New Query Lower Bounds for Submodular
Function Minimization

Andrei Graur
Department of Mathematics, Princeton University, Princeton, NJ, USA
agraur@princeton.edu

Tristan Pollner
Department of Mathematics, Princeton University, Princeton, NJ, USA
tpollner@princeton.edu

Vidhya Ramaswamy
Department of Computer Science, Princeton University, Princeton, NJ, USA
vidhyar@cs.princeton.edu

S. Matthew Weinberg
Department of Computer Science, Princeton University, Princeton, NJ, USA
smweinberg@princeton.edu

—— Abstract

We consider submodular function minimization in the oracle model: given black-box access to a
submodular set function f : 2" — R, find an element of arg mins{f(S)} using as few queries to
f(-) as possible. State-of-the-art algorithms succeed with O(n?) queries [13], yet the best-known
lower bound has never been improved beyond n [6].

We provide a query lower bound of 2n for submodular function minimization, a 3n/2 — 2 query
lower bound for the non-trivial minimizer of a symmetric submodular function, and a (;) query
lower bound for the non-trivial minimizer of an asymmetric submodular function.

Our 3n/2 — 2 lower bound results from a connection between SFM lower bounds and a novel
concept we term the cut dimension of a graph. Interestingly, this yields a 3n/2 — 2 cut-query lower
bound for finding the global mincut in an undirected, weighted graph, but we also prove it cannot
yield a lower bound better than n + 1 for s-t mincut, even in a directed, weighted graph.

2012 ACM Subject Classification Theory of computation — Submodular optimization and poly-
matroids

Keywords and phrases submodular functions, query lower bounds, min cut
Digital Object Identifier 10.4230/LIPIcs.ITCS.2020.64

Funding S. Matthew Weinberg: Supported by NSF CCF-1717899.

1 Introduction

Submodular function minimization (SFM) is a classic algorithmic problem with numerous
applications (e.g. [1, 11, 12, 14]): given black-box access to a submodular! function f :
2"l - R, find an element of argmin{f(S)}. Due to its ubiquity within TCS and without,
the problem has received substantial attention over the past four decades within various
communities. Seminal work of Grotschel, Lovasz, and Schrijver first established that a
minimizer can be found in poly-time [5], and after a long series of improvements the state-of-
the-art now requires O(n?) value queries to f(-) and O(n?) additional overhead.

L f(+) is submodular if f(XUY) + f(XNY) < f(X) + f(Y) for all sets X,Y. This is equivalent to
fSUTU{i}) — f(SUT) < f(SU{i}) — f(S) for all S,T,i (called diminishing marginal returns).
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Despite remarkable progress on the algorithmic front, shockingly few lower bounds on
submodular function minimization are known. It is perhaps unsurprising that computational
lower bounds are elusive, but even query lower bounds are virtually non-existent. Indeed,
state-of-the-art query lower bounds for SFM have remained stagnant at exactly n for the
past decade [6]. Our main results are new query lower bounds for three variants of SFM. We
briefly provide the formal problem statements and our main results below, followed by an
overview of context and related work.

» Definition 1 (Query Complexity of Submodular Function Minimization). Given as input
black-box access to a submodular function f(-) over m elements, output an element of
argming{f(5)}, along with ming{f(S)}. The query complexity of SFM is equal to the
minimum q(-) such that a deterministic algorithm solves SEM on all instances of n elements
with at most q(n) queries.
If f(-) is further assumed symmetric, i.e. f(S) = f([n]\S) for all S, this is Symmetric
SFM.
If we ask for argmingg g (n)y{f(S)}, this is Non-Trivial SFM (we will also use both
qualifiers).?

As a representative problem to have in mind, imagine a graph on n nodes with positive
edge weights and define f(.S) to be the weight of all edges leaving set S (the value of cut .5).
Then f(-) is submodular, and non-trivial symmetric SFM would count the number of cut
queries needed to find the mincut. If you seek the minimum s-¢ cut (and adjust notation
so that f(9) is equal to the weight of all edges leaving S U {s}), then this is standard SFM
(because it is valid to output @), which implies that the mincut is s). If you seek the global
mincut in a directed graph, then this is an instance of Non-Trivial SEM (because it is now
invalid to output (). If you seek the global mincut in an undirected graph, then this is an
instance of Non-Trivial Symmetric SFM (because it doesn’t matter which side of the cut is
sending versus receiving). Our main results are below.

» Theorem 2 (Main Results). The following lower bound the query complexity of SFM:
The query complexity of SFM is at least 2n.
The query complezity of Non-Trivial Symmetric SFM is at least 3n/2 — 2.
The query complexity of Non-Trivial SFM is at least (Z)

1.1 New Technique: The Cut Dimension

Our SFM and Non-Trivial SEM lower bounds are direct constructions, and we defer all related
intuition and technical details to the corresponding sections. Our Non-Trivial Symmetric
SFM lower bound, however, derives from a new framework based on the cut dimension of
graphs.

» Definition 3 (Global Cut Dimension, special case of Definition 11). Let G be a directed graph
with m edges, and let S be a subset of nodes. Define 7° be the vector in R™ with v¥ = 1
iff the edge e has left endpoint in S and right endpoint not in S (and v5 = 0 otherwise).
Then the cut dimension of G is the dimension of span({7°, S is a global mincut}). We also
consider the following variants:

2 Indeed, note that Symmetric SFM (without the Non-Trivial qualifier) is trivial, as § (or [n]) is always a
solution.



A. Graur, T. Pollner, V. Ramaswamy, and S. M. Weinberg

If G is undirected, then v3 = 1 iff the edge e has one endpoint in S and the other not in
S.

If we seek the min s-t cut, then vS = 1 iff the edge e has left endpoint in S U {s} and
right endpoint not in S U{s}. We also take the dimension over min s-t cuts instead of
global mincuts. In this case, we call this the s-t Cut Dimension.

Our main result concerning the cut dimension connects it to SFM lower bounds:

» Theorem 4 (Special case of Theorem 15). If an undirected graph exists with Global Cut
Dimension d, then the query complexity of Non-Trivial Symmetric SFM is at least d.
If a graph exists with s-t Cut Dimension d, then the query complexity of SFM is at least d.
If a directed graph exists with Global Cut Dimension d, then the query complexity of
Non-Trivial SFM is at least d.

Interestingly, we also establish that the Cut Dimension is a equivalent to the best
achievable lower bounds based on graphs via a canonical perturbation approach. Our
3n/2 — 2 lower bound for Non-Trivial Symmetric SFM follows immediately from Theorem 4
and the construction of an undirected graph with Global Cut Dimension 3n/2 — 2. We also
establish that every graph has s-t Cut Dimension at most n + 1, meaning this approach is
useful for Non-Trivial SFM but not SFM.

1.2 Related Work

The first poly-time (and strongly poly-time) algorithms for SEM were given by [5] using
the Lovasz extension and the Ellipsoid algorithm [10]. A substantial series of improvements
followed over the subsequent four decades [3, 18, 4, 8, 7, 19, 15, 9] The state-of-the-art is
an O(n?) upper bound on the query complexity of SFM [13], an O(n?) upper bound on the
query complexity of Non-Trivial Symmetric SFM [16], and an O(n?) upper bound on the
query complexity of Non-Trivial SFM [13].3

Despite this substantial progress on upper bounds, the only unconditional query lower
bound is just n (which is surprisingly non-trivial to establish) [6]. [2] give a construction
which requires Q(n) queries to the Lovasz extension (if the algorithm can only query the
Lovasz extension), but one can find the minimizer in their construction by simply querying
all n singletons.

Our Non-Trivial Symmetric SEFM lower bound uses the cut function in graphs. Recent
work of [17] establishes that this particular instance of Non-Trivial Symmetric SFM (in
unweighted graphs) can be solved by a randomized algorithm in O(n) queries, but our
techniques are unrelated.

1.3 Roadmap

Section 2 provides our 2n lower bound for SFM, which is a direct construction. Section 3
proves (a generalization of) Theorem 4 and provides a graph with Global Cut Dimension
3n/2 — 2, yielding our 3n/2 — 2 lower bound for Non-Trivial Symmetric SFM. Section 4
provides our (’QL) lower bound for Non-Trivial SFM, which is also a direct construction.

Appendix B contains auxiliary claims concerning cut queries in graphs (i.e., it is impossible
to learn precisely a directed graph using cut queries, what can you learn?) which are not
necessary for our lower bounds, but likely useful for future work. Appendix A contains one
omitted proof.

3 The final bound follows by a reduction from Non-Trivial SFM to SFM incurring a blowup of 2n (for
all elements ¢, run SFM only over sets containing ¢ and not containing ¢ + 1, and then only over sets
containing ¢ and not ¢ — 1).
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2 A 2n Query Lower Bound for SFM

This section proves our lower bound on SFM.
» Theorem 5. The query complexity of SFM is at least 2n.

Let us first provide intuition for our construction. We start with an arbitrary permutation
o on [n], and define the important sets R; for 0 < ¢ < mn by R; := {o(1),0(2),...,0(i)} for
each i € [n] U{0}. Observe that there is exactly one important set of each size from 0 to
n. These important sets will be the potential minimizers. Intuitively, we will define our
function such that: (a) any algorithm must query at least n — 1 unimportant sets to learn
the important sets, and (b) any algorithm must query all n + 1 important sets to learn the
minimizer. In detail:

Let o be an arbitrary permutation on [n].

Define R; := {c(1),...,0(i)} for each i € [n] U {0}.

For each i € [n] U {0}, let ¢; € {0,1}.

Define the function fS(-) such that (below, j(S) denotes the maximum j such that

Rj Q S)

fa( ) {—ci if S =R, for some 0 <i<n
’ (151 =3(8)) - (n+2—j(5)) else

That is, f<(-) is defined to be non-negative on the unimportant sets, and non-positive on
the important sets. Intuitively, queries to unimportant sets give information regarding o,
and queries to important sets give information regarding ¢. It is not obvious, but straight-
forward to establish that f¢(-) is submodular for all o, The proof of Lemma 6 appears in
Appendix A.

» Lemma 6. For all 0,¢, fC is submodular.

We now provide a complete proof that deterministic algorithms must make 2n queries for
functions of the form f(f (-). We define an adversary which adaptively sets o, ¢ as queries are
made:

Initialize o, ¢ to be undefined.
Let ¢ denote the maximum j such that o(j) is defined (so initially ¢ = 0).
When a new query, S, is made:

1. If S = R;, for some j < i, answer 0 and set ¢; = 0. Call this an important query.

2. fR; €8S, j(9) is defined. Answer (|S| —4(S)) - (n + 2 — j(S)). Call this a useless
query.

3. If R; C S, j(S) is not yet defined. Pick any j ¢ S (such a j must exist as S # R,,)
and set o(i+ 1) = j.* Now 5(S) := i, so answer (|S| —1i) - (n+2—1i). Call this a decoy
query.

If the algorithm terminates after n + 1 (distinct) important queries, o and & are fully
defined.

If the algorithm has made fewer than n + 1 (distinct) important queries, let = denote the
algorithm’s guess for the minimum value.

1. If x =0, set all undefined ¢; := 1 and complete o arbitrarily (if necessary).

2. If x = —1, set all undefined ¢; := 0 and complete o arbitrarily (if necessary).

3. Ifz ¢ {0,—1}, complete ¢ o arbitrarily.

4 Observe also that j # o(£) for any £ < i, as R; C S.
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Theorem 5 will follow by proving that the above adversary is consistent and that the
adversary has the power to make multiple (distinct) minima unless the algorithm has made
at least n — 1 decoy queries and n + 1 important queries.

» Observation 7. The adversary answers all queries in a way that is consistent with some

£50).-

Proof. Observe that the adversary answers all queries to R; with 0, so this is always
consistent. Further observe that whenever an unimportant set is queried, either the answer
is already determined by o (and therefore consistent), or one new output of ¢ is fixed so that
the answer is now determined by o (and therefore consistent now and forever). The precise
definition of f¢(-) is important for the final claim: as soon as we know that o(i + 1) & S,
this fixes the value of f(-).

Finally, observe that the completion step is also consistent with all previous queries, as
they are completely defined by the partial definition of o, C. <

» Lemma 8. Algorithms cannnot make n + 1 distinct important queries without n — 1 decoy
queries.

Proof. Observe that each decoy query increases ¢ by one. Observe that the only distinct
important queries that can be made are (), [n], and Ry, ..., R;, for a total of i +2. If i <n—1,
then the distinct possible important queries are also < n + 1. |

» Lemma 9. Any algorithm making < n + 1 distinct important queries is wrong.

Proof. If the guess is ¢ {0, —1}, then the guess is clearly wrong. If the guess is 0, then the
completion step makes it so that the minimum is —1, so the guess is wrong. If the guess is
—1, then the completion step makes it so that the minimum is 0, so the guess is wrong. <«

Proof of Theorem 5. Lemmas 9 and 8 together assert that the algorithm must make n — 1
decoy queries and n + 1 important queries in order to correctly solve SFM on instances of
the form f¢() against the prescribed adversary. Therefore, a total of 2n queries must be
made. <

We conclude this section by noting that our construction witnesses a lower bound of
exactly 2n (and no better).

» Proposition 10. An SFM algorithm exists making 2n queries for any function of the form

£50).

Proof. First, query the n — 1 sets [n] \ {i} for all i # 1. Observe that f¢([n]\ {i}) < 0 if
and only if o(n) = ¢. Similarly, as [n] \ {¢} is missing only a single element (¢), this means
that if o(n) # i then fS([n]\ {i}) = (n —o71(3)) - (n+3 — 0=1(4)). So the query to [n]\ {i}
reveals 0~ 1(i), for any i. Therefore, these n — 1 queries completely reveal o (because o is a
permutation).

After o is fully revealed, simply query the n+ 1 important sets to find the minimizer. <«
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3 A 3n/2— 2 Query Lower Bound for Non-Trivial Symmetric SFM

We begin this section by providing a generalization the cut dimension, first by providing a
class of submodular functions which generalize mincuts in graphs.

3.1 Defining the Generalized Cut Dimension

Consider a ground set of n elements, and a disjoint set of m hyperedges. We associate with
each S C [n] (including S = () a set h(S) C [m] of hyperedges that are active for S. For
example, to capture mincuts in an undirected graph we might have the hyperedges simply
be the edges of that graph, and h(S) would denote the edges with one endpoint in S and the
other not in S.

To each i € [m], associate a non-negative weight w;, and define the function f(-) so that
f(8):= Zieh(S) wj. If the active sets h(-) satisfy the following inequality, then it is easy to
see that f(-) is submodular (below, XUY denotes the multiset union of X and Y, which
contains two copies of every element in X NY):

h(S N T)OR(S UT) C h(S)Th(T).

We call such functions weight-based. It is easy to see that cuts in graphs or hypergraphs
are weight-based. For such functions, there is a meaningful notion of “dimension” associated
with the set of minimizers. For every S C [n], define the vector 7 € R™ so that vy = 1 if
and only if i € h(S) and w; > 0, and v¥ = 0 otherwise. For a set S of subsets of [n], let
dim(S) denote the dimension of the span (over R™) of the vectors {#"°}scs. We now define
the Generalized Cut Dimension:

» Definition 11 (Generalized Cut Dimension). Let f(-) be weight-based. Then the Generalized
Cut Dimension of f(-) is equal to dim(argming{f(S)}). The Generalized Non-Trivial Cut

Dimension of f(-) is dim(arg mingg g, (3 {f(S)}})-

We will call a weight-based function symmetric if h(S) = h([n] \ S) — it is clear that the
resulting submodular function is symmetric.

3.2 Connecting Generalized Cut Dimension to Query Complexity

In this section, we establish the equivalence of Generalized Cut Dimension to a canonical
“perturbation” approach for lower bounding the query complexity.

» Definition 12 (Perturbation Bound). Starting from a (symmetric, if desired) weight-based
submodular function f(-) with weights W and (non-trivial, if desired) minimizers My, pick a
sufficiently small € > 0 so that every W' with w} € [(1—&)w;, (14 ¢)w;] induces a (symmetric,
if desired) weight-based submodular function g(-) with (non-trivial, if desired) minimizers
M, C My, Let G(f) denote the set of all (symmetric, if desired) weight-based functions
with w} € [(1 — &)w;, (1 + &)w;].

If it is the case that, for any set of ¢ — 1 queries to f, there exists a g € G(f) con-
sistent with those queries such that ming{g(S)} # ming{f(S)}, we say that f witnesses a
(Symmetric) Perturbation Bound of q (if there is a g(-) € G(f) with mingg g [n3{9(S)} #
mingg (g, {.f(S)}, we say that f witnesses a Non-Trivial Perturbation Bound of q).

We refer to the Perturbation Bound of f as the maximum possible q such that f witnesses
a Peturbation Bound of q (and similarly can define the Non-Trivial Perturbation Bound).
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Intuitively, the perturbation bound captures the following natural way to obtain query
lower bounds: start from some function f(-) with minimizers M. There is some non-zero
gap ¢ between the minimizers and the rest, so there exists a sufficiently small & such that
perturbing weights by ¢ can tie-break among minimizers, but not yield a new minimizer.

» Observation 13. If there exists an f(-) witnessing a (Symmetric, Non-Trivial) Perturbation
Bound of q, then the query complexity of (Symmetric, Non-Trivial) SFM is at least q.

Proof. Assume for contradiction that an algorithm correctly outputs the minimum value,
x, after ¢ — 1 queries that are consistent with f(-). If  # ming{f(5)}, then all queries
are consistent with f(-), so the algorithm could be wrong because the function is f(-). if
x = ming{ f(S)}, then because f(-) witnesses a Perturbation Bound of ¢, there exists a g(-)
consistent with all ¢ — 1 queries with ming{g(S)} # «, so the algorithm could be wrong
because the function is g(-).

The same proof holds verbatim if f(-) is assumed to be symmetric, or if we replace
absolute minimizers with non-trivial minimizers. <

We now establish that the perturbation bound approach yields exactly the same lower
bound as the generalized cut dimension. Our proof will make use of the following observation.

» Observation 14. For any g € G(f), g(S) = ©° -’ (where ' is the weight vector defining

9()))-

Proof. First, recall that g(S5) 1= },c),(s) wi- Recall further that v = 1 whenever w; # 0
and i € h(S). Importantly, note that w; = 0 & w] = 0 for all g(-) € G(f), so in fact
v¥ = 1 whenever w} # 0 and i € h(S) (and 0 otherwise). This immediately implies that

7 = Y iens) Wi = 9(9). <

» Theorem 15. Let f(-) be (symmetric) weight-based. Then the (Symmetric, Non-Trivial)
Perturbation Bound of f(-) is exactly equal to the Generalized (Non-Trivial) Cut Dimension

of f(-).

Proof. We break the proof down into two lemmas, one establishing that the Perturbation
Bound is at most the Generalized Cut Dimension, and one establishing that the Perturbation
Bound is at least the Generalized Cut Dimension. We first establish the easy direction,
that if f(-) has Generalized (Non-Trivial) Cut Dimension d, it witnesses a (Symmetric,
Non-Trivial) Perturbation Bound of at most d. For simplicity of notation throughout the
proof, we explicitly prove the standard case, but the claims for Symmetric and Non-Trivial
follow verbatim.

» Lemma 16. For all (Symmetric) weight-based f(-), the (Symmetric, Non-Trivial) Per-
turbation Bound is at most the Generalized (Non-Trivial) Cut Dimension.

Proof. Say that f(-) has Generalized Cut Dimension d, and let Si,...,S; be such that
051, ..., v% form a basis for the span of {Us}ger. We claim that queries to Sy,..., Sy
completely determine g(S) = f(S) for all S € M and all g(-) € G(f). If true, this establishes
a set of ¢ queries for which there does not exist a g(-) € G(f) consistent with these queries
for which ming{g(S)} # ming{f(S)} (and therefore the Perturbation Bound for f(-) is at
most d).
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Consider any S € M. Then we know by definition of the Generalized Cut Dimension that
7% =3, ¢;0° for some ¢y, ..., cq € R. We claim that this implies that g(S) = >, ¢;g(S;) for
any g(-) € G(f). This follows from the following equalities, which make use of Observation 14.

§(8) =7

= et
= Zci - 9(S5).

Therefore, if we query Si,...,S¢ and learn that ¢g(S;) = f(5;), this fully determines
g(S) = f(S) for all S € My, and therefore establishes that the Perturbation Bound for f(-)
is at most d. |

We now show the hard direction: Perturbation Bound is at least the Generalized Cut
Dimension.

» Lemma 17. Any (Symmetric) weight-based f(-) witnesses a (Symmetric, Non-Trivial)
Perturbation Bound of d, the (Non-Trivial) Generalized Cut Dimension.

Proof. Let T1,...,T4_1 be any d — 1 sets queried. Let X denote the subspace of vectors
i/ which satisfy the linear equations #7¢ - ¢ = 0 for all 1 < i < d — 1. Observe that X has
dimension at least m — d + 1. Let Y denote the subspace of vectors spanned by {7°}sec e
Observe that Y has dimension d.

The dimension of X (> m — d+ 1) and the dimension of ¥ (d) sum to > m. This means
that there exists a non-zero vector, 2 € X NY.5 Because 7 € X, we can add £Z to  for any
¢ and arrive at a w’ which is consistent with the queries so far. Because Z € Y, we must have
z; = 0 whenever w; = 0 (because all 7° have v; = 0 when w; = 0). Therefore, there exists a
sufficiently small e such that @ + €7 results in a g(-) which is consistent with all d — 1 queries
so far, and is in G(f), and also @ — £Z results in such a g(-) as well.

Consider now 7 - ¢ for any S € My If 2 7% > 0, then when W' := W — €%, we have
g(S) < f(S), and therefore ming{g(S)} < ming{f(S)}, meaning that we have found the
desired Perturbation Bound g(-) for these d — 1 queries. If 7 #° < 0 we can instead use
W' = W+ eZ. So if these d — 1 queries have no witness, it must be that Z- 7° = 0 for all
S € My. In particular that this holds for the basis 7%, ..., 7% of Y. To summarize this
paragraph: unless 7%
these d — 1 queries have a witness for the Perturbation Bound.

We will now establish that we can’t have Z- #°* = 0 for all 4, which will establish that in
fact there is a witness for these d — 1 queries (and all d — 1 queries, since they were arbitrary).
Consider that because 2 € Y, we can write 2 = ), B;7% for some 5 which is not 0. If
7.9 =0 for all i we have

SopaS S =0, V).

-Z =0 for all ¢ (note that these S; were not necessarily queried), then

5 To see why this is the case, write a basis Bx = {v1,v2,...,Vm—q} of X and a basis By = {w1,w2,...,wq}
of Y. If Bx N By is non-empty then we are of course done, otherwise Bx U By is a set of strictly
more than m vectors in R™. Hence they must be linearly dependent, implying we can write ajv1 +
. Om—qUm—q + Brw1 + ... + Bawg = 0 for some coefficients {c;}, {B;} that are not all zero. Then
note that Siw1 + ... Bqwgq is clearly in both X and Y, and cannot be zero as otherwise all coefficients
would be zero (because both Bx and By are linearly independent).
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Therefore, if we let A denote the d x m matrix whose rows are the vectors 7%, we get that:
B
(A-AT) | 1| =0
Ba
Because 71, . .., 7% form a basis for Y we know A, AT, and A - AT have rank d.6 But £ is a

non-zero vector in the kernel of the d x d matrix A - A” which is a contradiction. Therefore,
we must have 7 - 7% # 0 for some i, implying that there exists the desired g(-) for any set of
d — 1 queries, and the Perturbation Bound is hence at least d. |

The proof of the theorem now follows directly from Lemmas 16 and 17. |

Theorem 15 lets us now restrict attention to the study of generalized cut dimension if we
aim to prove lower bounds through the canonical perturbation approach. The subsequent
sections establish that this is fruitful for symmetric, non-trivial SFM, but not for standard
SEFM.

3.3 An Undirected Graph with Global Cut Dimension 3n/2 — 2

In this section, we provide an explicit undirected graph G on n vertices which has global cut
dimension 3n/2 — 2. This establishes the following theorem:

» Theorem 18. The query complexity of Symmetric Non-Trivial SFM is at least 3n/2 — 2.

Proof. First, let n be odd and n > 3. Then n = 2a + 1 for some a > 1, so label the vertices
of G as {v, w1, w],wa, Wh,..., we,w),}. For edges (all undirected), put an edge between v
and all other nodes, and an edge between w; and w} for all ¢ (and no other edges). It is easy

to see that every cut in G has value at least 2, and that the mincuts indeed have value 2.

The mincuts either separate w; from the rest of the graph, w} from the rest of the graph, or
{w;,w;} from the rest of the graph.

For any i € [a], let 41, 42, i3 denote the three positions in indicator vectors corresponding
to the three edges (v, w;), (v, w}), (w;, w}). Restricted to these positions, the indicator vectors
for the three minimum cuts {w;}, {w}}, {w;,w}} are (1,0,1), (0,1,1), and (1,1,0), which
span a subspace of dimension three. As these three cuts have zeroes for all other entries, the
full vectors also span a subspace of dimension three. For each ¢ € [a], the set of three indices
referenced above are distinct, which means that taking all these indicator vectors together
has rank 3a.

Asn =2a+1,3a =3(n—1)/2. So the claim holds when n is odd. If n is even, use
exactly the same construction on n — 1 nodes, and connect the remaining node to v with an
edge of weight two. Now there is one additional mincut (separating the extra node from the
rest), so the dimension is 3a +1=3(n—2)/2+1=3n/2 — 2. <

6 A short proof of this is through the singular value decomposition (SVD) of A. Write A = USV where
UeR¥™ 5 e RX™ and V € R™*™ (where U and V satisfy UUT =T and VVT = I, and ¥ is
diagonal with d non-zero entries). Note then that A- AT = USVVTSTUT = U(z=T)UT. As =27 is

diagonal of rank d and UUT = I, this is a singular value decomposition of A - AT and directly implies
that its rank is d.
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3.4 Generalized Cut Dimension is at most n + 1

The previous section establishes that the Non-Trivial Symmetric Cut Dimension can be much
larger than n, which leads to novel lower bounds. In this section, we establish that this
approach will not yield novel lower bounds for standard SFM (and by Theorem 15, neither
will the canonical perturbation argument for weight-based functions).

» Theorem 19. The Generalized Cut Dimension of any weight-based function is at most
n+ 1.

Proof. First, recall that for any submodular f(-), the set of minimizes M is closed under
union and intersection.” For each i € [n], define S; := Ngeq ;.iesS (if there exists a minimizer
containing 4, otherwise let S; be null). If S; is not null, then S; € M, because M is closed
under intersection. Our goal will be to show that these S; (and 0, if ) € M) span M
through a sequence of lemmas.

Define the base sets B of M to be the set of all non-null S;, together with § (if ) € My).
It is clear that B has size at most n + 1. It is also the case that every minimizer S € My
can be written as the union of elements in B5:

» Lemma 20. For all S € My, S = UicsS;.

Proof. For any ¢ € S, we know that ¢ € S; which means that S C U;csS;. We need only
show that for any ¢ € S, S; C S. This is true by definition of S; because S is a minimizer
containing ¢. <

We next show that the base sets “cover” M in the following sense. Say that a set S is
covered by B if either: (a) S € B, or (b) S can be written as the union of two sets which are
covered by B.

» Lemma 21. Every set in My is covered by B.

Proof. Assume for contradiction that there is some S € M which is not covered by B. Take
the S which minimizes |S|. Then clearly S ¢ B. So pick an arbitrary ¢ € S and we can write
S =UjesS; = SiU (Ujes\s,595). Si is clearly non-empty, and also because S ¢ B, it is not
equal to S. Similarly, U;¢g,S; is non-empty (or else S; would equal ), and is also not equal
to S (because it does not contain i). Because | Ujeg\s, 55| < |S], it is covered. We have just
written S as the union of two covered sets, so therefore S is also covered, a contradiction. <

Now, we are ready for the last step. We will argue that for all g € G(f), knowledge of
9(S),g(T), and g(SNT) suffices to deduce g(SUT). We will then deduce that knowledge of
g(9S) for all S € B suffices to deduce g(S) for all S € Mjy.

» Lemma 22. Let S,T € My. Then ¢°°T = 7% + ¢7 — 577,

Proof. Recall from the definition of weight-based that h(S NT)Uh(SUT) C h(S)Uh(T).
But recall also that 3, snryonsur) Wi = 2ien(s)on(r) Wi because all of S, T,SNT,SUT
are minimizers. As all w; are non-negative, this means that the only possible i which are
counted fewer times on the LHS than the RHS must have w; = 0. This immediately means
that 7577 + 59T = 55 + 7. <

7 To see this, recall that f(SUT)+ f(SNT) < f(S)+ f(T). If both of the sets on the RHS are minimizers,
both sets on the LHS must be as well.
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» Corollary 23. Every S € My has ©° € span({tT }rep).

Proof. Lemma 22 establishes that if S, T, and SN T are in span({#” }7¢5), then so is SUT.
Assume for contradiction that some S € M, 7 is not in span({#! }rep), and take the one
of minimal |S|. Then S is covered by B by Lemma 21, so we can write S = AU B, where
|A|,|B| < |S]. 74,98, and 747 are therefore in span({#” }rep). By Lemma 22, so then is
¥, a contradiction. <

The proof is now concluded: we have argued that |B| < n+1, and Corollary 23 establishes
that all of M is in the span of B, so the Generalized Cut Dimension is at most n + 1.

Importantly, observe that this proof fails to hold for the Generalized Non-Trivial Cut
Dimension (it must, as we previously demonstrated an example with Generalized Non-Trivial
Cut Dimension 3n/2 — 2). The point of failure is that the set of Non-Trivial minimizers is not
closed under intersection or union (if either the intersection is empty or the union is [n]). <

4 A (Z) Query Lower Bound for Non-Trivial SFM

In this section, we establish our lower bound for Non-Trivial SFM. The class of functions we
consider will be the following:

» Definition 24. A function f(-) is cost-based if there exists a cost function c: 2" — R,
with ¢(T') = 0 whenever |T'| <1 such that f(S) =3 ;cs f({i}) = D pcse(D).

» Proposition 25. FEvery cost-based function is submodular.

Proof. We will establish that f(S U {i}) — f(S) < f(TU{i}) — f(T) whenever T C S
and ¢ ¢ S. Observe that for any X C [n] with ¢ ¢ X we have f(X U {i}) — f(X) =
F{i}) =2 pex c(UU{i}). f({i}) is independent of X, and the second term is clearly at least
as large for X = S than X = T (as ¢(U) > 0 for every U). Therefore, f(-) has diminishing
marginal returns and is submodular. |

» Theorem 26. The query complezity of Non-Trivial SEM is at least (Z)

Proof. Consider the following (})+1 cost functions. Define ¢(-) so that ¢(S) = 0 if || < n—2,
e([n]\ {i}) = n —1 for all 4, and ¢([n]) = 2n. Call the associated function f(-) where we set
f({i}) =1 for all i. Then f(S) = |S| when |S| <n —2, f([n]\ {i}) =0, and f([n]) = —nZ.

For every 1 < i < j < n define ¢;;(-) so that ¢;;(S) = 0 if |S| < n — 3. For sets of size
n—2, set ¢;;([n]\{%,j}) = n—1, and ¢;;([n]\ {k, £}) = 0 for all other {k, ¢} # {4, j}. For sets

of size n — 1, set ¢;;([n] \ {i}) = ¢;;([n] \ {4}) =0, and ¢;;([n] \{k}) =n—1forall k ¢ {i,5}.

Finally, set ¢;;([n]) = 3n — 1. Call the associated function f;;(-) where we set f;;({¢}) =1
for all £. Observe that f;;(S) = |S| when |S| <n -3, f;;(S) =n—21if |S| =n—2 and
S £ )\ {03}, fis(n]\ {0 1) = —1, fis([n] \ {€}) = 0 for all ¢, and fi;([n]) = —n2.
Observe, importantly, that the non-trivial minimum of f(-) is 0, while the non-trivial
minimum of f;;(-) is —1 for all 4, j. Observe also that f(-) and f;;(-) differ only on their
evaluation for [n]\ {4, j}. Therefore, an adversary could answer any query S with f(S). If
the algorithm terminates with fewer than (%) queries, then there is some [n] \ {7, j} that has
not been queried. Therefore, the adversary is free to decide that the function is either f(-) or
fij (). As the value of the minima for these two functions are distinct, the algorithm cannot
be correct. Therefore, any correct algorithm for Non-Trivial SFM must make at least (’QL)
queries. |
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5

Conclusions and Open Questions

We establish the first query lower bounds exceeding n for SEM (2n), Non-Trivial Symmetric
SFM (3n/2 — 2), and Non-Trivial SFM ((})). Our asymmetric lower bounds are from direct
constructions. Our symmetric lower bound arises from the novel cut dimension.

Our work leaves open a clear direction for future work: what is the maximum possible

Global Cut Dimension for an undirected graph? Or more generally, what is the maximum
possible Non-Trivial Symmetric Generalized Cut Dimension of a weight-based function?

It is also of course generally important to further improve query complexity lower bounds

for SFM variants (and also develop better algorithms).
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A Omitted Proofs from Section 2

We will make use of the following technical lemma:
» Lemma 27. If R; C S, then fS(S) < (|S| —i) - (n+2—1).

Proof. If S = R;(s), then f&(S) = —c; <0< (|S| —i) - (n+2 — i), as desired. Otherwise
because j(S) > i (by definition of j(.5)), we know |S|—35(S) < |S|—i and n+2—3(S) < n+2—i,
which implies that f(S) < (|S| — i) - (n + 2 — i) as desired. <

Proof of Lemma 6. Let X, Y be any two subsets of [n]; we will show that
JEX) + f2(Y) 2 fAXUY) + fI(X NY).

Note that if X C Y, the inequality is trivially satisfied, as X NY = X and X UY =Y
the inequality is also trivially satisfied if Y C X. Hence, we will assume that neither set is
contained in the other; note that this means neither set could equal @) or [n]. From here we
consider two separate cases.

In the first case, assume neither X nor Y is an important set. Let R; be the largest
important set that is a subset of X and R; be the largest important set that is a subset
of Y. Without loss of generality, let’s assume that ¢ > j. Let A := (X \ R;) \ (Y \ R;),
B:=(Y\R)\(X\R,), C:=(X\R,)N(Y'\R;),and D := Y N(R;\ R;) and for convenience
define a := |A|, b:=|B|, ¢:=|C|, and d := |D|. From the definition of f we have that

ff(X):(a+c)~(n+27i)
and
) =(+ct+d) - (n+2—j).

First, we prove the inequality when 7 = j. In this case, D = (), but A and B are both
non-empty (as otherwise either X CY or Y C X). As X NY contains R; we have

fEXNY) <e(n+2—1)
from Lemma A.1. As X UY contains R; we similarly have

fEXUY)<(a+b+e)-(n+2—1).
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Hence,

FEXUY)+ fEXNY) < (a+b+2c)(n+2—1)
=(a+c)n+2—-i)+O+c)(n+2—-1)
= [5(X) + f5(Y)

which proves the inequality as d = 0. We’ll next prove the inequality assuming ¢ > j. In that
case, we again have that R; is a subset of X N'Y so

fEXNY) < (e+d)(n+2—j)
by Lemma A.1. Similarly, R; is a subset of X UY so
fAXUY)<(a+b+c)(n+2—1i).
Hence it is sufficient to prove
(a+c)-n+2=i)+(b+c+d)-(n+2—7) > (c+d)(n+2—j)+(a+b+c)(n+2—1)

which reduces to b(n + 2 — j) > b(n + 2 — i), which is true as b > 0 and ¢ > j. Hence we
have completed our analysis for the first case.

Our second case is when X is an important set and Y is not. Say X = R; for some i > 1
and let R; be the largest important set contained in Y. Clearly, i > j (as otherwise we would
have X CY). Let A:=Y \ R;, B:= (Y \ Rj) N R;, and for convenience define a := |A| and
b := |B|. Note that a > 0 (as otherwise Y C X) and that there are exactly a + b elements of
Y not in R;. Because X NY contains R; but not R;;; we know

fEXNY)=b-(n+2—j).

Also, as X UY contains R; we know that
fEXUY)<a-(n+2—1).

Hence it is sufficient to prove
—ci+(a+b)-(n+2—-7)>b-n+2—j)+a-(n+2—1).

This inequality is equivalent to —¢; + a(i — j) > 0, which is true since a > 1,7 — j > 1 and
¢; < 1, hence concluding the second case.

By symmetry, we now also have the same conclusion if Y is an important set and X is
not. Moreover, we need not consider the case where both are important sets as then one
must be a subset of the other. Hence we have the result. |

B On Cut Queries in Directed Graphs

In this section, we examine the limits of cut queries when learning the edges of a graph. This
appendix is not directly relevant to our main results, but may be of interest for future work.

> Claim 28. A directed weighted graph can be learned via cut queries up to directed cycles.
That is, with cut queries one can learn a graph G’ that is equivalent to the true graph G up
to adding/deleting directed cycles. Moreover, no set of queries can determine the weight of a
directed cycle.
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Proof. We first work over unweighted graphs and show that a graph can be learned up to
the direction of directed cycles. Let G(V, E) be a directed, unweighted graph. First, we note
that for any two vertices v and v in V', we can learn if

both edges (u,v) and (v,u) exist,

exactly one of the edges (u,v) and (v,u) exist (but not which one),

or neither of these edges exist.

To see this, consider creating a new function f’(-) which outputs f(S)+ f(V \ S). Then
f'(+) corresponds to an undirected weighted graph G’ where the weight between two nodes is
zero, one, or two (and equal to the number of edges between them in G). As G’ is undirected,
we can learn G’ exactly using cut queries [17].8

Moreover, for every vertex u, by querying {u} and V' \ {u}, we know the in degree and
the out degree of wu.

Now, suppose two graphs G and G’ both satisfy all the queries made so far. We claim
that G can be converted to G’ by flipping the direction of certain cycles. Let e = (u,v) be an
edge in G that does not exist in G’. We know that (v,u) must be an edge in G’. Suppose we
flip edge (v,u) in G’. Now, the in degree of u in G’ is one less than the in degree of v in G’,
while the out degree of u in G’ is one more than that of G. Hence, there is an edge (u,v’) in
G’ and an edge (v',u) in G. We flip this edge in G’. Continuing this way, we flip all edges in
a path, until we reach v. If G’ is the same as G, we are done, else, we pick another edge and

repeat this procedure. Hence, G’ and G are the same, up to the directions of directed cycles.

Moreover, for any cut queried, every directed cycle either does not contribute anything
to the cut or adds exactly 1 to the cut (irrespective of the direction). Hence, the direction of
cycles in a directed graph cannot be learned by cut queries.

This argument can be extended to weighted graphs as well. For weighted graphs, we can
learn the sum of the weights of edges (u,v) and (v, u) for all edges, as well as the in degree
and out degree of every vertex.

Suppose we have two graphs G and G’ which satisfy all the queries made to learn the
above. Similar to the unweighted case, we claim that G’ can be converted to G by changing
the weights of certain directed cycles. Let (u,v) be an edge which has weight w in G and w’
in G’. We change the weight of (u,v) in G’ to w, and add w’ — w to the weight of (v,u) in
G’. Now, the in degree of u has increased by w’ — w. Since the in degree of u is the same in
both G and G’ initially, this implies that there are edges incident on u in G whose weights
differ from those in G’ by exactly w’ — w. We change the weights of each of those edges to
match the ones in G, continuing till we complete each of these cycles. Hence, G and G’ are
identical up to the weights of certain directed cycles.

Note that each time we decrease the weight of a cycle in one direction by «a, we increase
the weight of the cycle in the other direction by exactly a. That is, the sum of the weights
of the cycle in both directions remains constant. Let’s assume that a cut query cuts k
edges of this cycle. This implies that the cut query also cuts k edges of the cycle in the
opposite direction. Hence, we can only determine the sum of the weights of these two cycles,
irrespective of the number of queries made. <

> Claim 29. For a weighted undirected graph, when making s-t cut queries, the weight of
edge (s,u) cannot be learned for any vertex u. Similarly, the weight of edge (u,t) cannot be
learned for any vertex u.

8 To see this, observe that f'({u}) + f'({v}) — f'({u,v}) is exactly twice the weight of the edge between
uwand v in G'.
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Proof. We first note that we can always learn the weight of edges of the form (u,v), with
u,v # s # t. This can be done by querying {s}, {s,u}, {s,v} and {s,u,v}. Hence, we
can learn all edges except for those of the form (s,u) and (u,t) (because these queries are
redundant or invalid in that case). After learning these weights, every query S U {s} can be
viewed as the sum of n weights (the weights of edges from S to ¢, and the weights of edges
from V' \ S to s). Let us denote the weight of edge (s,u) as w,, and the weight of edge (u, ?)
as w!,. Every query S U {s} can be written as a linear equation

Zw;Jr Z Wy = Cg

uesS ueV\S

Let ag denote a 2n dimensional vector with the coefficients of the above equation. Let w be
a 2n dimensional vector with w,, and the w!,, for all u. The above equation can be written as

(g, W) = cg

Let us consider the subspace II spanned by {ag: S C V' \ {s,¢}}. Let e, denote the vector
with a 1 in the position of edge (s, ) and zeros elsewhere. If ¢, € II, we can compute the
value of w,,. We show that e, & II, for all u.

To show this, it is enough to describe a vector in the kernel of II, whose dot product with
e, is non-zero. Consider the vector 8 with 1 in the position of edges (s,u) and (u,t), and
— L clsewhere.

<euvﬁ> =1
However, for any S,
<OéS, B) =0

Hence, we cannot compute the weight of edge (s, u) for any vertex u. The same argument
can also be made for the edge (u,t). <
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