
ASIC Accelerator in 28 nm for the Post-Quantum
Digital Signature Scheme XMSS

Prashanth Mohan�,∗, Wen Wang�,†, Bernhard Jungk‡, Ruben Niederhagen§, Jakub Szefer† and Ken Mai∗
∗ CMU †Yale Univeristy ‡Independent Researcher §Fraunhofer SIT

Abstract—This paper presents the first 28 nm ASIC implemen-
tation of an accelerator for the post-quantum digital signature
scheme XMSS. In particular, this paper presents an architecture
for a novel, pipelined XMSS Leaf accelerator for accelerating
the most compute-intensive step in the XMSS algorithm. This
paper then presents the ASIC designs for both an existing
non-pipelined accelerator architecture and the novel, pipelined
XMSS Leaf accelerator. In addition, the performance of the
28 nm ASIC is compared to the same designs on 28 nm Artix-7
FPGAs. The novel pipelined XMSS Leaf accelerator is 25% faster
compared to the non-pipelined version in the ASIC, and both
accelerator architectures have a 10× lower power consumption
than on the FPGAs. The evaluation shows that the pipelining
increases the frequency by 1.7× on the FPGA but only 1.2×
on the ASIC, due to the critical path in the ASIC being in the
memory. The non-pipelined XMSS Leaf accelerator is shown to
have a significantly better area-delay and energy-delay metric
on the ASIC, while the pipelined accelerator wins out in these
metrics on the FPGA. Consequently, this work shows the different
architectural decisions that need to be made between FPGA and
ASIC designs, when selecting how to best implement a post-
quantum cryptographic accelerator in hardware.

I. INTRODUCTION

Most common asymmetric cryptographic schemes such as
RSA will become insecure once sufficiently large and fault-
tolerant quantum computers are built. To address this security
threat, alternative algorithms that are not known to be vulner-
able to attacks using quantum computers — the post-quantum
cryptographic (PQC) algorithms — have been proposed.

Starting from 2017, NIST launched a new standardization
process [1] with the target of selecting the next generation of
public-key cryptographic algorithms that are quantum-secure.
As the standardization process evolved to the second round,
the performance of different PQC algorithms is becoming an
increasingly important metric in evaluation of the designs.
Active research has been focused on the software implemen-
tations of PQC schemes, mostly focused on high-end Intel
CPUs. Apart from software implementation, some work has
also explored the FPGA designs for some of the PQC schemes,
e.g., [2]–[4]. However, today there is limited understanding
on how to implement these algorithms on an ASIC. There are
only few publications that explore ASIC designs of quantum-
secure algorithms [5], [6].

To help expand understanding how to design ASIC accel-
erators for PQC algorithms, this work focuses on developing

� The two first authors contributed equally to this work.

efficient ASIC designs for the post-quantum secure eXtended
Merkle Signature Scheme (XMSS). XMSS is a stateful hash-
based digital signature scheme [7] which has been standard-
ized by the IETF [8] in 2018. Unlike modern digital signature
schemes based on RSA or Elliptic Curves, XMSS builds its
security upon secure hash algorithms. This gives XMSS well-
understood security properties and makes it one of the most
confidence-inspiring post-quantum signature schemes. Since
XMSS is a stateful scheme, once the security parameters of
XMSS are chosen, the number of limited signatures that can
be generated is decided.

XMSS uses a binary tree structure with many one-time
signatures on the leaf nodes [8]. The leaf nodes are effectively
chains of hash computations, and the repeated hash computa-
tions are the key bottleneck in the key generation. Similarly,
within the signature generation and signature verification steps,
hash computations take a big portion of the computation time.
Therefore, XMSS has a relatively high computation demand
as thousands of hash-computations for key generation, signing,
and verification are needed.

This paper consequently presents an architecture for a
novel pipelined XMSS Leaf accelerator for accelerating the
most compute-intensive leaf node generation operations in
XMSS. We also explore an existing non-pipelined XMSS Leaf
accelerator [3] architecture, and present the comparison results
on both FPGA and our ASIC.

A. Contributions

The contributions of this paper are as follows:
• We implement the hardware design of a four stage-

pipelined SHA-256 accelerator, and demonstrate that the
pipelined architecture improves the achievable frequency
of the SHA-256 core.

• We present the hardware design of a pipelined XMSS
Leaf accelerator, which achieves a much better frequency
compared to the existing non-pipelined XMSS Leaf ac-
celerator.

• We present the first 28nm ASIC implementation of the
accelerators, for both the non-pipelined and the pipelined
designs.

• By comparing the two accelerator designs on 28nm
FPGAs and 28nm ASICs, we show how the area and
performance metrics differ. Moreover, we show how
to better design hardware architecture for post-quantum



l chains l chains l chains

. . .

. . .

. . .

2h WOTS key pairs and L-trees

WOTS
instances

L-trees

Merkle
tree

w − 1 steps

height
�log(l)�

height h

XMSS
Leaf

Fig. 1. The XMSS tree. Red nodes are the WOTS secret keys derived from
the secret seed and blue nodes are the WOTS public keys. Green nodes are
the L-tree roots (aka the Merkle tree leaf nodes) and the gray root node is the
XMSS public key. The first XMSS leaf is marked with a dashed blue box.
Figure based on [3].

cryptographic accelerators when targeting FPGA and
ASIC separately.

B. Paper Organization

The remainder of the paper is organized as follows. Sec-
tion II discusses the preliminaries and the background on
XMSS algorithm. Section III presents the hardware design,
especially the pipelined architecture. Section IV gives the re-
sults, focusing on the ASIC chip evaluation and comparison to
the FPGA implementation. The paper concludes in Section V.

II. PRELIMINARIES

XMSS uses a binary Merkle tree [9] with Winternitz
One-Time Signatures (WOTS) and unbalanced binary trees,
called L-trees, as the leaf nodes [8]. As the name indicates,
each one-time signature must only be used once. Therefore,
along the private key, a state needs to be maintained (usually
a counter), which ensures that each one-time signature is used
only once. Each WOTS signature, which must be used only
once, is computed using many hash chains.

In XMSS, key generation deals with generating crypto-
graphic keys for the digital signatures. It is necessary to
compute private keys that are later used in signing operations,
and public keys that are later used in verification operations.

The private key of XMSS [8] is a secret seed that is used to
generate the private keys of the WOTS signatures. The public
key is the root node of the XMSS Merkle tree. The height h of
the Merkle tree defines how many, specifically 2h, signatures
can be computed with a given private key. An overview over
the XMSS tree structure is given in Figure 1.

A. Main Operations in Signature Schemes

For key generation, the entire tree needs to be computed:
The secret seed is used to generate the secret keys of the one-
time signatures, which then are used to compute the public
keys of the one-time signatures. Each one-time signature
public key consists of l distinct elements. These elements are
then consolidated to a single element using an L-tree (i.e.,

an unbalanced binary tree with l leaf nodes) using pairwise
hashing of nodes. These roots of the L-trees are the leaves of
the Merkle tree. The root node of the Merkle tree is computed
using pair-wise hashing of nodes as well.

For signing, first the next available one-time signature is
used to sign the message and the corresponding L-tree is
computed. Since the verifier only has the root node of the
Merkle tree as public key available, the signer needs to provide
a verification path through the Merkle tree to the verifier,
i.e., each pairing node for the pairwise hashing in the tree.
There are several algorithms for computing the verification
path that differ in computing and storage cost. The simplest
algorithm recomputes the entire tree and extracts nodes on the
verification path for the signature during the computation as
needed; there are alternative algorithms that store intermediate
results in order to reduce the overall computational cost.

For verification, the receiver first verifies the one-time signa-
ture, computes the corresponding L-tree, and then recomputes
the root node of the Merkle tree using the provided verification
path. If the result is equal to the public key, the signature is
accepted and otherwise rejected. The verification operation is
the cheapest one among the three operations key generation,
signing, and verification.

For the above mentioned key generation, signing, and ver-
ification operations, the computation of the WOTS signature
scheme and the corresponding L-tree (bottom of Figure 1)
takes the most time. The computation of a WOTS signature
and the corresponding L-tree is in the following referred to as
the leaf computation. For key generation, 2h leaf computations
need to be performed. The number of leaf computations for
signing depends on the verification path-algorithm; in the best
case, several computations are required, in the worst case 2h

leaf computations. For verification, only one leaf computation
needs to be performed, which still takes up most of the
verification time. Therefore, accelerating the leaf computations
has a significant impact on the XMSS computation time.

B. XMSS Leaf Computation Overview

The leaves of the XMSS Merkle tree are WOTS in-
stances [10], each with an L-tree. One WOTS instance contains
l hash chains, each of length w (w is called the “Winternitz
parameter”; l is defined by w). The start node of each chain is
one WOTS secret key element; the end node is the correspond-
ing WOTS public key element. The hash chains are iteratively
computed by masking and hashing the previous node with a
publicly keyed hash function. The masks are computed from
a public seed together with individual addressing data using
the publicly keyed hash function as well.

Once the l WOTS public keys have been computed by
performing w steps in each hash chain, these l public keys
elements are further compressed using an unbalanced binary
L-tree. After the L-tree is fully constructed, its root node is
returned as one leaf node of the XMSS Merkle tree.

For signing a message using WOTS, the message digest
is split into l1 base-w words. A checksum is computed over
these words and split into l2 base-w words as well. Each of the



����

����		

	

������	���	
���������

	

��� ���

�����

���

����

� ���

������

���

����

� ���

���� !"���

���

�������
��#�����

���������

���

	

$�$

	
Fig. 2. High-level architecture of the XMSS Leaf accelerator (our pipelined
version and the non-pipelined version [3] have the same architectural hier-
archy). Colors of the highlighted submodules fit to the die microphotograph
in Figure 6.

l = l1+l2 base-w words w1, . . . , wl now is interpreted as index
into the l WOTS chains. The wi-th nodes ni,wi , i ∈ 1, . . . , l
of the l hash chains constitute the WOTS signature.

The verifier recomputes the l base-w words from the mes-
sage digests and recomputes the WOTS public key elements:
The hash chains are completed by computing w − wi further
hash chain steps for each base-w word in the corresponding
chain. Form the WOTS public key elements, the root of the
L-tree and thus the leaf of the Merkle tree is recomputed and
the verification is completed as described above.

C. XMSS Parameter Set

XMSS is parameterized for different hash functions and
different hash-function parameter sets. In this work, we focus
on the SHA-256 parameter set, which is required in the XMSS
standard [8]. In this case, all secret and public key values
have a length of 256 bit. The Winternitz-parameter w = 16
determines the length of the hash chains as well as the number
l = 67 of hash chains within a WOTS instance. Standard
values for tree height h are 10, 16, and 20. We are using
h = 10 in this work without loss of generality.

There is also a multi-tree version XMSSMT of XMSS,
which uses several layers of XMSS trees to obtain a larger
number of possible signatures per private key at a moderate
increase in computing cost but with significantly larger signa-
ture sizes. Our results can easily be mapped to XMSSMT.

III. HARDWARE DESIGN

In this work we present the hardware designs for the
XMSS Leaf accelerator. Figure 2 shows the diagram of the
pipelined XMSS Leaf accelerator. The XMSS Leaf acceler-
ator is composed of the WOTS module, L-tree module, and
SHA256XMSS module as shown in the figure. The WOTS
itself can be Key Expansion module and Chain module.
Further the accelerator can be pipelined or non-pipelined, with
details shown later in Figure 4.

A. Existing Work on Non-Pipelined XMSS Leaf Accelerator

Wang et al. [3] presented several XMSS hardware accelera-
tors for FPGAs including a general-purpose SHA-256 acceler-

�������

�������

	�����

�������

������
�����

��

� � � � � � � � �
�

�
�

������������
�
��� �

�
������������ �

� �

�

� �

Fig. 3. The pipelined SHA-256 stages used to create the SHA256XMSS
module presented in this work.

ator and the following XMSS-specific hardware accelerators:
an XMSS-specific SHA-256 accelerator which contains fixed-
length SHA-256 padding and the pre-computation feature, an
optional internal storage for pre-computation, and an overall
XMSS Leaf accelerator.

The key building block of the accelerators proposed in [3] is
the implementation of an iterative version of SHA-256 where
the computation of one round of SHA-256 takes one clock
cycle. Due to the iterative design of the SHA-256 module,
the XMSS Leaf accelerator proposed in [3] has a relatively
long critical path. This accelerator is referred to as the non-
pipelined XMSS Leaf accelerator in the following text.

B. Our Work on Pipelined XMSS Leaf Accelerator

In our design, we propose a pipelined version of the accel-
erator. The key part of our accelerator is the XMSS-specific
pipelined SHA-256 accelerator module, called SHA256XMSS
in the rest of this paper. Built upon this module, we then
designed the pipelined XMSS Leaf accelerator that is used to
compute one leaf node of the XMSS tree. Figure 2 shows the
diagram of the pipelined XMSS Leaf accelerator, which shares
the same architectural hierarchy as the non-pipelined XMSS
Leaf accelerator proposed in [3]. Details of these hardware
accelerators are provided as follows.

C. Our Pipelined SHA256XMSS Module

Each SHA-256 [11] round depends on all outputs of the
previous round. Therefore, introducing p pipelining stages in
the round function always increases the number of clock cycles
by factor p. Simply adopting this idea leads to a decrease of the
worst case latency and hence, an increased clock frequency,
but at the same time low utilization of the implemented logic.
Therefore, an efficient design can leverage multiple inputs
in parallel to fill up the pipeline and use otherwise unused
resources. With that approach, it is possible to increase the
clock frequency, while keeping the average number of clock
cycles per input the same. If the additional area consumption
per processed input is less than the original design, the area-
time product also improves.

For SHA256XMSS, the implementation of the round func-
tion is usually the critical path, because of the high amount
of combinational logic that has to be placed between the two



�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��������	

�

�

�

�

�

�

��������	

�

�

�

�

�

�

�

�

�

���
�

�

�

�

�

�

�

�
���

��������	

�

�

�

�

�

�

�

�

�

����
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

������	�

� � � �

�

�

�

�

�

�

�

�

�

�

�

�

�
���������������

��������

�

�

�

�

�

�

��������	

�

�

�

�

�

�

�

�

�

���
�

�

�

�

�

�

�

�
 ���

��������	

�

�

�

�

�

�

�

�

�

����
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

������	

� � � �

�

�

�

�

�

�

�

�

�

�

�

�

�
�����

!��"���
��������

�

�

�

�

�

�

�

�

�

�

�

�

� � � �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��������	
�

�

�

�

�

�

�

#$
�

�
�������

�
�� ����

�
��%����

#$
���

#$
�� 

#$
��%

���
�

���
 

���
%

����
�

����
 

����
%

�
�����

�
�� ��

�
��%��

�
�������

�
�� ����

�
��%����

�
 �� ��

�
 ��&��

�
 ��'��

�
 �����

�
 ��%��

�
 ��(��

�
 ��)��

���
�

���
 

���
%

����
 

����
&

����
'

����
�

����
%

����
(

����
)

�

�

�

�

�

�

��������	

�

�

�

�

�

�

��������	

���

�

�

�

�

�

�

�
���

��������	

����

�

�

�

������	�

�

�

�

�

�
�����

�

�

�

�

�

�

��������	

���
�

�

�

�

�

�

�

�
 ���

��������	

����
��

�

�

�

�

�

�

������	

�

�

�

�

�
�����

�

�

�

�

�

�

�

�

�

�

��������	
�

�

�

�

�

�

�

#$
�

�
 �����

����
�

��� �� ��%

�������*"������
�����#�+�

�������*"������
�����#�+�

����������
��������

!��"���
��������

�

�

�

,
+
�
��
��
�
-�
�
�
.
�!
�
�
/�
�
*
*
�
-�
"�
�+
"

�
��
�
-�
�
�
.
�!
�
�
/�
�
*
*
�
-�
"�
�+
"

Fig. 4. Architecture of the XMSS Leaf accelerators: (left) non-pipelined and (right) pipelined. Red nodes are the WOTS secret keys and grey ones are
nodes during WOTS and L-tree computations. Half-blue and half-green nodes represent the results from the last step. Grey boxes represent registers storing
hash-function keys and masks. x shows node index and y shows the level in the chain/tree.

register stages in a single-cycle implementation. Therefore, we
investigated the round function and designed our new pipelined
architecture as depicted in Figure 3.

We used four register stages as this leads to a good balance
between the number of registers used to forward previous
intermediate results of the algorithm and the reduction of
the worst case latency. Adding more register stages would
likely further reduce the latency, but has the drawback of
introducing too many registers that do not contribute to this
latency reduction. Therefore, the time-area efficiency is likely
to be negatively affected with more pipeline stages.

Beside the basic parallel pipelining, we also extended
the “pre-computation” and “fixed input length” optimizations
from [3] to support it for all four inputs independently, i.e.,
if one input uses the pre-computation feature, the next input
can either be hashed without that feature enabled, or it might
use a different pre-computed intermediate state. Furthermore,
the scheduling of the pipeline is implemented in a flexible
way, such that the computation of a input can be started at
almost any time, independently of the other inputs processed
in parallel.

D. Our WOTS Module

In our design, the secret keys (red nodes in Figure 1) for
WOTS are generated using a secret seed and a pseudorandom
number function (PRF). As the seeds of the PRF during
expanding WOTS secret keys are secret, we denote this
function as PRF priv to distinguish its usage in different types
of computations. The input of the PRF for generating different
WOTS secret keys only depends on its chain index x (as shown
in Figure 4) and the secret seed. Therefore multiple secret
keys can be generated in parallel. In our design, using our
pipelined SHA256XMSS module, four secret keys for WOTS
are computed in a pipelined fashion in parallel by use of the
PRF. Once the computation is finished, these four secret keys
are forwarded directly to the WOTS chain module.

One WOTS instance is composed of l hash chains. These
hash chains are used to compute the WOTS public keys. Once

the secret keys (red nodes in Figure 1) of WOTS are available,
they are forwarded to the Chain module and used as the
starting nodes of the hash chains. By doing a chain of hash
computations, the ending points of the hash chains will be
stored in a single-port memory as the public keys of WOTS.
As the computations of different hash chains only depend on
its corresponding WOTS secret key, chain index and the public
seed, multiple hash chains can be computed in parallel.

In our design, we can compute four public keys (blue nodes
in Figure 1) of WOTS in parallel. As shown in Figure 4, one
step in the hash chain takes in as input data the output from the
previous step (or the WOTS secret key if it is the starting node
of the hash chain), and the value of the ending node will be
returned as the result of the Chain module. The computation
of one step is composed of two PRF functions as well as a
F function. The first PRF function is used to compute a 256-
bit hash function key, which is stored in a 256-bit register.
Similarly, the second PRF function computes a 256-bit value
and stores it in a register. The mask value then gets XOR-ed
with the input data of the step, and forwarded together with
hash-function key as the input of the F function. The final
result of the F function is returned as the result of the step
computation. The above computations are repeated for (w−1)
times until a hash chain of length w is fully computed. Once
the four hash chains are fully computed, the values of their
ending nodes will be written to the memory in order.

To compute the public keys (blue nodes in Figure 1) for
one WOTS instance composed of l chains, the computations of
expanding four secret keys of WOTS followed by four parallel
hash chain computations have to be repeated for � l

4� times.
Note that for computing the last (l−4×� l

4�) hash chains, the
pipelines within the SHA256 module may not be fully filled.
After all the hash chains are computed, the public keys of one
WOTS instance are stored in a single-port memory which is
of width 256 bit and of depth l.



E. Our L-tree Module

To further compress l public keys of one WOTS instance,
an unbalanced L-tree is used in the XMSS scheme and its
root node composes one leaf node for the top level Merkle
tree (green nodes in Figure 1) .

The construction of an L-tree starts from its leaf nodes
or namely the nodes on the first level of the tree. Similar
to the WOTS computations, the computations in the L-tree
construction can be well parallelized as long as the nodes are
lying on the same level, since there is no data dependency
between the computations. As shown in Figure 4, to compute
the nodes for the upper level of the L-tree, eight adjacent
nodes are first read out from the memory. These eight adjacent
nodes are further processed in pairs as follows: at first, a
PRF function is computed and its results are stored as four
256-bit keys, which will be later used as the hash-function
keys. After computing the keys, two PRF functions follow,
each of them computing four masks. The values of the masks
are later XOR-ed with the values of the input nodes, and the
results are forwarded together with the hash-function keys to
the last function H. Once the function H finishes, its results
are returned as the four parent nodes of the eight input nodes.
Note that since an L-tree is not a balanced binary tree, it may
happen that there are odd number of nodes on one level of the
tree. In this case, the last node on that level will simply be
lifted to the upper level. This process is repeated for all the
levels of the L-tree until the root node of the L-tree is reached.

Another design point worth noting is that, for the lower
levels of the L-tree, the pipelines of the SHA256XMSS
module can be mostly filled as there are enough nodes to
be computed. However, as the computation reaches the top
three levels, the pipelines simply cannot get filled, e.g., for
computing the last level (root node) of the L-tree, only one
stage out of the four pipelines of the SHA256XMSS module
will be filled.

The “fixed input length” and “pre-computation” optimiza-
tions as proposed in [3] are enabled in our design. During
the WOTS hash chain computations, each step involves the
computations of two PRF functions. Similarly, for L-tree con-
structions, every time when two leaf nodes are merged together
to compute their parent node, three PRF computations are
required. The pre-computation feature can be easily enabled
as follows: when the PRF functions are first called (with
the public seed), the store intermediate input signal of the
SHA256 module are raised high to make sure that the pre-
computed state is stored in a state register; and for all the
following PRF computations, the continue intermediate signal
will be raised high to resume the state based on the value of
the previously stored state. By doing this, we can save more
than thirty percent of the hash computation time. More details
about how to enable this feature can be found in [3].

IV. EVALUATION RESULTS

We implemented both the non-pipelined and pipelined
versions of the XMSS Leaf accelerator in a 28nm bulk
industrial CMOS process. The die microphotograph of the

�
�
�
��
�

������ ������

Fig. 5. Die microphotograph of the 28nm ASIC with XMSS Leaf accelerators

�
�
�
�
��
�
�
�
�
��
�
�
�
�
�

�
�
�
�
��
�
�
�
�
��
�
�
�
�
�

�
�
�
�
��
�
�
�
�
��
�
�
�
�
�

�
�
�
�
��
�
�
�
�
��
�
�
�
�
�

�
�
�
�
��
�
�
�
�
��
�
�
�
�
�

�
�
�
�
��
�
�
�
�
��
�
�
�
�
�

�
�
�
�
��
�
�
�
�
��
�
�
�
�
�

�
�
�
�
��
�
�
�
�
��
�
�
�
�
�

Fig. 6. Die microphotograph of the 28nm ASIC with XMSS Leaf accelerators

ASIC implementation is shown in Fig. 5. In addition to the
ASIC, we implemented the same designs on a 28nm Artix-7
FPGA for evaluating the trade-offs between FPGA and ASIC
implementations of pipelined and non-pipelined XMSS Leaf
accelerators.

A. ASIC Results

Area: The instance count and the area breakdown of the sub-
modules along with the total area are detailed in Table I. From
the table we can see that the pipelined XMSS Leaf accelerator
is 44% larger than the non-pipelined XMSS Leaf accelerator.
The placement of the key sub-modules (SHA256XMSS, L-
tree, WOTS, and memory) of the XMSS Leaf accelerators are
highlighed in Fig.6. Almost all of the area increase in the
pipelined version is due to pipelined SHA256XMSS and L-
tree modules which grew by 2.6× and 2.1× respectively. This
is because of the high logic complexity in these two designs
when implemented in a pipelined fashion. While the sequential
cell area increased by 239% due to the addition of pipeline
flip-flops, the combinational cell area increased by just 43%.
The area of the memory and the WOTS modules remained
the same as pipelining of the SHA256XMSS module neither
increases the memory requirements nor changes the WOTS
computation.

Delay and Power: The operating frequency and power
consumption of the two XMSS Leaf accelerators are shown
in Table II. The pipelined and non-pipelined version of the
XMSS Leaf accelerators take 296.1K cycles and 302.8K
cycles to finish the computation respectively. While pipelining



TABLE I
AREA BREAKDOWN OF PIPELINED AND NON-PIPELINED XMSS LEAF

ACCELERATORS. Comb IS THE COMBINATORIAL LOGIC AND FF ARE THE
FLIP-FLOPS.

Design Leaf [3] Leaf pipe
#Inst (K) Area (mm2) #Inst (K) Area (mm2)

SHA256XMSS 13.8 0.013 31.8 0.034
L-tree 13.5 0.013 31.5 0.028
WOTS 14.9 0.014 15.8 0.015

Memory 0.12 0.031 0.03 0.031
Total (Comb) 41.1 0.030 70.3 0.043

Total (FF) 9.5 0.018 19.5 0.043
Layout 0.090 0.130

TABLE II
DELAY AND POWER OF PIPELINED AND NON-PIPELINED XMSS LEAF
ACCELERATORS. THE PIPELINED XMSS LEAF ACCELERATOR IS 25%

FASTER BUT CONSUMES 50% MORE POWER COMPARED TO THE
NON-PIPELINED VERSION.

Design Leaf [3] Leaf pipe
Freq. Power Time Freq. Power Time
MHz mW ms MHz mW ms

Fast (0.99 V) 823 67 0.36 1011 157 0.30
Typ (0.90 V) 659 45.9 0.45 806 103.5 0.37
Slow (0.81 V) 507 28 0.58 634 66.4 0.48

SHA256XMSS, which is iterative, can reduce the depth of the
critical path and increase the operating frequency, it does not
reduce the number of computation cycles. While pipelining
results in the fastest version of the XMSS Leaf accelerator with
the lowest latency (0.83×) and highest throughput (1.2×), it
consumes 2.3× more power.

B. FPGA Results

The performance, resource utilization, and power consump-
tion of the XMSS Leaf accelerators implemented on an 28nm
Artix-7 FPGA are provided in Table III. Compared to the non-
pipelined XMSS Leaf design [3], the pipelined XMSS Leaf
accelerator achieves much higher frequency while maintaining
similar cycle counts. Therefore, our pipelined XMSS Leaf
accelerator is about 1.7× faster. However, it requires 1.65X
more slices and consumes 2.5X more power.

C. Comparison between FPGA and ASIC

The non-pipelined XMSS Leaf accelerator is around an
order of magnitude faster on the ASIC compared to an
FPGA. However, the improvement in the pipelined XMSS
Leaf accelerator implementation is only 6.3×. Moreover, while
pipelining increases the frequency by 1.7× on the FPGA, the
frequency only improved by 1.2× on the ASIC implementa-
tion. This is because pipelining moves the critical path to the
memory stage in the ASIC design, which is not the case for the
FPGA implementation. The ASIC also consumes 10× lower
energy than the FPGA for both XMSS Leaf accelerators. Since
pipelining results in a reduced frequency improvement for the
ASIC compared to the FPGA, the non-pipelined XMSS Leaf
accelerator has significantly better area-delay and energy-delay

TABLE III
RESOURCE UTILIZATION, PERFORMANCE, AND POWER CONSUMPTION OF
THE XMSS LEAF ACCELERATORS IMPLEMENTED ON AN 28NM ARTIX-7

FPGA

Leaf [3] Leaf-pipe
Utilization (Slices) 2730 4498
LUTs / FFs / BRAMs 6289 / 8597 / 16 10351 / 14788 / 16
Fmax (MHz) 90.9 161.3
Exec. time (ms) 3.3 1.9
Cycles 296144 302859
Power (mW) @ Fmax 96 240
Power (mW) @ 90 MHz 96 156

TABLE IV
COMPARISON OF non-pipelined AND pipelined XMSS LEAF ACCELERATOR

IMPLEMENTATIONS ON ASIC AND FPGA.

ASIC FPGA
Leaf [3] Leaf pipe Leaf [3] Leaf pipe

Delay @ Fmax (ms) 0.36 0.30 3.3 1.9
Power (mW) 67 157 96 240
Energy per Op (uJ) 24.1 47.1 316.8 456
Energy-delay 8.7 14.1 1045 866
Area (mm2 / Slices) 0.09 0.13 2730 4498
Area-delay 0.032 0.041 9009 8546

metric in an ASIC while there is no significant difference in
these metrics in the FPGA implementation.

V. CONCLUSION

This paper presented the first 28 nm ASIC implementation
of an XMSS Leaf accelerator, including the first architecture
for a novel, pipelined XMSS Leaf accelerator for accelerating
the most compute-intensive step in the XMSS algorithm. This
paper also presented the ASIC designs for both an existing
non-pipelined accelerator architecture and the novel, pipelined
accelerator. In addition, the performance of the 28 nm ASIC
was compared to the same designs on 28 nm Artix-7 FPGAs.
We showed that the novel pipelined XMSS Leaf accelerator is
25% faster compared to the non-pipelined version in the ASIC,
and both accelerator architectures have a 10× lower power
consumption than on the FPGAs. The evaluation showed that
the pipelining increases the frequency by 1.7× on the FPGA
but only 1.2× on the ASIC, since the critical path in the ASIC
was found to be in the memory. We also showed that the
non-pipelined XMSS Leaf accelerator has a significantly better
area-delay and energy-delay metric on the ASIC, while the
pipelined XMSS Leaf accelerator wins out in these metrics
on the FPGA. In summary, this work showed the different
architectural decisions that need to be made between FPGA
and ASIC designs, when selecting how to best implement such
post-quantum cryptographic accelerators in hardware.

ACKNOWLEDGEMENTS

The work presented in this paper has been partly funded by
the German Federal Ministry of Education and Research under
the project “QuantumRISC” (ID 16KIS1033K). This work was
also funded in part by NSF grant 1716541.



REFERENCES

[1] National Institute of Standards and Technology (NIST), “Post-
Quantum Cryptography Standardization,” https://csrc.nist.gov/projects/
post-quantum-cryptography, 2017, accessed: 2020-06-11.

[2] W. Wang, J. Szefer, and R. Niederhagen, “Fpga-based niederreiter
cryptosystem using binary goppa codes,” in International Conference
on Post-Quantum Cryptography. Springer, 2018, pp. 77–98.

[3] W. Wang, B. Jungk, J. Wälde, S. Deng, N. Gupta, J. Szefer, and
R. Niederhagen, “XMSS and embedded systems – XMSS hardware
accelerators for RISC-V,” in International Conference on Selected Areas
in Cryptography. Springer, 2019, pp. 523–550.

[4] T. Oder and T. Güneysu, “Implementing the newhope-simple key
exchange on low-cost fpgas,” in International Conference on Cryptology
and Information Security in Latin America. Springer, 2017, pp. 128–
142.

[5] U. Banerjee, T. S. Ukyab, and N. P. Chandrakasan, “Sapphire: A
configurable crypto-processor for post-quantum lattice-based protocols,”
IACR Transactions on Cryptographic Hardware and Embedded Systems,
pp. 17–61, 2019.

[6] U. Banerjee, A. Pathak, and A. P. Chandrakasan, “An energy-efficient
configurable lattice cryptography processor for the quantum-secure
internet of things,” in 2019 IEEE International Solid-State Circuits
Conference-(ISSCC). IEEE, 2019, pp. 46–48.

[7] NIST, FIPS PUB 186-4: Digital Signature Standard. National Institute
of Standards and Technology, 2013.

[8] A. Hülsing, D. Butin, S. Gazdag, J. Rijneveld, and A. Mohaisen,
“XMSS: eXtended Merkle Signature Scheme,” RFC 8391, 2018.
[Online]. Available: https://tools.ietf.org/html/rfc8391

[9] R. C. Merkle, “A certified digital signature,” in Advances in Cryptology
– CRYPTO 1989, ser. LNCS, G. Brassard, Ed., vol. 435. Springer,
1990, pp. 218–238.

[10] A. Hülsing, “W-OTS+ – shorter signatures for hash-based signature
schemes,” in Progress in Cryptology – AFRICACRYPT 2013, ser. LNCS,
A. Youssef, A. Nitaj, and A. E. Hassanien, Eds., vol. 7918. Springer,
2013, pp. 173–188.

[11] NIST, FIPS PUB 180-4: Secure Hash Standard. National Institute of
Standards and Technology, 2012.

https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://tools.ietf.org/html/rfc8391

	Introduction
	Contributions
	Paper Organization

	Preliminaries
	Main Operations in Signature Schemes
	XMSS Leaf Computation Overview
	XMSS Parameter Set

	Hardware Design
	Existing Work on Non-Pipelined XMSS Leaf Accelerator
	Our Work on Pipelined XMSS Leaf Accelerator
	Our Pipelined SHA256XMSS Module
	Our WOTS Module
	Our L-tree Module

	Evaluation Results
	ASIC Results
	FPGA Results
	Comparison between FPGA and ASIC

	Conclusion
	References



