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Abstract

We consider the task of learning in episodic finite-

horizon Markov decision processes with an un-

known transition function, bandit feedback, and

adversarial losses. We propose an efficient algo-

rithm that achieves Õ(L|X|
√
|A|T ) regret with

high probability, where L is the horizon, |X| the

number of states, |A| the number of actions, and T
the number of episodes. To our knowledge, our al-

gorithm is the first to ensure Õ(
√
T ) regret in this

challenging setting; in fact it achieves the same

regret as (Rosenberg & Mansour, 2019a) who

consider the easier setting with full-information.

Our key contributions are two-fold: a tighter con-

fidence set for the transition function; and an opti-

mistic loss estimator that is inversely weighted by

an upper occupancy bound.

1. Introduction

Reinforcement learning studies the problem where a learner

interacts with the environment sequentially and aims to im-

prove her strategy over time. The environment dynamics are

usually modeled as a Markov Decision Process (MDP) with

a fixed and unknown transition function. We consider a gen-

eral setting where the interaction proceeds in episodes with

a fixed horizon. Within each episode the learner sequentially

observes her current state, selects an action, suffers and ob-

serves the loss corresponding to the chosen state-action pair,

and then transits to the next state according to the underlying

transition function.1 The goal of the learner is to minimize

her regret: the difference between her total loss and the total

loss of an optimal fixed policy.
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1As in previous work (Rosenberg & Mansour, 2019a;b),
throughout we use the term “losses” instead of “rewards” to be
consistent with the adversarial online learning literature. One can
translate between losses and rewards by simply taking negation.

The majority of the literature in learning MDPs assumes

stationary losses, that is, the losses observed for a specific

state-action pair follow a fixed and unknown distribution.

To better capture applications with non-stationary or even

adversarial losses, the works (Even-Dar et al., 2009; Yu

et al., 2009) are among the first to study the problem of

learning adversarial MDPs, where the losses can change

arbitrarily between episodes. There are several follow-ups

in this direction, such as (Yu et al., 2009; Neu et al., 2010;

2012; Zimin & Neu, 2013; Dekel & Hazan, 2013; Rosenberg

& Mansour, 2019a). See Section 1.1 for more related work.

For an MDP with |X| states, |A| actions, T episodes,

and L steps in each episode, the best existing result is

the work (Rosenberg & Mansour, 2019a), which achieves

Õ(L|X|
√
|A|T ) regret, assuming a fixed and unknown

transition function, adversarial losses, but importantly full-

information feedback: i.e., the loss for every state-action

pair is revealed at the end of each episode. On the other hand,

with the more natural and standard bandit feedback (where

only the loss for each visited state-action pair is revealed),

a later work by the same authors (Rosenberg & Mansour,

2019b) achieves regret Õ(L3/2|X||A|1/4T 3/4), which has

a much worse dependence on the number of episodes T
compared to the full-information setting.

Our main contribution significantly improves on (Rosenberg

& Mansour, 2019b). In particular, we propose an efficient

algorithm that achieves Õ(L|X|
√
|A|T ) regret in the same

setting with bandit feedback, an unknown transition func-

tion, and adversarial losses. Although our regret bound still

exhibits a gap compared to the best existing lower bound

Ω(L
√
|X||A|T ) (Jin et al., 2018), to the best of our knowl-

edge, for this challenging setting our result is the first to

achieve Õ(
√
T ) regret. Importantly, this also matches the

regret upper bound of Rosenberg & Mansour (2019a), who

consider the easier setting with full-information feedback.

Our algorithm builds on the UC-O-REPS algorithm (Rosen-

berg & Mansour, 2019a;b)—we also construct confidence

sets to handle the unknown transition function, and apply

Online Mirror Descent over the space of occupancy mea-

sures (see Section 2.1) to handle adversarial losses. The first

key difference and challenge is that with bandit feedback, to

apply Online Mirror Descent we must construct good loss
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estimators since the loss function is not completely revealed.

However, the most natural approach of building unbiased

loss estimators via inverse probability requires knowledge of

the transition function, and is thus infeasible in our setting.

We address this key challenge by proposing a novel biased

and optimistic loss estimator (Section 3.3). Specifically,

instead of inversely weighting the observation by the proba-

bility of visiting the corresponding state-action pair (which

is unknown), we use the maximum probability among all

plausible transition functions specified by a confidence set,

which we call upper occupancy bound. This idea resembles

the optimistic principle of using upper confidence bounds

for many other problems of learning with bandit feedback,

such as stochastic multi-armed bandits (Auer et al., 2002a),

stochastic linear bandits (Chu et al., 2011; Abbasi-Yadkori

et al., 2011), and reinforcement learning with stochastic

losses (Jaksch et al., 2010; Azar et al., 2017; Jin et al.,

2018). However, as far as we know, applying optimism in

constructing loss estimators for an adversarial setting is new.

The second key difference of our algorithm from UC-O-

REPS (Section 3.1) lies in a new confidence set for the

transition function. Specifically, for each state-action pair,

the confidence set used in UC-O-REPS and previous works

such as (Jaksch et al., 2010; Azar et al., 2017) imposes a

total variation constraint on the transition probability, while

our proposed confidence set imposes an independent con-

straint on the transition probability for each next state, and

is strictly tighter. Indeed, with the former we can only

prove an Õ(L|X|2
√
|A|T ) regret, while with the latter we

improve it to Õ(L|X|
√
|A|T ). Analyzing the non-trivial

interplay between our optimistic loss estimators and the new

confidence set is one of our key technical contributions.

Finally, we remark that our proposed upper occupancy

bounds can be computed efficiently via backward dynamic

programming and solving some linear programs greedily,

and thus our algorithm can be implemented efficiently.

1.1. Related Work

Stochastic losses. Learning MDPs with stochastic losses

and bandit feedback is relatively well-studied for the

tabular case (that is, finite number of states and ac-

tions). For example, in the episodic setting, using our

notation,2 the UCRL2 algorithm of Jaksch et al. (2010)

achieves Õ(
√
L3|X|2|A|T ) regret, and the UCBVI algo-

rithm of Azar et al. (2017) achieves the optimal bound

Õ(L
√
|X||A|T ), both of which are model-based algo-

rithms and construct confidence sets for both the transition

2We warn the reader that in some of these cited papers, the
notation |X| or T might be defined differently (often L times
smaller for |X| and L times larger for T ). We have translated the
bounds based on Table 1 of (Jin et al., 2018) using our notation
defined in Section 2.

function and the loss function. The recent work (Jin et al.,

2018) achieves a suboptimal bound Õ(
√

L3|X||A|T ) via

an optimistic Q-learning algorithm that is model-free. Be-

sides the episodic setting, other setups such as discounted

losses or infinite-horizon average-loss setting have also been

heavily studied; see for example (Ouyang et al., 2017; Fruit

et al., 2018; Zhang & Ji, 2019; Wei et al., 2019; Wang et al.,

2019) for some recent works.

Adversarial losses. Based on whether the transition func-

tion is known and whether the feedback is full-information

or bandit, we discuss four categories separately.

Known transition and full-information feedback. Early

works on adversarial MDPs assume a known transition func-

tion and full-information feedback. For example, Even-

Dar et al. (2009) propose the algorithm MDP-E and prove

a regret bound of Õ(τ2
√

T ln |A|) where τ is the mix-

ing time of the MDP; another work (Yu et al., 2009)

achieves Õ(T 2/3) regret. Both of these consider a con-

tinuous setting (as opposed to the episodic setting that we

study). Later Zimin & Neu (2013) consider the episodic

setting and propose the O-REPS algorithm which applies

Online Mirror Descent over the space of occupancy mea-

sures, a key component adopted by (Rosenberg & Mansour,

2019a) and our work. O-REPS achieves the optimal regret

Õ(L
√
T ln(|X||A|)) in this setting.

Known transition and bandit feedback. Several works con-

sider the harder bandit feedback model while still assuming

known transitions. The work (Neu et al., 2010) achieves re-

gret Õ(L2
√
T |A|/α), assuming that all states are reachable

with some probability α under all policies. Later, Neu et al.

(2014) eliminates the dependence on α but only achieves

Õ(T 2/3) regret. The O-REPS algorithm of (Zimin & Neu,

2013) again achieves the optimal regret Õ(
√
L|X||A|T ).

Another line of works (Arora et al., 2012; Dekel & Hazan,

2013) assumes deterministic transitions for a continuous

setting without some unichain structure, which is known to

be harder and suffers Ω(T 2/3) regret (Dekel et al., 2014).

Unknown transition and full-information feedback. To deal

with unknown transitions, Neu et al. (2012) propose the Fol-

low the Perturbed Optimistic Policy algorithm and achieve

Õ(L|X||A|
√
T ) regret. Combining the idea of confidence

sets and Online Mirror Descent, the UC-O-REPS algorithm

of (Rosenberg & Mansour, 2019a) improves the regret to

Õ(L|X|
√
|A|T ). We note that this work also studies gen-

eral convex performance criteria, which we do not consider.

Unknown transition and bandit feedback. This is the set-

ting considered in our work. The only previous work we

are aware of (Rosenberg & Mansour, 2019b) achieves a

regret bound of Õ(T 3/4), or Õ(
√
T/α) under the strong

assumption that under any policy, all states are reachable

with probability α that could be arbitrarily small in gen-
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eral. Our algorithm achieves Õ(
√
T ) regret without this

assumption by using a different loss estimator and by using

a tighter confidence set. We also note that the lower bound

of Ω(L
√
|X||A|T ) (Jin et al., 2018) still applies.

Adversarial transition functions. There exist a few

works that consider both time-varying transition functions

and time-varying losses (Yu & Mannor, 2009; Cheung et al.,

2019; Lykouris et al., 2019). Most recently, Lykouris et al.

(2019) consider a stochastic problem with C episodes arbi-

trarily corrupted and obtain Õ(C
√
T +C2) regret (ignoring

dependence on other parameters). This bound is of order

Õ(
√
T ) only when C is a constant, and is vacuous whenever

C = Ω(
√
T ). In comparison, our bound is always Õ(

√
T )

no matter how much corruption there is in the losses, but

our algorithm cannot handle changing transition functions.

2. Problem Formulation

An adversarial Markov decision process is defined by a tuple

(X,A, P, {ℓt}Tt=1), where X is the finite state space, A is

the finite action space, P : X × A × X → [0, 1] is the

transition function, with P (x′|x, a) being the probability of

transferring to state x′ when executing action a in state x,

and ℓt : X ×A→ [0, 1] is the loss function for episode t.

In this work, we consider an episodic setting with finite

horizons and assume that the MDP has a layered structure,

satisfying the following conditions:

• The state space X consists of L+1 layers X0, . . . , XL

such that X =
⋃L

k=0 Xk and Xi ∩Xj = ∅ for i 6= j.

• X0 and XL are singletons, that is, X0 = {x0} and

XL = {xL}.
• Transitions are possible only between consecutive lay-

ers. In other words, if P (x′|x, a) > 0, then x′ ∈ Xk+1

and x ∈ Xk for some k.

These assumptions were made in previous work (Neu et al.,

2012; Zimin & Neu, 2013; Rosenberg & Mansour, 2019a)

as well. They are not necessary but greatly simplify notation

and analysis. Such a setup is sometimes referred to as the

loop-free stochastic shortest path problem in the literature.

It is clear that this is a strict generalization of the episodic

setting studied in (Azar et al., 2017; Jin et al., 2018) for

example, where the number of states is the same for each

layer (except for the first and the last one).3 We also point

3In addition, some of these works (such as (Azar et al., 2017))
also assume that the states have the same name for different layers,
and the transition between the layers remains the same. Our setup
does not make this assumption and is closer to that of (Jin et al.,
2018). We also refer the reader to footnote 2 of (Jin et al., 2018) for
how to translate regret bounds between settings with and without
this extra assumption.

Protocol 1 Learner-Environment Interaction

Parameters: state space X and action space A (known

to the learner), unknown transition function P
for t = 1 to T do

adversary decides a loss function ℓt : X ×A→ [0, 1]
learner decides a policy πt and starts in state x0

for k = 0 to L− 1 do

learner selects action ak ∼ πt(·|xk)
learner observes loss ℓt(xk, ak)
environment draws a new state xk+1 ∼ P (·|xk, ak)
learner observes state xk+1

end for

end for

out that our algorithms and results can be easily modified

to deal with a more general setup where the first layer has

multiple states and in each episode the initial state is decided

adversarially, as in (Jin et al., 2018) (details omitted).

The interaction between the learner and the environment is

presented in Protocol 1. Ahead of time, the environment

decides an MDP, and only the state space X with its layer

structure and the action space A are known to the learner.

The interaction proceeds in T episodes. In episode t, the

adversary decides the loss function ℓt, which can depend on

the learner’s algorithm and the randomness before episode t.
Simultaneously, the learner starts from state x0 and decides

a stochastic policy πt : X × A → [0, 1], where πt(a|x)
is the probability of taking action a at a given state x, so

that
∑

a∈A πt(a|x) = 1 for every state x. Then, the learner

executes this policy in the MDP, generating L state-action

pairs (x0, a0), . . . , (xL−1, aL−1).
4 Specifically, for each

k = 0, . . . , L− 1, action ak is drawn from πt(·|xk) and the

next state xk+1 is drawn from P (·|xk, ak).

Importantly, instead of observing the loss function ℓt at

the end of episode t (Rosenberg & Mansour, 2019a), in

our setting the learner only observes the loss for each vis-

ited state-action pair: ℓt(x0, a0), . . . , ℓt(xL−1, aL−1). That

is, we consider the more challenging setting with bandit

feedback.

For any given policy π, we denote its expected loss in

episode t by

E

[
L−1∑

k=0

ℓt(xk, ak)

∣∣∣∣∣P, π
]
,

where the notation E[·|P, π] emphasizes that the state-action

pairs (x0, a0), . . . , (xL−1, aL−1) are random variables gen-

erated according to the transition function P and a stochastic

policy π. The total loss over T episodes for any fixed policy

4Formally, the notation (x0, a0), . . . , (xL−1, aL−1) should
have a t dependence. Throughout the paper we omit this depen-
dence for conciseness as it is clear from the context.
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π is thus

LT (π) =

T∑

t=1

E

[
L−1∑

k=0

ℓt(xk, ak)

∣∣∣∣∣P, π
]
,

while the total loss of the learner is

LT =

T∑

t=1

E

[
L−1∑

k=0

ℓt(xk, ak)

∣∣∣∣∣P, πt

]
.

The goal of the learner is to minimize the regret, defined as

RT = LT −min
π

LT (π)

where π ranges over all stochastic policies.

Notation. We use k(x) to denote the index of the layer to

which state x belongs, and I{·} to denote the indicator func-

tion whose value is 1 if the input holds true and 0 otherwise.

Let ot = {(xk, ak, ℓt(xk, ak))}L−1
k=0 be the observation of

the learner in episode t, and Ft be the σ-algebra generated

by (o1, . . . , ot−1). Also let Et[·] be a shorthand of E[·|Ft].

2.1. Occupancy Measures

Solving the problem with techniques from online learning re-

quires introducing the concept of occupancy measures (Alt-

man, 1999; Neu et al., 2012). Specifically, the occupancy

measure qP,π : X × A × X → [0, 1] associated with a

stochastic policy π and a transition function P is defined as

qP,π(x, a, x′) = Pr [xk = x, ak = a, xk+1 = x′ | P, π] ,

where k = k(x) is the index of the layer to which x belongs.

In other words, qP,π(x, a, x′) is the marginal probability of

encountering the triple (x, a, x′) when executing policy π
in a MDP with transition function P .

Clearly, an occupancy measure q satisfies the following two

properties. First, due to the loop-free structure, each layer is

visited exactly once and thus for every k = 0, . . . , L− 1,

∑

x∈Xk

∑

a∈A

∑

x′∈Xk+1

q(x, a, x′) = 1. (1)

Second, the probability of entering a state when coming

from the previous layer is exactly the probability of leaving

from that state to the next layer (except for x0 and xL).

Therefore, for every k = 1, . . . , L− 1 and every state x ∈
Xk, we have

∑

x′∈Xk−1

∑

a∈A

q(x′, a, x) =
∑

x′∈Xk+1

∑

a∈A

q(x, a, x′). (2)

It turns out that these two properties suffice for any function

q : X × A × A → [0, 1] to be an occupancy measure

associated with some transition function and some policy.

Lemma 1 (Rosenberg & Mansour (2019a)). If a function

q : X × A × X → [0, 1] satisfies conditions (1) and (2),

then it is a valid occupancy measure associated with the

following induced transition function P q and induced policy

πq:

P q(x′|x, a) = q(x, a, x′)∑
y∈Xk(x)+1

q(x, a, y)
,

πq(a|x) =
∑

x′∈Xk(x)+1
q(x, a, x′)

∑
b∈A

∑
x′∈Xk(x)+1

q(x, b, x′)
.

We denote by ∆ the set of valid occupancy measures, that is,

the subset of [0, 1]X×A×X satisfying conditions (1) and (2).

For a fixed transition function P , we denote by ∆(P ) ⊂ ∆
the set of occupancy measures whose induced transition

function P q is exactly P . Similarly, we denote by ∆(P) ⊂
∆ the set of occupancy measures whose induced transition

function P q belongs to a set of transition functions P .

With the concept of occupancy measure, we can reduce the

problem of learning a policy to the problem of learning an

occupancy measure and apply online linear optimization

techniques. Specifically, with slight abuse of notation, for

an occupancy measure q we define

q(x, a) =
∑

x′∈Xk(x)+1

q(x, a, x′)

for all x 6= xL and a ∈ A, which is the probability of

visiting state-action pair (x, a). Then the expected loss of

following a policy π for episode t can be rewritten as

E

[
L−1∑

k=0

ℓt(xk, ak)

∣∣∣∣∣P, π
]

=

L−1∑

k=0

∑

x∈Xk

∑

a∈A

qP,π(x, a)ℓt(x, a)

=
∑

x∈X\{xL},a∈A

qP,π(x, a)ℓt(x, a) , 〈qP,π, ℓt〉,

and accordingly the regret of the learner can be rewritten as

RT = LT −min
π

LT (π) =

T∑

t=1

〈qP,πt − q∗, ℓt〉, (3)

where q∗ ∈ argminq∈∆(P )

∑T
t=1〈q, ℓt〉 is the optimal oc-

cupancy measure in ∆(P ).

On the other hand, assume for a moment that the set ∆(P )
were known and the loss function ℓt was revealed at the

end of episode t. Consider an online linear optimization

problem (see (Hazan et al., 2016) for example) with decision

set ∆(P ) and linear loss parameterized by ℓt at time t. In
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other words, at each time t, the learner proposes qt ∈ ∆(P )
and suffers loss 〈qt, ℓt〉. The regret of this problem is

T∑

t=1

〈qt − q∗, ℓt〉. (4)

Therefore, if in the original problem, we set πt = πqt , then

the two regret measures Eq. (3) and Eq. (4) are exactly the

same by Lemma 1 and we have thus reduced the problem to

an instance of online linear optimization.

It remains to address the issues that ∆(P ) is unknown and

that we have only partial information on ℓt. The first issue

can be addressed by constructing a confidence set P based

on observations and replacing ∆(P ) with ∆(P), and the

second issue is addressed by constructing loss estimators

with reasonably small bias and variance. For both issues, we

propose new solutions compared to (Rosenberg & Mansour,

2019b).

Note that importantly, the above reduction does not reduce

the problem to an instance of the well-studied bandit linear

optimization (Abernethy et al., 2008) where the quantity

〈qt, ℓt〉 (or a sample with this mean) is observed. Indeed,

roughly speaking, what we observed in our setting are sam-

ples with mean 〈qP,πqt
, ℓt〉. These two are different when

we do not know P and have to operate over the set ∆(P).

3. Algorithm

The complete pseudocode of our algorithm, UOB-REPS,

is presented in Algorithm 2. The three key components

of our algorithm are: 1) maintaining a confidence set of

the transition function, 2) using Online Mirror Descent to

update the occupancy measure, and 3) constructing loss

estimators, each described in detail below.

3.1. Confidence Sets

The idea of maintaining a confidence set of the transition

function P dates back to (Burnetas & Katehakis, 1997).

Specifically, the algorithm maintains counters to record the

number of visits of each state-action pair (x, a) and each

state-action-state triple (x, a, x′). To reduce the computa-

tional complexity, a doubling epoch schedule is deployed, so

that a new epoch starts whenever there exists a state-action

whose counter is doubled compared to its initial value at

the beginning of the epoch. For epoch i > 1, let Ni(x, a)
and Mi(x

′|x, a) be the initial values of the counters, that is,

the total number of visits of pair (x, a) and triple (x, a, x′)
before epoch i. Then the empirical transition function for

this epoch is defined as

P̄i(x
′|x, a) = Mi(x

′|x, a)
max{1, Ni(x, a)}

.

Most previous works (such as (Jaksch et al., 2010; Azar

et al., 2017; Rosenberg & Mansour, 2019b)) construct a

confidence set which includes all transition functions with

bounded total variation compared to P̄i(·|x, a) for each

(x, a) pair. However, to ensure lower bias for our loss esti-

mators, we propose a tighter confidence set which includes

all transition functions with bounded distance compared to

P̄i(x
′|x, a) for each triple (x, a, x′). More specifically, the

confidence set for epoch i is defined as5

Pi =
{
P̂ :

∣∣∣P̂ (x′|x, a)− P̄i(x
′|x, a)

∣∣∣ ≤ ǫi(x
′|x, a),

∀(x, a, x′) ∈ Xk ×A×Xk+1, k = 0, . . . , L− 1
}
,

(5)

where the confidence width ǫi(x
′|x, a) is defined as

2

√√√√ P̄i(x′|x, a) ln
(

T |X||A|
δ

)

max{1, Ni(x, a)− 1} +
14 ln

(
T |X||A|

δ

)

3max{1, Ni(x, a)− 1}
(6)

for some confidence parameter δ ∈ (0, 1). For the first

epoch (i = 1), Pi is simply the set of all transition functions

so that ∆(Pi) = ∆.6

By the empirical Bernstein inequality and union bounds, one

can show the following (see Appendix B.1 for the proof):

Lemma 2. With probability at least 1−4δ, we have P ∈ Pi

for all i.

Moreover, ignoring constants one can further show that

our confidence bound is strictly tighter than those used

in (Rosenberg & Mansour, 2019a;b), which is important for

getting our final regret bound (more discussions to follow

in Section 4).

3.2. Online Mirror Descent (OMD)

The OMD component of our algorithm is the same

as (Rosenberg & Mansour, 2019b). As discussed in Sec-

tion 2.1, our problem is closely related to an online linear

optimization problem over some occupancy measure space.

In particular, our algorithm maintains an occupancy measure

q̂t for episode t and executes the induced policy πt = πq̂t .

We apply Online Mirror Descent, a standard algorithmic

framework to tackle online learning problems, to update the

occupancy measure as

q̂t+1 = argmin
q∈∆(Pi)

η〈q, ℓ̂t〉+D(q ‖ q̂t) (7)

5It is understood that in the definition of the confidence set
(Eq. (5)), there is also an implicit constraint on P̂ (·|x, a) being a
valid distribution over the states in Xk(x)+1, for each (x, a) pair.
This is omitted for conciseness.

6To represent P1 in the form of Eq. (5), one can simply let
P̄1(·|x, a) be any distribution and ǫ1(x

′|x, a) = 1.
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Algorithm 2 Upper Occupancy Bound Relative Entropy

Policy Search (UOB-REPS)

Input: state space X , action space A, episode number T ,

learning rate η, exploration parameter γ, and confidence

parameter δ

Initialization:

Initialize epoch index i = 1 and confidence set P1 as the

set of all transition functions.

For all k = 0, . . . , L− 1 and all (x, a, x′) ∈ Xk × A×
Xk+1, initialize counters

N0(x, a) = N1(x, a) = M0(x
′|x, a) = M1(x

′|x, a) = 0

and occupancy measure

q̂1(x, a, x
′) =

1

|Xk||A||Xk+1|
.

Initialize policy π1 = πq̂1 .

for t = 1 to T do

Execute policy πt for L steps and obtain trajectory

xk, ak, ℓt(xk, ak) for k = 0, . . . , L− 1.

Compute upper occupancy bound for each k:

ut(xk, ak) = COMP-UOB(πt, xk, ak,Pi).

Construct loss estimators for all (x, a):

ℓ̂t(x, a) =
ℓt(x, a)

ut(x, a) + γ
I{xk(x) = x, ak(x) = a}.

Update counters: for each k,

Ni(xk, ak)← Ni(xk, ak) + 1,

Mi(xk+1|xk, ak)←Mi(xk+1|xk, ak) + 1.

if ∃k, Ni(xk, ak) ≥ max{1, 2Ni−1(xk, ak)} then

Increase epoch index i← i+ 1.

Initialize new counters: for all (x, a, x′),

Ni(x, a) = Ni−1(x, a),Mi(x
′|x, a) = Mi−1(x

′|x, a).

Update confidence set Pi based on Eq. (5).

end if

Update occupancy measure (D defined in Eq. (8)):

q̂t+1 = argmin
q∈∆(Pi)

η〈q, ℓ̂t〉+D(q ‖ q̂t).

Update policy πt+1 = πq̂t+1 .

end for

Algorithm 3 COMP-UOB

Input: a policy πt, a state-action pair (x, a) and a confi-
dence set P of the form

{
P̂ :

∣∣∣P̂ (x′|x, a)− P̄ (x′|x, a)
∣∣∣ ≤ ǫ(x′|x, a), ∀(x, a, x′)

}

Initialize: for all x̃ ∈ Xk(x), set f(x̃) = I{x̃ = x}.

for k = k(x)− 1 to 0 do

for all x̃ ∈ Xk do
Compute f(x̃) based on Eq. (10):

f(x̃) =
∑

a∈A

πt(a|x̃) · GREEDY
(
f, P̄ (·|x̃, a), ǫ(·|x̃, a)

)

(see Appendix A.2 for the procedure GREEDY).

end for

end for

Return: πt(a|x)f(x0).

where i is the index of the epoch to which episode t + 1

belongs, η > 0 is some learning rate, ℓ̂t is some loss esti-

mator for ℓt, and D(·‖·) is a Bregman divergence. Follow-

ing (Rosenberg & Mansour, 2019a;b), we use the unnormal-

ized KL-divergence as the Bregman divergence:

D(q ‖ q′) =
∑

x,a,x′

q(x, a, x′) ln
q(x, a, x′)

q′(x, a, x′)

−
∑

x,a,x′

(q(x, a, x′)− q′(x, a, x′)) .
(8)

Note that as pointed out earlier, ideally one would use ∆(P )
as the constraint set in the OMD update, but since P is

unknown, using ∆(Pi) in place of it is a natural idea. Also

note that the update can be implemented efficiently, similarly

to Rosenberg & Mansour (2019a) (see Appendix A.1 for

details).

3.3. Loss Estimators

A common technique to deal with partial information in

adversarial online learning problems (such as adversarial

multi-armed bandits (Auer et al., 2002b)) is to construct

loss estimators based on observations. In particular, inverse

importance-weighted estimators are widely applicable. For

our problem, with a trajectory x0, a0, . . . , xL−1, aL−1 for

episode t, a common importance-weighted estimator for

ℓt(x, a) would be

ℓt(x, a)

qP,πt(x, a)
I
{
xk(x) = x, ak(x) = a

}
.

Clearly this is an unbiased estimator for ℓt(x, a). Indeed,

the conditional expectation Et[I
{
xk(x) = x, ak(x) = a

}
] is
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exactly qP,πt(x, a) since the latter is exactly the probability

of visiting (x, a) when executing policy πt in a MDP with

transition function P .

The issue of this standard estimator is that we cannot com-

pute qP,πt(x, a) since P is unknown. To address this issue,

Rosenberg & Mansour (2019b) directly use q̂t(x, a) in place

of qP,πt(x, a), leading to an estimator that could be either

an overestimate or an underestimate, and they can only show

Õ(T 3/4) regret with this approach.

Instead, since we have a confidence set Pi that contains P
with high probability (where i is the index of the epoch to

which t belongs), we propose to replace qP,πt(x, a) with an

upper occupancy bound defined as

ut(x, a) = max
P̂∈Pi

qP̂ ,πt(x, a),

that is, the largest possible probability of visiting (x, a)
among all the plausible environments. In addition, we also

adopt the idea of implicit exploration from (Neu, 2015)

to further increase the denominator by some fixed amount

γ > 0. Our final estimator for ℓt(x, a) is

ℓ̂t(x, a) =
ℓt(x, a)

ut(x, a) + γ
I
{
xk(x) = x, ak(x) = a

}
.

The implicit exploration is important for several technical

reasons such as obtaining a high probability regret bound,

the key motivation of the work (Neu, 2015) for multi-armed

bandits.

Clearly, ℓ̂t(x, a) is a biased estimator and in particular is

underestimating ℓt(x, a) with high probability (since by def-

inition qP,πt(x, a) ≤ ut(x, a) if P ∈ Pi). The idea of using

underestimates for adversarial learning with bandit feedback

can be seen as an optimism principle which encourages ex-

ploration, and appears in previous work such as (Allenberg

et al., 2006; Neu, 2015) in different forms and for differ-

ent purposes. A key part of our analysis is to show that

the bias introduced by these estimators is reasonably small,

which eventually leads to a better regret bound compared

to (Rosenberg & Mansour, 2019b).

Computing upper occupancy bound efficiently. It re-

mains to discuss how to compute ut(x, a) efficiently. First

note that

ut(x, a) = πt(a|x) max
P̂∈Pi

qP̂ ,πt(x) (9)

where once again we slightly abuse the notation and de-

fine q(x) =
∑

a′∈A q(x, a′) for any occupancy measure q,

which is the marginal probability of visiting state x under

the associated policy and transition function. Further define

f(x̃) = max
P̂∈Pi

Pr
[
xk(x) = x

∣∣ xk(x̃) = x̃, P̂ , πt

]
,

for any x̃ with k(x̃) ≤ k(x), which is the maximum proba-

bility of visiting x starting from state x̃, under policy πt and

among all plausible transition functions in Pi. Clearly one

has ut(x, a) = πt(a|x)f(x0), and also f(x̃) = I{x̃ = x}
for all x̃ in the same layer as x. Moreover, since the confi-

dence set Pi imposes an independent constraint on P̂ (·|x, a)
for each different pair (x, a), we have the following recur-

sive relation:

f(x̃) =
∑

a∈A

πt(a|x̃)


 max

P̂ (·|x̃,a)

∑

x′∈Xk(x̃)+1

P̂ (x′|x̃, a)f(x′)




(10)

where the maximization is over the constraint that P̂ (·|x̃, a)
is a valid distribution over Xk(x̃)+1 and also

∣∣∣P̂ (x′|x̃, a)− P̄i(x
′|x̃, a)

∣∣∣ ≤ ǫi(x
′|x̃, a), ∀x′ ∈ Xk(x̃)+1.

This optimization can be solved efficiently via a greedy ap-

proach after sorting the values of f(x′) for all x′ ∈ Xk(x̃)+1

(see Appendix A.2 for details). This suggests computing

ut(x, a) via backward dynamic programming from layer

k(x) down to layer 0, detailed in Algorithm 3.

4. Analysis

In this section, we analyze the regret of our algorithm and

prove the following theorem.

Theorem 3. With probability at least 1− 9δ, UOB-REPS

with η = γ =
√

L ln(L|X||A|/δ)
T |X||A| ensures:

RT = O
(
L|X|

√
|A|T ln

(
T |X||A|

δ

))
.

The proof starts with decomposing the regret into four differ-

ent terms. Specifically, by Eq. (3) the regret can be written

as RT =
∑T

t=1〈qt−q∗, ℓt〉 where we define qt = qP,πt and

q∗ ∈ argminq∈∆(P )

∑T
t=1〈q, ℓt〉. We then add and subtract

three terms and decompose the regret as

RT =

T∑

t=1

〈qt − q̂t, ℓt〉
︸ ︷︷ ︸

ERROR

+

T∑

t=1

〈
q̂t, ℓt − ℓ̂t

〉

︸ ︷︷ ︸
BIAS1

+

T∑

t=1

〈
q̂t − q∗, ℓ̂t

〉

︸ ︷︷ ︸
REG

+

T∑

t=1

〈
q∗, ℓ̂t − ℓt

〉

︸ ︷︷ ︸
BIAS2

.

Here, the first term ERROR measures the error of using q̂t
to approximate qt; the third term REG is the regret of the

corresponding online linear optimization problem and is

controlled by OMD; the second and the fourth terms BIAS1

and BIAS2 correspond to the bias of the loss estimators.
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We bound ERROR and BIAS1 in the rest of this section.

Bounding REG and BIAS2 is relatively standard and we

defer the proofs to Appendix B.3. Combining all the bounds

(specifically, Lemmas 5, 6, 12, and 14), applying a union

bound, and plugging in the (optimal) values of η and γ prove

Theorem 3.

Throughout the analysis we use it to denote the index of

the epoch to which episode t belongs. Note that Pit and q̂t
are both Ft-measurable. We start by stating a key technical

lemma which essentially describes how our new confidence

set shrinks over time and is critical for bounding ERROR

and BIAS1 (see Appendix B.2 for the proof).

Lemma 4. With probability at least 1− 6δ, for any collec-

tion of transition functions {P x
t }x∈X such that P x

t ∈ Pit

for all x, we have

T∑

t=1

∑

x∈X,a∈A

|qPx
t ,πt(x, a)− qt(x, a)|

= O
(
L|X|

√
|A|T ln

(
T |X||A|

δ

))
.

Bounding ERROR. With the help of Lemma 4, we imme-

diately obtain the following bound on ERROR.

Lemma 5. With probability at least 1− 6δ, UOB-REPS

ensures ERROR = O
(
L|X|

√
|A|T ln

(
T |X||A|

δ

))
.

Proof. Since all losses are in [0, 1], we have

ERROR ≤ ∑T
t=1

∑
x,a |q̂t(x, a) − qt(x, a)| =

∑T
t=1

∑
x,a |qP

x
t ,πt(x, a) − qt(x, a)|, where we de-

fine P x
t = P q̂t ∈ Pit for all x so that q̂t = qPt,πt (by the

definition of πt and Lemma 1). Applying Lemma 4 finishes

the proof.

Note that in the proof above, we set P x
t to be the same for all

x. In fact, in this case our Lemma 4 is similar to (Rosenberg

& Mansour, 2019a, Lemmas B.2 and B.3) and it also suffices

to use their looser confidence bound. However, in the next

application of Lemma 4 to bounding BIAS1, it turns out to

be critical to set P x
t to be different for different x and also

to use our tighter confidence bound.

Bounding BIAS1. To bound the term BIAS1 =∑T
t=1〈q̂t, ℓt − ℓ̂t〉, we need to show that ℓ̂t is not under-

estimating ℓt by too much, which, at a high-level, is also

ensured due to the fact that the confidence set becomes more

and more accurate for frequently visited state-action pairs.

Lemma 6. With probability at least 1− 7δ, UOB-REPS

ensures

BIAS1 = O
(
L|X|

√
|A|T ln

(
T |X||A|

δ

)
+ γ|X||A|T

)
.

Proof. First note that 〈q̂t, ℓ̂t〉 is in [0, L] because P q̂t ∈ Pit

by the definition of q̂t and thus q̂t(x, a) ≤ ut(x, a) by the

definition of ut, which implies

∑

x,a

q̂t(x, a)ℓ̂t(x, a) ≤
∑

x,a

I{xk(x) = x, ak(x) = a} = L.

Applying Azuma’s inequality we thus have with probabil-

ity at least 1 − δ,
∑T

t=1〈q̂t,Et[ℓ̂t] − ℓ̂t〉 ≤ L
√
2T ln 1

δ .

Therefore, we can bound BIAS1 by
∑T

t=1〈q̂t, ℓt−Et[ℓ̂t]〉+
L
√
2T ln 1

δ under this event. We then focus on the term
∑

t〈q̂t, ℓt −Et[ℓ̂t]〉 and rewrite it as (by the definition of ℓ̂t)

∑

t,x,a

q̂t(x, a)ℓt(x, a)

(
1− Et[I{xk(x) = x, ak(x) = a}]

ut(x, a) + γ

)

=
∑

t,x,a

q̂t(x, a)ℓt(x, a)

(
1− qt(x, a)

ut(x, a) + γ

)

=
∑

t,x,a

q̂t(x, a)

ut(x, a) + γ
(ut(x, a)− qt(x, a) + γ)

≤
∑

t,x,a

|ut(x, a)− qt(x, a)|+ γ|X||A|T

where the last step is again due to q̂t(x, a) ≤ ut(x, a).
Finally, note that by Eq. (9), one has ut = qP

x
t ,πt for

P x
t = argmaxP̂∈Pit

qP̂ ,πt(x) (which isFt-measurable and

belongs to Pit clearly). Applying Lemma 4 together with a

union bound then finishes the proof.

We point out again that this is the only part that requires us-

ing our new confidence set. With the looser one used in pre-

vious work we can only show
∑

t,x,a |ut(x, a)−qt(x, a)| =
O
(
L|X|2

√
|A|T ln

(T |X||A|
δ

))
, with an extra |X| factor.

5. Conclusion

In this work, we propose the first efficient algorithm with

Õ(
√
T ) regret for learning MDPs with unknown transi-

tion function, adversarial losses, and bandit feedback. Our

main algorithmic contribution is to propose a tighter confi-

dence bound together with a novel optimistic loss estima-

tor based on upper occupancy bounds. One natural open

problem in this direction is to close the gap between our

regret upper bound Õ(L|X|
√
|A|T ) and the lower bound

of Ω(L
√
|X||A|T ) (Jin et al., 2018), which exists even for

the full-information setting.
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