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Abstract: This paper is devoted to the estimators of the mean that provide strong non-asymptotic
guarantees under minimal assumptions on the underlying distribution. The main ideas behind
proposed techniques are based on bridging the notions of symmetry and robustness. We show that
existing methods, such as median-of-means and Catoni’s estimators, can often be viewed as special
cases of our construction. The main contribution of the paper is the proof of uniform bounds for
the deviations of the stochastic process defined by proposed estimators. Moreover, we extend our
results to the case of adversarial contamination where a constant fraction of the observations is
arbitrarily corrupted. Finally, we apply our methods to the problem of robust multivariate mean
estimation and show that obtained inequalities achieve optimal dependence on the proportion of
corrupted samples.

Keywords and phrases: robust estimation, median-of-means estimator, concentration inequali-
ties, adversarial contamination.

1. Introduction

Let (S,S) be the measurable space, and X ∈ S be a random variable with distribution P . Moreover,
suppose that X1, . . . , XN are i.i.d. copies of X . Assume that F is a class of measurable functions from
S to R. Many problems in mathematical statistics and statistical learning theory require simultaneously
estimating Pf := Ef(X) for all f ∈ F . For example, in the maximum likelihood estimation framework,
F = {log pθ(·), θ ∈ Θ} is a family of probability density functions with respect to a σ-finite measure
µ, and dP

dµ = pθ∗ for θ∗ ∈ Θ. The most common way to estimate Ef(X) is via the empirical mean

PNf := 1
N

∑N
j=1 f(Xj). Deviations of the resulting empirical process F ∋ f 7→

√
N(PN − P )f have been

extensively studied, however, sharp estimates are known only under rather restrictive conditions, such as
the case when functions in F are uniformly bounded, or when the envelope F (x) := supf∈F |f(x)| of the
class F possesses finite exponential moments [34, 20, 3, 12, 1].

Here, we consider the situation when the random variables {f(X), f ∈ F} indexed by F are allowed
to be heavy-tailed, meaning that they possess finite moments of low order only (in the context of this
paper, “low order” will usually mean the range between 2 and 3). In this case, the tail probabilities

P
(∣∣∣ 1

N

∑N
j=1 f(Xj)− Ef(X)

∣∣∣ ≥ t
)
decay polynomially, making many existing techniques unapplicable.

Our approach to simultaneous mean estimation is based on replacing the sample mean by a different
estimator of Ef(X) that is “robust” to heavy tails and admits tight concentration under minimal moment
assumptions. Well known examples of such estimators include the median-of-means (MOM) estimator
[31, 2, 24] and Catoni’s estimator [6]. These two techniques rely on different principles for controlling
the bias: while Catoni’s estimator is (informally speaking) based on delicate “truncation,” the MOM
estimator exploits the fact that both the median and the mean of a symmetric distribution coincide
with the center of symmetry [30]. Construction proposed in this work shows that these principles can be
unified. We suggest a family of estimators that can be viewed as a “bridge” between Catoni’s estimator
and the MOM technique, and prove uniform bounds for the deviations of the resulting stochastic process.
We also address the more challenging framework of adversarial contamination and show that estimators
of the mean of a random vector obtained using our methods admit optimal performance bounds in this
case.
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1.1. Notation and organization of the paper.

Absolute positive constants will be denoted c, C, c1, etc., and may take different values in different parts
of the paper. For a function h : R 7→ R, define

argmin
z∈R

h(z) := {z ∈ R : h(z) ≤ h(x) for all x ∈ R},

and ‖h‖∞ := ess sup{|h(x)| : x ∈ R}. For a Lipschitz continuous function h, L(h) will denote its Lipschitz
constant. For f ∈ F , denote σ2(f) = Var(f(X)) and σ2(F) = supf∈F σ2(f). Everywhere below, Φ(·)
stands for the cumulative distribution function of the standard normal random variable, andW (f) denotes
a random variable with distributionN

(
0, σ2(f)

)
. Additional notation and auxiliary results are introduced

as necessary.
Material of the paper is organized as follows: section 2 explains the main ideas behind construction

of the estimators studied in the paper. The main results are stated in section 2.1, followed by discussion
and comparison to the literature on the topic in section 2.2. Section 3 discuss extensions of the results in
the framework of adversarial contamination. Finally, section 3.1 explores implications of the bounds for
the problem of multivariate mean estimation. Finally, the proofs are presented in section 4.

2. Construction of robust estimators of the mean.

Proposed estimators are based on the following (informally stated) principles:

(a) If the distribution Q is symmetric, then its center of symmetry θ(Q) can be approximated by a robust
estimator, such as Huber’s robust M-estimator of location [18] defined via

θ̂ := argmin
z∈R

∑N
j=1 ρ (z − Yj),

where Y1, . . . , YN is an i.i.d. sample from Q and ρ is a convex, even function with bounded derivative.
(b) In order to construct a robust estimator of a parameter θ⋄(Q) of (not necessarily symmetric) distri-

bution Q based on an i.i.d. sample Y1, . . . , YN , create an auxillary sample ξ1, . . . , ξM such that

(i) it is governed by an approximately symmetric distribution;

(ii) the center of symmetry of this distribution is close to θ̃(P ).

According to (a), we then define an estimator of θ⋄(Q) via

θ̂⋄ := argmin
z∈R

M∑

j=1

ρ (z − ξj) .

The main focus of this work is the case when Q is the distribution of f(X) and θ⋄(Q) corresponds
to the mean Ef(X). To construct a “new sample” ξ1, . . . , ξM governed by an approximately symmetric
distribution centered at Ef(X), we rely on the fact that, under mild assumptions, the sample mean is
asymptotically normal, hence asymptotically symmetric. Let k be an integer, and assume that G1, . . . , Gk

are subsets of the index set {1, . . . , N} of cardinality |Gj | = n := ⌊N/k⌋ each, where the partition method
is independent of the data X1, . . . , XN . In general, we do not require the subsets to be disjoint, and
different possibilities will be discussed in the following sections. Let

θ̄j(f) =
1

n

∑

i∈Gj

f(Xi)

be the empirical mean evaluated over the subsample indexed by Gj . Conditions on the suitable “loss
function” ρ are summarized in the following assumption.

Assumption 1. Suppose that ρ : R 7→ R is a convex, even, continuously differentiable function such that

(i) ρ′(z) = z for |z| ≤ 1 and ρ′(z) = const for z ≥ 2.
(ii) z − ρ′(z) is nondecreasing;
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For instance, Huber’s loss [18]

ρ(z) =
z2

2
I{|z| ≤ 1}+ (|z| − 1/2) I{|z| > 1}

is an example of a function satisfying Assumption 1.

Remark 2.1. Assumption 1 implies that ρ′(2)− 2 ≤ ρ′(1)− 1 = 0, hence ‖ρ′‖∞ ≤ 2. Moreover, for any
x > y, ρ′(x) − ρ′(y) = y − ρ′(y) − (x − ρ′(x)) + x − y ≤ x − y, hence ρ′ is Lipschitz continuous with
Lipschitz constant L(ρ′) = 1.

Note that the loss ρ(x) = |x| that leads to a “classical” median-of-means estimator does not satisfy
assumption 1, in particular, ρ′ is not Lipschitz continuous. Lipschitz continuity of ρ′ turns out to be
crucial for the derivation of our uniform bounds, however, for finite classes F , the proofs are valid for
broader class of losses that includes ρ(x) = |x|; see [30] for more details. The principles and assumptions
stated above lead to the following definition of robust mean estimators: given ∆ > 0, set

θ̂(k)(f) := argmin
z∈R

1√
N

k∑

j=1

ρ

(√
n
θ̄j(f)− z

∆

)
. (2.1)

Parameter ∆, when expressed on a “natural scale” of the problem defined by σ(F), can be interpreted as
the truncation level. It will be shown that different combinations of the subgroup size n and “truncation
level” ∆ may lead to equally good bounds: in particular, when n = 1 and ∆ ∝ σ(F)

√
N , we will recover

Catoni’s estimator, while the case of large n (e.g., n ≃
√
N) and ∆ ∝ σ(F) leads to the MOM-type

estimator.

2.1. Main results.

The collection of random variables
{
θ̂(k)(f)− Pf, f ∈ F

}
defines a stochastic process that is a natural

analogue of the empirical process in the framework of heavy-tailed data. Our main goal is to characterize
the size of the supremum of the process, namely 1

sup
f∈F

∣∣∣θ̂(k)(f)− Pf
∣∣∣ .

In particular, we will be interested in estimating the deviation probabilities P
(
supf∈F

∣∣∣θ̂(k)(f)− Pf
∣∣∣ ≥ t

)

under minimal assumptions on the process {f(X), f ∈ F}. As a corollary of our general bounds, we will
obtain new results for the problem of mean estimation in R

d. Everywhere below, it will be assumed that
σ(F) < ∞.

As a first step, we introduce the main quantities appearing in our bounds. Given f ∈ F such that
σ(f) > 0, n ∈ N and t > 0, define

gf (t, n) := C

(
E(f(X)− Ef(X))2 I

{
|f(X)−Ef(X)|

σ(f)
√
n

> 1 +
∣∣∣ t
σ(f)

∣∣∣
}

σ2(f)
(
1 +

∣∣∣ t
σ(f)

∣∣∣
)2

+
1√
n

E|f(X)− Ef(X)|3 I
{

|f(X)−Ef(X)|
σ(f)

√
n

≤ 1 +
∣∣∣ t
σ(f)

∣∣∣
}

σ3(f)
(
1 +

∣∣∣ t
σ(f)

∣∣∣
)3

)
.

It follows from the results of L. Chen and Q.-M. Shao [Theorem 2.2 in 8] that gf (t, n) controls the rate
of convergence in the central limit theorem, namely

∣∣∣∣∣Pr
(∑n

j=1 (f(Xj)− Pf)

σ(f)
√
n

≤ t

)
− Φ(t)

∣∣∣∣∣ ≤ gf (t, n), (2.2)

1We assume everywhere below that supf∈F

∣∣∣θ̂(k)(f) − Pf

∣∣∣ is properly measurable. See [34, 11] for in-depth discussion

of measurability issues.
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given that σ2(f) < ∞ and that an absolute constant C in the definition of gf (t, n) is large enough. The
function gf (t, n) enters our bounds through the quantity that we define next. Given ∆ > 0, set

Gf (n,∆) :=

∫ ∞

0

gf

(
∆

(
1

2
+ t

)
, n

)
dt.

The following statement provides simple upper bounds for gf (t, n) and Gf (n,∆).

Lemma 2.1. Let X1, . . . , Xn be i.i.d. copies of X, and assume that Var(f(X)) < ∞. Then gf (t, n) → 0
as |t| → ∞ and gf (t, n) → 0 as n → ∞, with convergence being monotone. Moreover, if E|f(X) −
Ef(X)|2+δ < ∞ for some δ ∈ (0, 1], then for all t > 0

gf(t, n) ≤ C′E
∣∣f(X)− Ef(X)

∣∣2+δ

nδ/2 (σ(f) + |t|)2+δ
≤ C′E

∣∣f(X)− Ef(X)
∣∣2+δ

nδ/2|t|2+δ
, (2.3)

Gf (n,∆) ≤ C′′E
∣∣f(X)− Ef(X)

∣∣2+δ

∆2+δnδ/2
,

where C′, C′′ > 0 are absolute constants.

The proof of this lemma is outlined in section 4.4. We are now ready to state the main result. Let ρ be
a loss function satisfying Assumption 1. Moreover, set

∆̃ := max (∆, σ(F)) .

Theorem 2.1. Assume that N = nk and that the subgroups G1, . . . , Gk are disjoint. Then there exist
absolute constants c, C > 0 such that for all s > 0, n and k satisfying

1

∆


 1√

k
E sup

f∈F

1√
N

N∑

j=1

(f(Xj)− Pf) + σ(F)

√
s

k


+ sup

f∈F
Gf (n,∆) +

s

k
≤ c, (2.4)

the following inequality holds with probability at least 1− 2e−s:

sup
f∈F

∣∣∣θ̂(k)(f)− Pf
∣∣∣ ≤ C

[
∆̃

∆


E sup

f∈F

1

N

N∑

j=1

(f(Xj)− Pf) + σ(F)

√
s

N




+ ∆̃

(√
n
s

N
+

supf∈F Gf (n,∆)√
n

)]
.

The proof of the theorem is outlined in section 4.1. We note that the requirementN = nk is not restrictive,
as replacing N by k · ⌊N/k⌋ will only result in the change of absolute constants. The assumption that the
groups sizes are equal is also not essential and is only imposed to avoid overly technical and cumbersome

expressions. When the class F is P-Donsker [11], lim sup
N→∞

∣∣∣E sup
f∈F

1√
N

∑N
j=1 (f(Xj)− Pf)

∣∣∣ is bounded,

hence condition (3.1) holds for N large enough whenever s is not too big and ∆ is not too small, namely,
s ≤ c′k and ∆ ≥ c′′σ(F). When discussing examples in the following section, this will be our default
setup.

Estimator θ̂(k)(f) defined in (2.1) depends on the choice of subgroups G1, . . . , Gk. It is natural to ask

if there exists a version of θ̂(k)(f) that is permutation-invariant. We address this question below and
present a construction based on U-statistics. For an integer n ≤ N

2 , let k = ⌊N/n⌋, and define

A(n)
N := {J : J ⊆ {1, . . . , N},Card(J) = n} .

Let h be a measurable function of n variables. Recall that a U-statistic of order n with kernel h based on
the i.i.d. sample X1, . . . , XN is defined as [16]

UN,n =
1(
N
n

)
∑

J∈A(n)
N

h ({Xj}j∈J ) . (2.5)
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Given J ∈ A
(n)
N , let θ̄(f ; J) := 1

n

∑
i∈J f(Xi). Consider U-statistics of the form

UN,n(z; f) =
1(
N
n

)
∑

J∈A(n)
N

ρ

(√
n
θ̄(f ; J)− z

∆

)
,

and set
θ̃(k)(f) := argmin

z∈R

UN,n(z; f).

Theorem 2.2. There exist absolute constants c, C > 0 such that for all s > 0, n and k satisfying

1

∆


 1√

k
E sup

f∈F

1√
N

N∑

j=1

(f(Xj)− Pf) + σ(F)

√
s

k


+ sup

f∈F
Gf (n,∆) +

s

k
≤ c, (2.6)

the following inequality holds with probability at least 1− 2e−s:

sup
f∈F

∣∣∣θ̂(k)(f)− Pf
∣∣∣ ≤ C

[
∆̃

∆


E sup

f∈F

1

N

N∑

j=1

(f(Xj)− Pf) + σ(F)

√
s

N




+ ∆̃

(√
n
s

N
+

supf∈F Gf (n,∆)√
n

)]
.

The resulting deviation bounds for θ̃(k)(f) are of exactly the same form as for the estimator θ̂(f)(f)
that is based on disjoint blocks of data. The proof of this result is given in section 4.2.

2.2. Discussion and comparison with existing bounds.

A number of recent works address the problem of robust empirical risk minimization that is closely related
to the question addressed in the present paper. In [5], authors prove uniform deviation bounds for robust
mean estimators defined using O. Catoni’s approach [6]; these bounds are limited by their dependence
on the covering numbers of the class F with respect to the sup-norm ‖·‖∞. Uniform bounds for the
median-of-means estimators have been obtained in several papers, including [25, 22, 26, 21]. Result that
is closest to our setting has been obtained in [22]: proof of Theorem 2 of that paper implies that the

estimator θ̂
(k)
med(f) corresponding to ρ(x) = |x| satisfies

sup
f∈F

∣∣∣θ̂(k)med(f)− Pf
∣∣∣ ≤ C

(
1√
N

E sup
f∈F

∣∣∣∣∣∣
1√
N

N∑

j=1

(f(Xj)− Pf)

∣∣∣∣∣∣
+ σ(F)

√
k

N

)
(2.7)

with probability at least 1− e−ck for absolute constant c, C > 0; a slightly stronger version of this result
has appeared in [27]. The key difference between this inequality and the bound of Theorem 2.1 is the fact
that the former holds only for the fixed value of the confidence parameter s = k, while the latter typically
provides deviation guarantees over the wide range 0 < s ≤ ck of confidence parameter s. This difference
is important, as one usually wants to choose k as large as possible to improve robustness (in particular,
robustness to adversarial contamination) without degrading performance of the estimator. The price that
we have to pay is the necessity to tune the parameter ∆. However, as we show below, in many cases there
is a wide range of “suitable” choices of ∆, so this issue is not critical.

Let us consider two examples. First, assume that n = 1, k = N and set ∆ = ∆(s) := σ(F)
√

N
s . In

this case, for N large enough, condition (3.1) reduces to s ≤ c′N , and we deduce from Theorem 2.1 that

sup
f∈F

∣∣∣θ̂(k)(f)− Pf
∣∣∣ ≤ C

[
E sup

f∈F

1

N

N∑

j=1

(f(Xj)− Pf) + σ(F)

√
s

N

]
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with probability at least 1 − 2e−s. This inequality recovers, up to constants, the result of Catoni [6] for
F = {f} (indeed, in this case the expected supremum is 0), and improves upon uniform bounds obtained
for Catoni-type estimators in [5]. If ∆ = σ(F)

√
N , we get the “sub-exponential” bound

sup
f∈F

∣∣∣θ̂(k)(f)− Pf
∣∣∣ ≤ C

[
E sup

f∈F

1

N

N∑

j=1

(f(Xj)− Pf) + σ(F)
1 + s√

N

]

that holds with probability at least 1− e−s uniformly for s ≤ c′N . Moreover, if

κ2+δ(F) :=
supf∈F E|f(X)− Ef(X)|2+δ

σ2+δ(F)
< ∞

for some δ ∈ (0, 1], then the estimator is less sensitive to the choice of the parameter ∆. Specifically,

sup
f∈F

∣∣∣θ̂(k)(f)− Pf
∣∣∣ ≤ C

[
E sup

f∈F

1

N

N∑

j=1

(f(Xj)− Pf) + σ(F)

√
s

N

]
(2.8)

with probability at least 1− 2e−s for any ∆ satisfying σ(F)
(
N
s

) 1
2(1+δ) (κ2+δ(F))

1/(1+δ) ≤ ∆ ≤ σ(F)
√

N
s .

For instance, if δ = 1, then any ∆ in the range σ(F)(N/s)1/4 . ∆ . σ(F)
√

N/s is suitable. Equivalently,

for a given ∆, the sub-Gaussian type bound (2.8) holds uniformly for all s ∈
[
κ2
3
M4

∆

N ,M2
∆

]
where M∆ =

σ(F)
√
N

∆ .

Next, assume that N ≫ n ≥ 2. For ∆ = σ(F)
√

k
s , we again recover the bound

sup
f∈F

∣∣∣θ̂(k)(f)− Pf
∣∣∣ ≤ C

[
E sup

f∈F

1

N

N∑

j=1

(f(Xj)− Pf) + σ(F)

√
s

N

]

that holds with probability at least 1 − 2e−s. When ∆ ≍ σ(F), θ̂(k)(f) most closely resembles the
median-of-means estimator. In this case, the inequality that holds with probability at least 1− 2e−s is

sup
f∈F

∣∣∣θ̂(k)(f)− Pf
∣∣∣ ≤ C

[
E sup

f∈F

1

N

N∑

j=1

(f(Xj)− Pf) + σ(F)

(√
s

N
+

√
k

N
sup
f∈F

Gf (n, σ(F))

)]
.

As supf∈F Gf (n, σ(F)) is small for large n, this bound is clearly better than (2.7). Finally, let us again
consider the case when stronger moment assumptions hold, namely, κ3(F) < ∞. Combining the estimate
for supf∈F Gf (n,∆) provided by Lemma 2.1 and the bound of Theorem 2.1, we obtain that

sup
f∈F

∣∣∣θ̂(k)(f)− Pf
∣∣∣ ≤ C

[
E sup

f∈F

1

N

N∑

j=1

(f(Xj)− Pf) + σ(F)

√
s

N

+
supf∈F E|f(X)− Ef(X)|3

∆2

k

N
+∆

s√
kN

]
,

again with probability at least 1− 2e−s. If ∆ is such that c1σ(F)
(
1 ∨

√
k√
Ns

)
≤ ∆ ≤ c2σ(F)

√
k/s then

this inequality implies sub-Gaussian deviation bounds at confidence level s. If for instance 1 ≪ k ≪
√
N

and ∆ ≍ σ(F), then

sup
f∈F

∣∣∣θ̂(k)(f)− Pf
∣∣∣ ≤ C

[
E sup

f∈F

1

N

N∑

j=1

(f(Xj)− Pf) + σ(F)

√
s

N

]

for all s ≤ c′k uniformly.
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3. Contamination with outliers.

Assume that the initial dataset of cardinality N is merged with a set of O < N outliers that are generated
by an adversary who has an opportunity to inspect the data, and the combined dataset of cardinality
N◦ = N + O is presented to a statistician. We would like to understand performance of proposed
estimators θ̂(k)(f) in this more challenging framework. Let G1, . . . , Gk be the disjoint partition of the

index set {1, . . . , N◦} that the estimators
{
θ̂(k)(f), f ∈ F

}
are based on; as before, n will stand for the

cardinality of Gj .
In the rest of the section, we will assume that k > 2O. Let J ⊂ {1, . . . , k} of cardinality |J | ≥ k −O

be the subset containing all j such that the subsample {Xi, j ∈ Gj} does not include outliers. Clearly,
{Xi : i ∈ Gj , j ∈ J} are still i.i.d. as the partitioning scheme is independent of the data. Moreover, set
NJ :=

∑
j∈J |Gj |, and note that

NJ ≥ n|J | ≥ kn

2
.

The following analogue of Theorem 2.1 holds.

Theorem 3.1. There exist absolute constants c, C > 0 such that for all s > 0, n and k satisfying

1

∆


 1√

k
E sup

f∈F

1√
N

N∑

j=1

(f(Xj)− Pf) + σ(F)

√
s

k


+ sup

f∈F
Gf (n,∆) +

s+O
k

≤ c, (3.1)

the following inequality holds with probability at least 1− 2e−s:

sup
f∈F

∣∣∣θ̂(k)(f)− Pf
∣∣∣ ≤ C

[
∆̃

∆


E sup

f∈F

1

N

N∑

j=1

(f(Xj)− Pf) + σ(F)

√
s

N




+ ∆̃

(√
n
s+O
N

+
supf∈F Gf (n,∆)√

n

)]
.

It is convenient to interpret the inequality as follows: if O ≤ ck for a sufficiently small absolute constant

c, the error supf∈F

∣∣∣θ̂(k)(f)− Pf
∣∣∣ behaves like the maximum of 2 terms: the first term is the error bound

for the case O = 0, and the second term is of order ∆̃
√
nO

N . In the next section, we provide examples
which show that the dependence on O in our bounds is, in general, non-improvable.

3.1. Estimators of the mean of a random vector.

Assume that X1, . . . , XN are i.i.d. copies of a random vector X ∈ R
d with mean EX = µ and covariance

matrix E(X−µ)(X−µ)T = Σ. Let ‖·‖ be some norm in R
d, and let B be the unit ball with respect to this

norm, B =
{
x ∈ R

d : ‖x‖ ≤ 1
}
. Consider the class of linear functionals F = {fv(x) = 〈v, x〉, v ∈ B}.

Our goal is to estimate the mean µ, with the error measured in the norm ‖ · ‖. Construction that we
propose is closely related to the approach employed previously by several authors [19, 27, 7, 14] that is
based on combining estimators of one-dimensional projections. Assume that we are in the “adversarial
contamination” framework of Theorem 3.1. Let ρ be a function satisfying assumption 1, and let θ̂(k)(v)
be the estimator of 〈µ, v〉, the projection of µ in direction v ∈ B:

θ̂(k)(v) := argmin
z∈R

1√
N

k∑

j=1

ρ

(√
n
µ̄j(v)− z

∆

)
,

where µ̄j(v) =
1
n

∑
i∈Gj

〈v,Xj〉, and ∆ ≥
√
λmax(Σ). Given v ∈ B and ε > 0, define the closed “slab”

Sv(ε) :=
{
y ∈ R

d :
∣∣∣〈y, v〉 − θ̂(k)(v)

∣∣∣ ≤ ε
}
,

and M(ε) :=
⋂

v∈B Sv(ε). Finally, let ε∗ := inf {ε > 0 : M(ε) 6= ∅}, and take µ̂(k) to be any element in
M(ε∗) (indeed, M(ε∗) =

⋂
ε>ε∗

M(ε) is non-empty as an intersection of nested compact sets).
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Corollary 3.1. There exist absolute constants c̃, C̃ > 0 with the following properties: assume that

max


 1√

k∆
E sup

v∈B

∣∣∣∣∣∣
1√
N

N∑

j=1

〈v,Xj − µ〉

∣∣∣∣∣∣
+

s

k
+ sup

v∈B
Gf (n,∆),

O
k


 ≤ c̃. (3.2)

Then with probability at least 1− 2e−s,

∥∥∥µ̂(k) − µ
∥∥∥ ≤ C̃

(
E sup

v∈B

1

N

N∑

j=1

〈v,Xj − µ〉+
√
λmax(Σ)

√
s

N
+∆

(
sup
v∈B

Gfv (n,∆)√
n

+
√
n
s+O
N

))
.

Proof. It follows from Theorem 3.1 that on the event E of probability at least 1− 2e−s, µ ∈ M(ε) for all

ε ≥ ε0 := C

(
E sup

f∈F

1

N

N∑

j=1

〈v,Xj − µ〉+
√
λmax(Σ)

√
s

N
+∆

(
sup
v∈B

Gfv (n,∆)√
n

+
√
n
s+O
N

))

given that (3.2) holds, hence ε∗ ≤ ε0 on event E . Consequently,
∥∥∥µ̂(k) − µ

∥∥∥ = sup
v∈B

∣∣∣〈µ̂(k) − µ, v〉
∣∣∣ ≤ sup

v∈B

∣∣∣〈µ̂(k), v〉 − θ̂(k)(v)
∣∣∣+ sup

v∈B

∣∣∣〈µ, v〉 − θ̂(k)(v)
∣∣∣ ≤ ε∗ + ε0 ≤ 2ε0

with probability at least 1− 2e−s.

In the special case when ‖ · ‖ is the Euclidean norm ‖ · ‖2, the bound of Corollary 3.1 can be further
simplified. It follows from Hölder’s inequality that

E sup
v∈Rd:‖v‖2=1

∣∣∣∣∣∣
1√
N

N∑

j=1

〈v,Xj − µ〉

∣∣∣∣∣∣
≤ E

1/2 sup
v∈Rd:‖v‖2=1

∣∣∣∣∣∣
1√
N

N∑

j=1

〈v,Xj − µ〉

∣∣∣∣∣∣

2

=

√√√√√ 1

N
E

∥∥∥∥∥∥

N∑

j=1

(Xj − µ)

∥∥∥∥∥∥

2

2

=

√
E ‖X − µ‖22 =

√
tr Σ,

hence µ̂(k) satisfies

∥∥∥µ̂(k) − µ
∥∥∥
2
≤ C

(√
tr Σ

N
+
√
λmax(Σ)

√
s

N
+∆

(
sup
v∈B

Gfv (n,∆)√
n

+
√
n
s+O
N

))

with probability at least 1− 2e−s (whenever s ≤ c′k). According to the discussion in section 2.2, in many

cases the term ∆
(
supv∈B

Gfv (n,∆)√
n

+
√
n s+O

N

)
is of order smaller than N−1/2, whence the estimator µ̂(k)

behaves like the sample mean of the Gaussian random variables [27].
Let us now discuss optimality with respect to adversarial contamination. Assume that O = εN for

ε ≥ 1
N ; here, we assume ε to be known in advance, and the issue of adaptivity is beyond the scope of this

paper. Moreover, suppose that

κ2+δ := sup
v:‖v‖2=1

E |〈v,X − µ〉|2+δ

(Var〈v,X − µ〉)1+δ/2
< ∞

for some δ ∈ (0, 1]. In this case, Lemma 2.1 implies that

sup
v∈B

Gfv (n,∆) ≤ C
sup‖v‖2=1 E |〈X − µ, v〉|2+δ

∆2+δnδ/2

for some absolute constant C > 0. Let M∆ := ∆
σ(F) , and recall that M∆ ≥ 1 by assumption. Then,

choosing k = ε
2

2+δ N
M2

∆

κ
2

2+δ
2+δ

, we deduce from Corollary 3.1 that

∥∥∥µ̂(k) − µ
∥∥∥
2
≤ C

(√
tr Σ

N
+
√
λmax(Σ)

(√
s

N
+ ε

1+δ
2+δ κ

1/(2+δ)
2+δ

)
+

κ
1/(2+δ)
2+δ

ε1/(2+δ)N
s

)
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with probability at least 1− 2e−s. Since ε ≥ 1
N , ε1/(2+δ)N ≥ N− 1+δ

2+δ = o
(
N−1/2

)
whenever δ > 0, hence

the last term in the bound is of smaller order. According to Lemma 5.4 (see section 5), no estimator can

achieve rate faster than ε
1+δ
2+δ with respect to ε, implying that our estimator is optimal in this sense.

4. Proofs.

We will introduce some additional notation and recall useful results that we rely upon in the proofs.
Denote

Gk(z; f) =
1√
k

k∑

j=1

ρ′
(√

n
(θ̄j(f)− Pf)− z

∆

)

and let θ̂
(k)
0 (f) be any solution of the equation Gk

(
θ̂
(k)
0 (f); f

)
= 0. Clearly, θ̂

(k)
0 (f) = θ̂(k)(f)−Pf is the

error of the estimator θ̂(k)(f).
The following concentration inequality is due to Klein and Rio (see section 12.5 in [4]).

Fact 1. Let {Zj(f), f ∈ F}, j = 1, . . . , N be independent (not necessarily identically distributed)
separable stochastic processes indexed by class F and such that |Zj(f) − EZj(f)| ≤ M a.s. for all 1 ≤
j ≤ N and f ∈ F . Then the following inequality holds with probability at least 1− e−s:

sup
f∈F




N∑

j=1

(Zj(f)− EZj(f))


 ≤ 2E sup

f∈F




N∑

j=1

(Zj(f)− EZj(f))


+ V (F)

√
2s+

4Ms

3
, (4.1)

where V 2(F) = supf∈F
∑N

j=1 Var (Zj(f)).

It is easy to see, applying (4.1) to processes {−Zj(f), f ∈ F}, that

inf
f∈F




N∑

j=1

(Zj(f)− EZj(f))


 ≥ −2E sup

f∈F




N∑

j=1

(EZj(f)− Zj(f))


− V (F)

√
2s− 4Ms

3
(4.2)

with probability at least 1 − e−s. Moreover, (4.1) is a corollary of the following bound for the moment
generating function:

logEeλ(
∑N

j=1(Zj(f)−EZj(f))) ≤ eλM − λM − 1

M2


V 2(F) + 2M E sup

f∈F




N∑

j=1

(Zj(f)− EZj(f))




 (4.3)

that holds for all λ > 0. This fact provides a straightforward extension of the concentration bounds to
the case of U-statistics. Let πN be the collection of all permutations i : {1, . . . , N} 7→ {1, . . . , N}. Given
(i1, . . . , iN) ∈ πN and a U-statistic UN,n defined in (2.5), let

Ti1,...,iN :=
1

k

(
h (Xi1 , . . . , Xin) + h

(
Xin+1 , . . . , Xi2n

)
+ . . .+ h

(
Xi(k−1)n+1

, . . . , Xikn

))
.

It is well known (see section 5 in [17]) that the following representation holds:

UN,n =
1

N !

∑

(i1,...,iN )∈πN

Ti1,...,iN . (4.4)

Let U ′
N,n(z; f) =

1

(Nn)

∑
J∈A(n)

N

ρ′
(√

n (θ̄(f ;J)−Pf)−z
∆

)
. Applied to U ′

N,n(z; f), relation (4.4) yields that

U ′
N,n(z; f) =

1

N !

∑

(i1,...,iN )∈πN

Ti1,...,iN (z; f),
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where

Ti1,...,iN (z; f) =
1

k

(
ρ′
(√

n
θ̄(f ; {i1, . . . , in})− Pf − z

∆

)
+

. . .+ ρ′
(√

n
θ̄(f ; {i(k−1)n+1, . . . , ikn})− Pf − z

∆

))
.

Jensen’s inequality implies that for any λ > 0,

E exp


 λ

N !

∑

(i1,...,iN )∈πN

(Ti1,...,iN (z; f)− ETi1,...,iN (z; f))




≤ 1

N !

∑

(i1,...,iN )∈πN

E exp
(
λ (T1,...,N (z; f)− ET1,...,N (z; f))

)
,

hence bound (4.3) can be applied and yields that

sup
f∈F

(
U ′
N,n(z; f)− U

′
N,n(z; f)

)
≤ 2E sup

f∈F
(T1,...,N (z; f)− ET1,...,N (z; f))

+ sup
f∈F

√
Var

(
ρ′
(√

n
θ̄(f ; {1, . . . , n})− Pf − z

∆

))√
2s

k
+

8s‖ρ′‖∞
3k

(4.5)

with probability at least 1 − e−s. The expression can be further simplified by noticing that ‖ρ′‖∞ ≤ 2
and that

Var

(
ρ′
(√

n
θ̄(f ; {1, . . . , n})− Pf − z

∆

))
≤ σ2(f)

∆2
.

due to Lemma 5.3.

4.1. Proof of Theorem 2.1.

Recall that

Gk(z; f) =
1√
k

k∑

j=1

ρ′
(√

n
(θ̄j(f)− Pf)− z

∆

)
.

Suppose z1, z2 are such that on an event of probability close to 1, Gk(z1; f) > 0 and Gk(z2; f) < 0 for all

f ∈ F simultaneously. Since Gk is decreasing in z, it is easy to see that θ̂
(k)
0 (f) ∈ (z1, z2) for all f ∈ F

on this event, implying that
∣∣∣supf∈F θ̂

(k)
0 (f)

∣∣∣ ≤ max(|z1|, |z2|). Hence, our goal is to find z1, z2 satisfying

conditions above and such that |z1|, |z2| are as small as possible. We will provide detailed bounds for z1,
while the steps to estimate z2 are quite similar. Observe that

Gk(z; f) =
1√
k

k∑

j=1

(
ρ′
(√

n
(θ̄j(f)− Pf)− z

∆

)
− Eρ′

(√
n
(θ̄j(f)− Pf)− z

∆

))

+
1√
k

k∑

j=1

(
Eρ′

(√
n
(θ̄j(f)− Pf)− z

∆

)
− Eρ′

(
W (f)−√

nz

∆

))
+

1√
k

k∑

j=1

Eρ′
(
W (f)−√

nz

∆

)
.

We will proceed in 3 steps: first, we will find ε1 > 0 such that for any z ∈ R,

inf
f∈F

1√
k

k∑

j=1

(
ρ′
(√

n
(θ̄j(f)− Pf)− z

∆

)
− Eρ′

(√
n
(θ̄j(f)− Pf)− z

∆

))
≥ −ε1 (4.6)

with high probability, then ε2 > 0 such that

inf
f∈F

1√
k

k∑

j=1

(
Eρ′

(√
n
(θ̄j(f)− Pf)− z

∆

)
− Eρ′

(
W (f)−√

nz

∆

))
≥ −ε2,
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and finally we will choose z1 < 0 such that for all f ∈ F ,

1√
k

k∑

j=1

Eρ′
(
W (f)−√

nz1
∆

)
> ε1 + ε2. (4.7)

It follows from Lemma 4.1 that setting

ε1 =
8

∆
√
N

E sup
f∈F

N∑

j=1

(f(Xj)− Pf) +
σ(F)

∆

√
2s+

16

3

s√
k

guarantees that (4.6) holds with probability at least 1 − e−s. Next, Lemma 4.2 implies that ε2 can be
chosen as

ε2 = 2
√
k sup

f∈F
Gf (n,∆).

Finally, we apply Lemma 4.3 with

ε :=
ε1 + ε2√

k

to deduce that

z1 = − 1

0.09

(
8L(ρ′)

N

∆̃

∆
E sup

f∈F

N∑

j=1

(f(Xj)− Pf) + σ(F)
∆̃

∆

√
2s

N
+ ∆̃

16

3

s
√
n

N
+ 2

supf∈F Gf (n,∆)√
n

)

satisfies (4.7) under assumption that ε ≤ 0.045. Proceeding in a similar way, it is easy to see that setting
z2 = −z1 guarantees that Gk(z2; f) < 0 for all f ∈ F with probability at least 1 − e−s, hence the claim
follows.

Lemma 4.1. For any z ∈ R and ρ satisfying Assumption 1, the inequalities

inf
f∈F

1√
k

k∑

j=1

(
ρ′
(√

n
(θ̄j(f)− Pf)− z

∆

)
− Eρ′

(√
n
(θ̄j(f)− Pf)− z

∆

))

≥ − 8

∆
√
N

E sup
f∈F

N∑

j=1

(f(Xj)− Pf)− σ(F)

∆

√
2s− 16

3

s√
k
,

sup
f∈F

1√
k

k∑

j=1

(
ρ′
(√

n
(θ̄j(f)− Pf)− z

∆

)
− Eρ′

(√
n
(θ̄j(f)− Pf)− z

∆

))

≤ 8

∆
√
N

E sup
f∈F

N∑

j=1

(f(Xj)− Pf) +
σ(F)

∆

√
2s+

16

3

s√
k
,

hold with probability at least 1− e−s each.

Proof. We will prove the first inequality, while the second follows similarly. First observe that in view of
Lemma 5.3,

Var

(
ρ′
(√

n
(θ̄j(f)− Pf)− z

∆

))
≤ Var

(√
n
(θ̄j(f)− Pf)− z

∆

)
=

σ2(f)

∆2
,

hence supf∈F Var1/2
(
ρ′
(√

n
(θ̄j(f)−Pf)−z

∆

))
≤ σ(F)

∆ . Next, Fact 1 (more specifically, inequality (4.2))

implies that for any fixed z ∈ R,

inf
f∈F

k∑

j=1

1√
k

(
ρ′
(√

n
(θ̄j(f)− Pf)− z

∆

)
− Eρ′

(√
n
(θ̄j(f)− Pf)− z

∆

))

≥ −2E sup
f∈F

1√
k

k∑

j=1

(
Eρ′

(√
n
(θ̄j(f)− Pf)− z

∆

)
− ρ′

(√
n
(θ̄j(f)− Pf)− z

∆

))

− σ(F)

∆

√
2s− 8 ‖ρ′‖∞

s

3
√
k
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with probability at least 1 − e−s. It follows from Remark 2.1 that ‖ρ′‖∞ ≤ 2, hence it remains to
estimate the expected supremum. To this end, we will apply symmetrization and Talagrand’s contraction

inequalities 2 [20, 23, 29] (where functions hj(x) := − ρ′(x−
√
nz/∆)−ρ′(−

√
nz/∆)

L(ρ′) are contractions satisfying

hj(0) = 0). Let ε1, . . . , εk be i.i.d. Rademacher random variables independent of X1, . . . , XN , and note
that

E sup
f∈F

1√
k

k∑

j=1

(
−ρ′

(√
n
(θ̄j(f)− Pf)− z

∆

)
+ Eρ′

(√
n
(θ̄j(f)− Pf)− z

∆

))

≤ 2L(ρ′)E sup
f∈F

1√
k

k∑

j=1

εjhj

(√
n
θ̄j(f)− Pf

∆

)
≤ 4

∆
E sup

f∈F

k∑

j=1

εj

√
n√
k
(θ̄j(f)− Pf),

where we used the fact that L(ρ′) ≤ 1. Next, desymmetrization inequality [20] implies that

E sup
f∈F

k∑

j=1

εj

√
n√
k
(θ̄j(f)− Pf) ≤ 2√

N
E sup

f∈F

N∑

j=1

(f(Xj)− Pf) .

and the result follows.

Lemma 4.2. Assume that E|f(X) − Ef(X)|2 < ∞ for all f ∈ F and that ρ satisfies Assumption 1.
Then for all f ∈ F and z ∈ R satisfying |z| ≤ 1

2
∆√
n
,

∣∣∣∣Eρ
′
(√

n
(θ̄j(f)− Pf)− z

∆

)
− Eρ′

(
W (f)−√

nz

∆

)∣∣∣∣ ≤ 2Gf(n,∆).

Proof. Let T (x) = x − ρ′(x), and note that T (x) = 0 for |x| ≤ 1 by Assumption 1. Moreover, T is
non-decreasing. As

E

(√
n
(θ̄j(f)− Pf)− z

∆
− W (f)−√

nz

∆

)
= 0,

it is easy to check that

∣∣∣∣Eρ
′
(√

n
(θ̄j(f)− Pf)− z

∆

)
− Eρ′

(
W (f)−√

nz

∆

)∣∣∣∣

=

∣∣∣∣E
(
T

(√
n
(θ̄j(f)− Pf)− z

∆

)
− T

(
W (f)−√

nz

∆

))∣∣∣∣ .

For any bounded non-negative function h : R 7→ R+ and any signed measure Q,
∣∣∣∣
∫

R

h(x)dQ

∣∣∣∣ =
∣∣∣∣
∫ ∞

0

Q (x : h(x) ≥ t) dt

∣∣∣∣ .

Since any bounded function h : R 7→ R can be written as h = h+ − h−, where h+ = max(h, 0) and
h− = max(−h, 0) are both nonnegative, we deduce that

∣∣∣∣
∫

R

h(x)dQ

∣∣∣∣ ≤
∫ ∞

0

|Q (x : h+(x) ≥ t) |dt+
∫ ∞

0

|Q (x : h−(x) ≥ t) |dt. (4.8)

Moreover, if h is monotone, the sets {x : h+(x) ≥ t} and {x : h−(x) ≥ t} are half-intervals. Take h = T ;

it follows from Assumption 1 that T+(x) ≤ max(x−1, 0), hence T−1
+ (t) ≥ 1+t for t > 0. Let Φ

(n)
f (·) stand

for the cumulative distribution function of
√
n
(
θ̄j(f)− Pf

)
. Applying (4.8) to the monotone function

x 7→ T
(

x−√
nz

∆

)
and Q(·) = Φ

(n)
f (·)− Φ (·/σ(f)), we deduce that for any f ∈ F ,

∣∣∣∣E
(
T

(√
n
(θ̄j(f)− Pf)− z

∆

)
− T

(
W (f)−√

nz

∆

))∣∣∣∣

≤
∫ ∞

0

∣∣∣∣Q
(
x : T+

(
x−√

nz

∆

)
≥ t

)∣∣∣∣ dt+
∫ ∞

0

∣∣∣∣Q
(
x : T−

(
x−√

nz

∆

)
≥ t

)∣∣∣∣ dt. (4.9)

2We use the versions of these inequalities without absolute values inside the supremem; see [29] for the proof.
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Inequality (2.2) implies that

∣∣∣∣Q
(
x : T+

(
x−√

nz

∆

)
≥ t

)∣∣∣∣ =
∣∣Q

(
x : x ≥ ∆T−1

+ (t) +
√
nz

)∣∣

≤ gf
(
∆T−1

+ (t) +
√
nz, n

)
≤ gf

(
∆

(
1

2
+ t

)
, n

)
(4.10)

where we used monotonicity of gf together with the inequalities
√
n|z| ≤ 1

2∆ and T−1
+ (t) ≥ 1 + t on the

last step. Integrating inequality (4.10) from 0 to ∞, we see that

∫ ∞

0

∣∣∣∣Q
(
x : T+

(
x−√

nz

∆

)
≥ t

)∣∣∣∣ dt ≤
∫ ∞

0

gf

(
∆

(
1

2
+ t

)
, n

)
dt = Gf (n,∆).

Similarly,
∫∞
0

∣∣∣Q
(
x : T−

(
x−√

nz
∆

)
≥ t

)∣∣∣ dt ≤ Gf (n,∆), hence the conclusion follows from (4.9).

Lemma 4.3. Let ε > 0 be such that ε ≤ 0.045, and set

z1 = − ε

0.09

max (∆, σ(F))√
n

.

Then for all f ∈ F ,

Eρ′
(
W (f)−√

nz1
∆

)
> ε.

Proof. For any bounded function h such that h(−x) = −h(x) and h(x) ≥ 0 for x ≥ 0, and any z ≤ 0,

∫

R

h(x− z)φσ(x)dx =

∫ ∞

0

h(x) (φσ(x + z)− φσ(−x+ z))dx ≥ 0,

where φσ(x) = (2πσ)−1/2e−x2/2σ2

. Recall that H ′(x) ≥ x
2 for 0 ≤ x ≤ 2, and take

h(x) := ρ′(x)− x

2
I{|x| ≤ 2} = H ′(x) − x

2
I {|x| ≤ 2} .

Observe that h(x) ≥ 0 for x ≥ 0 by assumptions on ρ, hence for any j,

Eρ′
(
W (f)−√

n z1
∆

)
=

1

2
E

(
W (f)−√

n z1
∆

I

{∣∣∣∣
W (f)−√

n z1
∆

∣∣∣∣ ≤ 2

})
+ Eh

(
W (f)−√

n z1
∆

)

≥ max

(
1

2
E

(
W (f)−√

n z1
∆

I

{∣∣∣∣
W (f)−√

n z1
∆

∣∣∣∣ ≤ 2

})
, Eh

(
W (f)−√

n z1
∆

))
, (4.11)

where we used the fact that both terms are nonnegative. Next, we will find lower bounds for each of the
terms in the maximum above, starting with the first.

(1) Consider two possibilities: (a) ∆ < σ(f) and (b) ∆ ≥ σ(f). In the first case, we will use the trivial

lower bound E

(
W (f)−√

n z1
∆ I

{∣∣∣W (f)−√
n z1

∆

∣∣∣ ≤ 2
})

≥ 0. The main focus will be on the second case. To

this end, note that Z := W (f)
σ(f) ∼ N(0, 1), hence

1

2
E

(
W (f)−√

n z1
∆

I

{∣∣∣∣
W (f)−√

n z1
∆

∣∣∣∣ ≤ 2

})

=
σ(f)

2∆
E

(
Z I

{∣∣∣∣Z −
√
n z1

σ(f)

∣∣∣∣ ≤ 2
∆

σ(f)

})
−

√
n z1
2∆

Pr

(∣∣∣∣Z −
√
nz1

σ(f)

∣∣∣∣ ≤ 2
∆

σ(f)

)
. (4.12)

Direct computation shows that for any a ∈ R, t > 0,

∣∣∣E (Z I {|Z − a| ≤ t})
∣∣∣ = 1√

2π
e−

a2+t2

2

∣∣eat − e−at
∣∣ . (4.13)
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Take a = − z1
√
n

σ(f) , t = 2 ∆
σ(f) , and observe that assumptions of the Theorem imply the inequality |a| ≤ t

4 .

Minimum of the function a 7→ a2 + t2 − 2|a|t over the set 0 ≤ a ≤ t/4 is attained at a = t/4, implying

that a2 + t2 − 2|a|t ≥ 9
16 t

2 > t2

2 . Combining this with (4.13), we deduce that

∣∣∣E (Z I {|Z − a| ≤ t})
∣∣∣ ≤ 1√

2π
e−t2/4e−|at| ∣∣eat − e−at

∣∣ = e−t2/4

√
2π

(
1− e−2|at|

)
≤ e−t2/4

√
2π

· 2|at|,

hence
∣∣∣∣∣
σ(f)

2∆
E

(
Z I

{∣∣∣∣Z −
√
n z1

σ(f)

∣∣∣∣ ≤ 2
∆

σ(f)

}) ∣∣∣∣∣ ≤
2√
2π

∣∣∣∣
z1
√
n

σ(f)

∣∣∣∣ e
− ∆2

σ2(f) =
2√
2π

∣∣∣∣
z1
√
n

∆

∣∣∣∣
∆

σ(f)
e
− ∆2

σ2(f) .

Moreover, since |z1| ≤ 1
2

∆√
n
by assumptions of the lemma, it follows that

Pr

(∣∣∣∣Z −
√
n z1

σ(f)

∣∣∣∣ ≤ 2
∆

σ(f)

)
≥ Pr

(
|Z| ≤ 3∆

2σ(f)

)
≥ 1− 2Φ(−3/2) > 0.86.

Together with (4.11), (4.12), the last display yields that

Eρ′
(
W (f)−√

n z1
∆

)
>

∣∣∣∣
0.86

2

z1
√
n

∆

∣∣∣∣−
2√
2π

∣∣∣∣
z1
√
n

∆

∣∣∣∣
∆

σ(f)
e
− ∆2

σ2(f) .

As x 7→ xe−x2

is decreasing for x ≥ 1/
√
2, one easily checks that ∆

σ(f)e
− ∆2

σ2(f) ≤ e−1 as ∆ ≥ σ(f), hence

Eρ′
(
W (f)−√

nz1
∆

)
>

(
0.43− 2

e
√
2π

)
|z1|

√
n

∆
> 0.1364|z1|

√
n

∆
.

(2) For the second term, we start with a simple inequality

Eh

(
W (f)−√

n z1
∆

)
≥ Eρ′

(
W (f)−√

n z1
∆

)
I

{∣∣∣∣
W (f)−√

n z1
∆

∣∣∣∣ > 2

}

≥ ρ′(2)︸ ︷︷ ︸
≥1

E

(
I

{
W (f)−√

n z1
∆

> 2

}
− I

{
W (f)−√

n z1
∆

< −2

})

which follows from the definition of h and assumptions on ρ. Again, we consider two possibilities: (a)
∆ < σ(f) and (b) ∆ ≥ σ(f). In case (b), we use the trivial bound

E

(
I

{
W (f)−√

n z1
∆

> 2

}
− I

{
W (f)−√

n z1
∆

< −2

})
≥ 0.

In the first case, we see that

Pr

(
W (f)−√

nz1
∆

≥ 2

)
− Pr

(
W (f)−√

nz1
∆

≤ −2

)

= Pr

(
Z ≥

√
nz1

σ(f)
+ 2

∆

σ(f)

)
− Pr

(
Z ≤

√
nz1

σ(f)
− 2

∆

σ(f)

)

= Pr

(
Z ∈

[√
nz1

σ(f)
+ 2

∆

σ(f)
,−

√
n z1

σ(f)
+ 2

∆

σ(f)

])
.

Lemma 5.2 implies that

Pr

(
Z ∈

[√
n z1

σ(f)
+ 2

∆

σ(f)
,−

√
n z1

σ(f)
+ 2

∆

σ(f)

])
≥ 2e

− 2∆2

σ2(f) Pr

(
Z ∈

[
0,

√
n|z1|
σ(f)

])

≥ 2e−2Pr

(
Z ∈

[
0,

√
n|z1|
σ(f)

])
,
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where we used the fact that ∆ < σ(f) by assumption. Finally, Lemma 5.1 implies that

Pr

(
Z ∈

[
0,

√
n|z1|
σ(f)

])
>

1

3

√
n|z1|
σ(f)

whenever |z1| ≤ 0.99σ(f)√
n
. In conclusion, we demonstrated that in case (a)

Eh

(
W (f)−√

n z1
∆

)
>

2e−2

3
|z1|

√
n

σ(f)
> 0.09|z1|

√
n

σ(f)
.

Combining results (1) and (2) for both terms in the maximum (4.11), we see that for any ∆ > 0,

Eρ′
(
W (f)−√

n z1
∆

)
> min (0.1364, 0.09) |z1|

√
n

max(∆, σ(f))
= 0.09|z1|

√
n

max(∆, σ(f))
(4.14)

given that |z1| ≤ 1
2
max(∆,σ(f))√

n
. Let ε > 0. It is easy to check that setting

z1 = − 1

0.09
max (∆, σ(f))

ε√
n

yields, in view of (4.14), that

Eρ′
(
W (f)−√

nz

∆

)
> ε,

as long as condition |z1| ≤ 1
2
max(∆,σ(f))√

n
holds for all j. The latter is equivalent to requirement that

ε ≤ 0.09
2 .

4.2. Proof of Theorem 2.2.

Suppose z1, z2 are such that on an event of probability close to 1, U ′
N,n(z1; f) > 0 and U ′

N,n(z2; f) < 0

for all f ∈ F simultaneously. For such z1, z2, it is easy to see that θ̃(k)(f) − Pf ∈ (z1, z2) for all f ∈ F
on the corresponding event. Observe that

U ′
N,n(z; f) =

1

N !

∑

(i1,...,iN )∈πN

Ti1,...,iN (z; f)− ETi1,...,iN (z; f)

+ Eρ′
(√

n
θ̄(f ; {1, . . . , n})− Pf − z

∆

)
− Eρ′

(
W (f)−√

nz

∆

)
+ Eρ′

(
W (f)−√

nz

∆

)
.

The rest of the proof mimics the steps in the proof of Theorem 2.1. Namely, we will find positive ε1, ε2
such that

inf
f∈F

1

N !

∑

(i1,...,iN )∈πN

Ti1,...,iN (z; f)− ETi1,...,iN (z; f) = inf
f∈F

(
U ′
N,n(z; f)− EU ′

N,n(z; f)
)
≥ −ε1 (4.15)

with high probability and

inf
f∈F

Eρ′
(√

n
θ̄(f ; {1, . . . , n})− Pf − z

∆

)
− Eρ′

(
W (f)−√

nz

∆

)
≥ −ε2

and will choose z such that Eρ′
(

W (f)−√
nz

∆

)
> ε1 + ε2.

In view of (4.5) and the fact that ‖ρ′‖∞ ≤ 2, ε1 can be chosen as

ε1 = 2E sup
f∈F

(
T1,...,N (z; f)− ET1,...,N(z; f)

)
+

σ(f)

∆

√
2s

k
+

16s

3k
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for which inequality (4.15) holds with probability at least 1 − e−s. It is also easy to see, following the
symmetrization-contraction argument of Lemma 4.1, that

E sup
f∈F

(
T1,...,N(z; f)− ET1,...,N (z; f)

)
≤ 8

∆
√
k
E sup

f∈F

∣∣∣∣∣∣
1√
nk

nk∑

j=1

(f(Xj)− Pf)

∣∣∣∣∣∣
.

Lemma 4.2 implies that

sup
f∈F

∣∣∣∣Eρ
′
(√

n
θ̄(f ; {1, . . . , n})− Pf − z

∆

)
− Eρ′

(
W (f)−√

nz

∆

)∣∣∣∣ ≤ 2 sup
f∈F

Gf (n,∆) := ε2.

Finally, equation (4.14) in the proof of Lemma 4.3 yields that, for z < 0,

Eρ′
(
W (f)−√

n z

∆

)
> 0.09|z|

√
n

max(∆, σ(f))

as long as |z| ≤ 1
2
max(∆,σ(f))√

n
. Hence, choosing z1 := − 1

0.09
max(∆,σ(F))√

n
(ε1 + ε2) implies that U ′

N,n(z1; f) >

0 for all f ∈ F simultaneously with probability at least 1−e−s. Similarly, z2 = −z1 satisfies U
′
N,n(z2; f) < 0

for all f ∈ F with the same probability, and the claim follows.

4.3. Proof of Theorem 3.1.

The proof closely follows the steps of the proof of Theorem 2.1. All the probabilities below are evaluated
conditionally on NJ (see section 3 for the definition). Recall that

Gk(z; f) =
1√
k

k∑

j=1

ρ′
(√

n
(θ̄j(f)− Pf)− z

∆

)
.

We are looking for z1, z2 ∈ R with |z1|, |z2| as small as possible such that on an event of probability close
to 1, Gk(z1; f) > 0 and Gk(z2; f) < 0 for all f ∈ F simultaneously. Observe that

Gk(z; f) =
1√
k

∑

j∈J

ρ′
(√

n
(θ̄j(f)− Pf)− z

∆

)
+

1√
k

∑

j /∈J

ρ′
(√

n
(θ̄j(f)− Pf)− z

∆

)
.

The second sum can be estimated as
∣∣∣∣∣∣
1√
k

∑

j /∈J

ρ′
(√

n
(θ̄j(f)− Pf)− z

∆

)∣∣∣∣∣∣
≤ ‖ρ′‖∞

∑

j /∈J

1√
k
≤ 2

O√
k
.

where we used the fact that ‖ρ′‖∞ ≤ 2. For the first sum, we proceed as in the proof of Theorem 2.1 and
decompose it as

1√
k

∑

j∈J

ρ′
(√

n
(θ̄j(f)− Pf)− z

∆

)

=
1√
k

∑

j∈J

(
ρ′
(√

n
(θ̄j(f)− Pf)− z

∆

)
− Eρ′

(√
n
(θ̄j(f)− Pf)− z

∆

))

+
1√
k

∑

j∈J

(
Eρ′

(√
n
(θ̄j(f)− Pf)− z

∆

)
− Eρ′

(
W (f)−√

nz

∆

))

+
1√
k

∑

j∈J

Eρ′
(
W (f)−√

nz

∆

)
.
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It follows from Lemma 4.1 that for any z ∈ R,

inf
f∈F

1√
k

∑

j∈J

(
ρ′
(√

n
(θ̄j(f)− Pf)− z

∆

)
− Eρ′

(√
n
(θ̄j(f)− Pf)− z

∆

))

=

√
|J |
k

inf
f∈F

1√
|J |

∑

j∈J

(
ρ′
(√

n
(θ̄j(f)− Pf)− z

∆

)
− Eρ′

(√
n
(θ̄j(f)− Pf)− z

∆

))
≥ −ε1

with probability at least 1− e−s, where

ε1 =

√
|J |
k


 8

∆
√
NJ

E sup
f∈F

NJ∑

j=1

(f(Xj)− Pf) +
σ(F)

∆

√
2s+

16

3

s√
|J |


 .

Next, Lemma 4.2 implies that

inf
f∈F

∑

j∈J

1√
k

(
Eρ′

(√
n
(θ̄j(f)− Pf)− z

∆

)
− Eρ′

(
W (f)−√

nz

∆

))

=

√
|J |
k

inf
f∈F

∑

j∈J

1√
|J |

(
Eρ′

(√
n
(θ̄j(f)− Pf)− z

∆

)
− Eρ′

(
W (f)−√

nz

∆

))
≤ ε2,

where ε2 = 2 |J|√
k
supf∈F Gf (n,∆). Finally we will choose z1 < 0 such that for all f ∈ F ,

1√
k

∑

j∈J

Eρ′
(
W (f)−√

nz

∆

)
> ε1 + ε2 + 2

O√
k
.

Lemma 4.3 implies that it suffices to take

z1 = − 1

0.09

∆̃√
n

(
ε1 + ε2 + 2

O√
k

) √
k

|J | ≥ −C
∆̃√
n

ε1 + ε2 +O/
√
k√

k
.

To get the final form of the bound, observe that E supf∈F
∑NJ

j=1 (f(Xj)− Pf) ≤ E supf∈F
∑N

j=1 (f(Xj)− Pf)
due to Jensen’s inequality and that NJ ≥ N/2 by assumption. Similarly, setting z2 = −z1 guarantees
that Gk(z2; f) < 0 for all f ∈ F with probability at least 1− e−s, hence the claim follows.

4.4. Proof of Lemma 2.1.

For brevity, set Y := f(X)−Pf , let Y1, . . . , Yn be i.i.d. copies of Y , and let W (f) have normal distribution
N(0, σ2(f)). Theorem 2.2 in [8] implies that for an absolute constant C > 0 and any t ∈ R,

∣∣∣∣∣∣
Pr


 1√

n

n∑

j=1

Yj ≥ t


− Pr(W (f) ≥ t)

∣∣∣∣∣∣
≤ gf (t, n)

= C



EY 2 I

{
|Y |
σ
√
n
> 1 + |t/σ|

}

σ2(1 + |t/σ|)2 +
1√
n

E|Y |3 I
{

|Y |
σ
√
n
≤ 1 + |t/σ|

}

σ3(1 + |t/σ|)3


 . (4.16)

It is clear that gf (s, n) < gf (t, n) for t < s, gf (t,m) < gf(t, n) for n < m, and that gf(t, n) → 0 as
|t| → ∞. To show that gf (t, n) converges to 0 as n → ∞, let {an}n≥1 be any sequence such that an → ∞,
an ≤ √

n and an = o(
√
n). Then

1√
n
E|Y |3 I

{
|Y | ≤ σ

√
n(1 + |t/σ|)

}
≤ 1√

n

(
E|Y |3 I {|Y | ≤ σ · an(1 + |t/σ|)}

+ E|Y |3 I
{
σ · an(1 + |t/σ|) ≤ |Y | ≤ σ · √n(1 + |t/σ|)

})

≤ (σ + |t|)
(

an√
n
EY 2 + EY 2I {|Y | ≥ σ · an(1 + |t/σ|)}

)
,
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hence

gf (t, n) ≤
C

(σ + |t|)2
(
EY 2 I {|Y | > an (σ + |t|)}+ an√

n
EY 2

)

where the latter expression converges to 0 as n → ∞. Next, assume that E|Y |2+δ < ∞ for some δ ∈ (0, 1].
Applying Hölder’s inequality followed by Markov’s inequality, we deduce that

E

(
X2

σ2
I

{ |X |
σ
√
n
> 1 + |t/σ|

})
≤

(
E|X/σ|2+δ

)2/(2+δ)
(
Pr

( |X |
σ
√
n
> 1 + |t/σ|

))δ/(2+δ))

≤ E|X/σ|2+δ

nδ/2(1 + |t/σ|)δ .

Moreover, it is clear that

E

( |X |3
σ3

I

{ |X |
σ
√
n
≤ 1 + |t/σ|

})
≤

(√
n(1 + |t/σ|)

)1−δ
E|X/σ|2+δ.

Combining these inequalities with (4.16), we deduce the bound (2.3) for gf(t, n). Finally, an upper bound
for Gf (n) follows by integrating the inequality (2.3).

5. Supplementary results.

Lemma 5.1. Assume that 0 ≤ α ≤ 0.33 and let z(α) be such that Φ(z(α))− 1/2 = α. Then z(α) ≤ 3α.

Proof. It is a simple numerical fact that whenever α ≤ 0.33, z(α) ≤ 1; indeed, this follows as Φ(1) ≃
0.8413 > 1/2 + 0.33. Since e−y2/2 ≥ 1− y2

2 , we have

√
2πα =

∫ z(α)

0

e−y2/2dy ≥ z(α)− 1

6
(z(α))3 ≥ 5

6
z(α), (5.1)

Equation (5.1) implies that z(α) ≤ 6
5

√
2π α. Proceeding again as in (5.1), we see that

√
2πα ≥ z(α)− 1

6
(z(α))3 ≥ z(α)− 12π

25
α2z(α) ≥ z(α)

(
1− 1.51α2

)
,

hence z(α) ≤
√
2π

1−1.51α2 α. The claim follows since α ≤ 0.33 by assumption, and
√
2π

1−1.51·0.332 < 3.

The following fact is well known; we present a short proof for reader’s convenience.

Lemma 5.2. Let A ⊂ R be symmetric, meaning that A = −A, and let Z ∼ N(0, 1). Then for all x ∈ R,

Pr(Z ∈ A− x) ≥ e−x2/2 Pr(Z ∈ A).

Proof. Observe that

Pr(Z ∈ A) =

∫

R

I{z ∈ A} 1√
2π

e−z2/2dz = ex
2/2

∫

R

I{z ∈ A}e−xz/2exz/2
1√
2π

e−z2/2e−x2/2dz

≤ ex
2/2

√∫

R

I{z ∈ A} 1√
2π

e−(z−x)2/2dz

√∫

R

I{z ∈ A} 1√
2π

e−(z+x)2/2dz

= ex
2/2

∫

R

I{z ∈ A} 1√
2π

e−(z−x)2/2dz = ex
2/2 Pr(Z ∈ A− x),

and the claim follows.

Lemma 5.3. Let ρ satisfy Assumption 1. Then for any random variable Y with EY 2 < ∞,

Var (ρ′(Y )) ≤ Var (Y ) .
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Proof. The function u(t) = t − ρ′(t) − c is nondecreasing for any c ∈ R by Assumption 1, hence for any
s ∈ R, there exists t(s) such that u(t) ≥ s iff t ≥ t(s). Next, consider ũ(t) = t−EY − (ρ′(t)−Eρ′(Y )), and
let t0 be such that ũ(t) ≥ 0 for t ≥ t0 and ũ(t) ≤ 0 when t ≤ t0. For any x, y ∈ R, x2 − y2 ≥ 2y(x− y).
Letting x = t− EY and y = ρ′(t)− Eρ′(Y ), we obtain

(t− EY )2 − (ρ′(t)− Eρ′(Y ))2 ≥ 2(ρ′(t)− Eρ′(Y )) (t− EY − (ρ′(t)− Eρ′(Y ))) .

Consider two cases: (a) t ≥ t0 and (b) t < t0. In the first case, ρ′(t) − Eρ′(Y ) ≥ ρ′(t0) − Eρ′(Y ) and
(t− EY − (ρ′(t)− Eρ′(Y ))) ≥ 0, hence

(t− EY )2 − (ρ′(t)− Eρ′(Y ))2 ≥ 2(ρ′(t0)− Eρ′(Y )) (t− EY − (ρ′(t)− Eρ′(Y ))) .

In the second case, ρ′(t)− Eρ′(Y ) ≤ ρ′(t0)− Eρ′(Y ) and (t− EY − (ρ′(t)− Eρ′(Y ))) ≤ 0, hence again

(t− EY )2 − (ρ′(t)− Eρ′(Y ))2 ≥ 2(ρ′(t0)− Eρ′(Y )) (t− EY − (ρ′(t)− Eρ′(Y ))) . (5.2)

Replacing t by Y in (5.2) and taking the expectation yields the result.

Lemma 5.4. Let p ∈ [2, 3], and assume that X ∈ R
d has distribution P from a class P of all distributions

with bounded p-th moments of one-dimensional projections, meaning that sup‖v‖2=1 EP |〈X − EX, v〉|p ≤
1. Let X1, . . . , XN be a sample from (1 − ε)P + εQ where 0 ≤ ε < 1/2, P ∈ P and Q is an arbitrary
distribution. Then for any estimator µ̂(X1, . . . , XN ) of the mean µ(P ),

sup
P∈P,Q

Pr

(
‖µ̂− µ‖2 ≥ c1

(√
tr (Σ)

N
∨ ε1−1/p

))
≥ c2.

where Σ is the covariance matrix of P and c1, c2 are absolute constants.

Proof. If ε = 0, then it is well known that the minimax rate of estimating the mean is
√

tr Σ
N (e.g.

see the remark following Theorem 3 in [27]). Let’s assume that ε > 0 and suppose that P1, P2 are
two distributions supported on

{
ε−1/p, 0,−ε1/p

}
, namely, P1(0) = P2(0) = 1−2ε

1−ε , P1

(
ε−1/p

)
= ε

1−ε ,

P2

(
−ε−1/p

)
= 0, P2

(
ε−1/p

)
= 0, P2

(
−ε−1/p

)
= ε

1−ε . Clealy, P1 ∈ P , P2 ∈ P , the means of P1, P2 are

µ(P1) =
ε1−1/p

1−ε , µ(P2) = − ε1−1/p

1−ε respectively and |µ(P1)− µ(P2)| = 2ε1−1/p

1−ε .
Next, let Q1 and Q2 be Dirac measures, namely Q1 = δε−1/p and Q2 = δ−ε−1/p . Then it is easy to

check that (1 − ε)P1 + εQ2 = (1 − ε)P2 + εQ1 = P̂ , hence, given samples from P̂ , it is impossible to
distinguish between P1 and P2. Conclusion now follows from Theorem 5.1 in [9].
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