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Abstract

When machine learning models are deployed on a
test distribution different from the training distri-
bution, they can perform poorly, but overestimate
their performance. In this work, we aim to better
estimate a model’s performance under distribu-
tion shift, without supervision. To do so, we use a
set of domain-invariant predictors as a proxy for
the unknown, true target labels. Since the error of
the resulting risk estimate depends on the target
risk of the proxy model, we study generalization
of domain-invariant representations and show that
the complexity of the latent representation has
a significant influence on the target risk. Em-
pirically, our approach (1) enables self-tuning of
domain adaptation models, and (2) accurately es-
timates the target error of given models under dis-
tribution shift. Other applications include model
selection, deciding early stopping and error detec-
tion.

1. Introduction

In many applications, machine learning models are deployed
on data whose distribution is different from that of the train-
ing data. For instance, self-driving cars must be able to
adapt to different weather, change of landscape or traffic,
i.e., conditions can change at prediction time. But often,
collecting large-scale supervised data on the shifted predic-
tion domain is prohibitively expensive or impossible. While
we may hope that the model generalizes to this new data
distribution, estimating empirically how well a given model
will actually generalize is challenging without labels.

Indeed, estimating the adaptability, i.e., the generalization
to the target distribution, and the related potentially uncer-
tain behavior of a prediction model, is a key concern for
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Al Safety (Amodei et al., 2016), motivating recent work on
estimating target performance (Steinhardt & Liang, 2016;
Platanios et al., 2014).

In this work, we develop a new idea for estimating perfor-
mance under distribution shift, by drawing connections with
domain adaptation. Necessarily, any method for estimat-
ing target performance must make some assumptions. Our
method assumes the existence of a domain adaptation model
that generalizes well from source (training) to target (test).
Given the empirical success of domain adaptation, this as-
sumption is met in many practical settings. A prominent
class of domain adaptation models, domain-invariant repre-
sentations (DIR) (Ben-David et al., 2007; Long et al., 2015;
Ganin et al., 2016), learns a latent, joint representation of
source and target data, and a predictor from the latent space
to the output labels. In particular, we use a set of “check”
DIR models as a proxy for the unknown, true target labels.
If there exist “good” domain adaptation models, i.e., they
achieve low source and presumably low target error, and
those models disagree with the model & we want to evaluate,
then the target risk of h is potentially high, and we should
not trust it. Our experiments show that this leads to accurate
estimates of target error that outperform previous methods.

This idea relies on good domain adaptation models, i.e., our
check models should predict well on the target distribution,
and not disagree too much with each other. But, evaluating
a domain adaptation model itself on the target distribution
is an unsolved problem. Hence, we begin by studying the
target error of DIR. We observe that in general, DIR is much
more sensitive to model complexity than supervised learning
on the source distribution. In particular, the complexity of
the representation encoder is key for target generalization
and for selecting the set of check models, and points to
an important model selection problem. For deep neural
networks, this model selection problem essentially means
how to optimally divide the network into an encoder and
predictor part. Yet, this model selection ideally demands an
estimate of target generalization, which we are developing.

We show that, with our framework for estimating target
error, it is possible to let DIR models self-tune to find the
optimal model complexity. The resulting models achieve
good target generalization, and estimate target error of other
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models well. Our approach applies to estimating the target
error of a single or a class of models, and to predicting
point-wise error. Hence, it can be used, e.g., for judging
reliability and for model selection. Empirically, we examine
our theory and algorithms on sentiment analysis (Amazon
review dataset), digit classification (MNIST, MNIST-M,
SVHN) and general object classification (Office-31). In
short, this work makes the following contributions:

* We develop a generic method for estimating the error
of a given model on a new data distribution.

* We show, theoretically and empirically, the important
role of embedding complexity for domain-invariant
representations.

* Qur empirical results reflect our analyses and show that
the proposed methods work well in practice.

2. Related Work

Estimating risk with distribution shifts. FEstimating
model risk on distributions different from the training distri-
bution is important, but difficult with unlabeled data. Pla-
tanios et al. (2014) construct multiple models based on dif-
ferent views of the data and estimate the risk by calculating
agreement rates across models. Steinhardt & Liang (2016)
estimate the model’s error on distributions very different
from the training distribution by assuming a conditional
independence structure of the data. Platanios et al. (2017)
use logical constraints on the data to estimate classifica-
tion accuracy. Recently, Elsahar & Gallé (2019) evaluate
both confidence score and HAH-divergence to predict per-
formance drop under domain shift. We compare to those
methods in the experiments. Different from previous works,
we leverage domain-invariant classifiers as proxy target la-
bels. Our method is general in the sense that it can predict
the target risk for both domain adaptation and general super-
vised models.

Domain-invariant representations. DIRs are learned by
minimizing a divergence between the embedding of source
and target data, and existing approaches for learning DIRs
differ in the divergence measure they use. Examples include
domain adversarial learning (Ganin & Lempitsky, 2015;
Tzeng et al., 2015; Ganin et al., 2016), maximum mean
discrepancy (MMD) (Long et al., 2014; 2015; 2016) and
Wasserstein distance (Courty et al., 2016; 2017; Shen et al.,
2018; Lee & Raginsky, 2018).

Several theoretical frameworks have been proposed to ana-
lyze domain-invariant representations. One approach is to
bound the target risk by assuming source and target domain
share common support. Wu et al. (2019) show that exact
matching of source and target distributions can increase tar-
get risk if label distributions differ between source and target.
Johansson et al. (2019) propose generalization bounds based

on the overlap of the supports of source and target distribu-
tion. However, the assumption of common support fails in
most standard benchmarks for domain adaptation. Another
line of work leverages the H A7 -divergence proposed by
Ben-David et al. (2007). Shu et al. (2018) points out that
learning domain-invariant representations with disjoint sup-
ports can still achieve maximal HA?H-divergence. Recently,
Zhao et al. (2019) establish lower and upper bounds on
the risk when label distributions between source and target
domains differ.

3. Unsupervised Domain Adaptation

For simplicity of exposition, we consider binary classifica-
tion with input space X C R™ and output space Y = {0, 1}.
The learning algorithm obtains two datasets: labeled source
data Xg from distribution pg, and unlabeled target data X1
from distribution pr. We will use pg and pr to denote the
joint distribution on data and labels X, Y and the marginals,
i.e., ps(X) and pg(Y'). Unsupervised domain adaptation
seeks a hypothesis h : X — ) in a hypothesis class H that
minimizes the risk in the target domain measured by a loss
function ¢ (here, zero-one loss):

Rr(h) = Ezy~pr [(h(x),y)]- (1

We do not assume common support in source and target
domain.

3.1. Domain-invariant Representations

A common approach to domain adaptation is to learn a joint
embedding g : X — Z of source and target data (Ganin
et al., 2016; Tzeng et al., 2017). The idea is that aligning
source and target distributions in a latent space Z results in
a domain-invariant representation, and hence a subsequent
classifier f : Z — ) will generalize from source to target.
Formally, this results in the following objective function
on the hypothesis h = fg := f o g, where we minimize
a divergence d between the distributions p%(Z), p%.(Z) of
source and target after the mapping Z = g(X) € Z:

ferfflgleg Rs(fg) + ad(p¥(2), p7(2)). (2)

The divergence d could be, e.g., the Jensen-Shannon (Ganin
et al., 2016) or Wasserstein distance (Shen et al., 2018).
In this paper, we denote the hypothesis class of the entire
model & as H, the class of embeddings by G, and the class
of predictors by F.

3.2. Upper Bounds on the Target Risk

Ben-David et al. (2007) introduced the HA?H-divergence
to bound the worst-case loss from extrapolating between
domains. Let Rp(h,h') = Epp[l(h(z),h'(x))] be the
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expected disagreement between two hypotheses and an ex-
tension of the notation Rp(h) = Rp(h, hyue ), Where Agye
are the true labels. The HAH-divergence measures whether
there is any pair of hypotheses whose disagreement (risk)
differs a lot between source and target distribution.

Definition 1. (HA#H-divergence) Given two domain distri-
butions ps and pr over X, and a hypothesis class H, the
HAH-divergence between ps and pr is

duan(ps.pr) = sup |Rs(h,h') — Rp(h,h)].
hoh/EH

The HAH-divergence is determined by the discrepancy
between source and target distribution and the complexity
of the hypothesis class H. This divergence allows us to
bound the target risk:

Theorem 2. (Ben-David et al., 2010) For all hypotheses
h € H, the target risk is bounded as

Rr(h) < Rs(h) + dyawn(ps,pr) + A, (3)
where Ay is the best joint risk

Ay = hi/Iég{[RS(h/) + Rr(h')].

Similar results exist for continuous labels (Cortes & Mohri,
2011; Mansour et al., 2009). Theorem 2 has been an influ-
ential theoretical result in domain adaptation, and motivated
work on domain invariant representations. For example,
recent work (Ganin et al. (2016); Johansson et al. (2019))
applied Theorem 2 to the hypothesis class F that maps
the representation space Z induced by an encoder g to the
output space:

Rr(fg) < Rs(fg) + drar(pé(2),p5(Z)) + Xx(9)
4)

where Arx(g) is the best hypothesis risk with fixed g, i.e.,
Ar(g) = inf e r[Rs(f'g) + Rr(f’g)]. The FAF diver-
gence implicitly depends on the fixed g and can be small if
g provides a suitable representation. However, if g induces
a wrong alignment, then the best hypothesis risk Az (g) is
large with any function class F.

4. Estimating Target Risk: Main Idea

Our goal is to estimate the error of a given, learned
model h on a target distribution pr, without observing
true labels on the target. Let hyye be the true labeling,
and h* = arginfpep Rp(h). By the triangle inequality,
RT(h) = RT(h, htrue) < RT(h, h*) + RT(h*) The main
idea underlying our approach is to obtain an upper bound on
Rr(h) by replacing h* with candidates from a set of proxy
models P that we also call check models.

h .‘,,c-""

Figure 1. Conceptual illustration of proxy risk: the orange line
is the true target risk, the dashed lines are the proxy risks with
respect to two sets of check models, P; and P2 where P; C Pa.
By construction, although Ay € P2 (zero bias), the proxy risk
calculated with P- is not tight enough to approximate the target
risk well. In contrast, P; has a nonzero bias (yellow line) but
tighter estimation.

Lemma 3. Given a hypothesis class P, for all h € H,

Rr(h) < sup Ryp(h, 1) + inf Re(R').  (5)
e

h'eP
—_——
Proxy Risk Bias

We prove all theoretical results in the Appendix A. The
first term in Lemma 3 measures the maximal disagreement
(risk) between the hypothesis h and a check model b’ € P,
instead of A*. The second term measures how good the
check models are. For this bound to be tight, P must contain
a good hypothesis. At the same time, P should not contain
any unnecessarily disagreeing hypotheses, otherwise the
proxy risk will be too large. Figure 1 provide an illustrative
example of the idea.

Connection to Domain Adaptation The proxy risk can
be estimated empirically. If the bias term is small, namely,
there exists a good hypothesis in the check models, then the
proxy risk itself is a good estimate of an upper bound on
Rr(h). It remains to determine the set P.

Lemma 4. Given a hypothesis class P, for all h € H,

| sup Rp(h,h') — Rr(h)| < sup Rp(h').  (6)
h'eP h'eP

Estimation Error

Lemma 4 links our approach with domain adaptation: the
target risk of the check models affects the error of estimating
risk via the proxy risk. This motivates domain adaptation
models as check models, because they are designed to min-
imize the target risk. In Section 7, where we develop this
idea in detail, P is the set of all DIR models that have low
DIR objective. To understand the tightness of our proxy
risk-based estimation, we begin with a closer look at what
affects the target risk of domain invariant representations.
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Figure 2. Illustrative example in 2D. The 1D representation space
is illustrated as a dotted line, and arrows indicate the embedding
from 2D to 1D. (a) Optimal embedding when G is the class of
linear functions. (b) Optimal embedding with a complex nonlinear
encoder class.

5. Understanding the Adaptability of DIR

In this section, we aim to better understand what affects
target risk and ambiguity on the target for domain invariant
representations. The bound (4) highlights the effect of the
complexity of the prediction models F, and of the quality
of the alignment via the embedding g. But, as the following
toy example illustrates, another important component is the
complexity of the embedding class G.

Toy Example. Figure 2 shows a binary classification prob-
lem in 2D with disjoint support and a slight shift in the label
distributions from source to target: ps(y = 1) = pr(y =
1) 4 2¢. For a 1D latent representation space, if we allow
arbitrary maps g € G, then, e.g., a complicated nonlinear
map as in Figure 2(b) can achieve zero DIR objective value
(equation (2)), but maximum target risk Rp(fg) = 1. If
we restrict G to linear maps, then a map g as in Figure 2(a)
achieves optimal DIR objective value of 2¢, and minimum
target risk. Hence, a too powerful embedding class G can
increase ambiguity, variance and hence target risk.

Empirical Effect of Complexity. In the experiments in
Section 5.2, e.g., in Figure 4, we observe that throughout,
the complexity of G has a noticeable effect on the target
risk. In contrast, in analogous experiments for the predictor
f shown in Figure 3(a), the predictor class F has a much
weaker influence. Likewise, Figure 3(b) demonstrates that
generalization on the source domain, i.e., “normal” general-
ization of supervised learning, is also much less affected by
the model complexity. In summary, empirically, the adapt-
ability of domain-invariant representations is more sensitive
to model complexity than supervised learning, and in gen-
eral most sensitive to the complexity of the embedding class
G. Hence, we focus on embedding complexity.
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Figure 3. (a) Effect of predictor complexity on target generalization
for MNIST—MNIST-M and (b) effect of embedding complexity
on source (MNIST) generalization.

5.1. Bounds for Domain-invariant Representations

Motivated by the above observations, we next expose how
the bound on the target risk depends on the complexity of
the embedding class. Directly applying Theorem 2 to the
composition H = FG treats both jointly and does not make
the role of the embedding very explicit. Instead, we define
a version of the H A7 -divergence that explicitly measures
variation of the embeddings in G:

Definition 5. (Fgag-divergence) For two domain distribu-
tions ps and pr over X, an encoder class G, and predictor
class F, the Fgag-divergence between pg and pr is

d}-gAg(pS7pT) = sup |Rs(fg/fg/) 7RT(fgafg/)|

fE€F; 9,9'€G

Importantly, the Fgag-divergence is smaller than the
(FG)A(FG)-divergence, since the two hypotheses in the
supremum, fg and fg¢’, share the same predictor f.

Theorem 6. Forall f € F and g € G,

Rr(fg) < Rs(fg) + drar(pé&(Z2),p7(2))

Latent Divergence
+ drgag(Ps:pr) +AF0(9).- (D
D ——

Embedding Complexity

where Axg(g) is a variant of the best in-class joint risk:

. / ! ! ! !
Arg(g) = O 2Rs(f'9) + Rs(f'9") + Rr(f'g").
This target generalization bound is small if (C1) the source
risk is small, (C2) the latent divergence is small, because the
domains are well-aligned and/or F is restricted, (C3) the
complexity of G is restricted to avoid overfitting of align-
ments, and (C4) good source and target risk is in general
achievable with F and G and the encoder is good for the
source domain. The bound naturally explains the tradeoff
we observe in the subsequent experiments between the fol-
lowing terms: the latent divergence (which increases with
complexity of F and decreases with complexity of §), em-
bedding complexity (which increases with complexity of
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Figure 4. Effect of embedding complexity on target risk. First row:
Sentiment Classification. Second row: Object Classification.

F and G), and the best in-class joint risk (which decreases
with complexity of F and G). Overly expressive encoders
suffer from a larger embedding complexity penalty, while
smaller encoders fail to minimize the latent divergence.

5.2. Experiments

Next, we probe the effect of embedding complexity empir-
ically, via experiments with several standard benchmarks:
sentiment analysis (Amazon reviews dataset), digit classifi-
cation (MNIST, MNIST-M, SVHN) and general object clas-
sification (Office-31). In all experiments, we train DANN
(Ganin et al., 2016), which measures the latent divergence
via a domain discriminator (Jensen Shannon divergence). A
validation set from the source domain is used as an early
stopping criterion during learning. In all experiments, we
use a progressive training strategy for the discriminator
(Ganin et al., 2016). We primarily consider two types of
complexity: number of layers and number of hidden neu-
rons. In all embedding complexity experiments, we retrain
each model for 5 times and plot the mean and standard de-
viation of the target error. Dataset and architecture details
may be found in the appendix.

Sentiment Classification. We first examine complexity
tradeoffs on the Amazon reviews data, which has four do-
mains: books (B), DVD disks (D), electronics (E), and
kitchen appliances (K). The hypothesis class are multi-layer
ReLU networks. We show results for K—B, and D—B in
Figure 4 and defer the rest to the appendix. To probe the
effect of embedding complexity, we fix the predictor class
to 4 layers and vary the number of layers of the embedding.
Figure 4 shows that the target error decreases initially, and
then increases as more layers are added to the encoder.
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Figure 5. Effect of embedding complexity on target risk for digit
classification.

Object Classification. Office-31 (Saenko et al., 2010),
one of the most widely used benchmarks in domain adap-
tation, contains three domains: Amazon (A), Webcam (W),
and DSLR (D) with 4,652 images and 31 categories. We
show results for A—W, A—D in Figure 4, and the rest in the
Appendix B. To overcome the lack of training data, similar
to (Li et al., 2018; Long et al., 2018), we use ResNet-50
(He et al., 2016) pretrained on ImageNet (Deng et al., 2009)
for feature extraction. With the extracted features, we adopt
multi-layer ReLU networks as hypothesis class. Again, we
increase the depth of the encoder while fixing the depth of
the predictor to 2. Even with a powerful feature extractor,
the embedding complexity tradeoff still exists.

Digit Classification. We next verify our findings on stan-
dard domain adaptation benchmarks: MNIST—MNIST-M
(M—M-M) and SVHN—MNIST (S—M). We use standard
CNNs as the hypothesis class.

To analyze the effect of the embedding complexity, we
augment the original two-layer CNN encoders with 1 to 6
additional CNN layers for M—M-M and 1 to 24 for S—M,
leaving other settings unchanged. Figure 5(a) shows the
results. Again, the target error decreases initially and in-
crease as the encoder becomes more complex. Notably, the
target error increases by 19.8% in M—M-M and 8.8% in
S—M compared to the optimal case, when more layers are
added to the encoder. We also consider the width of hidden
layers as a complexity measure, while fixing the depth of
both encoder and predictor. The results are shown in Figure
5(b). This time, the decrease in target error is not signifi-
cant compared to increasing encoder depth. This suggests
that depth plays a more important role than width in learn-
ing domain-invariant representations. In the appendix, we
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also investigate the importance of inductive bias and for
domain-invariant representations.

6. Division for Multilayer Neural Networks

Next, we adapt the bound in Theorem 6 to multilayer net-
works. Specifically, we consider the number of layers as a
measure of complexity. Assume H is the class of N-layer
feedforward neural networks with a fixed width. The model
h € H can be decomposed as h = f;g; € F;G; = H for
i€{1,2,..., N — 1}, where the embedding g; is formed
by the first layer to the i-th layer and the predictor f; is
formed by the (¢ 4 1)-th layer to the last layer. We can then
rewrite the bound in Theorem 6 in layer-specific form:

Rr(h) <Rs(h) + dr,aF, (0% (2), p7(2))

Latent Divergence in i-th layer

+ d]‘—ig,iAgi (p57pT) +)‘-7'-7‘,g7‘, (gl) (8)

N——
Embedding Complexity w.r.t G;

Minimizing the domain-invariant loss in different layers
leads to different tradeoffs between fit and complexity penal-
ties. This is reflected by the following inequalities that relate
different layer divisions.

Proposition 7. In an N-layer feedforward neural network
h = f;9; € F;G; = H, the following inequalities hold for
alli <j<N-—-1:

d]:igiAgi (ps,pr) < dfjnggj (ps,pr)

dfiAfi (p% (Z):p;l]"i (Z)) > d]:jA]:j (p?(z)’pg“] (Z))

Proposition 7 states that a deeper embedding allows for bet-
ter alignments and simultaneously reduces the depth (power)
of F; both reduce the latent divergence. At the same time, it
incurs a larger Fgag-divergence. This is a tradeoff within
the fixed combined hypothesis class .

This suggests that there might be an optimal division that
minimizes the bound on the target risk. In practice, this
translates into the question: in which intermediate layer
should we optimize the domain-invariant loss?

6.1. Experiments

Next, we examine the embedding complexity tradeoff when
the total number of layers is fixed, with the setup of Section
5.2. We first probe the tradeoff when the total number of
layers is fixed to 8 for sentiment classification. The results
in Figure 6 suggest that there exists an optimal setting for
all tasks. Next, we fix the total number of CNN layers of the
neural network to 7 and 26 for M—M-M and S—M, respec-
tively, and optimize the domain-invariant loss in different
intermediate layers. The results again show a “U-curve”,
indicating the existence of an optimal division. Even with
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Figure 6. The effect of layer division in fixed-depth neural net-
works. First row: Sentiment Classification; Second row: Digit
Classification; Third row: Object Classification.

this fixed total size of the network (#), the performance
gap between different divisions can still reach 19.5% in
M—M-M and 10.4% in S—M. Similar results can be seen
in object classification with fixed total network depth 14.
More experimental results may be found in the appendix.

In summary, empirically, there is an optimal division with
minimum target error, suggesting that for a fixed H, i.e.,
total network depth, not all divisions are equal. We will pro-
vide methods to predict the optimal division in Section 8.1.

7. Estimating Target Risk

Upper bounds such as the ones in Sections 3 and 5 are useful
for theoretical insights and intuition about effects, but hard
to compute explicitly. Here, we return to the idea in Sec-
tion 4 to estimate the target risk of a given model by using
a selected set P of check models as proxies. In particular,
given the bound in Lemma 3, we use supy,cp Rr(h,h')
as an estimate of the target risk. Our approach works well
if infy ep Rr(R') is small, i.e., if there is a good target
prediction model in P.

We define the set P of check models to be all domain-
invariant classifiers that achieve low DIR objective value,
i.e., they achieve low source risk and align the source and
target distributions well:

Prg = {h = fg € FG|Rs(h) + ad(p(Z),p7(2)) < €}
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Hence, we implicitly assume that there exists some DIR
model that achieves low target risk.

7.1. Connection to Embedding Complexity

How good is the resulting proxy risk as an estimate of the
target risk of h? Lemma 4 states that the target risk of the
check models gives an upper bound on the estimation error:

| sup Rr(h,h') — Ry (h)| <
WePs,

sup Rr(R'). (9)
W ePs,

Recall that the set P%g comprises all DIR models that
achieve low DIR objective value. If sup,cpe Ry (') is
large, then the DIR objective is not sufficiently determining
to identify a good target classifier, and generalization to the
target is impossible. The results in Section 5 suggest that
the embedding complexity of the DIR check models plays
an important role for target generalization. To minimize the
estimation error, we should select a class of DIR models
with suitable embedding complexity, i.e., one with an opti-
mal division. As we will show in Section 8.1, it is possible
to also use our ideas to let DIR models self-tune, to find the
optimal embedding complexity.

7.2. Computing the Target Risk Estimator

To approximate the proxy risk supy,cp: _ Rr(h,h'), we
aim to maximize the disagreement under model constraints:

Rr(h, f'q 10
e r(h, f'9') (10)

st Rs(f'g') + ad(p (2),p%(Z)) <e (1)

Computationally, it is more convenient to replace the con-
straint with a penalty via Lagrangian relaxation:

max Rr(h, f'g') = MRs(f'g') + ad(p% (2),p7(2))
f'9'€FG
where A\ > 0. We use empirical estimates for Ry, Rg, and
minimize the empirical objective via standard stochastic
gradient descent.

Algorithm 1 provides details about approximating the proxy
risk!. In brief, we first pretrain o’ = f’¢’, and then maxi-
mize the disagreement with h under constraints. Empirically
we maximize the disagreement on the training set and check
the constrains Rg(f'g’) + ad(p%/ (Z),p?p/ (Z)) < e with the
validation set.

8. Experiments

‘We evaluate our method on two broad tasks: model selection
for DIR models and estimating target risk of any given

'The code is available at https://github.com/
chingyaoc/estimating-generalization.

Algorithm 1 Computing Proxy Risk

Require: Target hypothesis h; Check model class H =
FG; Sg and St: labeled source dataset and unlabeled
target dataset; a, A, e: tradeoff parameters; 77: Epochs
for training domain-invariant classifier; T5: Epochs for
maximizing the disagreement.

> Pretrain check model h'

Initialize ' = f'¢g’ € FG

Train A’ for T; epochs to minimize Rg(h') +
ad(p$ (2),p7(Z))

> Maximize the disagreement
Initialize MaxRisk = 0
fori=1,...,7T> do
Train h’ for one epoch to minimize —Rp(h,h') +
ARs(f'9') + ad(p (2), p (7))
if Rs(f'g") + ad(pg (2),p7(Z) < € and Ry (h, ')
> MaxRisk then
Set MaxRisk = Ry (h,h’)
end if
end for
return MaxRisk

model. Throughout, the experimental settings and the model
architectures are the same as in Section 6.1.

8.1. Model Selection for DIR

Estimating Optimal Network Division We begin with
estimating the optimal layer division of a DIR model into en-
coder and predictor that minimizes target risk. By Lemma 4,
this will yield a good class of check models. To estimate the
DIR models’ target risk, we follow the same strategy as in
Section 4, but for a class of models: the worst target error
for division ¢ can be bounded with a second level of proxy
classifiers:

sup Rr(h) < sup Rp(h,h)+ inf Rp(R).
hep;igi hEP.EFiQi h/ep;:g
h'ePe

Flg!

Worst In-class Proxy Risk

We select the division that minimizes the worst in-class
proxy risk.

Computationally, we adopt the approach from Section 7.2 to
approximate the worst in-class proxy risks. Figure 7 shows
the true target test error for a DIR model, computed with
labels (blue line), for different divisions, compared to our
in-class proxy risk estimates. The different lines correspond
to different second-level check models. The results suggest
that (1) we can accurately estimate the best layer division
without supervision, and (2) this self-tuning strategy is ro-
bust to the choice of second-level check models.
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Figure 7. Estimating optimal network division via in-class proxy
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Figure 8. Estimating stopping criteria: Target risk, source risk, and
the proxy risk across training procedures.

Estimating Stopping Criteria Without access to target
labels, it is nontrivial to determine when to perform early
stopping for DIR (Prechelt, 1998). Previous works lever-
age source error or self-labeled validation sets (Ganin &
Lempitsky, 2015) to serve as stopping criterion. Figure 8
shows the target error along with the source error and proxy
error during the training of DANNSs. The check model has
the same architecture as the candidate model and the pre-
dictions are approximated with optimal division. In both
experiments, proxy risks are well aligned with target errors.
Notably, the proxy risk is almost the same as the target risk
in MNIST—MNIST-M. These results suggest that proxy
risk is a good criterion for early stopping.

8.2. Estimating Performance Drop of Supervised
Learning under Domain Shift

In this section, we aim to estimate the target risk of non-
adaptive models that are trained only on the source, i.e.,
standard supervised learning. We compare our method with
(1) Ben-David et al. (2010)’s bound (Bound (53)) and (2)
a method based on confidence scores (Elsahar & Gallé,
2019). For the first approach, we approximate the bound
(53) by estimating Rg(h) + dyawn (ps, pr) with H = {h €
H|Rg(h) < €}, via an approach similar to that in Section
7.2 (details are in the appendix). For the second approach,
let g, () be the probability score (i.e., the max value of the
softmax output) of hypothesis h for z € X'. Elsahar & Gallé

| Method | Ours (Standard) | Ben-David et al. | Conf Score |

[ Metwic | Exr [ PCC | EBrr | PCC [ Err | PCC |
SL-Digit 0.073 | 0.880 | 0.450 | 0.585 | 0.406 | 0.103
SL-Object | 0.034 | 0.995 | 0.281 | 0.945 | 0.106 | 0.551
DIR-Digit | 0.043 | 0.957 | 0.124 | 0.693 | 0.242 | 0.273
DIR-Object | 0.021 | 0.986 | 0.114 | 0.932 | 0.083 | 0.459

Table 1. Estimating the target risk. We show the average error
(lower is better) and Pearson correlation coefficient (higher is
better) on different tasks. We estimate the target risk for supervised
learning models (SL) and adaptive models (DIR).

(2019) compute confidence scores as the drop in average
probability scores:

CONFs 1(h) = Eonps [qn(2)] = Exnprgn ()] (12)

The target risk is then predicted by Rg(h) + CONFg 1 (h).
We examine the methods on object classification, which
contains 6 source/target pairs and digit classification, which
has 12 source/target pairs after adding USPS. The architec-
tures are fixed for the same task. To estimate risks on the
new distribution, we consider domain-invariant classifiers
with different divisions as check models. The encoder in
the “standard” and “complex” check models have 4/6 and
6/12 layers, respectively, for digit/object classification. The
check models and supervised prediction models share the
same architecture.

The results in Figure 9 (left) show that our methods consis-
tently provide much better predictions than the baselines.
With a complex encoder in the check model, we slightly
overestimate the target risk, aligned with our theory: check
models with properly controlled embedding complexity re-
sult in better prediction. Ben-David et al. (2010)’s bound
tends to overestimate the target risk, suggesting that the
‘HA?H-divergence is too pessimistic for empirical estima-
tion. In contrast, the confidence score approach largely
underestimates the target risk. Table 1 shows the quantita-
tive results (SL-Digit and SL-Object): the average absolute
error over domain pairs and the Pearson correlation coef-
ficient between target risks and predictions. Our methods
outperform baselines by a large margin in both metrics.

8.3. Estimating Adaptability between Domains

In this section, we repeat the experiments in Section 8.2,
this time for estimating the target risk of adaptive, domain-
invariant classifiers (DANNS5). Different from the previous
section, we tighten Ben-David et al. (2010)’s bound by
setting H = P%g. Figure 9 (right) shows the results. Our
method still consistently outperforms baselines in both tasks.
Compared to estimating target risk for nonadaptive models,
improvements in performance are observed for all methods,
as Table 1 (DIR-Digit and DIR-Object) shows. Our methods
produce estimates within a few percent of the true accuracy,



Estimating Generalization under Distribution Shifts via Domain-Invariant Representations

(a) Ours (Standard) (b) Ours (Complex) (c) Ben-David et al. (d) Conf Score (a) Ours (Standard) (b) Ours (Complex) (c) Ben-David et al. (d) Conf Score
10 10 10 10 10 10
MNIST 10 10
08 MNIST-M 4 08 »e 08 % 08 08 08
SVIN 0s » o 08 ¢ y
0.6 ¢ / (| 0.6 0.6 # 0.6 0.6 0.6
06 : 06 / /
P
04 04 04 04 04 04
= 04 s . 04 - » . 2 .
4 o2 02—z 02 02 02 & " 02 p" 02 g - 022"
.4 ’
/ P
A oo 00 , 00 . 004 00 4 004 00 & 00 %
= |00 02 04 o6 0s 100 02 04 06 05 10 "%0 02 04 06 08 10 "bo 02 04 o6 os 1of["b0 02 04 06 o5 10°%0 02 04 o6 os 10°%0 02 04 06 05 10"%0 02 04 06 08 10
D |os 0s 10 0s 0s 0s 0s 0s
A

2b P t
< o4 W e 04 £ 08 04 04 04 04 04
= D J J ¥ & .

03 03 06 03 o 03 0 o

02 / 02 / 04 " 0.2 0. 0. 0. 0.

0.1 A 0.1 4 02 g 0.1 0.1 4 0.1 / 0.1 o 0.1

0.0, 4 00 00 » 0.0, | {oo. 00, 00, 4 00, R

% ‘o1 02 03 04 050 o1 02 03 o4 05°%0 02 o4 06 os 10°%0 o1 02 03 o4 0s||"%0 o1 02 03 04 050 o1 02 03 04 050 o1 02 03 o4 05°%0 o1 02 03 04 s
Supervised Learning Models Adaptive Models
Estimated Risk

Figure 9. Estimating performance drop. First row: Digit Classification, second row: object classification. The dashed line represents
perfect prediction (target risk = predicted risk). Shape and color of points indicates different source and target domain, respectively.
Points beneath (above) the dashed line indicate overestimation (underestimation). The solid lines are regression lines.

while the baselines often underestimate (confidence score)
or overestimate (Ben-David et al., 2010) the target risk.

8.4. Error Detection

Besides estimating the risk on new distributions, it is also im-
portant to know whether a prediction is reliable at a specific
new test point. Our approach easily extends to predicting
point-wise error, i.e., predicting misclassification at a target
point z*. Recall that to approximate the proxy error of h, we
train a check model i’ to maximize the disagreement with h.
We use /' to predict misclassification: if h'(x*) # h(z*),
then we should not trust 2(z*) and predict an error.

To evaluate this method quantitatively, we formulate error
prediction as binary classification, and compute the F1 score
of error detection on the target domain for supervised and
adaptive models. The results, shown in Table 2, demon-
strate that we can not only quantify the expected error in
unseen distributions but also estimate the point-wise error
accurately.

Digit Classification | Object Classification

M—MM | S&M | A=D | A=W
SL 0.985 0.908 | 0.925 0.938
DIR 0.980 0.885 | 0.908 0.928

Table 2. F1 score of error detection on the target domain for super-
vised learning models (SL) and adaptive models (DIR).

9. Conclusion

In this paper, we made two contributions: (1) We lever-
age domain-invariant classifiers to empirically estimate the
target risk, i.e., performance on a new, shifted, unlabeled
dataset, of any given supervised or domain adaptation model.

This approach applies to estimating risk on a data set for a
single classifier, predicting point-wise error, and estimating
the risk for a set of given classifiers, e.g., for model selection.
(2) To obtain good estimators, we theoretically and empir-
ically analyze the effect of embedding complexity on the
target risk in domain-invariant representations. We observe
that the embedding complexity is an important factor for
adaptability to the target distribution, much more than the
complexity of the predictor part, and more than its roe for
non-adaptive, supervised learning.

Interesting directions of future work include adopting other
domain adaptation algorithms as check models, and ap-
plying our approach to structured tasks, e.g., detection or
segmentation.
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