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Abstract

We consider submodular function minimization in the oracle model: given black-box access to a

submodular set function f : 2[n] → R, find an element of arg minS{f(S)} using as few queries to

f(·) as possible. State-of-the-art algorithms succeed with Õ(n2) queries [13], yet the best-known

lower bound has never been improved beyond n [6].

We provide a query lower bound of 2n for submodular function minimization, a 3n/2 − 2 query

lower bound for the non-trivial minimizer of a symmetric submodular function, and a
(

n

2

)

query

lower bound for the non-trivial minimizer of an asymmetric submodular function.

Our 3n/2 − 2 lower bound results from a connection between SFM lower bounds and a novel

concept we term the cut dimension of a graph. Interestingly, this yields a 3n/2 − 2 cut-query lower

bound for finding the global mincut in an undirected, weighted graph, but we also prove it cannot

yield a lower bound better than n + 1 for s-t mincut, even in a directed, weighted graph.
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1 Introduction

Submodular function minimization (SFM) is a classic algorithmic problem with numerous

applications (e.g. [1, 11, 12, 14]): given black-box access to a submodular1 function f :

2[n] → R, find an element of arg min{f(S)}. Due to its ubiquity within TCS and without,

the problem has received substantial attention over the past four decades within various

communities. Seminal work of Grötschel, Lovasz, and Schrijver first established that a

minimizer can be found in poly-time [5], and after a long series of improvements the state-of-

the-art now requires Õ(n2) value queries to f(·) and Õ(n3) additional overhead.

1 f(·) is submodular if f(X ∪ Y ) + f(X ∩ Y ) ≤ f(X) + f(Y ) for all sets X, Y . This is equivalent to
f(S ∪ T ∪ {i}) − f(S ∪ T ) ≤ f(S ∪ {i}) − f(S) for all S, T, i (called diminishing marginal returns).
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Despite remarkable progress on the algorithmic front, shockingly few lower bounds on

submodular function minimization are known. It is perhaps unsurprising that computational

lower bounds are elusive, but even query lower bounds are virtually non-existent. Indeed,

state-of-the-art query lower bounds for SFM have remained stagnant at exactly n for the

past decade [6]. Our main results are new query lower bounds for three variants of SFM. We

briefly provide the formal problem statements and our main results below, followed by an

overview of context and related work.

◮ Definition 1 (Query Complexity of Submodular Function Minimization). Given as input

black-box access to a submodular function f(·) over n elements, output an element of

arg minS{f(S)}, along with minS{f(S)}. The query complexity of SFM is equal to the

minimum q(·) such that a deterministic algorithm solves SFM on all instances of n elements

with at most q(n) queries.

If f(·) is further assumed symmetric, i.e. f(S) = f([n] \ S) for all S, this is Symmetric

SFM.

If we ask for arg minS /∈{∅,[n]}{f(S)}, this is Non-Trivial SFM (we will also use both

qualifiers).2

As a representative problem to have in mind, imagine a graph on n nodes with positive

edge weights and define f(S) to be the weight of all edges leaving set S (the value of cut S).

Then f(·) is submodular, and non-trivial symmetric SFM would count the number of cut

queries needed to find the mincut. If you seek the minimum s-t cut (and adjust notation

so that f(S) is equal to the weight of all edges leaving S ∪ {s}), then this is standard SFM

(because it is valid to output ∅, which implies that the mincut is s). If you seek the global

mincut in a directed graph, then this is an instance of Non-Trivial SFM (because it is now

invalid to output ∅). If you seek the global mincut in an undirected graph, then this is an

instance of Non-Trivial Symmetric SFM (because it doesn’t matter which side of the cut is

sending versus receiving). Our main results are below.

◮ Theorem 2 (Main Results). The following lower bound the query complexity of SFM:

The query complexity of SFM is at least 2n.

The query complexity of Non-Trivial Symmetric SFM is at least 3n/2 − 2.

The query complexity of Non-Trivial SFM is at least
(

n
2

)

.

1.1 New Technique: The Cut Dimension

Our SFM and Non-Trivial SFM lower bounds are direct constructions, and we defer all related

intuition and technical details to the corresponding sections. Our Non-Trivial Symmetric

SFM lower bound, however, derives from a new framework based on the cut dimension of

graphs.

◮ Definition 3 (Global Cut Dimension, special case of Definition 11). Let G be a directed graph

with m edges, and let S be a subset of nodes. Define ~vS be the vector in R
m with vS

e = 1

iff the edge e has left endpoint in S and right endpoint not in S (and vS
e = 0 otherwise).

Then the cut dimension of G is the dimension of span({~vS , S is a global mincut}). We also

consider the following variants:

2 Indeed, note that Symmetric SFM (without the Non-Trivial qualifier) is trivial, as ∅ (or [n]) is always a
solution.
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If G is undirected, then vS
e = 1 iff the edge e has one endpoint in S and the other not in

S.

If we seek the min s-t cut, then vS
e = 1 iff the edge e has left endpoint in S ∪ {s} and

right endpoint not in S ∪ {s}. We also take the dimension over min s-t cuts instead of

global mincuts. In this case, we call this the s-t Cut Dimension.

Our main result concerning the cut dimension connects it to SFM lower bounds:

◮ Theorem 4 (Special case of Theorem 15). If an undirected graph exists with Global Cut

Dimension d, then the query complexity of Non-Trivial Symmetric SFM is at least d.

If a graph exists with s-t Cut Dimension d, then the query complexity of SFM is at least d.

If a directed graph exists with Global Cut Dimension d, then the query complexity of

Non-Trivial SFM is at least d.

Interestingly, we also establish that the Cut Dimension is a equivalent to the best

achievable lower bounds based on graphs via a canonical perturbation approach. Our

3n/2 − 2 lower bound for Non-Trivial Symmetric SFM follows immediately from Theorem 4

and the construction of an undirected graph with Global Cut Dimension 3n/2 − 2. We also

establish that every graph has s-t Cut Dimension at most n + 1, meaning this approach is

useful for Non-Trivial SFM but not SFM.

1.2 Related Work

The first poly-time (and strongly poly-time) algorithms for SFM were given by [5] using

the Lovasz extension and the Ellipsoid algorithm [10]. A substantial series of improvements

followed over the subsequent four decades [3, 18, 4, 8, 7, 19, 15, 9] The state-of-the-art is

an Õ(n2) upper bound on the query complexity of SFM [13], an O(n3) upper bound on the

query complexity of Non-Trivial Symmetric SFM [16], and an Õ(n3) upper bound on the

query complexity of Non-Trivial SFM [13].3

Despite this substantial progress on upper bounds, the only unconditional query lower

bound is just n (which is surprisingly non-trivial to establish) [6]. [2] give a construction

which requires Ω(n) queries to the Lovasz extension (if the algorithm can only query the

Lovasz extension), but one can find the minimizer in their construction by simply querying

all n singletons.

Our Non-Trivial Symmetric SFM lower bound uses the cut function in graphs. Recent

work of [17] establishes that this particular instance of Non-Trivial Symmetric SFM (in

unweighted graphs) can be solved by a randomized algorithm in Õ(n) queries, but our

techniques are unrelated.

1.3 Roadmap

Section 2 provides our 2n lower bound for SFM, which is a direct construction. Section 3

proves (a generalization of) Theorem 4 and provides a graph with Global Cut Dimension

3n/2 − 2, yielding our 3n/2 − 2 lower bound for Non-Trivial Symmetric SFM. Section 4

provides our
(

n
2

)

lower bound for Non-Trivial SFM, which is also a direct construction.

Appendix B contains auxiliary claims concerning cut queries in graphs (i.e., it is impossible

to learn precisely a directed graph using cut queries, what can you learn?) which are not

necessary for our lower bounds, but likely useful for future work. Appendix A contains one

omitted proof.

3 The final bound follows by a reduction from Non-Trivial SFM to SFM incurring a blowup of 2n (for
all elements i, run SFM only over sets containing i and not containing i + 1, and then only over sets
containing i and not i − 1).

ITCS 2020
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2 A 2n Query Lower Bound for SFM

This section proves our lower bound on SFM.

◮ Theorem 5. The query complexity of SFM is at least 2n.

Let us first provide intuition for our construction. We start with an arbitrary permutation

σ on [n], and define the important sets Ri for 0 ≤ i ≤ n by Ri := {σ(1), σ(2), ..., σ(i)} for

each i ∈ [n] ∪ {0}. Observe that there is exactly one important set of each size from 0 to

n. These important sets will be the potential minimizers. Intuitively, we will define our

function such that: (a) any algorithm must query at least n − 1 unimportant sets to learn

the important sets, and (b) any algorithm must query all n + 1 important sets to learn the

minimizer. In detail:

Let σ be an arbitrary permutation on [n].

Define Ri := {σ(1), . . . , σ(i)} for each i ∈ [n] ∪ {0}.

For each i ∈ [n] ∪ {0}, let ci ∈ {0, 1}.

Define the function f~c
σ(·) such that (below, j(S) denotes the maximum j such that

Rj ⊆ S):

f~c
σ(S) =

{

−ci if S = Ri for some 0 ≤ i ≤ n

(|S| − j(S)) · (n + 2 − j(S)) else

That is, f~c
σ(·) is defined to be non-negative on the unimportant sets, and non-positive on

the important sets. Intuitively, queries to unimportant sets give information regarding σ,

and queries to important sets give information regarding ~c. It is not obvious, but straight-

forward to establish that f~c
σ(·) is submodular for all σ,~c. The proof of Lemma 6 appears in

Appendix A.

◮ Lemma 6. For all σ,~c, f~c
σ is submodular.

We now provide a complete proof that deterministic algorithms must make 2n queries for

functions of the form f~c
σ(·). We define an adversary which adaptively sets σ,~c as queries are

made:

Initialize σ,~c to be undefined.

Let i denote the maximum j such that σ(j) is defined (so initially i = 0).

When a new query, S, is made:

1. If S = Rj , for some j ≤ i, answer 0 and set cj = 0. Call this an important query.

2. If Ri 6⊆ S, j(S) is defined. Answer (|S| − j(S)) · (n + 2 − j(S)). Call this a useless

query.

3. If Ri ⊂ S, j(S) is not yet defined. Pick any j /∈ S (such a j must exist as S 6= Rn)

and set σ(i + 1) = j.4 Now j(S) := i, so answer (|S| − i) · (n + 2 − i). Call this a decoy

query.

If the algorithm terminates after n + 1 (distinct) important queries, σ and ~c are fully

defined.

If the algorithm has made fewer than n + 1 (distinct) important queries, let x denote the

algorithm’s guess for the minimum value.

1. If x = 0, set all undefined ci := 1 and complete σ arbitrarily (if necessary).

2. If x = −1, set all undefined ci := 0 and complete σ arbitrarily (if necessary).

3. If x /∈ {0, −1}, complete ~c, σ arbitrarily.

4 Observe also that j 6= σ(ℓ) for any ℓ ≤ i, as Ri ⊂ S.
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Theorem 5 will follow by proving that the above adversary is consistent and that the

adversary has the power to make multiple (distinct) minima unless the algorithm has made

at least n − 1 decoy queries and n + 1 important queries.

◮ Observation 7. The adversary answers all queries in a way that is consistent with some

f~c
σ(·).

Proof. Observe that the adversary answers all queries to Rj with 0, so this is always

consistent. Further observe that whenever an unimportant set is queried, either the answer

is already determined by σ (and therefore consistent), or one new output of σ is fixed so that

the answer is now determined by σ (and therefore consistent now and forever). The precise

definition of f~c
σ(·) is important for the final claim: as soon as we know that σ(i + 1) /∈ S,

this fixes the value of f~c
σ(·).

Finally, observe that the completion step is also consistent with all previous queries, as

they are completely defined by the partial definition of σ,~c. ◭

◮ Lemma 8. Algorithms cannnot make n + 1 distinct important queries without n − 1 decoy

queries.

Proof. Observe that each decoy query increases i by one. Observe that the only distinct

important queries that can be made are ∅, [n], and R1, . . . , Ri, for a total of i+2. If i < n−1,

then the distinct possible important queries are also < n + 1. ◭

◮ Lemma 9. Any algorithm making < n + 1 distinct important queries is wrong.

Proof. If the guess is /∈ {0, −1}, then the guess is clearly wrong. If the guess is 0, then the

completion step makes it so that the minimum is −1, so the guess is wrong. If the guess is

−1, then the completion step makes it so that the minimum is 0, so the guess is wrong. ◭

Proof of Theorem 5. Lemmas 9 and 8 together assert that the algorithm must make n − 1

decoy queries and n + 1 important queries in order to correctly solve SFM on instances of

the form f~c
σ(·) against the prescribed adversary. Therefore, a total of 2n queries must be

made. ◭

We conclude this section by noting that our construction witnesses a lower bound of

exactly 2n (and no better).

◮ Proposition 10. An SFM algorithm exists making 2n queries for any function of the form

f~c
σ(·).

Proof. First, query the n − 1 sets [n] \ {i} for all i 6= 1. Observe that f~c
σ([n] \ {i}) ≤ 0 if

and only if σ(n) = i. Similarly, as [n] \ {i} is missing only a single element (i), this means

that if σ(n) 6= i then f~c
σ([n] \ {i}) = (n − σ−1(i)) · (n + 3 − σ−1(i)). So the query to [n] \ {i}

reveals σ−1(i), for any i. Therefore, these n − 1 queries completely reveal σ (because σ is a

permutation).

After σ is fully revealed, simply query the n + 1 important sets to find the minimizer. ◭

ITCS 2020
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3 A 3n/2 − 2 Query Lower Bound for Non-Trivial Symmetric SFM

We begin this section by providing a generalization the cut dimension, first by providing a

class of submodular functions which generalize mincuts in graphs.

3.1 Defining the Generalized Cut Dimension

Consider a ground set of n elements, and a disjoint set of m hyperedges. We associate with

each S ⊆ [n] (including S = ∅) a set h(S) ⊆ [m] of hyperedges that are active for S. For

example, to capture mincuts in an undirected graph we might have the hyperedges simply

be the edges of that graph, and h(S) would denote the edges with one endpoint in S and the

other not in S.

To each i ∈ [m], associate a non-negative weight wi, and define the function f(·) so that

f(S) :=
∑

i∈h(S) wi. If the active sets h(·) satisfy the following inequality, then it is easy to

see that f(·) is submodular (below, X∪Y denotes the multiset union of X and Y , which

contains two copies of every element in X ∩ Y ):

h(S ∩ T )∪h(S ∪ T ) ⊆ h(S)∪h(T ).

We call such functions weight-based. It is easy to see that cuts in graphs or hypergraphs

are weight-based. For such functions, there is a meaningful notion of “dimension” associated

with the set of minimizers. For every S ⊆ [n], define the vector ~vS ∈ R
m so that vS

i = 1 if

and only if i ∈ h(S) and wi > 0, and vS
i = 0 otherwise. For a set S of subsets of [n], let

dim(S) denote the dimension of the span (over R
m) of the vectors {~vS}S∈S . We now define

the Generalized Cut Dimension:

◮ Definition 11 (Generalized Cut Dimension). Let f(·) be weight-based. Then the Generalized

Cut Dimension of f(·) is equal to dim(arg minS{f(S)}). The Generalized Non-Trivial Cut

Dimension of f(·) is dim(arg minS /∈{∅,[n]}{f(S)}}).

We will call a weight-based function symmetric if h(S) = h([n] \ S) – it is clear that the

resulting submodular function is symmetric.

3.2 Connecting Generalized Cut Dimension to Query Complexity

In this section, we establish the equivalence of Generalized Cut Dimension to a canonical

“perturbation” approach for lower bounding the query complexity.

◮ Definition 12 (Perturbation Bound). Starting from a (symmetric, if desired) weight-based

submodular function f(·) with weights ~w and (non-trivial, if desired) minimizers Mf , pick a

sufficiently small ε > 0 so that every ~w′ with w′
i ∈ [(1 − ε)wi, (1 + ε)wi] induces a (symmetric,

if desired) weight-based submodular function g(·) with (non-trivial, if desired) minimizers

Mg ⊆ Mf . Let G(f) denote the set of all (symmetric, if desired) weight-based functions

with w′
i ∈ [(1 − ε)wi, (1 + ε)wi].

If it is the case that, for any set of q − 1 queries to f , there exists a g ∈ G(f) con-

sistent with those queries such that minS{g(S)} 6= minS{f(S)}, we say that f witnesses a

(Symmetric) Perturbation Bound of q (if there is a g(·) ∈ G(f) with minS /∈{∅,[n]}{g(S)} 6=

minS /∈{∅,[n]}{f(S)}, we say that f witnesses a Non-Trivial Perturbation Bound of q).

We refer to the Perturbation Bound of f as the maximum possible q such that f witnesses

a Peturbation Bound of q (and similarly can define the Non-Trivial Perturbation Bound).



A. Graur, T. Pollner, V. Ramaswamy, and S. M. Weinberg 64:7

Intuitively, the perturbation bound captures the following natural way to obtain query

lower bounds: start from some function f(·) with minimizers Mf . There is some non-zero

gap δ between the minimizers and the rest, so there exists a sufficiently small ε such that

perturbing weights by ε can tie-break among minimizers, but not yield a new minimizer.

◮ Observation 13. If there exists an f(·) witnessing a (Symmetric, Non-Trivial) Perturbation

Bound of q, then the query complexity of (Symmetric, Non-Trivial) SFM is at least q.

Proof. Assume for contradiction that an algorithm correctly outputs the minimum value,

x, after q − 1 queries that are consistent with f(·). If x 6= minS{f(S)}, then all queries

are consistent with f(·), so the algorithm could be wrong because the function is f(·). if

x = minS{f(S)}, then because f(·) witnesses a Perturbation Bound of q, there exists a g(·)

consistent with all q − 1 queries with minS{g(S)} 6= x, so the algorithm could be wrong

because the function is g(·).

The same proof holds verbatim if f(·) is assumed to be symmetric, or if we replace

absolute minimizers with non-trivial minimizers. ◭

We now establish that the perturbation bound approach yields exactly the same lower

bound as the generalized cut dimension. Our proof will make use of the following observation.

◮ Observation 14. For any g ∈ G(f), g(S) = ~vS · ~w′ (where ~w′ is the weight vector defining

g(·)).

Proof. First, recall that g(S) :=
∑

i∈h(S) w′
i. Recall further that vS

i = 1 whenever wi 6= 0

and i ∈ h(S). Importantly, note that wi = 0 ⇔ w′
i = 0 for all g(·) ∈ G(f), so in fact

vS
i = 1 whenever w′

i 6= 0 and i ∈ h(S) (and 0 otherwise). This immediately implies that

~vS · ~w′ =
∑

i∈h(S) w′
i = g(S). ◭

◮ Theorem 15. Let f(·) be (symmetric) weight-based. Then the (Symmetric, Non-Trivial)

Perturbation Bound of f(·) is exactly equal to the Generalized (Non-Trivial) Cut Dimension

of f(·).

Proof. We break the proof down into two lemmas, one establishing that the Perturbation

Bound is at most the Generalized Cut Dimension, and one establishing that the Perturbation

Bound is at least the Generalized Cut Dimension. We first establish the easy direction,

that if f(·) has Generalized (Non-Trivial) Cut Dimension d, it witnesses a (Symmetric,

Non-Trivial) Perturbation Bound of at most d. For simplicity of notation throughout the

proof, we explicitly prove the standard case, but the claims for Symmetric and Non-Trivial

follow verbatim.

◮ Lemma 16. For all (Symmetric) weight-based f(·), the (Symmetric, Non-Trivial) Per-

turbation Bound is at most the Generalized (Non-Trivial) Cut Dimension.

Proof. Say that f(·) has Generalized Cut Dimension d, and let S1, . . . , Sd be such that

vS1 , . . . , vSd form a basis for the span of {~vS}S∈Mf
. We claim that queries to S1, . . . , Sd

completely determine g(S) = f(S) for all S ∈ Mf and all g(·) ∈ G(f). If true, this establishes

a set of q queries for which there does not exist a g(·) ∈ G(f) consistent with these queries

for which minS{g(S)} 6= minS{f(S)} (and therefore the Perturbation Bound for f(·) is at

most d).

ITCS 2020
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Consider any S ∈ Mf . Then we know by definition of the Generalized Cut Dimension that

~vS =
∑

i ci~v
Si for some c1, . . . , cd ∈ R. We claim that this implies that g(S) =

∑

i cig(Si) for

any g(·) ∈ G(f). This follows from the following equalities, which make use of Observation 14.

g(S) = ~vS · ~w′

=
∑

i

ci~v
Si · ~w′

=
∑

i

ci · g(Si).

Therefore, if we query S1, . . . , Sd and learn that g(Si) = f(Si), this fully determines

g(S) = f(S) for all S ∈ Mf , and therefore establishes that the Perturbation Bound for f(·)

is at most d. ◭

We now show the hard direction: Perturbation Bound is at least the Generalized Cut

Dimension.

◮ Lemma 17. Any (Symmetric) weight-based f(·) witnesses a (Symmetric, Non-Trivial)

Perturbation Bound of d, the (Non-Trivial) Generalized Cut Dimension.

Proof. Let T1, . . . , Td−1 be any d − 1 sets queried. Let X denote the subspace of vectors

~y which satisfy the linear equations ~vTi · ~y = 0 for all 1 ≤ i ≤ d − 1. Observe that X has

dimension at least m − d + 1. Let Y denote the subspace of vectors spanned by {~vS}S∈Mf
.

Observe that Y has dimension d.

The dimension of X (≥ m − d + 1) and the dimension of Y (d) sum to > m. This means

that there exists a non-zero vector, ~z ∈ X ∩ Y .5 Because ~z ∈ X, we can add ε~z to ~w for any

ε and arrive at a ~w′ which is consistent with the queries so far. Because ~z ∈ Y , we must have

zi = 0 whenever wi = 0 (because all ~vS have vi = 0 when wi = 0). Therefore, there exists a

sufficiently small ε such that ~w + ε~z results in a g(·) which is consistent with all d − 1 queries

so far, and is in G(f), and also ~w − ε~z results in such a g(·) as well.

Consider now ~z · ~vS for any S ∈ Mf . If ~z · ~vS > 0, then when ~w′ := ~w − ε~z, we have

g(S) < f(S), and therefore minS{g(S)} < minS{f(S)}, meaning that we have found the

desired Perturbation Bound g(·) for these d − 1 queries. If ~z · ~vS < 0 we can instead use

~w′ := ~w + ε~z. So if these d − 1 queries have no witness, it must be that ~z · ~vS = 0 for all

S ∈ Mf . In particular that this holds for the basis ~vS1 , . . . , ~vSd of Y . To summarize this

paragraph: unless ~vSi · ~z = 0 for all i (note that these Si were not necessarily queried), then

these d − 1 queries have a witness for the Perturbation Bound.

We will now establish that we can’t have ~z · ~vSi = 0 for all i, which will establish that in

fact there is a witness for these d − 1 queries (and all d − 1 queries, since they were arbitrary).

Consider that because ~z ∈ Y , we can write ~z =
∑

i βi~v
Si for some ~β which is not ~0. If

~z · ~vSi = 0 for all i we have

∑

i

βi~v
Si · ~vSj = 0, ∀j.

5 To see why this is the case, write a basis BX = {v1, v2, . . . , vm−q} of X and a basis BY = {w1, w2, . . . , wd}
of Y . If BX ∩ BY is non-empty then we are of course done, otherwise BX ∪ BY is a set of strictly
more than m vectors in R

m. Hence they must be linearly dependent, implying we can write α1v1 +
. . . αm−qvm−q + β1w1 + . . . + βdwd = 0 for some coefficients {αi}, {βj} that are not all zero. Then
note that β1w1 + . . . βdwd is clearly in both X and Y , and cannot be zero as otherwise all coefficients
would be zero (because both BX and BY are linearly independent).
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Therefore, if we let A denote the d × m matrix whose rows are the vectors ~vSi , we get that:

(A · AT )







β1

...

βd






= 0

Because ~vS1 , . . . , ~vSd form a basis for Y we know A, AT , and A · AT have rank d.6 But ~β is a

non-zero vector in the kernel of the d × d matrix A · AT , which is a contradiction. Therefore,

we must have ~z · ~vSi 6= 0 for some i, implying that there exists the desired g(·) for any set of

d − 1 queries, and the Perturbation Bound is hence at least d. ◭

The proof of the theorem now follows directly from Lemmas 16 and 17. ◭

Theorem 15 lets us now restrict attention to the study of generalized cut dimension if we

aim to prove lower bounds through the canonical perturbation approach. The subsequent

sections establish that this is fruitful for symmetric, non-trivial SFM, but not for standard

SFM.

3.3 An Undirected Graph with Global Cut Dimension 3n/2 − 2

In this section, we provide an explicit undirected graph G on n vertices which has global cut

dimension 3n/2 − 2. This establishes the following theorem:

◮ Theorem 18. The query complexity of Symmetric Non-Trivial SFM is at least 3n/2 − 2.

Proof. First, let n be odd and n ≥ 3. Then n = 2a + 1 for some a ≥ 1, so label the vertices

of G as {v, w1, w′
1, w2, w′

2, . . . , wa, w′
a}. For edges (all undirected), put an edge between v

and all other nodes, and an edge between wi and w′
i for all i (and no other edges). It is easy

to see that every cut in G has value at least 2, and that the mincuts indeed have value 2.

The mincuts either separate wi from the rest of the graph, w′
i from the rest of the graph, or

{wi, w′
i} from the rest of the graph.

For any i ∈ [a], let i1, i2, i3 denote the three positions in indicator vectors corresponding

to the three edges (v, wi), (v, w′
i), (wi, w′

i). Restricted to these positions, the indicator vectors

for the three minimum cuts {wi}, {w′
i}, {wi, w′

i} are (1, 0, 1), (0, 1, 1), and (1, 1, 0), which

span a subspace of dimension three. As these three cuts have zeroes for all other entries, the

full vectors also span a subspace of dimension three. For each i ∈ [a], the set of three indices

referenced above are distinct, which means that taking all these indicator vectors together

has rank 3a.

As n = 2a + 1, 3a = 3(n − 1)/2. So the claim holds when n is odd. If n is even, use

exactly the same construction on n − 1 nodes, and connect the remaining node to v with an

edge of weight two. Now there is one additional mincut (separating the extra node from the

rest), so the dimension is 3a + 1 = 3(n − 2)/2 + 1 = 3n/2 − 2. ◭

6 A short proof of this is through the singular value decomposition (SVD) of A. Write A = UΣV where

U ∈ R
d×d, Σ ∈ R

d×m, and V ∈ R
m×m (where U and V satisfy UUT = I and V V T = I, and Σ is

diagonal with d non-zero entries). Note then that A · AT = UΣV V T ΣT UT = U(ΣΣT )UT . As ΣΣT is

diagonal of rank d and UUT = I, this is a singular value decomposition of A · AT , and directly implies
that its rank is d.
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3.4 Generalized Cut Dimension is at most n + 1

The previous section establishes that the Non-Trivial Symmetric Cut Dimension can be much

larger than n, which leads to novel lower bounds. In this section, we establish that this

approach will not yield novel lower bounds for standard SFM (and by Theorem 15, neither

will the canonical perturbation argument for weight-based functions).

◮ Theorem 19. The Generalized Cut Dimension of any weight-based function is at most

n + 1.

Proof. First, recall that for any submodular f(·), the set of minimizes Mf is closed under

union and intersection.7 For each i ∈ [n], define Si := ∩S∈Mf ,i∈SS (if there exists a minimizer

containing i, otherwise let Si be null). If Si is not null, then Si ∈ Mf , because Mf is closed

under intersection. Our goal will be to show that these Si (and ∅, if ∅ ∈ Mf ) span Mf

through a sequence of lemmas.

Define the base sets B of Mf to be the set of all non-null Si, together with ∅ (if ∅ ∈ Mf ).

It is clear that B has size at most n + 1. It is also the case that every minimizer S ∈ Mf

can be written as the union of elements in B:

◮ Lemma 20. For all S ∈ Mf , S = ∪i∈SSi.

Proof. For any i ∈ S, we know that i ∈ Si which means that S ⊆ ∪i∈SSi. We need only

show that for any i ∈ S, Si ⊆ S. This is true by definition of Si because S is a minimizer

containing i. ◭

We next show that the base sets “cover” Mf in the following sense. Say that a set S is

covered by B if either: (a) S ∈ B, or (b) S can be written as the union of two sets which are

covered by B.

◮ Lemma 21. Every set in Mf is covered by B.

Proof. Assume for contradiction that there is some S ∈ Mf which is not covered by B. Take

the S which minimizes |S|. Then clearly S /∈ B. So pick an arbitrary i ∈ S and we can write

S = ∪j∈SSj = Si ∪ (∪j∈S\Si
Sj). Si is clearly non-empty, and also because S /∈ B, it is not

equal to S. Similarly, ∪j /∈Si
Sj is non-empty (or else Si would equal S), and is also not equal

to S (because it does not contain i). Because | ∪j∈S\Si
Sj | < |S|, it is covered. We have just

written S as the union of two covered sets, so therefore S is also covered, a contradiction. ◭

Now, we are ready for the last step. We will argue that for all g ∈ G(f), knowledge of

g(S), g(T ), and g(S ∩ T ) suffices to deduce g(S ∪ T ). We will then deduce that knowledge of

g(S) for all S ∈ B suffices to deduce g(S) for all S ∈ Mf .

◮ Lemma 22. Let S, T ∈ Mf . Then ~vS∪T = ~vS + ~vT − ~vS∩T .

Proof. Recall from the definition of weight-based that h(S ∩ T )∪h(S ∪ T ) ⊆ h(S)∪h(T ).

But recall also that
∑

i∈h(S∩T )∪h(S∪T ) wi =
∑

i∈h(S)∪h(T ) wi because all of S, T, S ∩ T, S ∪ T

are minimizers. As all wi are non-negative, this means that the only possible i which are

counted fewer times on the LHS than the RHS must have wi = 0. This immediately means

that ~vS∩T + ~vS∪T = ~vS + ~vT . ◭

7 To see this, recall that f(S ∪T )+f(S ∩T ) ≤ f(S)+f(T ). If both of the sets on the RHS are minimizers,
both sets on the LHS must be as well.
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◮ Corollary 23. Every S ∈ Mf has ~vS ∈ span({~vT }T ∈B).

Proof. Lemma 22 establishes that if S, T , and S ∩ T are in span({~vT }T ∈B), then so is S ∪ T .

Assume for contradiction that some S ∈ Mf , ~vS is not in span({~vT }T ∈B), and take the one

of minimal |S|. Then S is covered by B by Lemma 21, so we can write S = A ∪ B, where

|A|, |B| < |S|. ~vA, ~vB , and ~vA∩B are therefore in span({~vT }T ∈B). By Lemma 22, so then is

~vS , a contradiction. ◭

The proof is now concluded: we have argued that |B| ≤ n+1, and Corollary 23 establishes

that all of Mf is in the span of B, so the Generalized Cut Dimension is at most n + 1.

Importantly, observe that this proof fails to hold for the Generalized Non-Trivial Cut

Dimension (it must, as we previously demonstrated an example with Generalized Non-Trivial

Cut Dimension 3n/2 − 2). The point of failure is that the set of Non-Trivial minimizers is not

closed under intersection or union (if either the intersection is empty or the union is [n]). ◭

4 A
(

n

2

)

Query Lower Bound for Non-Trivial SFM

In this section, we establish our lower bound for Non-Trivial SFM. The class of functions we

consider will be the following:

◮ Definition 24. A function f(·) is cost-based if there exists a cost function c : 2[n] → R+

with c(T ) = 0 whenever |T | ≤ 1 such that f(S) =
∑

i∈S f({i}) −
∑

T ⊆S c(T ).

◮ Proposition 25. Every cost-based function is submodular.

Proof. We will establish that f(S ∪ {i}) − f(S) ≤ f(T ∪ {i}) − f(T ) whenever T ⊆ S

and i /∈ S. Observe that for any X ⊆ [n] with i /∈ X we have f(X ∪ {i}) − f(X) =

f({i})−
∑

U⊆X c(U ∪{i}). f({i}) is independent of X, and the second term is clearly at least

as large for X = S than X = T (as c(U) ≥ 0 for every U). Therefore, f(·) has diminishing

marginal returns and is submodular. ◭

◮ Theorem 26. The query complexity of Non-Trivial SFM is at least
(

n
2

)

.

Proof. Consider the following
(

n
2

)

+1 cost functions. Define c(·) so that c(S) = 0 if |S| ≤ n−2,

c([n] \ {i}) = n − 1 for all i, and c([n]) = 2n. Call the associated function f(·) where we set

f({i}) = 1 for all i. Then f(S) = |S| when |S| ≤ n − 2, f([n] \ {i}) = 0, and f([n]) = −n2.

For every 1 ≤ i < j ≤ n define cij(·) so that cij(S) = 0 if |S| ≤ n − 3. For sets of size

n−2, set cij([n]\{i, j}) = n−1, and cij([n]\{k, ℓ}) = 0 for all other {k, ℓ} 6= {i, j}. For sets

of size n − 1, set cij([n] \ {i}) = cij([n] \ {j}) = 0, and cij([n] \ {k}) = n − 1 for all k /∈ {i, j}.

Finally, set cij([n]) = 3n − 1. Call the associated function fij(·) where we set fij({ℓ}) = 1

for all ℓ. Observe that fij(S) = |S| when |S| ≤ n − 3, fij(S) = n − 2 if |S| = n − 2 and

S 6= [n] \ {i, j}, fij([n] \ {i, j}) = −1, fij([n] \ {ℓ}) = 0 for all ℓ, and fij([n]) = −n2.

Observe, importantly, that the non-trivial minimum of f(·) is 0, while the non-trivial

minimum of fij(·) is −1 for all i, j. Observe also that f(·) and fij(·) differ only on their

evaluation for [n] \ {i, j}. Therefore, an adversary could answer any query S with f(S). If

the algorithm terminates with fewer than
(

n
2

)

queries, then there is some [n] \ {i, j} that has

not been queried. Therefore, the adversary is free to decide that the function is either f(·) or

fij(·). As the value of the minima for these two functions are distinct, the algorithm cannot

be correct. Therefore, any correct algorithm for Non-Trivial SFM must make at least
(

n
2

)

queries. ◭
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5 Conclusions and Open Questions

We establish the first query lower bounds exceeding n for SFM (2n), Non-Trivial Symmetric

SFM (3n/2 − 2), and Non-Trivial SFM (
(

n
2

)

). Our asymmetric lower bounds are from direct

constructions. Our symmetric lower bound arises from the novel cut dimension.

Our work leaves open a clear direction for future work: what is the maximum possible

Global Cut Dimension for an undirected graph? Or more generally, what is the maximum

possible Non-Trivial Symmetric Generalized Cut Dimension of a weight-based function?

It is also of course generally important to further improve query complexity lower bounds

for SFM variants (and also develop better algorithms).
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A Omitted Proofs from Section 2

We will make use of the following technical lemma:

◮ Lemma 27. If Ri ⊆ S, then f~c
σ(S) ≤ (|S| − i) · (n + 2 − i).

Proof. If S = Rj(S), then f~c
σ(S) = −cj ≤ 0 ≤ (|S| − i) · (n + 2 − i), as desired. Otherwise

because j(S) ≥ i (by definition of j(S)), we know |S|−j(S) ≤ |S|−i and n+2−j(S) ≤ n+2−i,

which implies that f~c
σ(S) ≤ (|S| − i) · (n + 2 − i) as desired. ◭

Proof of Lemma 6. Let X, Y be any two subsets of [n]; we will show that

f~c
σ(X) + f~c

σ(Y ) ≥ f~c
σ(X ∪ Y ) + f~c

σ(X ∩ Y ).

Note that if X ⊆ Y , the inequality is trivially satisfied, as X ∩ Y = X and X ∪ Y = Y ;

the inequality is also trivially satisfied if Y ⊆ X. Hence, we will assume that neither set is

contained in the other; note that this means neither set could equal ∅ or [n]. From here we

consider two separate cases.

In the first case, assume neither X nor Y is an important set. Let Ri be the largest

important set that is a subset of X and Rj be the largest important set that is a subset

of Y . Without loss of generality, let’s assume that i ≥ j. Let A := (X \ Ri) \ (Y \ Ri),

B := (Y \Ri)\ (X \Ri), C := (X \Ri)∩ (Y \Ri), and D := Y ∩ (Ri \Rj) and for convenience

define a := |A|, b := |B|, c := |C|, and d := |D|. From the definition of f we have that

f~c
σ(X) = (a + c) · (n + 2 − i)

and

f~c
σ(Y ) = (b + c + d) · (n + 2 − j).

First, we prove the inequality when i = j. In this case, D = ∅, but A and B are both

non-empty (as otherwise either X ⊆ Y or Y ⊆ X). As X ∩ Y contains Ri we have

f~c
σ(X ∩ Y ) ≤ c(n + 2 − i)

from Lemma A.1. As X ∪ Y contains Ri we similarly have

f~c
σ(X ∪ Y ) ≤ (a + b + c) · (n + 2 − i).

ITCS 2020



64:14 New Query Lower Bounds for SFM

Hence,

f~c
σ(X ∪ Y ) + f~c

σ(X ∩ Y ) ≤ (a + b + 2c)(n + 2 − i)

= (a + c)(n + 2 − i) + (b + c)(n + 2 − i)

= f~c
σ(X) + f~c

σ(Y )

which proves the inequality as d = 0. We’ll next prove the inequality assuming i > j. In that

case, we again have that Rj is a subset of X ∩ Y so

f~c
σ(X ∩ Y ) ≤ (c + d)(n + 2 − j)

by Lemma A.1. Similarly, Ri is a subset of X ∪ Y so

f~c
σ(X ∪ Y ) ≤ (a + b + c)(n + 2 − i).

Hence it is sufficient to prove

(a + c) · (n + 2 − i) + (b + c + d) · (n + 2 − j) ≥ (c + d)(n + 2 − j) + (a + b + c)(n + 2 − i)

which reduces to b(n + 2 − j) ≥ b(n + 2 − i), which is true as b ≥ 0 and i > j. Hence we

have completed our analysis for the first case.

Our second case is when X is an important set and Y is not. Say X = Ri for some i ≥ 1

and let Rj be the largest important set contained in Y . Clearly, i > j (as otherwise we would

have X ⊆ Y ). Let A := Y \ Ri, B := (Y \ Rj) ∩ Ri, and for convenience define a := |A| and

b := |B|. Note that a > 0 (as otherwise Y ⊆ X) and that there are exactly a + b elements of

Y not in Rj . Because X ∩ Y contains Rj but not Rj+1 we know

f~c
σ(X ∩ Y ) = b · (n + 2 − j).

Also, as X ∪ Y contains Ri we know that

f~c
σ(X ∪ Y ) ≤ a · (n + 2 − i).

Hence it is sufficient to prove

−ci + (a + b) · (n + 2 − j) ≥ b · (n + 2 − j) + a · (n + 2 − i).

This inequality is equivalent to −ci + a(i − j) ≥ 0, which is true since a ≥ 1, i − j ≥ 1 and

ci ≤ 1, hence concluding the second case.

By symmetry, we now also have the same conclusion if Y is an important set and X is

not. Moreover, we need not consider the case where both are important sets as then one

must be a subset of the other. Hence we have the result. ◭

B On Cut Queries in Directed Graphs

In this section, we examine the limits of cut queries when learning the edges of a graph. This

appendix is not directly relevant to our main results, but may be of interest for future work.

⊲ Claim 28. A directed weighted graph can be learned via cut queries up to directed cycles.

That is, with cut queries one can learn a graph G′ that is equivalent to the true graph G up

to adding/deleting directed cycles. Moreover, no set of queries can determine the weight of a

directed cycle.
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Proof. We first work over unweighted graphs and show that a graph can be learned up to

the direction of directed cycles. Let G(V, E) be a directed, unweighted graph. First, we note

that for any two vertices u and v in V , we can learn if

both edges (u, v) and (v, u) exist,

exactly one of the edges (u, v) and (v, u) exist (but not which one),

or neither of these edges exist.

To see this, consider creating a new function f ′(·) which outputs f(S) + f(V \ S). Then

f ′(·) corresponds to an undirected weighted graph G′ where the weight between two nodes is

zero, one, or two (and equal to the number of edges between them in G). As G′ is undirected,

we can learn G′ exactly using cut queries [17].8

Moreover, for every vertex u, by querying {u} and V \ {u}, we know the in degree and

the out degree of u.

Now, suppose two graphs G and G′ both satisfy all the queries made so far. We claim

that G can be converted to G′ by flipping the direction of certain cycles. Let e = (u, v) be an

edge in G that does not exist in G′. We know that (v, u) must be an edge in G′. Suppose we

flip edge (v, u) in G′. Now, the in degree of u in G′ is one less than the in degree of u in G′,

while the out degree of u in G′ is one more than that of G. Hence, there is an edge (u, v′) in

G′, and an edge (v′, u) in G. We flip this edge in G′. Continuing this way, we flip all edges in

a path, until we reach v. If G′ is the same as G, we are done, else, we pick another edge and

repeat this procedure. Hence, G′ and G are the same, up to the directions of directed cycles.

Moreover, for any cut queried, every directed cycle either does not contribute anything

to the cut or adds exactly 1 to the cut (irrespective of the direction). Hence, the direction of

cycles in a directed graph cannot be learned by cut queries.

This argument can be extended to weighted graphs as well. For weighted graphs, we can

learn the sum of the weights of edges (u, v) and (v, u) for all edges, as well as the in degree

and out degree of every vertex.

Suppose we have two graphs G and G′ which satisfy all the queries made to learn the

above. Similar to the unweighted case, we claim that G′ can be converted to G by changing

the weights of certain directed cycles. Let (u, v) be an edge which has weight w in G and w′

in G′. We change the weight of (u, v) in G′ to w, and add w′ − w to the weight of (v, u) in

G′. Now, the in degree of u has increased by w′ − w. Since the in degree of u is the same in

both G and G′ initially, this implies that there are edges incident on u in G whose weights

differ from those in G′ by exactly w′ − w. We change the weights of each of those edges to

match the ones in G, continuing till we complete each of these cycles. Hence, G and G′ are

identical up to the weights of certain directed cycles.

Note that each time we decrease the weight of a cycle in one direction by α, we increase

the weight of the cycle in the other direction by exactly α. That is, the sum of the weights

of the cycle in both directions remains constant. Let’s assume that a cut query cuts k

edges of this cycle. This implies that the cut query also cuts k edges of the cycle in the

opposite direction. Hence, we can only determine the sum of the weights of these two cycles,

irrespective of the number of queries made. ⊳

⊲ Claim 29. For a weighted undirected graph, when making s-t cut queries, the weight of

edge (s, u) cannot be learned for any vertex u. Similarly, the weight of edge (u, t) cannot be

learned for any vertex u.

8 To see this, observe that f ′({u}) + f ′({v}) − f ′({u, v}) is exactly twice the weight of the edge between
u and v in G′.
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Proof. We first note that we can always learn the weight of edges of the form (u, v), with

u, v 6= s 6= t. This can be done by querying {s}, {s, u}, {s, v} and {s, u, v}. Hence, we

can learn all edges except for those of the form (s, u) and (u, t) (because these queries are

redundant or invalid in that case). After learning these weights, every query S ∪ {s} can be

viewed as the sum of n weights (the weights of edges from S to t, and the weights of edges

from V \ S to s). Let us denote the weight of edge (s, u) as wu, and the weight of edge (u, t)

as w′
u. Every query S ∪ {s} can be written as a linear equation

∑

u∈S

w′
u +

∑

u∈V \S

wu = cS

Let αS denote a 2n dimensional vector with the coefficients of the above equation. Let w be

a 2n dimensional vector with wu and the w′
u, for all u. The above equation can be written as

〈αS , w〉 = cS

Let us consider the subspace Π spanned by {αS : S ⊆ V \ {s, t}}. Let eu denote the vector

with a 1 in the position of edge (s, u) and zeros elsewhere. If eu ∈ Π, we can compute the

value of wu. We show that eu 6∈ Π, for all u.

To show this, it is enough to describe a vector in the kernel of Π, whose dot product with

eu is non-zero. Consider the vector β with 1 in the position of edges (s, u) and (u, t), and

− 1
n elsewhere.

〈eu, β〉 = 1

However, for any S,

〈αS , β〉 = 0

Hence, we cannot compute the weight of edge (s, u) for any vertex u. The same argument

can also be made for the edge (u, t). ⊳
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