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Abstract

We consider the task of learning in episodic finite-
horizon Markov decision processes with an un-
known transition function, bandit feedback, and
adversarial losses. We propose an efficient algo-
rithm that achieves O(L|X|\/|A|T) regret with
high probability, where L is the horizon, | X| the
number of states, | A| the number of actions, and T
the number of episodes. To our knowledge, our al-
gorithm is the first to ensure O (v/T) regret in this
challenging setting; in fact it achieves the same
regret as (Rosenberg & Mansour, 2019a) who
consider the easier setting with full-information.
Our key contributions are two-fold: a tighter con-
fidence set for the transition function; and an opti-
mistic loss estimator that is inversely weighted by
an upper occupancy bound.

1. Introduction

Reinforcement learning studies the problem where a learner
interacts with the environment sequentially and aims to im-
prove her strategy over time. The environment dynamics are
usually modeled as a Markov Decision Process (MDP) with
a fixed and unknown transition function. We consider a gen-
eral setting where the interaction proceeds in episodes with
a fixed horizon. Within each episode the learner sequentially
observes her current state, selects an action, suffers and ob-
serves the loss corresponding to the chosen state-action pair,
and then transits to the next state according to the underlying
transition function.! The goal of the learner is to minimize
her regret: the difference between her total loss and the total
loss of an optimal fixed policy.
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'As in previous work (Rosenberg & Mansour, 2019a;b),
throughout we use the term “losses” instead of “rewards” to be
consistent with the adversarial online learning literature. One can
translate between losses and rewards by simply taking negation.
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The majority of the literature in learning MDPs assumes
stationary losses, that is, the losses observed for a specific
state-action pair follow a fixed and unknown distribution.
To better capture applications with non-stationary or even
adversarial losses, the works (Even-Dar et al., 2009; Yu
et al., 2009) are among the first to study the problem of
learning adversarial MDPs, where the losses can change
arbitrarily between episodes. There are several follow-ups
in this direction, such as (Yu et al., 2009; Neu et al., 2010;
2012; Zimin & Neu, 2013; Dekel & Hazan, 2013; Rosenberg
& Mansour, 2019a). See Section 1.1 for more related work.

For an MDP with |X| states, |A| actions, T episodes,
and L steps in each episode, the best existing result is
the work (Rosenberg & Mansour, 2019a), which achieves
O(L|X|\/|A|T) regret, assuming a fixed and unknown
transition function, adversarial losses, but importantly full-
information feedback: i.e., the loss for every state-action
pair is revealed at the end of each episode. On the other hand,
with the more natural and standard bandit feedback (where
only the loss for each visited state-action pair is revealed),
a later work by the same authors (Rosenberg & Mansour,
2019b) achieves regret O(L3/2| X || A|'/4T3/4), which has
a much worse dependence on the number of episodes T’
compared to the full-information setting.

Our main contribution significantly improves on (Rosenberg
& Mansour, 2019b). In particular, we propose an efficient
algorithm that achieves O(L|X|/[A|T) regret in the same
setting with bandit feedback, an unknown transition func-
tion, and adversarial losses. Although our regret bound still
exhibits a gap compared to the best existing lower bound
Q(L+/|X||A|T) (Jin et al., 2018), to the best of our knowl-
edge, for this challenging setting our result is the first to
achieve O(v/T) regret. Importantly, this also matches the
regret upper bound of Rosenberg & Mansour (2019a), who
consider the easier setting with full-information feedback.

Our algorithm builds on the UC-O-REPS algorithm (Rosen-
berg & Mansour, 2019a;b)—we also construct confidence
sets to handle the unknown transition function, and apply
Online Mirror Descent over the space of occupancy mea-
sures (see Section 2.1) to handle adversarial losses. The first
key difference and challenge is that with bandit feedback, to
apply Online Mirror Descent we must construct good loss
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estimators since the loss function is not completely revealed.
However, the most natural approach of building unbiased
loss estimators via inverse probability requires knowledge of
the transition function, and is thus infeasible in our setting.

We address this key challenge by proposing a novel biased
and optimistic loss estimator (Section 3.3). Specifically,
instead of inversely weighting the observation by the proba-
bility of visiting the corresponding state-action pair (which
is unknown), we use the maximum probability among all
plausible transition functions specified by a confidence set,
which we call upper occupancy bound. This idea resembles
the optimistic principle of using upper confidence bounds
for many other problems of learning with bandit feedback,
such as stochastic multi-armed bandits (Auer et al., 2002a),
stochastic linear bandits (Chu et al., 2011; Abbasi-Yadkori
et al., 2011), and reinforcement learning with stochastic
losses (Jaksch et al., 2010; Azar et al., 2017; Jin et al.,
2018). However, as far as we know, applying optimism in
constructing loss estimators for an adversarial setting is new.

The second key difference of our algorithm from UC-O-
REPS (Section 3.1) lies in a new confidence set for the
transition function. Specifically, for each state-action pair,
the confidence set used in UC-O-REPS and previous works
such as (Jaksch et al., 2010; Azar et al., 2017) imposes a
total variation constraint on the transition probability, while
our proposed confidence set imposes an independent con-
straint on the transition probability for each next state, and
is strictly tighter. Indeed, with the former we can only
prove an O(L| X |>+/[A|T) regret, while with the latter we
improve it to O(L| X |/|A|T). Analyzing the non-trivial
interplay between our optimistic loss estimators and the new
confidence set is one of our key technical contributions.

Finally, we remark that our proposed upper occupancy
bounds can be computed efficiently via backward dynamic
programming and solving some linear programs greedily,
and thus our algorithm can be implemented efficiently.

1.1. Related Work

Stochastic losses. Learning MDPs with stochastic losses
and bandit feedback is relatively well-studied for the
tabular case (that is, finite number of states and ac-
tions). For example, in the episodic setting, using our
notation,” the UCRL?2 algorithm of Jaksch et al. (2010)
achieves O(1/L3| X |2|A|T) regret, and the UCBVI algo-
rithm of Azar et al. (2017) achieves the optimal bound
O(L+/1X||A|T), both of which are model-based algo-
rithms and construct confidence sets for both the transition

2We warn the reader that in some of these cited papers, the
notation |X| or T" might be defined differently (often L times
smaller for | X | and L times larger for 7). We have translated the
bounds based on Table 1 of (Jin et al., 2018) using our notation
defined in Section 2.

function and the loss function. The recent work (Jin et al.,
2018) achieves a suboptimal bound O(1/L3| X [|A|T) via
an optimistic Q-learning algorithm that is model-free. Be-
sides the episodic setting, other setups such as discounted
losses or infinite-horizon average-loss setting have also been
heavily studied; see for example (Ouyang et al., 2017; Fruit
et al., 2018; Zhang & Ji, 2019; Wei et al., 2019; Wang et al.,
2019) for some recent works.

Adversarial losses. Based on whether the transition func-
tion is known and whether the feedback is full-information
or bandit, we discuss four categories separately.

Known transition and full-information feedback. Early
works on adversarial MDPs assume a known transition func-
tion and full-information feedback. For example, Even-
Dar et al. (2009) propose the algorithm MDP-E and prove
a regret bound of O(72,/T'In[A]) where 7 is the mix-
ing time of the MDP; another work (Yu et al., 2009)
achieves @(TQ/ 3) regret. Both of these consider a con-
tinuous setting (as opposed to the episodic setting that we
study). Later Zimin & Neu (2013) consider the episodic
setting and propose the O-REPS algorithm which applies
Online Mirror Descent over the space of occupancy mea-
sures, a key component adopted by (Rosenberg & Mansour,
2019a) and our work. O-REPS achieves the optimal regret

O(L+/TIn(]X||A])) in this setting.

Known transition and bandit feedback. Several works con-
sider the harder bandit feedback model while still assuming
known transitions. The work (Neu et al., 2010) achieves re-
gret O(L?/T|A] /), assuming that all states are reachable
with some probability « under all policies. Later, Neu et al.
(2014) eliminates the dependence on « but only achieves
O(T?/3) regret. The O-REPS algorithm of (Zimin & Neu,
2013) again achieves the optimal regret O(+/L| X [[A|T).
Another line of works (Arora et al., 2012; Dekel & Hazan,
2013) assumes deterministic transitions for a continuous
setting without some unichain structure, which is known to
be harder and suffers Q(7°%/3) regret (Dekel et al., 2014).

Unknown transition and full-information feedback. To deal
with unknown transitions, Neu et al. (2012) propose the Fol-
low the Perturbed Optimistic Policy algorithm and achieve
O(L|X||A|V/T) regret. Combining the idea of confidence
sets and Online Mirror Descent, the UC-O-REPS algorithm
of (Rosenberg & Mansour, 2019a) improves the regret to
O(L|X|\/|A|T). We note that this work also studies gen-
eral convex performance criteria, which we do not consider.

Unknown transition and bandit feedback. This is the set-
ting considered in our work. The only previous work we
are aware of (Rosenberg & Mansour, 2019b) achieves a
regret bound of O(T3/%), or O(v/T/a) under the strong
assumption that under any policy, all states are reachable
with probability « that could be arbitrarily small in gen-
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eral. Our algorithm achieves O(v/T)) regret without this
assumption by using a different loss estimator and by using
a tighter confidence set. We also note that the lower bound
of Q(L+/|X||A|T) (Jin et al., 2018) still applies.

Adversarial transition functions. There exist a few
works that consider both time-varying transition functions
and time-varying losses (Yu & Mannor, 2009; Cheung et al.,
2019; Lykouris et al., 2019). Most recently, Lykouris et al.
(2019) consider a stochastic problem with C episodes arbi-
trarily corrupted and obtain O(C'v/T + C?) regret (ignoring
dependence on other parameters). This bound is of order
(’)(\/T) only when C'is a constant, and is vacuous whenever
C = Q(v/T). In comparison, our bound is always O(v/T)
no matter how much corruption there is in the losses, but
our algorithm cannot handle changing transition functions.

2. Problem Formulation

An adversarial Markov decision process is defined by a tuple
(X, A, P {6;}L }), where X is the finite state space, A is
the finite action space, P : X x A x X — [0,1] is the
transition function, with P(a’|z, a) being the probability of
transferring to state =’ when executing action a in state x,
and ¢; : X x A — [0,1] is the loss function for episode t.

In this work, we consider an episodic setting with finite
horizons and assume that the MDP has a layered structure,
satisfying the following conditions:

e The state space X consists of L+ 1 layers Xo, ..., X
such that X = Ji_, Xy and X; N X; = 0 fori # j.

e X, and X, are singletons, that is, Xg = {zo} and
XL = {SUL}

e Transitions are possible only between consecutive lay-
ers. In other words, if P(z'|z,a) > 0, then 2’ € X} 41
and x € X, for some k.

These assumptions were made in previous work (Neu et al.,
2012; Zimin & Neu, 2013; Rosenberg & Mansour, 2019a)
as well. They are not necessary but greatly simplify notation
and analysis. Such a setup is sometimes referred to as the
loop-free stochastic shortest path problem in the literature.
It is clear that this is a strict generalization of the episodic
setting studied in (Azar et al., 2017; Jin et al., 2018) for
example, where the number of states is the same for each
layer (except for the first and the last one).> We also point

3In addition, some of these works (such as (Azar et al., 2017))
also assume that the states have the same name for different layers,
and the transition between the layers remains the same. Our setup
does not make this assumption and is closer to that of (Jin et al.,
2018). We also refer the reader to footnote 2 of (Jin et al., 2018) for
how to translate regret bounds between settings with and without
this extra assumption.

Protocol 1 Learner-Environment Interaction
Parameters: state space X and action space A (known
to the learner), unknown transition function P
fort =1toT do
adversary decides a loss function ¢, : X x A — [0,1]
learner decides a policy 7; and starts in state xg
fork=0to L —1do
learner selects action ay ~ 7 (-|x)
learner observes loss ¢;(xy, ay)
environment draws a new state 21 ~ P(-|zg, ar)
learner observes state x5
end for
end for

out that our algorithms and results can be easily modified
to deal with a more general setup where the first layer has
multiple states and in each episode the initial state is decided
adversarially, as in (Jin et al., 2018) (details omitted).

The interaction between the learner and the environment is
presented in Protocol 1. Ahead of time, the environment
decides an MDP, and only the state space X with its layer
structure and the action space A are known to the learner.
The interaction proceeds in T" episodes. In episode ¢, the
adversary decides the loss function #;, which can depend on
the learner’s algorithm and the randomness before episode .
Simultaneously, the learner starts from state zy and decides
a stochastic policy m; : X x A — [0,1], where m;(a|z)
is the probability of taking action a at a given state =, so
that ) 4 m:(alz) = 1 for every state x. Then, the learner
executes this policy in the MDP, generating L state-action
pairs (xg,a0),...,(rr_1,ar_1).* Specifically, for each
k=0,...,L—1,action ay, is drawn from 7;(-|z;,) and the
next state 2.1 is drawn from P(-|xy, a).

Importantly, instead of observing the loss function ¢; at
the end of episode ¢ (Rosenberg & Mansour, 2019a), in
our setting the learner only observes the loss for each vis-
ited state-action pair: ¢;(x, ag), ..., l(xr—1,a5—1). That
is, we consider the more challenging setting with bandit
feedback.

For any given policy 7, we denote its expected loss in
episode ¢ by

P,

L-1
E lz by(wk, ar) ;
k=0
where the notation E[-| P, 7] emphasizes that the state-action
pairs (zo, ao), - .., (rr—1,ar—1) are random variables gen-
erated according to the transition function P and a stochastic
policy 7. The total loss over T" episodes for any fixed policy

*Formally, the notation (zo,ao),...,(xr—1,ar—1) should
have a t dependence. Throughout the paper we omit this depen-
dence for conciseness as it is clear from the context.
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7 18 thus

T

Ly(r) =) E

t=1

L—-1
Z Zt(xk, ak) P T
k=0

while the total loss of the learner is

T L—1
Ly = ZE lz le(xy, ar)
=1 | k=0

The goal of the learner is to minimize the regret, defined as

Paﬂ-t

Ry = Ly — min Lp(w)
™
where 7 ranges over all stochastic policies.

Notation. We use k(z) to denote the index of the layer to
which state = belongs, and I{-} to denote the indicator func-
tion whose value is 1 if the input holds true and O otherwise.
Let o; = {(wx, ay, li(vk, ar)) }_; be the observation of
the learner in episode ¢, and F; be the o-algebra generated
by (01,...,0¢—1). Also let E;[-] be a shorthand of E[-|F;].

2.1. Occupancy Measures

Solving the problem with techniques from online learning re-
quires introducing the concept of occupancy measures (Alt-
man, 1999; Neu et al., 2012). Specifically, the occupancy
measure ¢77 : X x A x X — [0,1] associated with a
stochastic policy 7 and a transition function P is defined as

P,‘rr(

¢ (z,a,2") =Prlxy =x,ar = a, 541 = 2’ | P,7),

where k = k() is the index of the layer to which z belongs.
In other words, ¢©"™ (z, a, ') is the marginal probability of
encountering the triple (x, a, 2’) when executing policy 7
in a MDP with transition function P.

Clearly, an occupancy measure ¢ satisfies the following two
properties. First, due to the loop-free structure, each layer is
visited exactly once and thus for every k =0, ..., L — 1,

ZZZ (z,a,2') = 1. (1)

X, a€Ax' €X 41

Second, the probability of entering a state when coming
from the previous layer is exactly the probability of leaving
from that state to the next layer (except for xg and zp).
Therefore, for every k = 1,...,L — 1 and every state z €

X}, we have
E E :E , 4, T) E E (z,a, a: )
' EXK_1a€EA EX)C+1 acA

It turns out that these two properties suffice for any function
qg: X xAxA — [0,1] to be an occupancy measure
associated with some transition function and some policy.

Lemma 1 (Rosenberg & Mansour (2019a)). If a function
q: X x Ax X — [0,1] satisfies conditions (1) and (2),
then it is a valid occupancy measure associated with the
following induced transition function P and induced policy
md:

q(z,a,x")
Pq(x/|x,a):z (xa ),
YEXk(2)+1 aQ\z,a,y
/
ﬂ—q(a‘lﬁ) = Z$lexk(z)+1 q(‘/'C? a,T )

ZbeA Zx’exk(le q(37> b,z’) '

We denote by A the set of valid occupancy measures, that is,
the subset of [0, 1]X*4*X satisfying conditions (1) and (2).
For a fixed transition function P, we denote by A(P) C A
the set of occupancy measures whose induced transition
function P is exactly P. Similarly, we denote by A(P) C
A the set of occupancy measures whose induced transition
function P belongs to a set of transition functions P.

With the concept of occupancy measure, we can reduce the
problem of learning a policy to the problem of learning an
occupancy measure and apply online linear optimization
techniques. Specifically, with slight abuse of notation, for
an occupancy measure g we define

Q(xaa) - Z

2/ E€EXo(x) 41

q(z,a,2")

for all # # xr, and a € A, which is the probability of
visiting state-action pair (x, a). Then the expected loss of
following a policy 7 for episode ¢ can be rewritten as

1

E [i Et(l‘k, ak)

quﬂxaftxa)

k=0 z€X, a€A

P

qPJT (Z‘, a’)gt (l’, &) é <qP77T7 £t>7

M

zeX\{zL},acA

and accordingly the regret of the learner can be rewritten as
T

RT—LT—mmLT Z P“‘—q*,€t>, 3
t=1

where ¢* € argmingca(p) Zthl (q, %) is the optimal oc-
cupancy measure in A(P).

On the other hand, assume for a moment that the set A(P)
were known and the loss function ¢; was revealed at the
end of episode t. Consider an online linear optimization
problem (see (Hazan et al., 2016) for example) with decision
set A(P) and linear loss parameterized by ¢; at time ¢. In
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other words, at each time ¢, the learner proposes ¢; € A(P)
and suffers loss (g, ¢;). The regret of this problem is
T
> e —q" ). )

t=1

Therefore, if in the original problem, we set 7w, = 7%, then
the two regret measures Eq. (3) and Eq. (4) are exactly the
same by Lemma 1 and we have thus reduced the problem to
an instance of online linear optimization.

It remains to address the issues that A(P) is unknown and
that we have only partial information on ¢;. The first issue
can be addressed by constructing a confidence set P based
on observations and replacing A(P) with A(P), and the
second issue is addressed by constructing loss estimators
with reasonably small bias and variance. For both issues, we
propose new solutions compared to (Rosenberg & Mansour,
2019b).

Note that importantly, the above reduction does not reduce
the problem to an instance of the well-studied bandit linear
optimization (Abernethy et al., 2008) where the quantity
(gt,¢:) (or a sample with this mean) is observed. Indeed,
roughly speaking, what we observed in our setting are sam-
ples with mean (¢©>™", £;). These two are different when
we do not know P and have to operate over the set A(P).

3. Algorithm

The complete pseudocode of our algorithm, UOB-REPS,
is presented in Algorithm 2. The three key components
of our algorithm are: 1) maintaining a confidence set of
the transition function, 2) using Online Mirror Descent to
update the occupancy measure, and 3) constructing loss
estimators, each described in detail below.

3.1. Confidence Sets

The idea of maintaining a confidence set of the transition
function P dates back to (Burnetas & Katehakis, 1997).
Specifically, the algorithm maintains counters to record the
number of visits of each state-action pair (x, a) and each
state-action-state triple (z, a,z’). To reduce the computa-
tional complexity, a doubling epoch schedule is deployed, so
that a new epoch starts whenever there exists a state-action
whose counter is doubled compared to its initial value at
the beginning of the epoch. For epoch i > 1, let N;(z, a)
and M;(z'|x, a) be the initial values of the counters, that is,
the total number of visits of pair (z, a) and triple (z, a, x’)
before epoch i. Then the empirical transition function for
this epoch is defined as

M;(2'|x,a)
max{1, N;(z,a)}

Pi(x/|x,a) =

Most previous works (such as (Jaksch et al., 2010; Azar
et al., 2017; Rosenberg & Mansour, 2019b)) construct a
confidence set which includes all transition functions with
bounded total variation compared to P;(-|x,a) for each
(z, a) pair. However, to ensure lower bias for our loss esti-
mators, we propose a tighter confidence set which includes
all transition functions with bounded distance compared to
P;(z'|x, a) for each triple (z,a, x'). More specifically, the
confidence set for epoch i is defined as’

P; = {ﬁ : ‘ﬁ(zﬂx,a) - ]5,;(x'|x,a)‘ < €2 |z, a),
)
V(z,a,2") € Xi xAxXkJrl,k:O,...,L—l},

where the confidence width €;(z’|x, a) is defined as

Pi(a'|z,a)n (1AL
max{1, N;(z,a) — 1}

141 (ZX41)

* 3max{1l, N;(z,a) — 1}
(6)
for some confidence parameter § € (0,1). For the first

epoch (¢ = 1), P; is simply the set of all transition functions
so that A(P;) = A

By the empirical Bernstein inequality and union bounds, one
can show the following (see Appendix B.1 for the proof):

Lemma 2. With probability at least 1 — 40, we have P € P;
for all 1.

Moreover, ignoring constants one can further show that
our confidence bound is strictly tighter than those used
in (Rosenberg & Mansour, 2019a;b), which is important for
getting our final regret bound (more discussions to follow
in Section 4).

3.2. Online Mirror Descent (OMD)

The OMD component of our algorithm is the same
as (Rosenberg & Mansour, 2019b). As discussed in Sec-
tion 2.1, our problem is closely related to an online linear
optimization problem over some occupancy measure space.
In particular, our algorithm maintains an occupancy measure
q: for episode ¢ and executes the induced policy m; = 7.
We apply Online Mirror Descent, a standard algorithmic
framework to tackle online learning problems, to update the
occupancy measure as

i1 = argmin 1(q, &) + D(q || @) (7
qEA(P;)

31t is understood that in the definition of the confidence set
(Eq. (5)), there is also an implicit constraint on P(:|z, a) being a
valid distribution over the states in X}, ()41, for each (x, a) pair.
This is omitted for conciseness.
B 5To represent P; in the form of Eq. (5), one can simply let
P (+|z, a) be any distribution and €1 (z'|z,a) = 1.
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Algorithm 3 Comp-UOB

Algorithm 2 Upper Occupancy Bound Relative Entropy
Policy Search (UOB-REPS)
Input: state space X, action space A, episode number 7',
learning rate 7, exploration parameter v, and confidence
parameter &

Initialization:

Initialize epoch index ¢ = 1 and confidence set P; as the
set of all transition functions.

Forallk =0,...,L —1landall (z,a,2') € X X A X
X1, initialize counters

NO(I7G“) = Nl(z7a) = M0($/|QZ,CL> = Ml(:rl|z,a) =0

and occupancy measure

Qi(x,a,2') = !
B = XA X |

Initialize policy m; = 7.

for t=1to 7 do
Execute policy 7, for L steps and obtain trajectory
xk,ak,ﬂt(xk, ak) for k = 0, ey L—1.
Compute upper occupancy bound for each k:

Ut(l'k, ak) = COMP-UOB(’]‘Q7 Tk, Ak, ’PZ)
Construct loss estimators for all (z, a):

N ft(l', CL)

b(z,a) = w(z,a) + ’Y]I{xk(w) =&, ap(e) = a}-

Update counters: for each k,

N,;(xk,ak) — N,;(xk,ak) + 1,
M;(xpq1|Tr, a) < Mi(Tpq1 |2k, ag) + 1.
if 3k, N;(zp,ar) > max{1,2N;_1(zk,ar)} then

Increase epoch index ¢ <— ¢ + 1.
Initialize new counters: for all (z, a, z’),

Ni(z,a) = N;_1(z,a), M;(z'|x,a) = M;_1(2'|z,a).

Update confidence set P; based on Eq. (5).
end if

Update occupancy measure (D defined in Eq. (8)):

Gi41 = argmin 1(g, &) + D(q || @).
qEA(P;)

Update policy my4q = mlt+1,
end for

Input: a policy 7, a state-action pair (z, a) and a confi-
dence set P of the form

{]3 : ‘ﬁ(x/\x,a) — ]5(:c'|1:,a)’ <e(2'|z,a), V(z,a, a:')}

Initialize: for all Z € Xj,(,), set f(Z) = I{Z = x}.

for k =k(z) —1to0do
for all z € X do
Compute f(Z) based on Eq. (10):

f(@) = m(alZ) - GREEDY (f, P(|%,a),€(-|Z,a))

a€A

(see Appendix A.2 for the procedure GREEDY).
end for
end for
Return: 7, (a|z) f(xo).

where 7 is the index of the epoch to which episode ¢ + 1
belongs, 7 > 0 is some learning rate, Zt is some loss esti-
mator for £,, and D(-||-) is a Bregman divergence. Follow-
ing (Rosenberg & Mansour, 2019a;b), we use the unnormal-
ized KL-divergence as the Bregman divergence:

(z,a,2")

/ ’ q
POl = 2 ety o)
z,a,T (8)
- Z (Q(zvaax/) —q/(x,a,xl)).

z,a,x’

Note that as pointed out earlier, ideally one would use A(P)
as the constraint set in the OMD update, but since P is
unknown, using A(P;) in place of it is a natural idea. Also
note that the update can be implemented efficiently, similarly
to Rosenberg & Mansour (2019a) (see Appendix A.1 for
details).

3.3. Loss Estimators

A common technique to deal with partial information in
adversarial online learning problems (such as adversarial
multi-armed bandits (Auer et al., 2002b)) is to construct
loss estimators based on observations. In particular, inverse
importance-weighted estimators are widely applicable. For
our problem, with a trajectory xzg, ag,...,Zr—1,ar—1 for
episode £, a common importance-weighted estimator for
¢ (x, a) would be

et('ra a)
P (za) | k(@) = T2 Ok(a) = 0}

Clearly this is an unbiased estimator for ¢;(z,a). Indeed,
the conditional expectation By [l {zy(z) = «, ag(z) = a}] is
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exactly g7 (z, a) since the latter is exactly the probability

of visiting (z, a) when executing policy 7; in a MDP with
transition function P.

The issue of this standard estimator is that we cannot com-
pute g7 (2, a) since P is unknown. To address this issue,
Rosenberg & Mansour (2019b) directly use ¢;(x, a) in place
of ¢©'™(x, a), leading to an estimator that could be either
an overestimate or an underestimate, and they can only show

O(T3/*) regret with this approach.

Instead, since we have a confidence set P; that contains P
with high probability (where ¢ is the index of the epoch to
which ¢ belongs), we propose to replace g7 (z, a) with an
upper occupancy bound defined as
ut(r,a) = max ¢~
PeP;

(z, a),

that is, the largest possible probability of visiting (z, a)
among all the plausible environments. In addition, we also
adopt the idea of implicit exploration from (Neu, 2015)
to further increase the denominator by some fixed amount
v > 0. Our final estimator for ¢;(z, a) is

N gt(xa a)

b(z,a) = wi(z,a) + {21 = 2, ap@) = a} -

The implicit exploration is important for several technical
reasons such as obtaining a high probability regret bound,
the key motivation of the work (Neu, 2015) for multi-armed
bandits.

Clearly, Zt(x, a) is a biased estimator and in particular is
underestimating ¢; (x, a) with high probability (since by def-
inition ¢©™ (2, a) < wi(w, a) if P € P;). The idea of using
underestimates for adversarial learning with bandit feedback
can be seen as an optimism principle which encourages ex-
ploration, and appears in previous work such as (Allenberg
et al., 2006; Neu, 2015) in different forms and for differ-
ent purposes. A key part of our analysis is to show that
the bias introduced by these estimators is reasonably small,
which eventually leads to a better regret bound compared
to (Rosenberg & Mansour, 2019b).

Computing upper occupancy bound efficiently. It re-
mains to discuss how to compute u;(z, a) efficiently. First
note that

ug(z,a) = 7 (alz) max g7 () )

PcP;
where once again we slightly abuse the notation and de-
fine g(z) = >, c 4 q(w,a’) for any occupancy measure g,
which is the marginal probability of visiting state = under
the associated policy and transition function. Further define

f(Z) = max Pr [mk(z) =x | T = T, P, my
PeP;

for any & with k(Z) < k(x), which is the maximum proba-
bility of visiting x starting from state &, under policy 7, and
among all plausible transition functions in P;. Clearly one
has us(z,a) = m(alz) f(xo), and also f(Z) = I{Z = z}
for all z in the same layer as x. Moreover, since the confi-
dence set P; imposes an independent constraint on P(-|x, a)
for each different pair (x, a), we have the following recur-
sive relation:

J@) = 3 milal#)

a€A

> P(|#,a)f(2)

'€ Xy (z)+1

Amax
P(|z,a)

10
where the maximization is over the constraint that P(-|Z, a)
is a valid distribution over X} (z),1 and also

|P@'|#,a) - Pi(a'|a)| < (2/|7,0), V" € Xigay1.

This optimization can be solved efficiently via a greedy ap-
proach after sorting the values of f(x') for all 2’ € Xj,(3)41
(see Appendix A.2 for details). This suggests computing
u¢(z, a) via backward dynamic programming from layer
k(x) down to layer 0, detailed in Algorithm 3.

4. Analysis

In this section, we analyze the regret of our algorithm and
prove the following theorem.

Theorem 3. With probability at least 1 — 96, UOB-REPS

withn = ~ = |/ 2LIX]A1/0) 1ng{~||)-;(”|x?l/5) ensures:
TIX|A
e =0 (1) (TR ).

The proof starts with decomposing the regret into four differ-
ent terms. S};emﬁcally, by Eq. (3) the regret can be written
as Rr = > ,_ (¢t — ¢ Zt> where we define ¢, = ¢©™ and
q" € argmingea(p Zt 1(q, ¢+). We then add and subtract
three terms and decompose the regret as

T T
RT :Z<qt _@7€t>+z<zﬁ7£t _z\t>
t=1 t=1

ERROR BIAS;
T T R
+Z<Qt—q £t> Z<q*7ft—ft>~
=1 =1
REG BIASs

Here, the first term ERROR measures the error of using q;
to approximate g;; the third term REG is the regret of the
corresponding online linear optimization problem and is
controlled by OMD; the second and the fourth terms BIAS;
and BIASy correspond to the bias of the loss estimators.
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We bound ERROR and BIAS; in the rest of this section.
Bounding REG and BIAS; is relatively standard and we
defer the proofs to Appendix B.3. Combining all the bounds
(specifically, Lemmas 5, 6, 12, and 14), applying a union
bound, and plugging in the (optimal) values of 1 and ~ prove
Theorem 3.

Throughout the analysis we use ¢; to denote the index of
the epoch to which episode ¢ belongs. Note that P;, and g;
are both F;-measurable. We start by stating a key technical
lemma which essentially describes how our new confidence
set shrinks over time and is critical for bounding ERROR
and BIAS; (see Appendix B.2 for the proof).

Lemma 4. With probability at least 1 — 60, for any collec-
tion of transition functions { P’} ,c x such that PF € P;,
for all x, we have

Yo Y (@ a) ~ gl a)l

t=1 zeX,acA

~0 <L|X|\/|A|Tln (T);"‘”)) :

Bounding ERROR. With the help of Lemma 4, we imme-
diately obtain the following bound on ERROR.

Lemma 5. With probability at least 1 — 65, UOB-REPS
ensures ERROR = O (LX|\/|A|T111 (TX6A>> .

Proof. Since all losses are in [0,1], we have

ERROR < Zle Z%a |é\1‘('ra a) qt (Iv a’)| =
S Y ld™ ™ (@,0) — qilw,a)|, where we de-
fine P* = P% ¢ P;, for all x so that §; = ¢7*™ (by the
definition of 7; and Lemma 1). Applying Lemma 4 finishes
the proof. O

Note that in the proof above, we set P;* to be the same for all
. In fact, in this case our Lemma 4 is similar to (Rosenberg
& Mansour, 2019a, Lemmas B.2 and B.3) and it also suffices
to use their looser confidence bound. However, in the next
application of Lemma 4 to bounding B1AS;, it turns out to
be critical to set P7 to be different for different x and also
to use our tighter confidence bound.

Bounding BiAs;. To bound the term BiAs; =
ZtTﬂ((ﬁ, £y — £4), we need to show that ¢; is not under-
estimating ¢; by too much, which, at a high-level, is also
ensured due to the fact that the confidence set becomes more
and more accurate for frequently visited state-action pairs.
Lemma 6. With probability at least 1 — 75, UOB-REPS
ensures

T|X]||A
auas, =0 (111 i (ZX14) ).

Proof. First note that (g, E) is in [0, L] because P% € P;,
by the definition of ¢; and thus ¢;(z,a) < u.(z,a) by the
definition of u;, which implies

Zqﬂ(ma)lz(%a) < Zﬂ{xk(z) =2,a(;) = a} = L.
T,a T,a

Applying Azuma’s inequality we thus have with probabil-
ity at least 1 — &, S1_ (@, Eo[l;] — &) < Ly/2TIn L.
Therefore, we can bound BIAS; by 31 (G, ¢ — Ey[6:]) +
L /2Tln% under this event. We then focus on the term
i@ by — Ey [¢,]) and rewrite it as (by the definition of 7;)

(1 _ E{zpe) =2 an@) = a}])

> G, a)l(x,a)

t,r,a Ut(%&)—}—y
= 3 Gl @)z, a) (1 - 20

= t;th( ) )gt( ’ ) (1 ut(l”a) +'Y)

— Z m (ue(z,a) — qe(z,a) +7)

<3 fulw,a) = gi(w,a)| + 7| X[|AIT

t,xr,a

where the last step is again due to ¢;(z,a) < ui(z,a).
Finally, note that by Eq. (9), one has u, = ¢"™ for
Pep,, q" ™t () (which is F;-measurable and
belongs to P;, clearly). Applying Lemma 4 together with a
union bound then finishes the proof. O

Pf = argmax

We point out again that this is the only part that requires us-
ing our new confidence set. With the looser one used in pre-
vious work we can only show >, . |ui(x,a)—q(x,a)| =

O(L|X|2\/|A\Tln (%)), with an extra | X| factor.

5. Conclusion

In this work, we propose the first efficient algorithm with
O(VT) regret for learning MDPs with unknown transi-
tion function, adversarial losses, and bandit feedback. Our
main algorithmic contribution is to propose a tighter confi-
dence bound together with a novel optimistic loss estima-
tor based on upper occupancy bounds. One natural open
problem in this direction is to close the gap between our
regret upper bound O(L| X |/[A|T) and the lower bound
of Q(L+/|X||A|T) (Jin et al., 2018), which exists even for
the full-information setting.
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