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Abstract

When machine learning models are deployed on a

test distribution different from the training distri-

bution, they can perform poorly, but overestimate

their performance. In this work, we aim to better

estimate a model’s performance under distribu-

tion shift, without supervision. To do so, we use a

set of domain-invariant predictors as a proxy for

the unknown, true target labels. Since the error of

the resulting risk estimate depends on the target

risk of the proxy model, we study generalization

of domain-invariant representations and show that

the complexity of the latent representation has

a significant influence on the target risk. Em-

pirically, our approach (1) enables self-tuning of

domain adaptation models, and (2) accurately es-

timates the target error of given models under dis-

tribution shift. Other applications include model

selection, deciding early stopping and error detec-

tion.

1. Introduction

In many applications, machine learning models are deployed

on data whose distribution is different from that of the train-

ing data. For instance, self-driving cars must be able to

adapt to different weather, change of landscape or traffic,

i.e., conditions can change at prediction time. But often,

collecting large-scale supervised data on the shifted predic-

tion domain is prohibitively expensive or impossible. While

we may hope that the model generalizes to this new data

distribution, estimating empirically how well a given model

will actually generalize is challenging without labels.

Indeed, estimating the adaptability, i.e., the generalization

to the target distribution, and the related potentially uncer-

tain behavior of a prediction model, is a key concern for
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AI Safety (Amodei et al., 2016), motivating recent work on

estimating target performance (Steinhardt & Liang, 2016;

Platanios et al., 2014).

In this work, we develop a new idea for estimating perfor-

mance under distribution shift, by drawing connections with

domain adaptation. Necessarily, any method for estimat-

ing target performance must make some assumptions. Our

method assumes the existence of a domain adaptation model

that generalizes well from source (training) to target (test).

Given the empirical success of domain adaptation, this as-

sumption is met in many practical settings. A prominent

class of domain adaptation models, domain-invariant repre-

sentations (DIR) (Ben-David et al., 2007; Long et al., 2015;

Ganin et al., 2016), learns a latent, joint representation of

source and target data, and a predictor from the latent space

to the output labels. In particular, we use a set of “check”

DIR models as a proxy for the unknown, true target labels.

If there exist “good” domain adaptation models, i.e., they

achieve low source and presumably low target error, and

those models disagree with the model h we want to evaluate,

then the target risk of h is potentially high, and we should

not trust it. Our experiments show that this leads to accurate

estimates of target error that outperform previous methods.

This idea relies on good domain adaptation models, i.e., our

check models should predict well on the target distribution,

and not disagree too much with each other. But, evaluating

a domain adaptation model itself on the target distribution

is an unsolved problem. Hence, we begin by studying the

target error of DIR. We observe that in general, DIR is much

more sensitive to model complexity than supervised learning

on the source distribution. In particular, the complexity of

the representation encoder is key for target generalization

and for selecting the set of check models, and points to

an important model selection problem. For deep neural

networks, this model selection problem essentially means

how to optimally divide the network into an encoder and

predictor part. Yet, this model selection ideally demands an

estimate of target generalization, which we are developing.

We show that, with our framework for estimating target

error, it is possible to let DIR models self-tune to find the

optimal model complexity. The resulting models achieve

good target generalization, and estimate target error of other
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models well. Our approach applies to estimating the target

error of a single or a class of models, and to predicting

point-wise error. Hence, it can be used, e.g., for judging

reliability and for model selection. Empirically, we examine

our theory and algorithms on sentiment analysis (Amazon

review dataset), digit classification (MNIST, MNIST-M,

SVHN) and general object classification (Office-31). In

short, this work makes the following contributions:

• We develop a generic method for estimating the error

of a given model on a new data distribution.

• We show, theoretically and empirically, the important

role of embedding complexity for domain-invariant

representations.

• Our empirical results reflect our analyses and show that

the proposed methods work well in practice.

2. Related Work

Estimating risk with distribution shifts. Estimating

model risk on distributions different from the training distri-

bution is important, but difficult with unlabeled data. Pla-

tanios et al. (2014) construct multiple models based on dif-

ferent views of the data and estimate the risk by calculating

agreement rates across models. Steinhardt & Liang (2016)

estimate the model’s error on distributions very different

from the training distribution by assuming a conditional

independence structure of the data. Platanios et al. (2017)

use logical constraints on the data to estimate classifica-

tion accuracy. Recently, Elsahar & Gallé (2019) evaluate

both confidence score and H∆H-divergence to predict per-

formance drop under domain shift. We compare to those

methods in the experiments. Different from previous works,

we leverage domain-invariant classifiers as proxy target la-

bels. Our method is general in the sense that it can predict

the target risk for both domain adaptation and general super-

vised models.

Domain-invariant representations. DIRs are learned by

minimizing a divergence between the embedding of source

and target data, and existing approaches for learning DIRs

differ in the divergence measure they use. Examples include

domain adversarial learning (Ganin & Lempitsky, 2015;

Tzeng et al., 2015; Ganin et al., 2016), maximum mean

discrepancy (MMD) (Long et al., 2014; 2015; 2016) and

Wasserstein distance (Courty et al., 2016; 2017; Shen et al.,

2018; Lee & Raginsky, 2018).

Several theoretical frameworks have been proposed to ana-

lyze domain-invariant representations. One approach is to

bound the target risk by assuming source and target domain

share common support. Wu et al. (2019) show that exact

matching of source and target distributions can increase tar-

get risk if label distributions differ between source and target.

Johansson et al. (2019) propose generalization bounds based

on the overlap of the supports of source and target distribu-

tion. However, the assumption of common support fails in

most standard benchmarks for domain adaptation. Another

line of work leverages the H∆H-divergence proposed by

Ben-David et al. (2007). Shu et al. (2018) points out that

learning domain-invariant representations with disjoint sup-

ports can still achieve maximal H∆H-divergence. Recently,

Zhao et al. (2019) establish lower and upper bounds on

the risk when label distributions between source and target

domains differ.

3. Unsupervised Domain Adaptation

For simplicity of exposition, we consider binary classifica-

tion with input space X ⊆ R
n and output space Y = {0, 1}.

The learning algorithm obtains two datasets: labeled source

data XS from distribution pS , and unlabeled target data XT

from distribution pT . We will use pS and pT to denote the

joint distribution on data and labels X,Y and the marginals,

i.e., pS(X) and pS(Y ). Unsupervised domain adaptation

seeks a hypothesis h : X → Y in a hypothesis class H that

minimizes the risk in the target domain measured by a loss

function ℓ (here, zero-one loss):

RT (h) = Ex,y∼pT
[ℓ(h(x), y)]. (1)

We do not assume common support in source and target

domain.

3.1. Domain-invariant Representations

A common approach to domain adaptation is to learn a joint

embedding g : X → Z of source and target data (Ganin

et al., 2016; Tzeng et al., 2017). The idea is that aligning

source and target distributions in a latent space Z results in

a domain-invariant representation, and hence a subsequent

classifier f : Z → Y will generalize from source to target.

Formally, this results in the following objective function

on the hypothesis h = fg := f ◦ g, where we minimize

a divergence d between the distributions p
g
S(Z), pgT (Z) of

source and target after the mapping Z = g(X) ∈ Z:

min
f∈F,g∈G

RS(fg) + αd(pgS(Z), pgT (Z)). (2)

The divergence d could be, e.g., the Jensen-Shannon (Ganin

et al., 2016) or Wasserstein distance (Shen et al., 2018).

In this paper, we denote the hypothesis class of the entire

model h as H, the class of embeddings by G, and the class

of predictors by F .

3.2. Upper Bounds on the Target Risk

Ben-David et al. (2007) introduced the H∆H-divergence

to bound the worst-case loss from extrapolating between

domains. Let RD(h, h′) = Ex∼D[ℓ(h(x), h′(x))] be the
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Hence, we implicitly assume that there exists some DIR

model that achieves low target risk.

7.1. Connection to Embedding Complexity

How good is the resulting proxy risk as an estimate of the

target risk of h? Lemma 4 states that the target risk of the

check models gives an upper bound on the estimation error:

| sup
h′∈Pǫ

FG

RT (h, h
′)−RT (h)| ≤ sup

h′∈Pǫ

FG

RT (h
′). (9)

Recall that the set Pǫ
FG comprises all DIR models that

achieve low DIR objective value. If suph′∈Pǫ

FG
RT (h

′) is

large, then the DIR objective is not sufficiently determining

to identify a good target classifier, and generalization to the

target is impossible. The results in Section 5 suggest that

the embedding complexity of the DIR check models plays

an important role for target generalization. To minimize the

estimation error, we should select a class of DIR models

with suitable embedding complexity, i.e., one with an opti-

mal division. As we will show in Section 8.1, it is possible

to also use our ideas to let DIR models self-tune, to find the

optimal embedding complexity.

7.2. Computing the Target Risk Estimator

To approximate the proxy risk suph′∈Pǫ

FG
RT (h, h

′), we

aim to maximize the disagreement under model constraints:

max
f ′g′∈FG

RT (h, f
′g′) (10)

s.t. RS(f
′g′) + αd(pg

′

S (Z), pg
′

T (Z)) ≤ ǫ (11)

Computationally, it is more convenient to replace the con-

straint with a penalty via Lagrangian relaxation:

max
f ′g′∈FG

RT (h, f
′g′)− λ(RS(f

′g′) + αd(pg
′

S (Z), pg
′

T (Z))

where λ > 0. We use empirical estimates for RT , RS , and

minimize the empirical objective via standard stochastic

gradient descent.

Algorithm 1 provides details about approximating the proxy

risk1. In brief, we first pretrain h′ = f ′g′, and then maxi-

mize the disagreement with h under constraints. Empirically

we maximize the disagreement on the training set and check

the constrains RS(f
′g′)+αd(pg

′

S (Z), pg
′

T (Z)) ≤ ǫ with the

validation set.

8. Experiments

We evaluate our method on two broad tasks: model selection

for DIR models and estimating target risk of any given

1The code is available at https://github.com/

chingyaoc/estimating-generalization.

Algorithm 1 Computing Proxy Risk

Require: Target hypothesis h; Check model class H =
FG; SS and ST : labeled source dataset and unlabeled

target dataset; α, λ, ǫ: tradeoff parameters; T1: Epochs

for training domain-invariant classifier; T2: Epochs for

maximizing the disagreement.

⊲ Pretrain check model h′

Initialize h′ = f ′g′ ∈ FG
Train h′ for T1 epochs to minimize RS(h

′) +

αd(pg
′

S (Z), pg
′

T (Z))

⊲ Maximize the disagreement

Initialize MaxRisk = 0
for i = 1, . . . , T2 do

Train h′ for one epoch to minimize −RT (h, h
′) +

λ(RS(f
′g′) + αd(pg

′

S (Z), pg
′

T (Z))

if RS(f
′g′) + αd(pg

′

S (Z), pg
′

T (Z) ≤ ǫ and RT (h, h
′)

≥ MaxRisk then

Set MaxRisk = RT (h, h
′)

end if

end for

return MaxRisk

model. Throughout, the experimental settings and the model

architectures are the same as in Section 6.1.

8.1. Model Selection for DIR

Estimating Optimal Network Division We begin with

estimating the optimal layer division of a DIR model into en-

coder and predictor that minimizes target risk. By Lemma 4,

this will yield a good class of check models. To estimate the

DIR models’ target risk, we follow the same strategy as in

Section 4, but for a class of models: the worst target error

for division i can be bounded with a second level of proxy

classifiers:

sup
h∈Pǫ

FiGi

RT (h) ≤ sup
h∈Pǫ

FiGi

h′∈Pǫ

F′G′

RT (h, h
′)

︸ ︷︷ ︸

Worst In-class Proxy Risk

+ inf
h′∈Pǫ

FG

RT (h
′).

We select the division that minimizes the worst in-class

proxy risk.

Computationally, we adopt the approach from Section 7.2 to

approximate the worst in-class proxy risks. Figure 7 shows

the true target test error for a DIR model, computed with

labels (blue line), for different divisions, compared to our

in-class proxy risk estimates. The different lines correspond

to different second-level check models. The results suggest

that (1) we can accurately estimate the best layer division

without supervision, and (2) this self-tuning strategy is ro-

bust to the choice of second-level check models.
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