — 0 for R large
enough as n,k — 0. As Esupjy_g,<r |L;j(0') — L(¢")| — 0 for any R > 0
as n — oo (indeed, this follows from (2.1) and the triangle inequality), for

n and R large enough, the argument similar to (2.2) implies that

P( sup L(8).0) > L(0})) — L(6p) —t/2 | — 0 as k — oo,
10—6oll>R m

therefore P(Hg( — 6] > RN L( o 55?,1) < L6 (L(6y) + t/2)> —

TL

P(H@ﬁ — 0| > R). On the other hand,

P(L(00).0%) < L@ - (L60) + 1/2))

<P(L (0. 00) < L) — (L) +1/2)) < P(J0) 6ol > )

+P (L(é“{) — L(6y) — sup

n,
[6—60|<R

=P| sup
[0—60| <R

for R large enough as n,k — oo, therefore completing the proof of consis-

£(6,00) — (L(8) — L(06))| < L)) — (L(0o) + t/2>>

L(6,60) — (L(9) — L(60))| = t/2> B (A1) 0ol > R) =0

tency.
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S3 Proof of Lemma 1 (main text).

We will apply the standard Lindeberg’s replacement method (see for ex-

ample O’Donnell, 2014, chapter 11). For 1 < j < n + 1, define Tj :=

F( I Y Zj>. Then

EF (2 §j> ~EF (Z Zj>‘ =[BTyt — ETi| < )[BTy — BT}
j=1 j=1

j=1

Moreover, Taylor’s expansion formula gives that there exists (random) u €

[0, 1] such that

Ty = (Za > 7 )+F'(Z& > 7 )fj

i=j+1 i=7+1
52
F// ;
(e 52)%
j—1 2
+ (F (Z&—F Z Zj+ugj> ad (Zgz Z )) 57
=1 1=j+1 1=7+1
Similarly,
(2@ 3 7 )w (zgz 3 7 ) :
i=j+1 i=j+1
72
F” <Z gz Z ) 7j
i=7+1
Jj—1 Z2
+ (F (Zgﬁ Z Zj+,/zj> F" (Zg, Z J>) 7ﬂ
i=1 i=j+1 i=j+1

Lipschitz continuity and boundedness of F” imply that

[F"(z) = F"(y)| < C(F) min(1, |z — y])
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with C'(F') = max (2||F||, L(F")). Therefore,

[ET; 11 — ET;]

j—1 n 7j—1 n 2
< |E Jad z‘ ) N R n ; ) S5
( (Zé + D Zﬁu@) F ( G+ ZJ>> 5

=1 1=j+1 =1 1=j+1
j—1 n 7—1 n Z2
" ) ) 72 I ) ) _J
+E<F <Z£Z+.Z ZJ+MZ]> F ( §,+'Z ZJ>> 5

=1 i=j+1 =1 i=j+1

and the first claim follows. To establish the second inequality, it suffices to
observe that for all 7, E [5]2 min(|&;], 1)] = E|&PI{|&] < 1} + EI&1PI{¢] >
1}. Clearly, [&]* < [&]*'™ on the event {|§;| < 1}, whereas |§;]* < |§[*T7

on the event {|§;| > 1}.

S4 Proof of Lemma 2 (main text).

Symmetrization inequality yields that

| P
Eefe&?@' (\/_ﬁ ]Zl (f¢91(Xj) - f92<Xj> - P(f91 - f%))‘)
< C(p)E efgigel (\/Lﬁ JZZ;EJ' (fo, (X5) — fo, (X))

= C(p)ExE. sup (\/Lﬁ

Z €j <f91<Xj> - f@z(X]))‘> .

91,926@’

As the process f — \/%72?:1 € (fo,(X;) — fo,(X;)) is sub-Gaussian con-

ditionally on Xj,...,X,, its (conditional) L,-norms are equivalent to L;
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norm. Hence, Dudley’s entropy bound (see Theorem 2.2.4 in van der Vaart

)p

f91 f92( ))

and Wellner (1996)) implies that

Z (fo. (X5) = fo.(X;))

E. sup | —
01,020’ (\f

o (e

91 926@

>p
Dn(@)/) p
< C(p) J log"? N(2, T, dy)dz | |

0

where

d;(for fo,) = %Z (for (X5) = fan(X))?,

= {(fo(X1), ..., fo(Xn)), 0 O} = R"

and D, (©') is the diameter of © with respect to the distance d,(-,-). As
fo(-) is Lipschitz in 6, we have that d7(fo,, fo,) < 3 25—y M*(X;)[61 — 62,

implying that D, (0") < | M| r,,)diam(©’, || - ||) and

diam(©, | - ) | M d
10gN<z,den><1ogN<z/|ML2<nn>,@',')<1og(o tam(6',| Z”> ‘Lg(ﬂw).

Therefore,

Dn(@/) p
( J log'? N(z,T,, dn)dz> < CdP? (diam (O, | - [) - |M | o))"
0

and

ExE. sup
91,926@'

Z% (for (X) = fo (X ))D < Cd"Pdiam® (&, |- NE[ M, i, -
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Proof of the second bound follows from the triangle inequality

) <l

+ Esup <‘\% Zn: (fo(X5) — fo,(X;) — P(fo — feo))|> ),

p

i —= (fo(X;) — Pfo,) i (fo,(X;) = Pfa,)

0O’

and Rosenthal’s inequality (Ibragimov and Sharakhmetov, 2001) applied to

the term B |4 37 (o, (X;) - Pl

S5 Proof of Lemma 3 (main text).

First, observe that in view of Assumption 3,

o?(8) < sup E[(6,X) — £(6y, X)|> <EV*X;r(6)) 6>
1060 )<

Next, define

3

Ci(2:0) — % W <£ (L,;(0,00) — L(6,60) - z))

3

so that Gi(L(6,00) — L(0,6,): 6) = 0, and let
Gr(z;0) :=Ep’ (\/—ﬁ (L1(6,60) — L(6, 6p) — z))

In the definition of G (z;0), we also assumed that L (6, ) is based on the

contamination-free sample. Next, consider the stochastic process

Ri(6) = Gi(0;6) + 0.Gr(2:0)]_, (i(@, 0y) — L (6, 90)) .
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We claim that for any 6 € ©,

Ry (6" 5
m&sz(z;H')pzo (\f +Vkd +W) (2.4)

uniformly over ¢ in the neighborhood of 6. Taking this claim for granted

for now, we see that

. G (0:6) Fi(0)
VIV (L(6.00) = L(6.60)) = ~VN -+ VN

and in particular it follows from the claim above that the weak limits of
VN(L(9,6,) — L(0,6,)) and

Gu0:0) A, i (X (Li(6.60) — L(6,6)))

_JN -
0G0 VR By (42 (Lu(6.00) — L(0,0) )

coincide whenever ¢ is sufficiently small (note that we can change the order
of differentiation and expectation in the denominator as p” is bounded). It
remains to establish the relation (2.4) that implies the bound for supjy_g,i<s |Rnx(0)]

in the statement of the lemma. To this end, define
en(0) := L(6. 60) — L(6.6))
so that Gj(ex(0):0) = 0. Recall the definition of Ry () and observe that

the following identity is immediate via Taylor’s expansion:

Ri(6) = Gi (B(6):0) +0.Gi(=:0)|_,2w(8) — (G (x(6);0) — Gal0:6))
=0

For any # € © and j = 1,..., k, there exists 7; = 7;(f) € [0, 1] such that



o (X—ﬁ (L;(6.80) — L(8,60) — av(e))) =/ (X—ﬁ (L;(6,00) = L6, 90>))
- \A/_fp” <X_f (I’J (0,00) — L(0, 90))) -en(9)
+ %p”' (X—f (L;(0,600) — L(6,60) — Tj@N(Q))) - (en(0))”.

Therefore,

k
G @x(0):6)-Gul0:0) = 5 D2 (4 (Lo(0,t0) — L(0.00) ) 20

L <X_ﬁ (L,(60,600) — L(e,eo>)) ) (@ (0))?
and
w0 - 30331 (o (3 (0.0 - o)

(2.5)
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It follows from Lemma A.1 (with O = 0) and Lemma 2 (see the main paper)

that

R ) 52 (@) )
sup len(@)| <C(d,0y) | =5+ —+—=
H@—HOIH)<6| w()] < O(d. f) (vN vn o kyn

with probability at least 1 —s~! whenever s < VEk A v/n. Moreover, Lemma

A.2 combined with Lemma 2 yields that

sup
ENE

%Z ( (X7 (.00 - 206.60))
_Ey (X_ﬁ (L;(6.0) — L (0, Ho>)) ) < Cld o) (%5 ! %>

with probability at least 1 — s~! (here, we also used the fact that at most

O out of k blocks may contain outliers). Therefore, the first term R'(f) in

(2.5) satisfies

52 53 O O
sup |R'(9)] < C(d,b) | —s +—3+62—+—>
H9—9oﬁ<6| )l (d,6) (k Vk E k2

on event £ of probability at least 1 — % Observe that

sup
l0—60||<6

%i( ( (L,(0,00) — L(e,eo))>

_Ep" (\A/_f (L;(0,60) — L(Q,Qo))) )

1

< C(d, 0,) (%s + %)

with probability at least 1 — s™", again by Lemma A.2, and

< C§?

e (2 (L6000~ L0.00) )
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by Lemma 1. Therefore, the term R”(f) admits an upper bound

03
sup |R"(9)] < C(d,b) ((53 + —)

10—60]<6 k3
which holds with probability at least 1 — s~! (here, we again used the
inequality s < v/k) to simplify the expression). Finally, as p” is Lipschitz

continuous by assumption, the third term R”(f) can be estimated via

u R/// n . 3 C(d, 90) ( 3 03)
Su 0) <C d,é’ — len (0 < —"" |5
|\0490H<5| ( )| ( 0) A% | N( )| \/ﬁ + _k,g

on event £ (note that this upper bound is smaller than the upper bound
for supjg_g,<s ["(6)| by the multiplicative factor of y/n). Combining the
estimates above and excluding all the higher order terms, it is easy to
conclude that

Ry (0)

\/N su -_—
P 510G (2:0)].—0

[6—00||<o

52 0?
< C(d, 90) (52\/_E + \/%53 + W)

with probability at least 1 — %

S6 Proof of Lemma A.1.

Define

e = L 3 (va OB 00 )

and recall that the contaminated sample X,..., Xy contains O outliers;

let I < {1,...,N} denote the index set of the outliers. Moreover, let
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X1,..., Xy be an i.i.d. sample from P such that )~(j = X, for j ¢ I, and
let G(2;6) be a version of @k(z, 6) based on the uncontaminated sample.
Clearly, |Gy (z;0) — Gy(z;0)| < 2||pHOO% almost surely, for all z € R.
Suppose that z1, zo € R are such that on an event of probability close to
1, @k(zl; 0) > 0 and ék(ZQ; 0) < 0 for all § € © simultaneously. Since G, is
non-increasing in z, it is easy to see that on this event, L(6, 6y) — L(6, 6,) €

(21, 29) for all 0 € ©, implying that

~

Sué) L(0,6y) — L(0,00)| < max(|z1], |22]). (2.6)
e /

Our goal is to find 21, 29 satisfying conditions above and such that |z|, |22]
are as small as possible. Let W (#) stand for a centered normally distributed

random variable with variance o2(f, 6y), and observe that

~

Gk(zﬁ) = A() + A1 + AQ + Ag,
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With some abuse of notation, we assume that A;(0) and Ay () are evaluated
based on the contamination-free sample X7, ..., Xy. Next, suppose that

€0, €1, €2 are positive and such that

Qlen(g’ AO(Q) > —£&p, elég/ Al(g) > —&

with high probability and infseer A2(0) > —e9. Then z; satisfying

nf Ep/ (W(@) — \/ﬁzl> S Egtert+ e

0c®’ An \/E

will conform to our requirements. Since

£, (M) ey (W(9>) oy (W(e)) Az

A, A, A, JAVS
-0
for small z;, a natural choice is z; ~ An foteites  This argument
1 1 infycgr Ep”(—vz(ne) ) Vnk g

is made precise in (Minsker, 2019b, Lemma 4.3) which shows that the choice

~

gg+ep+e9 A

0.09 vnk

21 =

is sufficient whenever €;, j = 0,1,2 are not too large (specifically, when
% < 0.045 - this is precisely the main condition needed for the bound
of lemma to hold). It remains to provide the values for ¢;, j = 0,1,2. We
have already shown above that ey can be chosen as ¢y = 2| pHoo%. To find

a feasible value of 1, we will apply Markov’s inequality stating that with

probability at least 1 — 1/s,
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1 Z 0 <\A/—f (L;(0) — L;(6o) — L(6, ) — Z))

oo weor | VE =
Ry (X_ﬁ (L1(6) — Lu(6) — L(6,60) — z)) ' |

The expected supremum can be estimated in a standard way using the
symmetrization, contraction and desymmetrization inequalities (e.g. see

the proof of Lemma A.2), yielding that

Ly <Vi (L;(0) — L;(0) — L(0,05) — z))

—E/ (A_ (L1(0) — L1(60) — L(6, 6p) — z)) ‘

8L(p') 1|
u

(€<Q7 X]) - £<907 XJ) - L(ev 90))

j=1
It remains to obtain an appropriate value for €5. Note that for any bounded
non-negative function g : R — R, and any signed measure @),

1£lloo
Q(x: g(x)=t)dt

| g(x)d@‘ -

< : = .
) 9]le0 max|Q (z - g(w) = 1)

Moreover, if g is monotone, the sets {z : g(x) >t} and {x : g(z) < t} are
half-intervals. Note that p’ = max(p/,0) —max(—p’,0) is a difference of two

non-negative monotone functions. Therefore,

Jor (s oo

<l (maxl@ (o (o) = 0]+ maxQ e o) <))
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Take @ to be the difference of the distributions of v/n (L1(8) — L1 (6p) — L(6, 6y))

and W (#), denoted @é"’k) and ®y respectively, so that

e )

< 2Vl sup 2" (1) — @o(1).
te

A well-known result by Feller (1968) states that sup,.g

(1) = @o(t)] <

6ge(n), where

L |00, X) = 060, X) — L(6,60)\
go(n) := \/HE[( (0. 00) )
i 00, X) — (00, X) — L(0,60,)
e O] |

It is easy to see that gg(n) — 0 as n — oo if Var(4(0, X)) < oo, and distribu-

T

HO0.X) (60, X)~L(6:00) |, —7/2

o (6,60)

tions with finite variance, and moreover gg(n) < CE ‘

247

if | | 482000 X)L (8,60 < oo for some 7 € (0, 1]. Therefore, the function

0(6,00)

g-(n,0) in the statement of the lemma can be chosen as g.(n,0) = gg(n)
when 7 = 0 and g¢.(n,0) = C when 7 > 0. We conclude that the choice
g9 = 12Vk| 0|0 SUPpeer go(n) satisfies the desired requirements.

It remains to recall the bound (2.6) and that z; = —=teite The

A
0.09  Vuk'

matching bound for z, is obtained in an identical fashion.

Remark 2. The bound for g5 that we established above is slightly weaker

than the one used in the statement of the lemma; an improved version can
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be obtained using the non-uniform version of the Berry-Esseen bound with
additional effort, and we refer the reader to (Minsker, 2019b, Lemma 4.2)

for the technical details.

S7 Proof of Lemma A.2.

Let €q,...,ex beii.d. Rademacher random variables independent of X7, ..., Xy,
and note that by symmetrization and contraction inequalities for the Rademacher

sums (Ledoux and Talagrand, 1991),

1 é " \/ﬁ T / /
Euofs_%ﬁq E;p <An (067, 60) = L@ ’00))>
_Ey (A£ (Li(6, 60) - wao») '
1 - 1 \/ﬁ T (p / /!
< QEHO/S%IH)QE Zlaj (p (A_n (Lj(9 ,00) — L(0 790))> - P (0))'
AL(p") PRV PR
< Ak Euefs_%ﬁ@ ;%\/E (L8, 60) = L(F', 0)

where we used the fact that ¢(z) := p” (X—f:ﬁ) — p”(0) is Lipschitz contin-
uous (in fact, Assumption 1 implies that the Lipschitz constant is equal to
1) and satisfies ¢(0) = 0. Now, desymmetrization inequality (Lemma 2.3.6

in van der Vaart and Wellner, 1996) implies that

sup Za‘] (L;(6',60) — L(¢',60))

H9 —0|<6 |;




Robust Risk Minimizers

N
sup 00, X 000, X;) — L(0',60))|,
\ﬁ lor—6] <6 ;

J

hence the claim follows.

"

The fact that p” can be replaced by p” follows along the same lines as

" H

p" is Lipschitz continuous and |p”|, < o by Assumption 1.

S8 Numerical experiment: logistic regression.

As a simple proof of concept, we implemented the gradient descent-ascent
algorithm mentioned in section 2.1 for the problem of logistic regression;
for a detailed discussion of closely related methods, we refer the reader
o (Lecué and Lerasle, 2020; Mathieu and Minsker, 2021). In the present
setup, the dataset consists of pairs (Z;,Y;) € R? x {£1}, where the marginal
distribution of the labels is uniform on {£1}, while the conditional distri-
butions of Z;’s are normal, that is, Law (Z; | Y1 = 1) = N ((—1, -1),41,),
Law (Z|Y = —1) ~ N ((1,1),4L;), and P(Y =1) = P(Y = —-1) = 1/2;
here, I stands for the 2 x 2 identity matrix. The loss function is defined
as 0(0,2,Y) = log (1+eY®%) 6§ c R® The dataset includes 40 out-
liers for which ¥; = 1 and Z ~ N ((25,10),0.255). The sample of 500

“informative” observations was generated, along with 40 outliers, and we

compared the performance of robust method proposed in this paper with



University of Southern California

the standard logistic regression, as implemented in the Scikit-learn package
(Pedregosa et al., 2011), that is known to be sensitive to outliers. Results
of the experiment are presented in figure 1 and illustrate the robustness of

proposed approach.

Standard Logistic Regression Robust Logistic Regression

10.0 10.0

7.5
5.0
25
0.0
—2.5

-5.0

Figure 1: Scatter plot of N = 540 samples from the training dataset (500 informative
observations and 40 outliers). The color of the points correspond to their labels and the
background color — to the predicted labels (gray region corresponds to yellow labels and

green — to purple labels).
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