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Obtaining accurate biomechanical information within rigid, constrained compartments 
such as spacesuits can be challenging and labor-intensive, due to the obstacles of bulk and 
mass involved with sensor placements. Inspired by the current challenges in measuring 
astronaut biomechanics and in designing mobility-assistive robotics, this study investigates the 
feasibility of using soft, flexible wearable surface electromyography (EMG) sensors. In this 
study, anti-slip arm bands with textile-friendly metal-snap electrodes were used to collect 
EMG signals from biceps brachii and triceps brachii muscle activities, with conventional 
adhesive disposable solid-gel electrodes measuring the same muscle activities simultaneously. 
To compare the quality of signals obtained from the wearable EMG electrode configuration 
to the signals obtained from the conventional EMG electrodes, 40 trials that were collected 
with two subjects were analyzed by extracting 11 time-domain EMG features. These EMG 
features from two distinct signal sources were compared by using the non-segmentation 
method, the overlapping segmentation method, and the disjoint segmentation method. Results 
showed that comparisons were non-significant in most feature comparisons using non-
segmentation method, and all comparisons were non-significant in both EMG signal 
segmentation methods, validating the feasibility of reliable and accurate signal collection with 
the dry metal-snap wearable electrodes and the promise in real-time application of the 
wearable EMG electrode configuration. Implications and limitations of the current study 
results are also discussed. 

Nomenclature 
AC = alternating current 
Ag-AgCl = silver-silver chloride 
AR = autoregressive 
CMRR = common-mode rejection ratio 
DAMV = difference absolute mean value 
EMG = electromyography 
EVA = extravehicular activities 
IEMG = integrated absolute value of EMG 
k = time index of EMG signal 
MAV = mean-absolute-value 
MVC = maximum voluntary contraction 

NBL = Neutral Buoyancy Laboratory 
N.S. = non-significant 
RMS = root-mean-sqaure 
sEMG = surface electromyography 
SSC = slope sign change 
SD = standard deviation 
WL = wave length 
VAR = variance 
WAMP = Wilson ampitude 
ZC = zero crossings 
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I. Introduction 
The collection of biomechanical variables from human bodies moving within a rigid wearable hardware such as 

gas-pressurized spacesuits or mobility-assistive robotic exoskeletons presents unique challenges for researchers. Of 
particular relevance for aerospace concerns the frequent musculoskeletal injuries occurring to suited astronauts, during 
extravehicular activities (EVA) as well as during simulated training in the Neutral Buoyancy Laboratory (NBL).1,2 It 
is believed that having to exert straining forces while maneuvering inside rigid spacesuits contributes to these injury 
occurrences.3 However, it has been difficult to measure and characterize the exact body movements inside spacesuits 
that lead to such injuries. Due to the thick, rigid shell of the suit surrounding the body, accurate measurement of real-
time body movements inside spacesuits with dynamic imaging techniques has not been useful. Injury preventation 
strategies for suited astronaut activities based on anecdotes, opinions, and static imaging results, therefore have not 
been fully effective.1,4 

Beyond the need for designing astronaut injury prevention strategies, accurate measurement of biomechanics has 
also been important for the development of wearable mobility assistive devices, such as robotic exoskeletons for 
neuromuscular disorder rehabilitation and human strength augmentation in extreme environments.5,6 Research efforts 
in the last two decades have yielded inventions including rehabilitative robotic suits and strength-augmenting 
exoskeletons for military and industry applications. However, many if not most of the current systems are constructed 
with rigid hardware, which may fundamentally compromise user mobility and comfort, or may induce stress on the 
machine.7 Flexible actuation technologies are being researched in the new paradigm of soft robotics,7–11 but there also 
remains a great need for a comfortable and wearable biomechanical sensing method to control mobility assistive 
systems. Being able to accurately and reliably quantify human biomechanics with a comfortable and flexible sensing 
technique therefore may be not only useful in building a control system for future generations of mobility assistive 
robotic devices, but also helpful for planning astronaut injury prevention strategies and designing more ergonomic 
spacesuits that lead to fewer injuries. 

A classical approach for biomechanical analysis involves gathering goniometric information (joint angles) or 
sensing the force/torque between the body and the mechanical components.12 However, such input variables provide 
limited information, due to the inherent blindness for user intent. Not all muscle activations produce actual joint motion 
(as in the case of isometric muscle contractions); conversely, passive body motions from external forces may be 
erroneously registered as intended movements. Such information about unobserved muscle activities or unintended 
motions cannot be effectively obtained with goniometers, inertial sensors, or force/pressure meters alone. 
Consequently, there are disadvantages to using such mechanical input variables in mobility assistive devices for 
rehabilitation or strength augmentation applications, because the user may not always possess sufficient muscle 
strength to produce detectable joint motion, and passive movements from external sources may trigger unintended 
actuations that threaten the safety of user and/or other individuals. 

One alternative method for obtaining user biomechanical data is electromyography (EMG), which can provide 
unique information about the user’s intended movements with the electrical signals that correspond to the sequence, 
duration, and magnitude of muscle fiber activations. Although subcutaneous needle electrodes may be used in clinical 
settings, surface electromyography (sEMG) with on-skin electrodes is the most common and recommended EMG 
signal collection approach due to its non-invasiveness. sEMG is not only widely used in kinesiological research 
involving the acvitities of superficial muscles, but also being used in many rehabilitative orthoses/prostheses designs 
due to the advantages of being able to detect muscle activation signals irrespective of actual joint motions. Even 
without sufficient joint torque produced by the user, researchers are able to detect the contractive efforts generated by 
the user’s muscles, and such signals can also be used to control assistive robotics to correspond to the user-intended 
motions.13 Also, EMG-based kinetic estimation methods do not require inverse dynamic modeling of the interaction 
between the body and the environment, bypassing the need for a priori knowledge of mass and inertia of body segments 
that may not be accessible in the wild.14,15 

However, obtaining sEMG signals within rigid wearable compartments is challenging, and there are several 
drawbacks to collecting sEMG signals within spacesuits or robotic mobility assistive systems in terms of applicability 
and efficiency. Electrodes and wires required for the data collection are bulky and movement-restrictive; the adhesives 
and conductive gels used with disposable electrodes are time-consuming and labor-intensive to apply and may also 
cause discomfort or skin irriations.16 The flimsy nature of sEMG signals also invites various noise issues such as the 
skin impedance between the target muscle and the electrode surface, slippage of the electrode against the skin, and 
motion artifact from wire friction or tugging.17 Other electrode types with ‘dry’ surfaces are difficult to secure on 
body, suffering from relatively more signal noise and artifacts.18 Cutting-edge wireless signal collection electrodes do 
not require cables, but their rigid supporting hardware typically does not fit comfortably underneath other systems and 
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may not transmit quality signals through the thick wearable shell and large environments like NBL. Therefore, despite 
the advantages of utilizing EMG signals for biomechanical studies and for assistive device control algorithms, the 
difficulties associated with signal collection have limited the feasibility of using EMG in many of these situations 
outside laboratory settings.14 There is hence generally a great need for more compact, system-embedded, and easy-to-
use electrodes across diverse applications.19 

In this paper, we propose and validate an alternative method of collecting sEMG signals with a flexible, wearable 
physical interface that is easy to construct and does not necessitate individual electrode setups. We compare the 
features of the signals obtained from this wearable configuration to the those collected from conventional disposable 
electrodes. Several time-domain EMG features were chosen for this comparative analysis between the conventional 
and wearable EMG configurations, in order to assess the suitability of using this alternative flexible sEMG signal 
collection method in biomechanical studies and biomechatronics designs. 

II. Background 
A. Overview of Electromyography 
1. Signal collection 

The depolarized action potential waves that travel down along the muscle fibers upon excitation by the motor 
neurons are recorded during EMG sessions.20 Depending on the intensity and duration of muscle activities, the 
frequency of muscle fiber innervation and the number of activated motor units may differ.20 To capture such 
differences in the action potentials along their traveling routes, differential amplification with two electrodes per 
muscle are the standard configurations most commonly used.20–22 

The gold standard sEMG procedure entails proper skin preparation with the removal of hair and/or dead skin cells 
to minimize the skin’s electric impedance between the target muscle and the electrode surfaces.22 On the target muscle, 
two electrodes are placed about 2 cm apart from each other along the belly of the muscle; it is best to avoid placing 
electrodes directly on or near the innervation zone or the insertion tendon.21,23 Another electrode is used as the 
reference for canceling out the common signal noise, often placed on a bony prominence.23  

The normal EMG signal has amplitude ranges of 0-10 mV peak-to-peak, and the frequency ranges of 0-500 Hz 
with most frequencies in the 50-150 Hz window.23 To achieve good signal quality, a band-pass filter is usually required 
during or after recording, with a high-pass filter removing the low-frequency noise (e.g., sensor drift, temperature 
changes, etc.) and a low-pass filter removing the high-frequency noise (e.g., radio signals, computers, etc.).22 Because 
the raw EMG signals are very weak, the signal should also be amplified accordingly; with passive cables usually a 
gain of at least 1000 is recommended.22,24 

In addition, the EMG signals need to be ‘normalized’ in many cases, because the absolute signal amplitude can 
vary strongly across electrode placements, different EMG sessions, and different subjects.24 Often the maximum 
voluntary contraction (MVC) values are collected to determine the reference point of the ‘100%’ muscle strength 
exertion, by making the subject push or pull an immovable object, or the maximum amplitude from a single session 
may also be used for normalization if collecting MVC values is not feasible.21 Normalization is nonetheless important 
for comparing across different individuals and different EMG sessions that have different signal means and ranges.21 
Lastly, further signal processing is necessary depending on the amount of collected noise and the exact test objective 
and collected noise level, to convert signals into cleaner forms for analysis; rectification, root-mean-square (RMS) 
processing, mean-absolute-value (MAV) processing are commonly used filtering/smoothing techniques; researchers 
may also choose to adapt advanced processing techniques such as whitening, demodulation, and relinearization.17 

 
2. sEMG Electrode Types 

Unlike the invasive needle electrodes used in intramusclular EMG, surface EMG electrodes are widely used with 
no required medical training and easier application. sEMG electrodes can be largely considered either gelled and dry, 
depending on the use of conductive gel. 
• Gelled (“wet”) electrodes require using a conductive electrolytic gel to form a layer of ion concentration gradient 

that works as a half-cell between the skin and the detecting electrode surface.25,26 Silver-silver chloride (Ag-AgCl) 
is the most common electrode material to be used with the gel, due to its low resistance drift, low electrode-skin 
impedance, low noise, and low motion artifact.27,28 Most Ag-AgCl electrodes are usually meant for one-time use 
and are hence disposable.22 

• Solid gel electrodes work just like gelled electrodes, except for using polymerized jelly-like hydrogel substances  
instead of using the liquid gel.29 Hydrogels are water-insoluble but also simultaneously hydrophilic, as they are 
composed of crosslinked three-dimensional polymer chains that hold water.29,30 Hydrogel electrodes tend to have 
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slightly higher impedance than the liquid-gel electrodes, but are also simpler to apply, inexpensive, flexible, and 
sometimes reusable.29–31 

• Dry electrodes such as bar electrodes or array/grid electrodes do not require any gel application between the skin 
and the electrode.22 The lack of stabilizing electrolytic layer between the skin and the electrode surface means that 
the skin-electrode impedance is naturally higher and the electrode contact area is unstable. The ion concentration 
between the skin and the electrode surface is hence much more susceptible to external disturbances such as pressure 
and motion, leading to motion artifacts and signal noise.25 

• Some electrodes, mainly dry electrodes, are active electrodes with built-in amplifiers, which can reduce cable 
motion artifact by amplifying the raw signals before being transmitted along the lead cables.17,22 The presence of 
amplifier on/near the skin, however, entails encasing the electrode surfaces with hardware components for 
amplification, which may entail more bulk and mass that can be tricky to stabilize on the body. Conversely, the 
more commonly used electrodes that do not have built-in amplifiers are passive electrodes. 

 
3. Common sEMG signal noise issues 
• Skin impedance: Between target muscle fibers and electrode surfaces, the skin is a barrier in the sEMG signal 

collection. Generally, the thicker the skin and the subcutaneous tissues are, the higher the skin impedance will be, 
and the smaller the resulting sEMG signal amplitude will be.21 Natrually the individual differences in the thickness 
of the skin may result in the variation in the sEMG amplitudes collected.21 

• Unstable skin-electrode contact: sEMG data collection relies upon the contact between the electrode surfaces and 
the skin at the site of the target muscle. As mentioned, gelled electrodes offer the advantage of electrolytic layer 
that stabilizes the skin-electrode interface, with the formation of half-cell potentials across the electrode contact 
area.25 Dry electrodes, with the lack of an electrolytic layer, electrode-skin impedance is higher and the contact 
stability is easily disturbed. 

• Cable interference: The passive cables that relay the raw signals from the electrodes to the amplifier can easily 
pick up noise from ambient electromagnetic fields in the environment, if the cables are unshielded. It is 
recommended to use shielded wires to reduce such unwanted capacitances, but friction and deformation of the 
cable may still cause motion artifact with shielded wires.17 As mentioned, active electrodes that have a built-in 
operational amplifier may significantly reduce cable interference; although the presence of amplifier requires 
additional housing for hardware. 

• Alternating current (AC) power line interference: The AC power lines and the connected electric equipment have 
ambient electromagnetic fields; 60 Hz in North America and 50 Hz in Europe.17 This power line interference needs 
to be minimized by shielding EMG data acquisition devices, and also can be removed by fixed notch filtering.17 
Proper electrode setup with the use of modern high-quality amplifier devices can normally prevent AC power line 
intereferences.21 

• Motion artifact: Perhaps the biggest issue with most sEMG sessions is the motion artifact, caused by either (a) 
migration of the electrode on the skin, (b) skin deformation beneath the electrodes, or (c) cable friction and 
deformation.17 To prevent motion artifacts, conductive gel is applied to stabilize the skin-electrode conduction, 
and sEMG electrodes and cables are often secured with additional tapes.32 Such workarounds are commonplace 
but are not always robust against large physical movements, perspiration, or external disturbances. High-pass 
filtering may be necessary to reduce motion artifact collection.23 

B. Wearable EMG Garment Prototype 
Previous work by the first author involved designing a proof-

of-concept prototype of a textile-based wearable interface that can 
measure EMG signals with garment-integrated dry electrodes 
(Figure 1).33 This project was inspired by the difficulties in 
studying astronaut biomechanics that lead to injuries while 
carrying out suited EVA activities. The objective was to 
demonstrate the feasibility of collecting EMG data with a form-
fitting garment that is reusable, washable, and does not involve 
time-consuming individual electrode setup for data collection.  

 
Figure 1.  Wearable EMG garment prototype. 
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With considerations on the easy-to-use form factor that 
allows reliable mechanical coupling of electrodes, many 
electrode materials and coupling methods were tested 
during the pilot testing stage of the project (Figure 3). 
Surprisingly, metal snaps with elastic wrapping around the 
limb worked well as sEMG electrodes with qualitatively 
good results. The final garment design consisted of form-
fitting ponte roma knit fabric base with sewn-on pieces of 
Fabrifoam® medical compression wraps that offer 
elasticity, breathability, washability, and high resistance to 
on-skin migration (Figure 2). Metal snaps that work as 
electrode surfaces were attached onto these Fabrifoam® 
pieces, which were thereby secured on the skin without 
using any adhesive materials. The advantages of using metal snaps in this design included minimal electrical 
resistance, small size, easiness of repair, and accessibility.  

 

 
 

The feasibility of using this wearable interface for EMG collection was also demonstrated with a human subject 
testing, where the garment showed qualitatively comparable signals as those obtained from conventional disposable 
electrodes (Figure 4). However, this demonstration was done with only one subject, and the direct quantitative 

comparison of the quality of EMG signals 
between the two methods was impossible, 
because the two methods did not collect the same 
muscle activities simultaneously. (Signals were 
first collected with conventional EMG 
electrodes, and then with the garment.) It is 
currently unclear how this simple method of 
securing dry metal snaps onto the skin with anti-
slip medical wraps can perform as an acceptable 
way of collecting accurate, reliable EMG signals. 
Therefore, it is necessary to conduct feature-by-
feature comparison of the EMG signals collected 
simultaneously on the same muscle with these 
two methods, as is done in the current study. 

Figure 3. Selected examples of pilot-tested electrode configurations for the EMG garment design. Active biceps 
brachii flexion signals (blue) were compared with motion artifacts from externally created passive motions 
(orange). (RMS windows = 100 ms; sampling rate = 2 kHz) 

Figure 4. Example trials from the human subject testing of the 
EMG garment prototype. (Conventional = 3M Red Dot 2560 
electrodes; RMS windows = 100 ms; sampling rate = 2 kHz) 

Figure 2. (a) Fabrifoam wraps; (b) Metal snaps; (c) 
sEMG electrode armband constructed with both 
materials and an elastic band. 

a c 

b 
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III. Methods 
A. Devices 
1. Hardware and software equipment 

All EMG signals were collected with a Biopac MP 160 system (Biopac Systems Inc., USA) and Biopac 
AcqKnowledge 4 software, with two EMG100C modules for recording two EMG channels simultaneously. The EMG 
signals were digitized with a sampling rate of 2 kHz, with a built-in notch filter of 60 Hz to cancel out the AC power 
interference. Both EMG channels also underwent a low-pass filter of 5000 Hz and a high-pass filter of 1 Hz during 
recording. The gain was set at 2000. The common-mode rejection ration (CMRR) was 110 dB min. 

 
2. Dual-channel sEMG signal collection apparatus 
 Measuring two channels of sEMG signals simultaneously from the same muscle requires an unusual setup, with 
both the wearable sEMG recording method and the conventional sEMG recording method accurately implemented 
into a limited real estate. As mentioned, an ideal EMG setup requires two electrodes per channel to be placed on the 
center line of the muscle belly, but a simultaneous recording of two electrode pairs on the same muscle requires an 
unconventional electrode configuration of both signal collection methods. 
 To attach both pairs of electrodes on the same muscle, an adjustable armband-like apparatus with a Fabrifoam® 
piece was constructed (Figure 5). A piece of Fabrifoam® SuperWrap was cut off into a 3.75” × 3” rectangle, and a 
strip of elastic band was sewn on one end of it. Two metal snap electrodes were attached towards the middle of the 
the Fabrifoam® piece with an inter-electrode distance of 1 inch (center-to-center). Two holes were cut in a slightly 
oblong shape (0.75” × 0.5”) about half-inch next to the metal snap electrodes, so that conventional adhesive electrodes 
can be attached alongside them with their studs exposed. The armband was closed with hook-and-loop strips, since 
Fabrifoam® products are Velcro-receptive; a small loop-side strip was sewn on the other end of the elastic band, and 
the armband was fastened on the arm with a hook-side strip on the other end. 
 

 
Figure 5. Construction of armband for dual-channel sEMG signal collection of the same arm muscle. 

B. Procedure 
Two healthy male subjects performed the exercises analyzed in this study. Each subject donned the sEMG signal 

collection armband for each of the four arm muscles measured for comparison. As seen in Figure 6a, for each muscle, 
two Covidien H124SG electrodes (Ag-AgCl with solid gel) were chosen to be used as conventional adhesive 
electrodes, due to their small size (Ø 24 mm). These adhesive electrodes were applied on the muscle with an inter-
electrode distance of approximately 1 inch. Adjacently on the same muscle belly, the two metal snap electrodes were 
placed and the armband was tightened with hook-and-loop strips, with the oblong holes on the Fabrifoam revealing 
conventional H124SG electrode studs (Figure 6b). Shielded clip-lead wires (Biopac LEAD110 series) were attached 
to these electrodes to connect to the Biopac MP160 system and EMG100C modules (Figure 6c). In addition, two 3M 
Red Dot 2560 electrodes (Ag-AgCl with solid gel) were applied on C7 spinal cord as reference electrodes (Figure 6d). 

  

 
Figure 6. Testing procedure with the armband. 

a b c d e 
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Then the subject performed the following exercises (Figure 6e). For the left biceps brachii and the right biceps 
brachii muscles, each subject performed 1 MVC trial (5 reps of maximum contraction) followed by 5 trials of dumbbell 
bicep curls (5 reps per trial, with either a 5-lb. or a 8-lb. dumbbell). Similarly, for the left triceps brachii and the right 
triceps brachii muscles, 1 MVC trial (5 reps of maximum contraction) was followed by 5 trials of overhead dumbbell 
tricep curls (5 reps per trial, with either a 5-lb. or a 8-lb. dumbbell). MVC trials involved trying to flex the extended 
arm while being pushed down (for the biceps brachii muscle) and extending the arm against an immovable wall (for 
the triceps brachii muscle). All conventional and wearable electrodes remained donned while all were trials collected 
from each muscle. Speed of the reps were subjectively controlled by the subject, with each trial lasting about 20-30 
seconds. Subjects were allowed brief breaks in between trials and before switching to different muscles. 

C. Data Analysis 
1. Signal Standardization 

Prior to the data processing, the signals obtained from the conventional and new electrodes were standardized by 
subtracting the difference between their means and scaling their amplitudes onto [-1 and +1] (Figure 7). 
 

  
Figure 7. (a) Raw signal example; (b) Standardized signal example. (Blue = conventional; Orange = wearable) 
 
2. Data Segmentation 

Before extracting features from the EMG signals, we carried out data segmentation methods which are often used 
in real-time applications. In order to evaluate the similarity between the two sEMG signal types, two variations of data 
segmentation methods were both used in the current study: the disjoint window method (Figure 9) and the overlapping 
window method (Figure 8).34,35 The length of 250 ms was chosen for the disjoint segmentation method; similarly, the 
length of 250 ms with 50 ms overlapping windows was selected for the overlapping segmentation method. 

 

 
Figure 8. Disjoint segmentation method 

 

1 2 

250 ms 
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Figure 9. Overlapping segmentation method 

 
3. sEMG Signal Features 

In order to compare the two types of sEMG signals, eleven time-domain features that are commonly used for EMG 
pattern recognition were extracted in this study as the following:36 

 
① Integrated absolute value of EMG (IEMG) is the summation of all rectified EMG signal values defined as 

IEMG = ∑ |𝑒𝑚𝑔𝑘|

𝑁

𝑘=1

 

Where 𝑒𝑚𝑔𝑘 is the kth sample and N is the number of samples in each segment window. 
 
② Mean absolute value (MAV) of signal is the average of IEMG in a given segment window (often used in 

proportional control of prosthetic devices):37  

MAV =
1

N
∑ |𝑒𝑚𝑔𝑘|

𝑁

𝑘=1

 

 
③ Root-mean-squared (RMS) method is another way to assess the intensity of signals in a given segment window: 

RMS =
1

N
√∑ 𝑒𝑚𝑔𝑘

2

𝑁

𝑘=1

 

 
④ Wave length (WL) of signal estimates the length of the waveform in a segment window: 

WL = ∑ |𝑒𝑚𝑔𝑘+1 − 𝑒𝑚𝑔𝑘|

𝑁−1

𝑘=1

 

 
⑤ Difference absolute mean value (DAMV) of signal is the average of WL:  

DAMV =
1

N − 1
∑ |𝑒𝑚𝑔𝑘+1 − 𝑒𝑚𝑔𝑘|

𝑁−1

𝑘=1

 

 
⑥ Variance (VAR) of signal is a measure of the signal power: 

VAR =
1

N − 1
∑ 𝑒𝑚𝑔𝑘

2

𝑁

𝑘=1

 

 

1 2 Overlap 

250 ms 50 ms 
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⑦ Zero crossings (ZC) of signal counts the number of times that the signal passes through the zero-point of the 
signal amplitude in a given window size of N:38 

ZC = ∑ 𝑠𝑔𝑛(−𝑒𝑚𝑔𝑘 × 𝑒𝑚𝑔𝑘+1)

𝑁

𝑘=1

 

where 

𝑠𝑔𝑛(𝑥) = {
1, 𝑖𝑓 𝑥 > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 
⑧ Wilson amplitude (WAMP) of signal in a given window shows the number of times that each of the differences 

between two consecutive EMG signal values is larger than a particular threshold (set to 0.05 mV):39 

WAMP = ∑ 𝑓(|𝑒𝑚𝑔𝑘 − 𝑒𝑚𝑔𝑘+1|)

𝑁

𝑘=1

 

where 

𝑓(𝑥) = {
1, 𝑖𝑓 𝑥 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 
⑨ Slope sign change (SSC) is the count of the number of times the slope of the time-domain EMG signal changes 

the sign (positive or negative) in a given window, which can also be used as a frequency measurement: 

SSC = ∑ 𝑓(𝑒𝑚𝑔𝑘 − 𝑒𝑚𝑔𝑘−1) × (𝑒𝑚𝑔𝑘 − 𝑒𝑚𝑔𝑘+1)

𝑁

𝑘=1

 

where 

𝑓(𝑥) = {
1, 𝑖𝑓 𝑥 > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 
⑩ Autoregressive (AR) models treat each sample of the EMG signal as a linear combination of previous samples 

plus an independent error term, with the assumption that the quasi-random nature of the EMG signals can be 
considered a Gaussian process.40–42 For each kth signal of EMG, the AR model is defined as 

𝑒𝑚𝑔𝑘 = − ∑ 𝑎𝑗

𝑞

𝑗=1

𝑥(𝑘−𝑗) + 𝑒𝑘 

where emgk denotes the recorded EMG signal, aj denotes the AR coefficient, ek denotes the residual white noise, 
and q denotes AR model’s order (q=7, in this study). For analysis, the AR-coefficients were calculated by 
obtaining the least-squares of the forward and backward prediction errors while fitting a 7th-order AR model to 
emgk. With q=7, there were 7 coefficients derived per emgk, which were averaged (mean of AR-coefficients). 

 
⑪ Together with the mean of AR model coefficients, RMS of (7th order) AR-coefficients were also calculated as 

another representation of the signal within a given segmentation window. 

IV. Results 
Pearson product-moment correlation coefficients, t-tests, and Bland-Altman tests were used to compare the two 

signal types. (The Bland-Altman method graphically compares two measurement techniques, by plotting their 
differences against the averages of the two, with one overlaying horizontal line at the mean difference and two 
overlaying lines at the limits of agreement which are ±1.96 times the standard deviation of the differences.)43 As stated 
earlier, eleven features were extracted from the signals obtained from Conventional and Wearable EMG electrode 
condiions. The differences between their features were compared and examined using the aforementioned statistical 
analyses for each of the non-windowing, disjoint windowing, and overlapping windowing methods. 



10 
International Conference on Environmental Systems 

 
 

A. Trial Assessments (Non-segmentation Method) 
 In this non-segmentation analysis, all 

EMG signal features were extracted for 
the entire duration of each trial. The 
comparison results for the Left Biceps, 
Right Biceps, Left Triceps, and Right 
Triceps signals are displayed in Table 1, 
Table 2, Table 3, and Table 4, 
respectively. In these tables, the absolute 
errors between the conventional and 
wearable configurations (for each of the 
11 features) were calculated, and then the 
average and standard deviation of these 
absolute errors were also computed. 
Moreover, to evaluate the differences 
between the two channels, the paired t-
tests and the Bland-Altman tests have 
been employed as well. (Example Bland-
Altman plots for the WL parameter for 
Biceps and Triceps muscles are shown in 
Figure 10.) 

As reported in Table 1 through Table 
4, the t-test results show that there are no 
significant differences between the 
conventional and wearable configurations 
for the four muscles in the majority of the 
features obtained. Left Biceps showed 
non-significant differences in all features; 
the WAMP feature difference was 
significant between the conventional and 
wearable settings for the Right Biceps muscle; DAMV differed between the conventional and wearable signal sources 
for the Left Triceps; and RMS of AR-coefficients differed for both Left and Right Triceps. However, given the 
extensiveness of these feature comparisons, these few statistical differences are relatively insignificant overall. 
 
Table 1. The t-test results and Bland-Altman parameters for the features extracted from Left Biceps signals 
collected with conventional vs. wearable electrodes. (N.S. = non-significant) 

Left Biceps 

 
Feature Average Absolute Error Value T-test  

result  
(α=0.05) 

Bland-Altman Plot Parameters 
Conventional 

Electrodes 
Wearable 
Electrodes Mean SD Mean Mean 

+1.96SD 
Mean 

-1.96SD 
IEMG 7560.90 7410.50 398.51 438.13 N.S. 150.43 1298.80 -997.92 
MAV 1.93E-01 1.89E-01 8.56E-03 7.63E-03 N.S. 3.74E-03 2.56E-02 -1.81E-02 
RMS 1.15E-03 1.11E-03 8.71E-05 5.39E-05 N.S. 3.63E-05 2.31E-04 -1.58E-04 
WL 819.85 771.26 147.70 100.72 N.S. 48.59 397.90 -300.71 

DAMV 1.75E-02 1.63E-02 3.46E-03 1.87E-03 N.S. 1.21E-03 8.85E-03 -6.43E-03 
VAR 5.50E-02 5.28E-02 6.91E-03 3.70E-03 N.S. 2.18E-03 1.76E-02 -1.32E-02 
ZC 1387.80 1327.40 163.40 151.24 N.S. 60.40 491.98 -371.18 

WAMP 4154.80 4042.10 2588.90 817.66 N.S. 112.70 5691.50 -5466.10 
SSC 8.65E+07 9.59E+07 9.35E+06 4.51E+06 N.S. -9.35E+06 -5.09E+05 -1.82E+07 

AR coeffs. 
Mean 3.37E-03 2.74E-03 6.87E-04 8.13E-04 N.S. 6.21E-04 2.32E-03 -1.08E-03 

AR coeffs. 
RMS 9.19E-01 9.00E-01 3.14E-02 2.83E-02 N.S. 1.88E-02 9.48E-02 -5.72E-02 

 
  

 
(a) Left Biceps Bland-Altman Plot 

 
(b) Right Biceps Bland-Altman Plot 

 
(c) Left Triceps Bland-Altman Plot 

 
(d) Right Triceps Bland-Altman Plot 

Figure 10. Bland-Altman plot examples of WL parameter 
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Table 2. The t-test results and Bland-Altman parameters for the features extracted from Right Biceps signals 
collected with conventional vs. wearable electrodes. (N.S. = non-significant) 

Right Biceps 

 
Feature Average Absolute Error Value T-test  

result  
(α=0.05) 

Bland-Altman Plot Parameters 
Conventional 

Electrodes 
Wearable 
Electrodes Mean SD Mean Mean 

+1.96SD 
Mean 

-1.96SD 
IEMG 5389.60 5141.20 565.20 254.50 N.S. 248.39 1409.90 -913.08 
MAV 1.22E-01 1.13E-01 1.48E-02 9.50E-03 N.S. 9.27E-03 3.96E-02 -2.10E-02 
RMS 8.27E-04 7.30E-04 1.36E-04 1.02E-04 N.S. 9.68E-05 3.77E-04 -1.83E-04 
WL 773.86 686.93 126.90 82.37 N.S. 86.93 337.02 -163.16 

DAMV 1.73E-02 1.49E-02 3.28E-03 2.15E-03 N.S. 2.44E-03 8.62E-03 -3.75E-03 
VAR 2.83E-02 2.33E-02 8.23E-03 5.08E-03 N.S. 4.92E-03 2.18E-02 -1.20E-02 
ZC 1491.90 1414.40 129.90 91.43 N.S. 77.50 357.69 -202.69 

WAMP 5896.40 4171.70 1724.70 664.08 p < 0.05 1724.70 3026.30 423.10 
SSC 7.61E+07 8.05E+07 8.26E+06 2.89E+06 N.S. -4.46E+06 1.10E+07 -1.99E+07 

AR coeffs. 
Mean 3.31E-03 3.37E-03 8.94E-04 7.06E-04 N.S. -6.13E-05 2.24E-03 -2.37E-03 

AR coeffs. 
RMS 9.52E-01 9.34E-01 4.12E-02 3.44E-02 N.S. 1.79E-02 1.20E-01 -8.42E-02 

 
Table 3. The t-test results and Bland-Altman parameters for the features extracted from Left Triceps signals 
collected with conventional vs. wearable electrodes. (N.S. = non-significant) 

Left Triceps 

 
Feature Average Absolute Error Value T-test  

result  
(α=0.05) 

Bland-Altman Plot Parameters 
Conventional 

Electrodes 
Wearable 
Electrodes Mean SD Mean Mean 

+1.96SD 
Mean 

-1.96SD 
IEMG 613.30 7974.50 754.72 621.82 N.S. 638.85 2113.50 -835.82 
MAV 1.89E-01 1.77E-01 1.55E-02 1.05E-02 N.S. 1.17E-02 4.11E-02 -1.77E-02 
RMS 1.10E-03 9.98E-04 1.32E-04 7.99E-05 N.S. 1.00E-04 3.36E-04 -1.36E-04 
WL 798.14 669.40 128.73 110.73 N.S. 128.73 345.76 -88.29 

DAMV 1.81E-02 1.49E-02 3.25E-03 3.34E-03 p < 0.05 3.25E-03 9.80E-03 -3.30E-03 
VAR 5.45E-02 4.54E-02 1.16E-02 6.35E-03 N.S. 9.06E-03 2.84E-02 -1.03E-02 
ZC 1029.30 844.80 212.10 149.26 N.S. 184.50 548.24 -179.24 

WAMP 2028.00 3187.70 1219.50 1256.50 N.S. -1159.70 1423.40 -3742.80 
SSC 8.62E+07 1.17E+08 3.10E+07 3.03E+07 N.S. -3.10E+07 2.84E+07 -9.05E+07 

AR coeffs. 
Mean 1.37E-03 1.42E-03 5.03E-04 4.12E-04 N.S. -4.74E-05 1.26E-03 -1.36E-03 

AR coeffs. 
RMS 1.13E+00 9.74E-01 1.56E-01 5.04E-02 p < 0.05 1.56E-01 2.55E-01 5.72E-02 

 
Table 4. The t-test results and Bland-Altman parameters for the features extracted from Right Triceps signals 
collected with conventional vs. wearable electrodes. (N.S. = non-significant) 

Right Triceps 

 
Feature Average Absolute Error Value T-test  

result  
(α=0.05) 

Bland-Altman Plot Parameters 
Conventional 

Electrodes 
Wearable 
Electrodes Mean SD Mean Mean 

+1.96SD 
Mean 

-1.96SD 
IEMG 5749.40 5782.20 485.51 373.66 N.S. -32.82 1207.30 -1273.00 
MAV 1.36E-01 1.34E-01 1.10E-02 6.89E-03 N.S. 1.74E-03 2.79E-02 -2.44E-02 
RMS 9.00E-04 9.07E-04 7.26E-05 5.68E-05 N.S. -6.65E-06 1.80E-04 -1.93E-04 
WL 932.27 999.51 106.47 116.02 N.S. -67.24 217.00 -351.48 

DAMV 2.09E-02 2.26E-02 2.31E-03 2.13E-03 N.S. -1.64E-03 3.72E-03 -7.01E-03 
VAR 3.19E-02 3.25E-02 5.17E-03 3.94E-03 N.S. -5.44E-04 1.26E-02 -1.37E-02 
ZC 1817.40 2064.30 301.50 268.06 N.S. -246.90 388.59 -882.39 

WAMP 2586.20 1549.90 1036.30 355.01 N.S. 1036.30 1732.10 340.48 
SSC 9.89E+07 1.42E+08 4.26E+07 3.49E+07 N.S. -4.26E+07 2.59E+07 -1.11E+08 

AR coeffs. 
Mean 3.25E-03 3.38E-03 4.85E-04 5.88E-04 N.S. -1.28E-04 1.38E-03 -1.63E-03 

AR coeffs. 
RMS 1.08E+00 9.69E-01 1.13E-01 3.93E-02 p < 0.05 1.13E-01 1.90E-01 3.58E-02 
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B. Overlapping Segmentation Method 
As stated before, in the overlapping segmentation analysis, the signals were segmented into 250 ms windows with 

50 ms overlapping periods and the EMG features were extracted from the segment windows. Totals of 1121, 1120, 
1060, and 1060 windows were extracted from Right Triceps, Left Triceps, Right Biceps, and Left Biceps signals 
respectively. For assessing the similarities and differences between the conventional and wearable configurations, 
correlation coefficients between the conventional and wearable EMG signals were also calculated for each of the 
features with the combined 4361 windows (1121+1120+1060+1060 windows). As represented in Table 5, the paired 
t-test results (α=0.05) indicate non-significant differences between the two different EMG signal collection types. 
 
Table 5. The obtained t-test results (α=0.05) and correlation coefficients comparing the conventional and 
wearable sEMG signals, for each muscle measured, using the overlapping segmentation method. 

Parameter 

Right Triceps (1121) Left Triceps (1120) Right Biceps (1060) Left Biceps (1060) 
Average 

Pearson’s 
r (4361) 

Pearson’s 
r 

T-test  
result  

(α=0.05) 

Pearson’s 
r 

T-test  
result  

(α=0.05) 

Pearson’s 
r 

T-test  
result  

(α=0.05) 

Pearson’s 
r 

T-test  
result  

(α=0.05) 
IEMG 0.85 N.S. 0.64 N.S. 0.77 N.S. 0.82 N.S. 0.77 
MAV 0.85 N.S. 0.64 N.S. 0.77 N.S. 0.82 N.S. 0.77 
RMS 0.88 N.S. 0.68 N.S. 0.83 N.S. 0.85 N.S. 0.81 
WL 0.98 N.S. 0.96 N.S. 0.95 N.S. 0.92 N.S. 0.95 

DAMV 0.85 N.S. 0.59 N.S. 0.81 N.S. 0.79 N.S. 0.76 
VAR 0.98 N.S. 0.96 N.S. 0.95 N.S. 0.92 N.S. 0.95 
ZC 0.74 N.S. 0.64 N.S. 0.84 N.S. 0.84 N.S. 0.77 

WAMP 0.97 N.S. 0.93 N.S. 0.90 N.S. 0.84 N.S. 0.91 
SSC 0.87 N.S. 0.86 N.S. 0.88 N.S. 0.90 N.S. 0.88 

AR coeffs. 
Mean 0.73 N.S. 0.53 N.S. 0.81 N.S. 0.78 N.S. 0.71 

AR coeffs. 
RMS 0.93 N.S. 0.94 N.S. 0.90 N.S. 0.92 N.S. 0.92 

C. Disjoint Segmentation Method 
Separate segments of 250 ms windows without overlap were used in the disjoint segmentation method. The results, 

shown in Table 6, are very similar to those from the overlapping segmentation method. Likewise, correlation 
coefficients and t-tests compared the two sEMG recording configurations.  
 
Table 6. The obtained t-test results (α=0.05) and correlation coefficients comparing the conventional and 
wearable sEMG signals, for each muscle measured, using the disjoint segmentation method. 

Parameter 

Right Triceps (1121) Left Triceps (1120) Right Biceps (1060) Left Biceps (1060) 
Average 

Pearson’s 
r (4361) 

Pearson’s 
r 

T-test  
result  

(α=0.05) 

Pearson’s 
r 

T-test  
result  

(α=0.05) 

Pearson’s 
r 

T-test  
result  

(α=0.05) 

Pearson’s 
r 

T-test  
result  

(α=0.05) 
IEMG 0.84 N.S. 0.62 N.S. 0.76 N.S. 0.81 N.S. 0.76 
MAV 0.84 N.S. 0.62 N.S. 0.76 N.S. 0.81 N.S. 0.76 
RMS 0.87 N.S. 0.66 N.S. 0.83 N.S. 0.85 N.S. 0.80 
WL 0.98 N.S. 0.96 N.S. 0.95 N.S. 0.92 N.S. 0.95 

DAMV 0.85 N.S. 0.57 N.S. 0.81 N.S. 0.79 N.S. 0.75 
VAR 0.98 N.S. 0.96 N.S. 0.95 N.S. 0.92 N.S. 0.95 
ZC 0.73 N.S. 0.63 N.S. 0.84 N.S. 0.84 N.S. 0.76 

WAMP 0.97 N.S. 0.93 N.S. 0.89 N.S. 0.85 N.S. 0.91 
SSC 0.86 N.S. 0.86 N.S. 0.87 N.S. 0.89 N.S. 0.87 

AR coeffs. 
Mean 0.74 N.S. 0.55 N.S. 0.81 N.S. 0.78 N.S. 0.72 

AR coeffs. 
RMS 0.93 N.S. 0.94 N.S. 0.90 N.S. 0.92 N.S. 0.92 
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V. Discussion and Conclusion 
In the present study, we have tested the validity of using an alternative sEMG collection method, which can be 

easily and inexpensively implemented in a cut-and-sew scale wearable constructions with widely accessible materials 
that can be adapted into many different system form factors. This wearable sEMG signal recording method of using 
dry metal snap electrodes with anti-slip medical wraps is especially designed to demonstrate the feasibility of obtaining 
biosignals to aid in biomechanical studies where the placement of conventional sensors are inhibited by small, thick, 
or rigid compartments surrounding the body. The unique dual-channel EMG electrode setup employed in this study 
allowed us to directly compare the quality of sEMG signals with extensive quantitative analyses, as the signals were 
concurrently collected on the same muscle for the same activities. In this study, these robust time domain feature 
comparisons have confirmed that this wearable method of sEMG measurement is largely similar to the conventional 
means of sEMG studies, both qualitatively and quantitatively. This outcome is especially encouraging, since there 
was a risk of having potentially collected two different qualities of signals due to the fact that both pairs of electrodes, 
having to share the real estate of the same muscle with the other pair, slightly deviated from the ideal location of the 
longitudinal centerline of the muscle belly.23 

Even the few feature differences found between the two methods in some muscle activities (which may be due to 
a number of other factors such as crosstalk from other muscles and motion artifacts) are minor differences that can be 
corrected by with further signal processing such as moving average smoothing and low-pass filtering. The current 
validation study with 11 different time-domain EMG features extracted from 40 trials collected from four muscles, 
with three different signal analyses methods, shows strong evidence in the functional equivalence of the alternative 
dry, wearable, reusable electrode configuration to the conventional gelled, adhesive, disposable electrode setup. Our 
robust validation results from the segmentation approaches, in particular, show promise in using such soft-goods-
based sEMG sensing interface for real-time applications, as segmentation is commonly used in real-time EMG-
controlled systems. Our tests also showed high correlations between the vectors of features extracted from 
conventional and wearable sEMG signals. 

Implications of the present study include contribution to an improved design of wearable biosignal collection 
systems, such as the previous work of intra-spacesuit sEMG collection garment for studying biomechanics of suited 
astronauts. Commensurate with the advances in the soft robotics research, such flexible sEMG collection interface, 
which can be easily constructed and adapted into garment-like form factors, may also be used in the future generation 
of flexible mobility assistive devices that are less time-comsuing for setup and more comfortable to users.  

There yet remain many obstacles to designing a perfect wearable biosignal data collection system, however, as 
several limitations still need to be addressed in this current wearable electrode configuration. In sEMG recordings, the 
lead-electrode contact point is susceptible to motion artifacts from external disturbances, and the cable can pick up 
ambient noise in many circumstances; conversely, pre-amplification on or near the skin requires attachment of 
hardware on the body that adds bulk, which may also compromise flexibility, comfort, and usability in many 
circumstances. The currently introduced wearable sEMG collection method provides an alternative means to achieve 
a skin-electrode contact only, and clip leads still had to be secured with tapes in this study, in order to minimize the 
motion artifacts occurring at the cable-electrode contact area. Establishing a reliable connection between the electrodes 
and the amplifier device remains a difficult to be solved, hand-in-hand with the challenges in the e-textile interconnect 
methods.44 

Future work includes further establishing the repeatability and consistency of such alternative electrode 
performances with repeated don/doff trials across more human subjects in various settings, validating the long-term 
usability and reliability of such wearable sEMG electrode configurations, and designing similarly appropriate 
wearable sensing interfaces for other muscles that may not be compatible with a simple elastic-band form factor, such 
as the shoulder muscles.33 Also, metal snaps used in clothing and crafts, despite their prevalence, are usually made of 
nickel, which is not biocompatible and may cause allergic reactions in some individuals.45 Advanced versions of such 
wearable sEMG collection interfaces should therefore find alternative electrode materials to be used on skin; 
manufacturing similar snap-like electrode components with Ag-AgCl may be ideal due to their functional superiority 
as on-skin electrodes.27,28 Solving these challenges would get researchers and designers closer to the development of 
a user-friendly, comfortable, and flexible signal collection system that can be commercialized and be actively deployed 
outside laboratory environments. 
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