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Abstract

We study generalization properties of weakly su-

pervised learning, that is, learning where only a

few “strong” labels (the actual target for predic-

tion) are present but many more “weak” labels are

available. In particular, we show that pretraining

using weak labels and finetuning using strong can

accelerate the learning rate for the strong task to

the fast rate of O(1/n), where n is the number

of strongly labeled data points. This acceleration

can happen even if, by itself, the strongly labeled

data admits only the slower O(1/
√

n) rate. The

acceleration depends continuously on the number

of weak labels available, and on the relation be-

tween the two tasks. Our theoretical results are

reflected empirically across a range of tasks and

illustrate how weak labels speed up learning on

the strong task.

1. Introduction

While access to large amounts of labeled data has enabled

the training of big models with great successes in applied

machine learning, labeled data remains a key bottleneck.

In numerous settings (e.g., scientific measurements, experi-

ments, medicine), obtaining a large number of labels can be

prohibitively expensive, error prone, or otherwise infeasible.

When labels are scarce, a common alternative is to use ad-

ditional sources of information: “weak labels” that contain

information about the “strong” target task and are more

readily available, e.g., a related task, or noisy versions of

strong labels from non-experts or cheaper measurements.

Such a setting is called weakly supervised learning, and,

given its great practical relevance, it has received much at-

tention (Zhou, 2018; Pan & Yang, 2009; Liao et al., 2005;

Dai et al., 2007; Huh et al., 2016). A prominent example

that enabled breakthrough results in computer vision and is

now standard is pretraining, where one first trains a com-
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plex model on a related, large data task, and to then uses

the learned features for finetuning on the small-data target

task (Girshick et al., 2014; Donahue et al., 2014; Zeiler &

Fergus, 2014; Sun et al., 2017). Numerous approaches to

weakly supervised learning have succeeded in a variety of

tasks; beyond computer vision (Oquab et al., 2015; Durand

et al., 2017; Carreira & Zisserman, 2017; Fries et al., 2019).

Examples include clinical text classification (Wang et al.,

2019), sentiment analysis (Medlock & Briscoe, 2007), so-

cial media content tagging (Mahajan et al., 2018) and many

others. Weak supervision is also closely related to unsu-

pervised learning methods such as complementary and con-

trastive learning (Xu et al., 2019; Chen & Batmanghelich,

2019; Arora et al., 2019), and particularly to self-supervised

learning (Doersch et al., 2015), where feature maps learned

via supervised training on artificially constructed tasks have

been found to even outperform ImageNet learned features on

certain downstream tasks (Misra & van der Maaten, 2019).

In this paper, we make progress towards building theoretical

foundations for weakly supervised learning, i.e., where we

have a few strong labels, but too few to learn a good model

in a conventional supervised manner. Specifically we ask,

Under what conditions can large amounts of

weakly labeled data provably help us learn

a better model than strong labels alone?

We answer this question by analyzing a generic feature

learning algorithm that learns features by pretraining on

the weak task, and fine-tunes a model on those features for

the strong downstream task. While generalization bounds

for supervised learning typically scale as O(1/
√

n), where

n is the number of strongly labeled data points, we show

that the pretrain-finetune algorithm can do better, achieving

the superior rate of Õ(n−γ) for 1/2 ≤ γ ≤ 1, where

γ depends on how much weak data is available, and on

generalization error for the weak task. This rate smoothly

interpolates between Õ(1/n) in the best case, when weak

data is plentiful and the weak task is not too difficult, and

slower rates when less weak data is available or the weak

task itself is hard.

One instantiation of our results for categorical weak labels

says that, if we can train a model with O(1/
√

m) excess risk

for the weak task (where m is the amount of weak data),

and m = Ω(n2), then we obtain a “fast rate” Õ(1/n) on the
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excess risk of the strong task. This speedup is significant

compared to the commonly observed O(1/
√

n) “slow rates”.

To obtain any such results, it is necessary to capture the task

relatedness between weak and strong tasks. We formulate a

general sufficient condition: that there exists a shared mutual

embedding for which predicting the strong label is “easy”,

and predicting the weak label is possible. “Easy” prediction

is formalized via the central condition (van Erven et al.,

2012; 2015), a property that ensures that learning improves

quickly as more data is added. We merely assume existence

of such an embedding; a priori we do not know what this

shared embedding is. Our theoretical analysis shows that

learning an estimate of the embedding by pretraining on the

weak task still allows fast learning on the strong task.

In short, we make the following contributions:

• We introduce a theoretical framework for analyzing

weakly supervised learning problems.

• We propose the shared embedding plus central condi-

tion as a viable way to quantify relatedness between

weak and strong tasks. The condition merely posits the

existence of such an embedding; this makes obtaining

generalization bounds non-trivial.

• We obtain generalization bounds for the strong task.

These bounds depend continuously on two key quan-

tities: 1) the growth rate of the number m of weak

labels in terms of the number n of strong labels, and

2) generalization performance on the weak task.

• We show that in the best case, when m is sufficiently

larger than n, weak supervision delivers fast rates.

We validate our theoretical findings, and observe that our

fast and intermediate rates are indeed observed in practice.

1.1. Examples of Weak Supervision

Coarse Labels. It is often easier to collect labels that cap-

ture only part of the information about the true label of

interest (Zhao et al., 2011; Guo et al., 2018; Yan et al., 2015;

Taherkhani et al., 2019). A particularly pertinent example

is semantic labels obtained from hashtags attached to im-

ages (Mahajan et al., 2018; Li et al., 2017). Such tags are

generally easy to gather in large quantities, but tend to only

capture certain aspects of the image that the person tagging

them focused on. For example, an image with the tag #dog

could easily also contain children, or other label categories

that have not been explicitly tagged.

Crowd Sourced Labels. A primary way for obtaining large

labeled data is via crowd-sourcing using platforms such as

Amazon Mechanical Turk (Khetan et al., 2018; Kleindess-

ner & Awasthi, 2018). Even for the simplest of labeling

tasks, crowd-sourced labels can often be noisy (Zhang &

Sabuncu, 2018; Branson et al., 2017; Zhang et al., 2014),

which becomes worse for labels requiring expert knowledge.

Typically, more knowledgeable labelers are more expen-

sive (e.g., professional doctors versus medical students for a

medical imaging task), which introduces a tradeoff between

label quality and cost that the user must carefully manage.

Object Detection. A common computer vision task is to

draw bounding boxes around objects in an image (Oquab

et al., 2015). A popular alternative to expensive bounding

box annotations is a set of words describing the objects

present, without localization information (?Bilen & Vedaldi,

2016; Branson et al., 2017; Wan et al., 2018). This setting

too is an instance of coarse labeling.

Model Personalization. In examples like recommender

systems (Ricci et al., 2011), online advertising (Naumov

et al., 2019), and personalized medicine (Schork, 2015), one

needs to make predictions for individuals, while informa-

tion shared by a larger population acts as supportive, weak

supervision (Desrosiers & Karypis, 2011).

2. Weakly Supervised Learning

We begin with some notation. The spaces X and Y denote

as usual the space of features and strong labels. In weakly

supervised learning, we have in addition W , the space of

weak labels. We receive the tuple (X, W, Y) drawn from the

product space X ×W ×Y . The goal is to then predict the

strong label Y using the features X, and possibly benefiting

from the related information captured by W.

More specifically, we work with two datasets: (1) a weakly

labeled dataset Dweak
m of m examples drawn independently

from the marginal distribution PX,W ; and (2) a dataset

Dstrong
n of n strong labeled examples drawn from the

marginal PX,Y. Typically, n ≪ m.

We then use the weak labels to learn an embedding in a

latent space Z ⊆ R
s. In particular, we assume that there

exists an unknown “good” embedding Z = g0(X) ∈ Z ,

using which a linear predictor A∗ can determine W, i.e.,

A∗Z = A∗g0(X) = W in the regression case, and

σ(A∗g0(X)) = W in the classification setting, where σ
is the sigmoid function. The g0 assumption holds, for ex-

ample, whenever W is a deterministic function of X. This

assumption is made to simplify the exposition; if it does

not hold exactly then one can still obtain a generalization

guarantee by introducing an additive term to the final gener-

alization bound equal to the smallest error attainable by any

measurable hypothesis, reflecting the inherent noise in the

problem of predicting W from X.

Using the latent space Z , we define two function classes:

strong predictors F ⊂ { f : X × Z → Y}, and weak

feature maps G ⊂ {g : X → Z}. Later we will assume

that class F is parameterized, and identify functions f in F
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Definition 2 (Strong learning). Let Raten(F , Q; δ) be such

that a (possibly randomized) algorithm Algn(F , Q) that

takes as input a function space F , and n i.i.d. observations

from a distribution Q(X × Z × Y), returns a strong pre-

dictor f̂ ∈ F for which,

EU∼Q

[
ℓ f̂ (U)− ℓ f ∗(U)

]
≤ Raten(F , Q; δ)

with probability at least 1 − δ.

Henceforth, we drop δ from the rate symbols, for example

writing Ratem(G, PX,W) instead of Ratem(G, PX,W ; δ).

It is important to note that the algorithms Algm(G, PX,W)
and Algn(F , Q) can use any loss functions during train-

ing. In particular, even though we assume ℓweak to be a

metric, it is possible to use non-metric losses such as cross

entropy during training. This is because the only require-

ment we place on these algorithms is that they imply gener-

alization bounds in terms of the losses ℓweak and ℓ respec-

tively. For concreteness, our analysis focuses the case where

Algn(F , Q) is ERM using loss ℓ.

3. Excess Risk Analysis

In this section we analyze Algorithm 1 with the objective

of obtaining high probability excess risk bounds (see (1))

for the strong predictor ĥ = f̂ (·, ĝ). Informally, the main

theorem we prove is the following.

Theorem 3 (Informal). Suppose that Ratem(G, PX,W) =
O(m−α) and that Algn(F , P̂) is ERM. Under suitable as-

sumptions on (ℓ, P,F ), Algorithm 1 obtains excess risk,

O
(αβ log n + log(1/δ)

n
+

1

nαβ

)

with probability 1 − δ, when m = Ω(nβ) for W discrete,

or m = Ω(n2β) for W continuous.

For the prototypical scenario where Algm(G, PX,W) =
O(1/

√
m), one obtains fast rates when m = Ω(n2), and

m = Ω(n4), in the discrete and continuous cases, respec-

tively. More generally, if αβ < 1 then O(n−αβ) is the

dominant term and we observe intermediate or slow rates.

In order to obtain any such result, it is necessary to quantify

how the weak and strong tasks relate to one another – if they

are completely unrelated, then there is no reason to expect

the representation ĝ(X) to benefit the strong task. The next

subsection addresses this question.

3.1. Relating weak and strong tasks

Next, we formally quantify the relaship between the weak

and strong task, via two concepts. First, we assume that the

two tasks share a mutual embedding Z = g0(X). Alone,

this is not enough, since otherwise one could simply take the

trivial embedding X = g0(X), which will not inform the

strong task. The central condition that we introduce in this

section quantifies how the embedding makes the strong task

“easy”. Second, we assume a shared stability via a “relative

Lipschitz” property: small perturbations to the feature map

g that do not hurt the weak task, do not affect the strong

prediction loss much either.

Definition 4. We say that f is L-Lipschitz relative to G if

for all x ∈ X , y ∈ Y , and g, g′ ∈ G,

|ℓ f (·,g)(x, y)− ℓ f (·,g′)(x, y)| ≤ Lℓweak(β⊤
g g(x), β⊤

g′ g
′(x))).

We say the function class F is L-Lipschitz relative to G, if

every f ∈ F is L-Lipschitz relative to G.

The Lipschitz terminology is justified since the do-

main uses the pushforward pseudometric (z, z′) 7→
ℓweak(A⊤

g z, A⊤
g′z

′), and the range is a subset of R+. In

the special case where Z = W , g(X) is actually an esti-

mate of the weak label W and relative Lipschitzness reduces

to conventional Lipschitzness of ℓ( f (x, w), y) in w.

The central condition is well-known to yield fast rates for

supervised learning (van Erven et al., 2015); it directly im-

plies that we could learn a map (X, Z) 7→ Y with Õ(1/n)
excess risk. The difficulty with this naive view is that at test

time we would need access to the latent value Z = g0(X),
an implausible requirement. To circumnavigate this hurdle,

we replace g0 with ĝ by solving the supervised problem

(ℓ, P̂,F ), for which we will have access to data.

But it is not clear whether this surrogate problem would

continue to satisfy the central condition. One of our main

theoretical contributions is to show that (ℓ, P̂,F ) indeed

satisfies a weak central condition (Theorems 7 and 8), and

to show that this weak central condition still enables strong

excess risk guarantees (Theorem 9).

We are now ready to define the central condition. In essence,

this condition requires that (X, Z) is highly predictive of

Y, which, combined with the fact that g0(X) = Z has zero

risk on W, links the weak and strong tasks together.

Definition 5 (The Central Condition). A learning problem

(ℓ, P,F ) on U := X × Z × Y is said to satisfy the ε-

weak η-central condition if there exists an f ∗ ∈ F such that

EU∼P(U )[e
−η(ℓ f (U)−ℓ f ∗ (U))] ≤ eηε,

for all f ∈ F . The 0-weak central condition is known as

the strong central condition.

We assume that the strong central condition holds for our

weakly supervised problem (ℓ, P,F ) with P = PU =
PX,Z,Y where Z = g0(X). A concrete but general exam-

ple of a class of weakly supervised problems satisfying

the shared embedding assumption and central condition

are those where weak and strong labels share a common
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latent embedding Z, and Y is a logistic model on Z. In

detail let Z = g0(X) be an arbitrary embedding of in-

put X, and let W be a deterministic function of Z. Sup-

pose also that Y = σ(A∗Z) = f ∗(Z) for some matrix

A∗, where σ denotes the Softmax function. Then, as ob-

served by Foster et al. (2018), the learning problem (ℓ, P,F )
is Vovk mixable, and hence the central condition holds

(van Erven et al., 2015), where ℓ is the logistic loss, and

F = {Z 7→ σ(AZ) : A ∈ R
|Y|×s} .

It is important to note that if one knows that a problem

(ℓ, P,F ) on U := X × Z × Y satisfies the central con-

dition, then it is not a priori clear if one can construct a

hypothesis set F̃ ⊆ {X → Y} such that (ℓ, PX,Y, F̃ ) satis-

fies the central condition. In the standard supervised setting

with samples only from PX,Y this is likely impossible in

general. This is because in the later case the feature Z is

no longer an input to the model and so potentially valuable

predictive features are lost. However, one perspective on

the analysis in this section is that we show that with the

added support of samples from PX,W , the hypothesis class

F̃ = { f (·, ĝ(·)) : f ∈ F}, where ĝ(X) is learned using

the weak labeled samples, does indeed satisfy the central

condition with a slightly larger ε.

The central condition and related literature. The cen-

tral condition unifies many well-studied conditions known

to imply fast rates (van Erven et al., 2015), including Vap-

nik and Chervonenkis’ original condition, that there is an

f ∗ ∈ F with zero risk (Vapnik & Chervonenkis, 1971;

1974). The popular strong-convexity condition (Kakade &

Tewari, 2009; Lecué et al., 2014) is also a special case, as

is (stochastic) exponential concavity, which is satisfied by

density estimation: where F are probability densities, and

ℓ f (u) = − log f (u) is the logarithmic loss (Audibert et al.,

2009; Juditsky et al., 2008; Dalalyan et al., 2012). Another

example is Vovk mixability (Vovk, 1990; 1998), which holds

for online logistic regression (Foster et al., 2018), and also

holds for uniformly bounded functions with the square loss.

A modified version of the central condition also generalizes

the Bernstein condition and Tsybakov’s margin condition

(Bartlett & Mendelson, 2006; Tsybakov et al., 2004).

As noted earlier, Z is not observable at train or test time, so

we cannot simply treat the problem as a single supervised

learning problem. Therefore, obtaining fast or intermediate

rates is a nontrivial challenge. We approach this challenge

by splitting the learning procedure into two supervised tasks

(Algorithm 1). In its second step, Algorithm 1 replaces

(ℓ, P,F ) with (ℓ, P̂,F ). Our strategy to obtain generaliza-

tion bounds is first to guarantee that (ℓ, P̂,F ) satisfies the

weak central condition, and then to show that the weak cen-

tral condition implies the desired generalization guarantees.

The rest of this section develops the theoretical machinery

needed for obtaining our bounds. We summarize the key

steps of our argument below.

1. Decompose the excess risk into two components: the

excess risk of the weak predictor and the excess risk

on the learning problem (ℓ, P̂,F ) (Proposition 6).

2. Show that the learning problem (ℓ, P̂,F ) satisfies a

relaxed version of the central condition - the “weak

central condition” (Propositions 7 and 8).

3. Show that the ε-weak central condition yields excess

risk bounds that improve as ε decreases (Prop. 9).

4. Combine all previous results to obtain generalization

bounds for Algorithm 1 (Theorem 10).

3.2. Generalization Bounds for Weakly Supervised

Learning

The first item on the agenda is Proposition 6 which ob-

tains a generic bound on the excess risk in terms of

Ratem(G, PX,W) and Raten(F , P̂).

Proposition 6 (Excess risk decomposition). Suppose that

f ∗ is L-Lipschitz relative to G. Then the excess risk

E[ℓĥ(X, Y)− ℓh∗(X, Y)] is bounded by,

2LRatem(G, PX,W) + Raten(F , P̂).

The first term corresponds to excess risk on the weak task,

which we expect to be small since that environment is data-

rich. Hence, the problem of obtaining excess risk bounds

reduces to bounding the second term, Raten(F , P̂). This

second term is much more opaque; we spend the rest of the

section primarily analyzing it.

We now prove that if (ℓ, P,F ) satisfies the ε-weak central

condition, then the artificial learning problem (ℓ, P̂,F ) ob-

tained by replacing the true population distribution P with

the estimate P̂ satisfies a slightly weaker central condition.

We consider the categorical and continuous W-space cases

separately, obtaining an improved rate in the categorical

case. In both cases, the proximity of this weaker central

condition to the ε-weak central condition is governed by

Ratem(G, PX,W), but the dependencies are different.

Proposition 7 (Categorical weak label). Suppose that

ℓweak(w, w′) = 1{w 6= w′} and that ℓ is bounded by

B > 0, F is Lipschitz relative to G, and that (ℓ, P,F )
satisfies the ε-weak central condition. Then (ℓ, P̂,F ) satis-

fies the ε +O
(

eBRatem(G, PX,W)
)

-weak central condition

with probability at least 1 − δ.

Next, we consider the norm induced loss. In this case it is

also possible to obtain obtain the weak central condition for

the artificially augmented problem (ℓ, P̂,F ).
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Proposition 8 (Continuous weak label). Suppose that

ℓweak(w, w′) =
∥∥w − w′∥∥ and that ℓ is bounded by B > 0,

F is L-Lipschitz relative to G, and that (ℓ, P,F ) satis-

fies the ε-weak central condition. Then (ℓ, P̂,F ) satisfies

the ε+O
(√

LeBRatem(G, PX,W)
)

-weak central condition

with probability at least 1 − δ.

For both propositions, a slight modification of the proofs

easily eliminates the eB term when Ratem(G, PX,W) ≤
O(e−B). Since we typically consider the regime where

Ratem(G, PX,W) is close to zero, Propositions 7 and 8 es-

sentially say that replacing P by P̂ only increases the weak

central condition parameter slightly.

The next, and final, step in our argument is to obtain a gener-

alization bound for ERM under the ε-weak central condition.

Once we have this bound, one can obtain good generaliza-

tion bounds for the learning problem (ℓ, P̂,F ) since the pre-

vious two propositions guarantee that it satisfies the weak

central condition from some small ε. Combining this ob-

servation with the results from the previous section finally

allows us to obtain generalization bounds on Algorithm 1

when Raten(F , P̂) is ERM.

For this final step, we assume that our strong predictor class

F is parameterized by a vector in R
d, and identify each f

with this parameter vector. We also assume that the param-

eters live in an L2 ball of radius R. By Lagrangian duality

this is equivalent to our learning algorithm being ERM with

L2-regularization for some regularization parameter.

Proposition 9. Suppose (ℓ, Q,F ) satisfies the ε-weak cen-

tral condition, ℓ is bounded by B > 0, each F is L′-
Lipschitz in its parameters in the ℓ2 norm, F is con-

tained in the Euclidean ball of radius R, and Y is com-

pact. Then when Algn(F , Q) is ERM, the excess risk

EQ[ℓ f̂ (U)− ℓ f ∗(U)] is bounded by,

O
(

V
d log(RL′/ε) + log(1/δ)

n
+ Vε

)
,

with probability at least 1 − δ, where V = B + ε.

Any parameterized class of functions that is continuously

differentiable in its parameters satisfies the L′-Lipschitz

requirement since we assume the parameters live in a closed

ball of radius R. The Y compactness assumption can be

dropped in the case where y 7→ ℓ(y, ·) is Lipschitz.

Observe that the bound in Proposition 9 depends linearly

on d, the number of parameters of F . Since we consider

the regime where n is small, the user might use only a

small model (e.g., a shallow network) to parameterize F ,

so d may not be too large. On the other hand, the bound is

independent of the complexity of G . This is important since

the user may want to use a powerful model class for g to

profit from the bountiful amounts of weak labels.

Proposition 9 gives a generalization bound for any learning

problem (ℓ, Q,F ) satisfying the weak central condition,

and may therefore be of interest in the theory of fast rates

more broadly. For our purposes, however, we shall apply

it only to the particular learning problem (ℓ, P̂,F ). In this

case, the ε shall depend on Ratem(G, PX,W), yielding strong

generalization bounds when ĝ has low excess risk.

Combining Proposition 9 with both of the two previous

propositions yields fast rates guarantees (Theorem 10) for

the double estimation algorithm (Algorithm 1) for ERM.

The final bound depends on the rate of learning for the weak

task, and on the quantity of weak data available m.

Theorem 10 (Main result). Suppose the assumptions of

Proposition 9 hold, (ℓ, P,F ) satisfies the central condi-

tion, and that Ratem(G, PX,W) = O(m−α). Then, when

Algn(F , P̂) is ERM we obtain excess risk EP[ℓĥ(X, Y)−
ℓh∗(X, Y)] that is bounded by,

O
(dαβ log RL′n + log 1

δ

n
+

L

nαβ

)
,

with probability at least 1 − δ, if either of the following

conditions hold,

1. m = Ω(nβ) and ℓweak(w, w′) = 1{w 6= w′} (dis-

crete W-space).

2. m = Ω(n2β) and ℓweak(w, w′) =
∥∥w − w′∥∥ (contin-

uous W-space).

To reduce clutter we absorb the dependence on B into the

big-O. The key quantities governing the ultimate learning

rate are α, the learning rate on the weak task, and β, which

determines the amount of weak labels relative to strong.

4. Experiments

We experimentally study two types of weak labels: noisy,

and coarse. We study two cases: when the amount of weak

data grows linearly with the amount of strong data, and

when the amount of weak data grows quadratically with

the amount of strong data (plus a baseline). Note that in

a log-log plot the negative of the gradient is the learning

rate γ such that excess risk is O(n−γ). All image-based

experiments use either a ResNet-18 or ResNet-34 for the

weak feature map g (see Appendix C for full details).

4.1. Noisy Labels

We simulate a noisy labeler who makes labelling mistakes

in a data dependent way (as opposed to independent random

noise) by training an auxiliary deep network on a held out

dataset to classify at a certain accuracy - for our CIFAR-10
experiments we train to 90% accuracy. This is intended

to mimic human annotators working on a crowd sourcing

platform. The predictions of the auxiliary network are used
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