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NeuOS: A Latency-Predictable Multi-Dimensional Optimization Framework for
DNN-driven Autonomous Systems

Soroush Bateni and Cong Liu
The University of Texas at Dallas

Abstract

Deep neural networks (DNNs) used in computer vision
have become widespread techniques commonly used in
autonomous embedded systems for applications such as
image/object recognition and tracking. The stringent space,
weight, and power constraints seen in such systems impose
a major impediment for practical and safe implementation
of DNNs, because they have to be latency predictable
while ensuring minimum energy consumption and maximum
accuracy. Unfortunately, exploring this optimization space
is very challenging because (1) smart coordination has to
be performed among system- and application-level solutions,
(2) layer characteristics should be taken into account, and
more importantly, (3) when multiple DNNs exist, a consensus
on system configurations should be calculated, which is
a problem that is an order of magnitude harder than any
previously considered scenario. In this paper, we present
NeuOS, a comprehensive latency predictable system solution
for running multi-DNN workloads in autonomous systems.
NeuOS can guarantee latency predictability, while managing
energy optimization and dynamic accuracy adjustment based
on specific system constraints via smart coordinated system-
and application-level decision-making among multiple DNN
instances. We implement and extensively evaluate NeuOS
on two state-of-the-art autonomous system platforms for a
set of popular DNN models. Experiments show that NeuOS
rarely misses deadlines, and can improve energy and accuracy
considerably compared to state of the art.

1 Introduction

The recent explosion of computer vision research has led to
interesting applications of learning-driven techniques in au-
tonomous embedded systems (AES) domain such as object
detection in self-driving vehicles and image recognition in
robotics. In particular, deep neural networks (DNNs) with
generally the same building blocks have been dominantly
applied as effective and accurate implementation of image
recognition, object detection, tracking, and localization to-
wards enabling full autonomy in the future [60, 50]. For ex-
ample, using such DNNs alone, Tesla has recently demon-
strated that a great deal of autonomy in self-driving cars
can be achieved [33]. Another catalyzer for the feasibility
of DNN-driven autonomous systems in practice has been the
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Figure 1: Ternary depiction of the 3D optimization space.

Energy —

advancement of fast, energy-efficient embedded platforms,
particularly accelerator-enabled multicore systems such as
the NVIDIA Drive AGX and the Tesla Al platforms [44, 22].

Autonomous systems based on embedded hardware plat-
forms are bounded by stringent Space, Weight, and Power
(SWaP) constraints. The SWaP constraints require system de-
signers to carefully take into account energy efficiency. How-
ever, DNN-driven autonomous embedded systems are consid-
ered mission-critical real-time applications and thus, require
predictable latency' and sufficient accuracy’ (of the DNN
output) in order to pass rigorous certifications and be safe for
end users [46]. This causes a challenging conflict with energy
efficiency since accurate DNNs require a tremendous amount
of resources to be feasible and to be timing-predictable, and
are by far the biggest source of resource consumption in such
systems [5]. This usually results in less complicated (and less
resource-demanding) DNN models to be designed and used
in these systems, reducing accuracy considerably.

Fig. 1(a) shows a hypothetical three-dimensional space
between latency, power, and accuracy mapped to a ternary
plot [55] (where (Energy + Timing + Accuracy) has
been normalized to 3). Each dot in Fig. 1(a) represents
a configuration with a unique set of latency, power, and
accuracy characteristics. The power consumption is usually

Latency from each system component (including the DNNs) in AES
will add up to the reaction latency between when a sensor observes an event
and when the system externally reacts to that event, such as by applying
the breaks in a self-driving vehicle. The faster a system reacts, the more
likely it is for the system to avoid a disaster, such as an accident. However,
policymakers might adopt a reasonable reaction time, such as 33ms or even
300ms [48, 27, 12, 14, 9, 4] as "safe enough".

2We should mention here that there is currently no established standard
to connect DNN accuracy to the safety of a particular system, such as DNNs
in self-driving vehicles. In this paper, we assume the more accurate the DNN,
the safer the system is.
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adjusted at system-level via dynamic voltage/frequency
scaling (DVFS) [5, 21]. The accuracy adjustment is done
at application-level via DNN approximation configuration
switching (see Sec. 4 for details). Note that both DVFS
and DNN configuration adjustments would impact runtime
latency. This figure highlights three configurations with
various levels of latency, power consumption, and accuracy
tradeoff that might or might not be acceptable given the
current performance constraints. Choosing the best three-
dimensional trade-off optimization point is a significant
challenge given the vast and complex DVFS and accuracy
configuration space.

Although all autonomous systems are required to be latency
predictable in nature, the constraints on power and accuracy
may vary based on the type of autonomous system (e.g.,
highly constrained power for drones and maximum accuracy
requirement for autonomous driving). To illustrate one such
variation, note Fig. 1(b), which shows a constraint on latency,
and a constraint on accuracy imposed in the configuration
space limiting the possible configurations considerably.
Challenges specific to DNN-driven AES. In addition to the
aforementioned optimization problem, DNNs are constructed
from layers, where each layer responds differently to DVFS
changes and has unique approximation characteristics (as
we shall showcase in Sec. 3.1). In order to meet a latency
target with optimized energy consumption and accuracy,
each layer requires a unique DVFS and approximation
configuration, whereas existing approaches such as Poet [23]
and JouleGuard [21] deal with DNNs as a black-box.
Moreover, system-level DVFS adjustments and application-
level accuracy adjustments happen at two separate stages.
Without smart coordination, the system might fall in a
negative feedback loop, as we shall demonstrate in Sec. 3.2.
This coordination needs to happen at layer boundaries,
making the problem at least an order of magnitude harder
than previous work.

Furthermore, existing techniques mostly focus on single-
tasking scenarios [5, 3, 20] whereas AES generally require
multiple instances of different DNNs. As we shall motivate
in Sec. 3.3 using a real-world example, these DNNs need
to communicate and build a cohort on a layer-by-layer basis
to avoid greedy and inefficient decision-making. Moreover,
system-level and application-level coordination in this multi-
DNN scenario is much harder than isolated processes
considered in previous work.

Finally, existing approaches [13, 5] optimize latency
performance on a best-effort basis (e.g., by using control
theory) that can overshoot a latency target (as demonstrated
in Sec. 3.2). A better solution should include proven real-time
runtime strategies such as LAG analysis [51].

Contribution. In this paper, we present NeuOS”, a compre-
hensive timing-predictable system solution for multi-DNN

3The latest version of NeuOS can be found at https://github.com/
Soroosh129/NeuOs.

workloads in autonomous embedded systems. NeuOS can
manage energy optimization and dynamic accuracy adjust-
ment for DNNs based on specific system constraints via smart
coordinated system- and application-level decision-making.

NeuOS is designed fundamentally based on the idea of
multi-DNN execution by introducing the concept of cohort,
a collective set of DNN instances that can communicate
through a shared channel. To track this cohort, we address how
latency, energy, and accuracy can be measured and propagated
efficiently in the multi-DNN cohort.

Besides the fundamental goal of providing latency pre-
dictability (i.e., meeting deadlines for processing each DNN
instance), NeuOS addresses the challenge of balancing energy
at system level and accuracy at application level for DNNS,
which has never been addressed in literature to the best of our
knowledge. Balancing three constraints at various execution
levels in the multi-DNN scenario requires smart coordina-
tion 1) between system level and application level decision
making, and 2) among multiple DNN instances.

Towards these coordination goals, we introduce two algo-
rithms in Sec. 4.2 that are executed at the layer completion
boundary of each DNN instance: one algorithm that can pre-
dict the best system-level DVFES configuration for each DNN
member of the cohort to meet deadline and minimize power
for that specific member in the upcoming layer, and one al-
gorithm that decides what application level approximation
configuration is required for others if any one of these system-
level DVES decisions were chosen. These two algorithms
effectively propagate all courses of action for the next layer in
order to meet the deadline. Based on these two algorithms, we
propose an optimization problem in Sec. 4.3 that can decide
the best course of action depending on the system constraint,
and minimize system overhead. This method is effective be-
cause 1) it introduces an identical decision-making among
all DNN instances in the cohort and solves the coordination
problem between system-level and application-level decision
making, and 2) provides adaptability to three typical scenarios
imposing different constraints on energy and accuracy.
Implementation and Evaluation. We implement a system
prototype of NeuOS and extensively evaluate NeuOS using
popular image detection DNNs as a representative of
convolutional deep neural networks used in AES. The
evaluation is done under the following conditions:

* Extensible in terms of architecture. We fully imple-
ment NeuOS using a set of popular DNN models on
two different platforms: an NVIDIA Jetson TX2 SoC
(with architecture designed for low overhead embedded
systems), and an NVIDIA AGX Xavier SoC (with archi-
tecture designed for complex autonomous systems such
as self-driving cars).

* Multi-DNN scenarios. We ensure that our system can
trade-off and balance multiple DNNs in all conditions
by testing NeuOS under three cohort sizes: a small 1-
process, a medium 2-4 process, and a large 6-8 process.
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* Latency predictability. We extensively compare NeuOS
to six state-of-the-art solutions in literature, and find that
NeuOS rarely misses deadlines under all evaluated sce-
narios, and can improve runtime latency on average by
68% (between 8% and 96% depending on DNN com-
plexity) on TX2, by 40% on average (between 12% and
89%) on AGX, and by 54% overall.

* Versatility. NeuOS can be easily adapted to the follow-
ing three constraint scenarios:

— Balanced energy and accuracy. Without any
system constraints given, NeuOS is proved to be
energy efficient while sacrificing an affordable
degree of accuracy, improving energy consumption
on average by 68% on TX2, by 40% on average on
AGX, while incurring an accuracy loss of 21% on
average (between 19% and 42%).

— Min energy. When energy is constrained to be min-
imal, NeuOS is able to sacrifice accuracy a small
amount (at most 23%) but further improve energy
consumption by 11% over the general unrestricted
case, while meeting the latency requirement.

— Max accuracy. When accuracy is given as a
constraint, NeuOS is able to improve accuracy
by 10% on average compared to balanced case,
but also sacrifices energy by only a small amount,
increasing by 23% on average.

2 Background

DVFS space in autonomous systems. The trade-off between
latency and power consumption is usually achieved via ad-
justments to frequency and/or voltages of hardware compo-
nents. A software and hardware technique typical of modern
systems is DVFS. Through DVFS, system software such as
the operating system or hardware solutions can dynamically
adjust voltage and frequency. To understand this technique
better, consider Fig. 2(a), showing the components of a Jet-
son TX2, which contains a Parker SoC with a big. LITTLE
architecture with 2 NVIDIA Denver big cores and 4 ARM
Cortex A53 LITTLE cores. The Parker SoC also contains
a 256-core Pascal-architecture GPU. The TX2 module also
contains 8 GB of shared memory (the Jetson AGX Xavier
also used in Sec. 5 has a more advanced Xavier SoC with
8 NVIDIA “Carmel” cores, a 512 Volta-architecture GPU,
and 16GB of shared memory). Each component includes a
voltage/frequency (V/F) gate that can be adjusted via soft-
ware. The value for frequency and voltage for each component
forms a unique topple, called a DVFS configuration through-
out this paper.

DNN and its approximation techniques. Fig. 2(b) depicts a
simplified version of a Deep Neural Network (DNN). Neurons
are the basic building blocks of DNNs. Depending on the layer
neurons belong to, they perform various different operations.
A DNN may contain multiple layers of different types, such
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Figure 2: DVFS configuration space and DNN structure.

as the convolutional and the normalization layers, which are
connected via their inputs and outputs.

DNNs by nature are approximation functions [36]. DNNs
are trained on a specific training set. After training, accuracy
is measured by using a test data set, set aside from the
training set and measuring the accuracy (e.g., top-5 error rate—
comparing the top 5 guesses against the ground truth). The
accuracy of the overall DNN can be adjusted by manipulating
the layer parameters.

A rich set of DNN approximation techniques have been

proposed in the literature and adopted in the industry [17,
58, 24, 29, 43, 56, 7, 18]. Such techniques aim at reducing
the computation and storage overhead for executing DNN
workloads. An example technique to provide approximation
for convolutional layers is Lowrank [45], which performs a
lowrank decomposition of the convolution filters. In our im-
plementation, dynamic accuracy adjustment or “hot swapping”
layers will refer to applying the lowrank decomposition to the
upcoming layers before their execution. Note that applying
such approximation adjustments on the fly is possible because
the generated pair of layers have the exact combined input and
output dimensions. Moreover, this adjustment is only possible
for future layers at each layer boundary.
Measuring Accuracy. The approximation on the fly will
affect the final accuracy. Due to the dynamic nature of this
adjustment, the exact value of accuracy measurement using
traditional methodology is impractical. Most related work
thus incorporate an alternative scoring method [3], where the
system will deduce the accuracy score accordingly if certain
approximation techniques are to be applied to the next layer.
In our method, we assume a perfect score for the original
DNN, and switching to the lowrank approximation of any
layer will reduce the score by a set amount. For example,
running AlexNet in its entirety will result in a score of 100. If
we swap a convolutional layer with a lowrank version of that
layer, the overall accuracy will be affected by some amount
(e.g., 1 in our method), thus yielding a lower score (e.g., 99
under the scoring method). Therefore, the score is always
relative to the original DNN configuration and not related to
the absolute value of accuracy on a particular dataset. This
method of keeping relative accuracy is still invaluable to
maximizing accuracy in a dynamic runtime environment but
cannot be used to calculate the exact accuracy loss.
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Figure 3: Calculated best system level DVFS configuration
and best application level theoretical approximation config-
uration for AlexNet on Jetson TX2 in order to meet a 12ms
deadline (0 means no approximation).

3 Motivation

In this section, we lay out several motivational case studies
to understand the challenges that exist for DNNs, and gain
insights on why existing approaches (or naively extended
ones) may fail under our problem context.

3.1 Balancing in two-dimensional Space

The trade-off to meet a specified latency target while maxi-
mizing accuracy is done in a 2-dimensional space by choosing
an approximation configuration for the application. Similarly,
the 2-dimensional trade-off between energy and latency is
done by changing an optimal DVFES configuration. Traditional
control-theory based solutions treat the entire application as
a black-box, and decide on what DVFS or approximation
configuration should be chosen every few iterations of that
specific application [21, 20]. However, treating DNNs as a
blackbox does not yield the most efficient results. Fig. 3 left
hand shows the best DVFS configuration for each layer of
AlexNet among all possible DVFS configurations for a Jetson
TX2 in terms of energy consumption. The y-axis is the layer
number for AlexNet, and the x-axis is the DVFS configuration
index, partially sorted based on frequency and activated core
counts. The dots show the configuration that has the absolute
minimum energy consumption. As is evident, each layer has
a different optimal DVFS configuration. More interestingly,
we observe a non-linearity where sometimes faster DVFS
configurations have lower energy consumption. This is due
to the massive parallelism of GPUs, where increasing the fre-
quency by 2x for example can yield a 10-fold improvement
in performance, which outweighs the momentary increase in
energy consumption. Fig. 3 right hand shows the best theo-
retical approximation configurations required for each layer
of AlexNet in order to meet a 12ms deadline”. As is evident
in the figure, each layer requires a different approximation
configuration for optimal results.

Thus, the DNN must somehow become transparent to the
system, conveying layer-by-layer information in order to
make the correct decisions. This can make the decision space
in the 2-dimensional space at least an order of magnitude
harder (e.g., AlexNet has 23 layers) since every layer must be
considered for each execution of the DNN application.

4Please see Sec. 4.2 for more details on how this is calculated.
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Figure 4: Negative feedback loop between an application-
level solution and a system-level solution.

Observation 1: Layer-level trade-off makes the problem an
order of magnitude harder than ordinary blackbox techniques.

3.2 Balancing in three-dimensional Space

Balancing energy/latency and accuracy/latency in isolation
can be naive, and lead to unnecessary consumption of energy
or reduced accuracy. Fig. 4a shows a similar experiment
to Sec. 3.1, but both the system and application (Alexnet)
are employed at the same time without any coordination.
The goal of both solutions is to reach a 20ms deadline (by
using latency deficit, LAG, as a guide (Sec. 4.2)). In the
case of AlexNet, the system-level DVFS adjustment can be
enough to meet the desired deadline. In an ideal scenario,
only energy is adjusted slightly until AlexNet is not behind
schedule. However, as is evident in the figure, normalized
energy consumption and accuracy for each layer are both
decreased continuously and dramatically. This is due to an
unwanted negative loop, where a negative deficit (indicating
that the system is behind schedule) has resulted in the
application-level solution switching to a lower approximation
configuration. Because these configurations are discrete, as
we shall discuss in Sec. 4.2, the deficit will overshoot (at
around layer 10) and becomes positive (meaning the system is
ahead of schedule). The system-level solution would see this
deficit as a headroom to reduce energy consumption, and in
the case of Fig. 4a, has turned the positive deficit into a small
negative at around layer 18. This cycle (as depicted in Fig. 4b)
is repeated until the minimum approximation configuration
is reached. This result is extremely undesirable in accuracy-
sensitive applications such as autonomous driving (but can
be okay for energy sensitive applications such as remote
sensing). Thus, a feasible solution would be for the system
and application to communicate, and make decisions based on
given constraints for an application based on given constraints.
This communication should be done at the granularity of
layers, which makes the problem extra hard.

Observation 2: Trade-off in a 3-dimensional latency, energy,
and accuracy optimization space is a significant challenge
due to both system constraints as well as lacking harmony
between application-level and system-level solutions.

3.3 Balancing for Multi-DNN Scenarios

To the best of our knowledge, no existing approach deals
with multiple DNN instances in a coordinated manner.

374 2020 USENIX Annual Technical Conference

USENIX Association



[ Latency %% Energy
0.4 1000
900
1800
1700
1600
1500
1400
300

Latency (s)
Energy (mJ)

4 5 6 7 8
Instance ID
Figure 5: Energy consumption and execution time of running
8 instances of Resnet-50 on a Jetson TX2 under PredJoule.

Straightforwardly extending single-tasking latency/energy
trade-off approaches, such as PredJoule [5], to multi-tasking
scenarios would only result in decision-making that is local
and greedy, based on locally measured variables. To showcase
why coordination in this additional dimension is a key
issue, examine Fig. 5, which shows the latency and energy
consumption for running 8 DNN instances together averaged
over 20 iterations under PredJoule on a Jetson TX2. We
chose PredJoule because in our experiments, it outperformed
all other existing solutions on exploring the 2D tradeoff
between latency and energy for DNNs. The left (right) y-axis
in Fig. 5 depicts the latency (energy consumption) in seconds
(miliJoules) for each instance. As is evident in the figure, the
DVFS management is greedy, resulting in instances 1 and

2 having relatively good latency and energy consumption.

This greediness has pushed the rest of the DNN instances
into unacceptable latency range (which is above 150ms for
ResNet-50) because the chosen DVFS configuration at each
layer boundary has been mostly beneficial only to the current
layers of DNN instance 1 and 2. Moreover, the distribution
of timing and energy consumption is not even across all
instances because of the same reason. This disparity is the
result of an uncoordinated system solution that chooses DVFS
configurations greedily based on local variables.
Observation 3: In addition to the 2D and 3D complexities
of solving the latency/accuracy/energy trade-off, a complete
system solution must also accommodate for Multi-DNN
scenarios, which are inherently more complicated to model
and predict than single-DNN scenarios. The case studies
also imply that naive extensions on existing single-DNN
2D solutions may fail in multi-DNN cases because they
make greedy decisions based on local variables without
coordination towards being globally optimal.

4 System Design
4.1 NeuOS Overview

To optimize the three-dimensional tradeoff space at the layer
granularity, two basic research questions need to be answered
first: 1) how to define and track the values of the three
performance constraints in the system, and 2) what target
should be imposed for optimizing each constraint.

For the first research question, we define a value of LAG
(defined in Sec. 4.2, as a measurement of how far behind the

DNN is compared to an ideal schedule that meets the relative
deadline D), which tracks the progress of DNN execution
at layer boundaries, P for energy consumption (in mJ) for
each layer, and a variable X to reflect accuracy. We choose
to track LAG at runtime instead of using an end-to-end
optimization because it is more practical due to two reasons:
1) in a multi-DNN scenario, predicting the overlap between
different DNN instances (and thus coordinating an optimal
solution) cannot be done offline without making unrealistic
assumptions, such as synchronized release times, and, 2) LAG
is especially useful in a real system since it can account for
outside interference, such as interference by other processes
in the system, whereas an end-to-end optimization framework
could miss the latency target. Moreover, as we shall discuss in
Sec. 4.2, the value of P can be inferred by LAG in our design
as these two variables fundamentally depend on the runtime
DVES configuration. Thus, the essential variables to track
the status of a DNN execution can be simplified to {LAG,X}.
Since we are dealing with a multi-DNN scenario, each DNN
instance will have its own set of these variables. To know the
collective status of the system, each DNN instance will put
its variables in a shared queue.

In order to answer the second question regarding what
optimization targets should be imposed on the system, we
focus on the following three typical scenarios (expanded on
in Sec. 4.3) that entail different performance constraints:

* Min Energy (Mp) is when NeuOS is deployed on
an embedded system with a critically small energy
envelope. Thus, the system should minimize energy
without sacrificing too much accuracy. This scenario
is motivated by applications seen in extremely power-
limited systems such as drones, robotics, and a massive
set of internet-of-thing devices.

* Max Accuracy (M,) is when NeuOS is deployed on
a system that has limited energy but accuracy is of
utmost importance. Thus, the system should try to
maximize accuracy without losing too much energy. This
scenario is motivated by CPS-related applications such
as autonomous driving.

* Balanced Energy and Accuracy (S) describes a more
general, flexible scenario when the system is limited by
both energy consumption and accuracy requirements,
but no priority is given to either. Thus, the system should
try to balance energy consumption and accuracy.

With the given scenarios and the values of {LAG,X} at
hand, we can answer the two key research questions presented
in our motivation: 1) how to coordinate in a multi-DNN
scenario such that the overall system is balanced and can meet
the performance constraints, and, 2) how to efficiently tradeoff
between latency, energy, and accuracy given the complexity of
the problem space and how to prevent the negative feedback
loop discussed in Sec. 3.2?

Design overview. Fig. 6 shows the overall design of NeuOS
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{LAG,X,}|+

around {LAG,X}. The left side depicts the shared queue
among multiple DNN instances. In the middle, a simple
example of n concurrently running DNN instances each with
three layers is shown. NeuOS makes runtime decisions on
DVFS and DNN approximation configuration adjustments at
layer boundaries, i.e., whenever a layer of a DNN instance
completes. This is beneficial not only because applying
approximation on-the-fly is possible only at layer boundaries,
but in terms of overhead as well (as proved by our evaluation).

As illustrated in the figure, at the boundary between layers
L2 and L3 of the first DNN instance, NeuOS is going through
the process of decision-making which contains several steps.
The first step is Alg.1, which senses the last known value
of LAG for each DNN instance. Alg. | decides what DVFS
configuration (at system level) is best for each instance in
order to meet their deadlines D, outputting a list of potential
DVEFS configurations (A), where each member of the list
corresponds to a DNN instance. In the next step, the list
of potential DVFS configurations are fed into Alg.2, which
predicts what approximation {X;} (at application level) would
be required for other DNN instances to meet the deadline if
the DVFS configuration for any one of the DNN instances
is applied. Thus, Alg. 1 and Alg. 2 in tandem discover all
possible courses of action the system can take to meet the
deadline. However, at this point, no decision has been made
on what DVFS configuration or accuracy configuration should
be chosen for the system, because that depends on the given
system constraint. This problem is inherently an optimization
problem of finding the best possible choice in the propagated
configuration space. We present this optimization problem
formally in Sec. 4.3, where depending on broad scenarios, a
particular setting is chosen for the next period of execution.
In the last step of NeuOS, the system chooses one of these
possibilities based on the scenario involved.

4.2 Coordinated System- and Application-level
Adjustments

In this section, we expand on how runtime LAG is measured,
how it relates to energy consumption, how accuracy X
is calculated, and how the two developed algorithms take
advantage of these two measurements to discover all possible
choices the system can make efficiently in order to reduce the
LAG to zero and meet the deadline.

LAG. We quantify the relationship between the partial
execution time at time t of DNN instance i (e;) and its relative

deadline D; as a form of LAG [51], denoted by LAG;. LAG;
is a local variable (that can be updated at layer boundaries)
for each DNN instance that keeps track of how far ahead or
how far behind the DNN instance is compared to the deadline
at time t. LAG; is calculated as:

LAG(1,Li(t)) = Y, (di—e)), (1)

leL;(r)

in which L;(¢) is the list of the layers of instance i that have
completed by time t. For layer I € L;(t), d; and ¢; depict the
sub-deadline for layer [ and the recorded execution time for
layer [, respectively. NeuOS keeps track of ¢; by measuring
the elapsed time between each layer. Moreover, we use the
proportional deadline method [38] to devise sub-deadlines
for each layer based on D;, the relative (end-to-end) deadline
of DNN instance i, in which the subdeadline d; for layer I is
calculated as:

d=(e;/ Y (ex)) Dy, )

x€eL;

where ¥/, (ex) denotes the execution time of DNN i. The
proportional nature of sub-deadlines means that they only
need to be calculated once for the lifetime of a given DNN
instance on a platform.

Each DNN instance i would broadcast LAG; among all
instances via the shared queue. Thus, LAG; would reflect the
last known status of DNN instance i up to the last executed
layer. We call the collection of LAG from all instances the
LAG cohort, and we denote it by ®. At completion of a DNN
instance, a special message is sent to the cohort so that every
DNN instance in the system is aware of their exit.

Based on the LAG cohort, the DNN instances can make
decisions on accuracy and DVFS. A cohort will be perfect if
every LAG within itis 0, or VLAG; € @, LAG; = 0. This means
that all layers have exactly finished by their sub-deadline so
far. Thus, the system has reasons to believe that the DNN
instances will exactly finish by the deadline and do not require
a faster DVFS or an approximation configuration, saving
energy and accuracy in the process.

Since LAG indicates how far behind (LAG < 0) or ahead
(LAG > 0) each DNN is, the DVFS and the approximation
configuration need to be adjusted to run faster or slower
accordingly. However, energy consumption and accuracy
constraints must also be considered. We discuss each next.
System-level DVFS adjustment. At system-level, the ques-
tion is which DVFS configuration is the best given the state
of ® to minimize energy consumption while reducing LAG
to zero? The answer would vary between different DNN in-
stances in the cohort, as they exhibit different LAGs. More-
over, different layers react differently to DVFS adjustments.

Alg. | is responsible for finding the best DVFS configu-
ration for each DNN instance in the cohort. Alg. 1 takes as
input the LAG cohort ® and a SpeedUp/PowerUp table for
the current layer of each DNN instance i. The structure of
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Algorithm 1 A Calculator.

Algorithm 2 X; Calculator.

Input: ® > Progress Cohort
Input: SpeedUp/PowerUp[]
Output: A

> The SpeedUp/PowerUp table of DNNs.

function RETURNA(P)

1:

2 for LAG; in ® do

X Di+LAG;
3: Sp’. — D
4

8; < LookUp (SpeedUp/PowerUp([Sp,])

Table 1: SpeedUp/PowerUp and SpeedUp/Accuracy tables.

(a) SpeedUp/PowerUp for a layer of DNN instance i.  (b) SpeedUp/Accuracy.

DVEFS Configuration(d)  SpeedUp  PowerUp X SpeedUp
1 1x 1x 81%  1x

2.1x 2x 71%  1.8x
3 2.8x 1.5x 59%  2.5x

the SpeedUp/PowerUp table is depicted in Table 1a. The first
column of Table la is the index for all the possible DVFS
configurations in the system. The second column indicates
how fast each DVFS configuration is in the worst case sce-
nario compared to the baseline DVFS configuration (baseline
is usually chosen to be the slowest configuration). The third
column indicates how much power that DVFS configuration
will consume relative to baseline.

Storing relative speedup and powerup values (instead of
absolute measurements) is useful for looking up the table. In
Alg. 1, given a LAG; (line 2) and a relative deadline D; for
DNN instance i, the required speedup (denoted as S;) could
be directly calculated as (line 3):

_ D;+ LAG;

S
P Di )

3)
in which Sp is the speedup (or slowdown) value calculated
as the relationship between the current projected execution
time (D; + LAG;) and the ideal execution time (D;). Since
LAG can be negative or positive, the value of Sp can
indicate a slowdown or speedup, where the slowdown is a
way to conserve energy, which is the goal of NeuOS. The
LookUp procedure (line 4) would then find the closest DVFS
configuration that matches the speedup (or slowdown) in
relation to the current configuration.

For our Alg. 1 to operate, we prepare a structure such as
Table 1a for all DNN instances in a hashed format”. The
LookUp procedure would then directly find a bucket by us-
ing the SpeedUp as an index. The output of Alg. 1 is a set
A ={8,,8,,...,8,}, in which §; is the ideal DVFS config-
uration for DNN instance i in order to meet the deadline.
Imagine we ultimately decide that §, € A is the best DVFS
configuration for the next scheduling period. A very interest-
ing question would be that, what is the effect of applying &,

3Qur hashing is custom, and hashes the relationship between SpeedUp
and PowerUp. This method relies on partially sorting the DVFS configuration
space. You can find the latest hashing code at https://git.i0/Jfogq

> Potential DVFS list.

Input: SpeedUp/Accuracy(] > The SpeedUp/Accuracy table of DNNs.
Input: SpeedUp/PowerUp[] > The SpeedUp/PowerUp table of DNNs.
Output: X (][] > The accuracy list for each DNN instance for each &

Input: A

1: function RETURNX;(A)
2 for 5. in A do

3: fori=0toi<|A] do
4 Sa, ‘SPI-(BL’)'([)[):+LAOI‘)
5 X([c][i] + LookUp(SpeedUp/Accuracy[S4,])

on other DNN instances i # ¢? The speedup of J, for other
DNN instances can be calculated by using . as the lookup
key in their corresponding SpeedUp/PowerUp table. But what
if this speedup does not reduce LAG; to zero? To solve this
problem, we next present the algorithm that calculates the
application-level approximation required to reduce LAG; to
zero given a DVFS configuration 8. € A.

Application-level accuracy adjustment. Alg. 2 portrays the
procedures to calculate the required approximation for the
upcoming layers of all DNN instances based on a DVFS
configuration. If the instance i is behind the ideal schedule by
LAG;, with a relative deadline of D;, and if the chosen DVFS
configuration is J., the remaining required speedup can be
calculated as follows (line 4):

SP,- (SL) . (D,‘ +LAG,)

SA;(SC) - D: 9

“4)

in which S, (8.) is the required speedup (or slowdown) via
approximation for DNN instance i when DVFS configuration
d. is chosen, and Sp.(3.) - (D; + LAG;) is the new projected
execution time of DNN instance i. The value of Sy , the
speedup from accuracy for the chosen DVFS configuration,
should always be zero or less than zero since by definition,
O, is the ideal DVFS configuration for ¢ and requires no
additional speedup from approximation.

The value of S4, is then used as a lookup key to a new table,
called the SpeedUp/Accuracy table, depicted in Table 1b.
Table 1b stores the relative worst case execution times for
each layer’s approximation configuration. We index each
row by X, which is the value of the total accuracy of that
configuration®. Note that the exact value of X has no effect
in the algorithm and what matters is the relative order in
Table 1b (i.e., the lower we go down the table, the lower the
relative accuracy). The output of Alg.2 is the row index in the
SpeedUp/Accuracy table sufficient to meet the deadline for
all DNN instances except c. We denote this index for layer k
of DVFS configuration i as X¥. This value is then broadcasted
in the accuracy cohort and indicates the application-level

%Each row could be indexed by any measure. However, indexing with
X has benefits in overhead reduction for the LookUp procedure in Alg. 2
because it can be more easily hashed.

USENIX Association

2020 USENIX Annual Technical Conference 377



configuration chosen for the next immediate layer of the
corresponding DNN instance.

The remaining question is that which &, should be chosen.
We answer this question next.

4.3 Constraints and Coordination

The combination of Alg. 1 and Alg. 2 produces a list of poten-
tial DVFS configurations A, and for each DVFS configuration
in A, a corresponding list of required approximations for all
DNN instances in the cohort if that DVFS configuration were
to be applied. Such a scenario can be visualized as a decision
tree. The remaining question of our design would be which
path to go down to in order to have a perfect LAG cohort. As
discussed in Sec. 3.2, the requirements on energy and accu-
racy can vary depending on specific scenarios. We present
the following three approaches based on the three scenarios
defined in Sec. 4.1, i.e., minimum energy (Mp), maximum
accuracy (M4), and balanced energy and accuracy (S).

Min Energy. This approach aims at minimizing power
usage at the cost of accuracy. To choose the best DVFS
configuration in the DVFS candidate set A, we should
look at the corresponding Sp,(8.),8, € A values in the
SpeedUp/PowerUp table and choose the J. that has the
smallest PowerUp value for that corresponding DNN instance,
namely:

Sc = {8; € A| PowerU p;(8;) < PowerU p;(8y),Vd, € A},

&)
in which PowerUp;(d;) is extracted from the
SpeedUp/PowerUp table of DNN instance i. Note that in
our experience, the values of PowerUp can be non-linear in
relation to SpeedUp, and hence, a comprehensive search as
noted above is required. Then, using Alg. 2, the accuracy
cohort can be calculated and broadcasted based on the pro-
jected new execution times. Even though this approach has
the best power consumption, it will not have the best accuracy
since many processes will most likely not meet the deadline
without significant loss of accuracy, since the speedup from
DVFES alone will likely not make up for the vast majority of
the progress values in the cohort.

Max Accuracy. In this method, our system chooses the DVFS
configuration 8, in such a way that:

8 ={8 €AY (54(8)) <VY (Saj(3: €4)),
vV DNN instance j in cohort}, (6)

in which ¥ S4;(5;) is the sum of all the required speedups
from approximation (S4;) for configuration §;, and <
VY.(S4;(8x € A)) is indicating that the sum of approximation-
induced speedup for the chosen d, should be less than or
equal any other sum of approximation values for other 8, € A
(this indirectly ensures minimized accuracy loss).

Statistical Approach for Balanced Energy and Accuracy.
To achieve balanced energy and accuracy, we propose a
statistical approach that checks the state of A and the projected
accuracy cohort in statistical terms to make a decision. The
calculation of Sp, and Sy, (which depends on Sp,) resemble the
form of Bivariate Regression Analysis (BRA) [57], in which:

D; + LAG;
Suy = Spy- 2204, ©)
D;
in which, b +L_A L is called the influence of Sp, on the required

. . 1 . .
approximation. To measure this influence, we first calculate

N Di+LAG;

=Y D,

i=0

; (®)

in which I is the collective influence of LAG on approxi-
mation. If the value of I is high, it means that the accuracy
can be more adversely affected by a low value of DVFS-
induced speedup(Sp,). Similarly, a low value of / means that
the accuracy can remain minimal even with a low value for
DVFS-induced speedup. We simplify our decision making
by dividing the LAG cohort @ into three groups based on
how big or small the value of LAG is. The boundary for the
intervals is calculated using:

max{®} — min{d}
3 :

Boundary = 9

The three groups G1[0...Boundary|, G2[Boundary...2 - Boundary),

and G3[2 - Boundary...3 - Boundary] are then formed, and the
ultimate DVFS configuration is chosen as:

median(G1) if(I<t)
O = ( median(G2) if(t<I<1+1), (10)
median(G3) if(I>1+1)

in which, 7 is a threshold for I, set to the standard deviation
of the set /. However, ¢ can be chosen by the system designer
to indicate a requirement on power consumption and accuracy.
A small value for ¢ will push the system towards faster DVFS
configurations and vice versa.

Discussion on choosing modes and safety. We would like
to conclude our design by a discussion on which modes to
choose and the safety concern it might entail. Our stand
from a system perspective is to design a flexible system
architecture that can adapt to various external needs. Where
absolute mission-critical applications are concerned, we
offer Max Accuracy. Nonetheless, depending on the safety
requirement, our Balanced approach might be good enough
with the proper threshold ¢ even for applications such as self-
driving vehicles. However, choosing a mode dynamically
at runtime or statically for a particular system offline has
more to do with the certification standards (which are in their
preliminary stages for self-driving vehicles) as well as the
requirement on maximum reaction time and accuracy. Thus,
we believe the decision should be relegated to an external
policy controller [54, 31, 6, 34, 52]
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Figure 8: Latency under various methods (in ms) for 1, 4, and 8 instances of 4 DNN models.

5 Evaluation

In this section, we test our full implementation on top of
Caffe [25] with an extensive set of evaluations.

5.1 Experimental Setup

In this section we lay out our experimental setup, which
includes two embedded platforms and four popular DNN
models. We compare NeuOS to 6 existing approaches.

Testbeds. We have chosen two different NVIDIA platforms
imposing different architectural features (since deployed
autonomous systems solutions, particularly for autonomous
driving and robotics, seem to gravitate towards NVIDIA
hardware as of writing this paper [26, 30]) to showcase
the cross-platform nature of our design when it comes to
hardware. We use NVIDIA Jetson TX?2, with 6 big.LITTLE
ARM-based cores and a 256-core Pascal based GPU with
11759 unique DVFS configurations, and the NVIDIA Jetson
AGX Xavier, the latest powerful platform for robotics and
autonomous vehicles with an 8-core NVIDIA Carmel CPU
and a 512-core Volta-based GPU with 51967 unique DVFS
configurations.

DNN models. Having a diversified portfolio of DNN models
can showcase that NeuOS is future proof in the fast-moving
field of neural networks. To that end, we use AlexNet [32],
ResNet [19], GoogleNet [2], and VGGNet [49] in our

experiments. Our method dynamically applies a lowrank
version of a convolutional layer whenever approximation is
necessary by keeping both version of the layer in memory for
fast switching. The deadline for each DNN instance is based
on their worst-case execution time (WCET) on each platform,
and is set to 10ms, 30ms, 150ms, and 40ms respectively for
Jetson TX2 and 5Sms, 10ms, 25ms, 30ms respectively for AGX
Xavier. Note that ResNet is much slower on Jetson TX2 due
to the older JetPack software.

Small Cohort, Medium Cohort, Large Cohort sizes. We
test NeuOS under three different cohort size classes to test
for adaptability and balance: 1 process for small, 2 to 4
processes for medium, and 6 to 8 processes for large. Each
of these cohort sizes have their own unique challenges. We
measure average timing, energy consumption, and accuracy
for these scenarios and provide a measure of balancing where
applicable. For medium and large cohorts, we include a mixed
scenario, where different DNN models are executed, which
represents systems that use different DNNs (for example for
voice and image recognition). For the medium cohort, one
instance of each DNN model and for the large cohort, two
instances of each model are initiated.

Adaptability to different system scenarios. As discussed in
Sec. 4.1, we consider three different scenarios with different
limits on latency, energy and accuracy: minimum energy,
maximum accuracy, and balanced energy and accuracy.

Compared Solutions. We implement and compare six state-
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Figure 9: Average accuracy (y-axis as a fraction of 1) of the cohort over iteration of execution for 4 different DNN models with 4
and 8 instances compared to ApNet (x-axis is the iteration number).

of-the art solutions from the literature, including DNN-
specific and DNN-agnostic ones, software-based DVFS and
hardware-based DVFS, and application-level and system-level
solutions. We present a short detail for each as follows.

PredJjoule [5] is a system-level solution tailored towards
DNN by employing a layer-based DVFS adjustment solution
for optimization latency and energy. Poet [23] is a system-
level control-theory based software solution that balances
energy and timing in a best-effort manner via adjusting DVFS.
We choose to compare against Poet instead of its extended
approaches including JouleGuard [21] and CoAdapt [20],
as they employ essentially the same set of control theory-
based techniques as Poet. ApNet [3] is an application-level
solution based on DNNs that can theoretically provide a per-
layer approximation requirement offline to meet deadlines.
Race2ldle [28] is the classic “run it as fast as you can”
philosophy, which is always interesting to compare to. Max-
N [10, 11] is a reactive hardware DVFS that maximizes
frequency and sacrifices energy in the name of speed, in
NVIDIA embedded hardware. Max-Q [10] is a hardware
DVES on Jetson TX2 that dynamically adjusts DVES on
the fly to conserve energy. However, this feature has been
removed from the Xavier platform [11], and is replaced by
low level power caps, such as 10W, 15W, and 30W. We use
the 15w cap instead of Max-Q on Xavier.

5.2 Overall Effectiveness

In this section, we measure the efficacy of NeuOS on the
two evaluated platforms under the balanced scenario. Since
our design is concerned with timing predictability, energy
consumption, and DNN accuracy, we measure all three
constraints and compare against state-of-the-art literature
under each platform and each scenario.

5.2.1 Small Cohort

Energy. The left column of Fig. 7 depicts our measurements
in terms of average energy consumption compared to a GPU-
enabled Poet, Max-Q, Max-N, PredJoule, and Race2Idle using
AlexNet, GoogleNet, ResNet-50 and VGGNet as the base
DNN model and using lowrank as the approximation method.
As is evident in the figure, NeuOS is able to save energy
considerably compared to all other methods on Jetson TX?2
on all DNN models, with improvements of 68§% on average for
Jetson TX2 and 46% on average for AGX Xavier. This saving
is due to the fact that in some cases accuracy is minimally
traded off for the benefit of energy and timing.

On the Jetson AGX Xavier, NeuOS has better energy
consumption compared to all other approaches on every DNN
model except compared to PredJoule for VGGNet. As we
shall see for timing, PredJoule misses the deadline of 30 for
VGGNet, and NeuOS has decided to sacrifice energy to meet
timing.

Latency. Fig. 8 shows the average execution time for NeuOS
compared to the 5 methods and using 4 DNN models. NeuOS
outperforms all other approaches, improving on average
execution time by 68% on Jetson TX?2 and by 40% on AGX
Xavier. It is also interesting to note that AGX Xavier is much
faster than Jetson TX2, by 70% on average.

Tail Latency. Through response time measurements, we
find that NeuOS rarely misses the deadline (3.25% of the
time). Moreover, the variance is low with the 99th percentile
execution time for AlexNet, GoogleNet, ResNet-50, and
VGGNet as 9.2 ms, 48 ms, 130.3 ms and 39.1 ms for TX2 and
5.0 ms, 12.0 ms, 26.1 ms and 36.2 ms for AGX respectively.
Accuracy. We also measure the accuracy loss of NeuOS
compared to ground truth and compared to ApNet (Fig. 9
omits small cohort for clarity). ApNet is the only DNN-
specific application level solution we are aware of. NeuOS
has an approximation score of 0.94% on average (out of 1),
which is better than ApNet by 21%.

5.2.2 Medium and Large Cohorts

In order to save space, we only compare PredJoule for
the 4-process medium and 8-process large cohort sizes.
In our testings, PredJoule already vastly outperforms other
methodologies, and thus is a good comparison to NeuOS.

Energy. As is evident in the second and third columns of
Fig. 7, NeuOS can almost always outperform PredJoule
in terms of energy consumption on Jetson TX2 improving
70% on average. However, rather interestingly, NeuOS
performs worse in terms of energy compared to PredJoule for
GoogleNet, ResNet, and VGGNet on AGX Xavier. This is
due to the fact that PredJoule again misses the deadlines on
AGX Xavier, and NeuOS has sacrificed a negligible amount
of energy (1.5% on average) in order to meet the deadline.

Latency. NeuOS always outperforms state-of the art, improv-
ing by 53% on average for Jetson TX2, and by 32% on average
for AGX. This is due to the fact that NeuOS is able to leverage
a small amount of accuracy and energy loss (in the case of
AGX Xavier) for better timing and energy characteristics.

Tail Latency. We find that deadline miss ratio is about the
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Figure 10: Performance of NeuOS under three scenarios
compared to PredJoule on Jetson TX2.

same as the small cohort. Moreover, the variance is similarly
low with the 99th percentile execution time for AlexNet,
GoogleNet, ResNet-50, and VGGNet as 10.4 ms, 39.2 ms,
101.7 ms and 69 ms for TX2 and 11 ms, 12.5, 26.3 and 35.9
ms for AGX respectively for the medium cohort and 13.6 ms,
40.8 ms, 190 ms and 72 ms for TX2 and 10.7 ms , 54 ms , 62
ms and 36.1 ms for AGX respectively for the large cohort.
Accuracy. Fig. 9 shows the average accuracy of the cohort
over 6 iterations on AGX Xavier. As is evident in the figure,
NeuOS generally improves upon accuracy as the system
progresses because the optimization in Sec. 4.3 is able to
find better DVFS configurations. When compared to the
efficient approximation-aware solution APnet, NeuOS is able
to achieve noticeably better accuracy in all scenarios.
Balance. A very important measure discussed in Sec. 3.3 is
how balanced the system solution is when faced with multiple
processes. To measure how balanced NeuOS is compared
to PredJoule in the 4-process and 8-process scenarios, we
include min-max bars in Fig. 7 and Fig. 8 to showcase the

discrepancy between minimum and maximum timing/energy.

As is evident in the figure, the discrepancy is negligible
compared to the total energy consumption and execution time
(up to 79 mJ and 4 ms). Thus, NeuOS maintains balance
in the cohort. This is due to the coordinated cohorts and a
uniform non-greedy decision making approach introduced in
our design.

5.3 Detailed Examination on Tradeoff

In this section, we focus on the fact that system designers
might require certain constraints that limits the ability of
NeuOS in a certain dimension. To this end, we test our
platform under three different scenarios: Maximum Accuracy
(M4), Minimum Power (Mp), and Balanced (7.5).

\& 2
N 000.10203/K,
2 2
N
uuuuuuuuuuu

(a) The entire configuration space  (b) Chosen configurations in the
for all DVFS and accuracy combina-  triangle space.
tions for Jetson TX2.

201918171615141312111009080706050.403020100
nerav

5.3.1 Energy and Latency.

We compare against PredJoule and measure average timing
for the cohort in ms and average energy in mJ in Fig. 10 for
1-process (small), 2-process (medium), and 3-process (large)
scenarios on AlexNet over 9 iterations on the Jetson TX2.
PredJoule is shown as a black line. The deadline in this
scenario is set to 25 to show the interesting characteristics of
each method.

Balanced. As is evident in the figure, our statistical balanced
approach outperforms PredJoule over all iterations. Notably
in the case of medium and large cohorts, PredJoule has
a particularly bad start in terms of timing and has higher
fluctuation due to the greedy nature of DVFS selection.

Min Energy. Interestingly, Mp performs very bad (still meets
the deadline) for the small cohort both in terms of timing and
energy consumption. This is due to the algorithms discussed
in Sec. 4.3. The system has switched to a very slow DVFS
configuration to save energy. However, because of the non-
linearity inherent in very slow DVEFS configurations for
GPUs [5], this has resulted in a very bad energy consumption
as well. However, the coordination starts to pay off for
medium and large cohorts. This is because a coordinated
multi-process cohort needs faster DVFS configurations and
thus, the circumstances push Mp out of the slow and power
inefficient DVFS configuration subset. The greediness of
PredJoule is inherent for medium and large cohorts in the
form of very large fluctuations throughout the iterations.
Max Accuracy. M4 should improve accuracy while sacri-
ficing energy and timing. We shall discuss the accuracy de-
cisions shortly. However, the timing for M, is worse than
balanced energy by a negligible amount. The same is true
for energy consumption (23% on average). This highlights a
big design decision of the balanced scenario overall. Even for
the balanced general approach, sacrificing accuracy is done
very conservatively as was discussed earlier. Thus, the slight
push toward perfect accuracy does not introduce very large
overheads. However, as was discussed earlier guaranteeing
a tight deadline (such as 10ms for AlexNet) requires some
approximation if energy consumption is a consideration.
5.3.2 Energy-Accuracy Tradeoff.

For accuracy and to show where the variations of NeuOS

jump in terms of system and application configurations, we
bring back the triangle of Fig. 1, but with real DVFS and
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Table 2: Average execution time overhead of NeuOS
compared to other approaches on AlexNet (ms).

1 Process 4 Process 8 Process
NeuOS 0.145 0.571 0.738
PredJoule  0.772 0.929 1.597
ApNet 0 3.27 5.85
Poet 151.03 604.12 1208.27

accuracy configurations with the selected configurations of
Mp, M4, and T.S highlighted in Fig. 11b. As is evident in
the triangle, the deadline limits the possible configurations to
the bottom left corner. However, within that limitation, Mp
(in red) has chosen configurations that are lower on energy
consumption toward the upper right. On the other hand M4 (in
green) has chosen configurations that are not as good in terms
of energy consumption, but are better in terms of accuracy
toward bottom left. Finally, TS, colored black, is similar to
M, because of the high emphasis on accuracy in our design.

5.4 Overhead

Execution time: Table 2 shows the overhead of NeuOS
compared to Poet, PredJoule, and ApNet using AlexNet as
the baseline model on Jetson TX2 (times are in milliseconds).
As is evident in Table 2, the overhead for NeuOS is
negligible, especially compared to Poet and the overhead is
also negligible compared to the overall execution time of
AlexNet itself. The reason Poet is so slow is because it has
to go through all DVFS configurations in a quadratic way
(O(n?), n is the number of DVFS configurations). Even O(n)
would be unacceptable on embedded systems with more than
10000 unique DVFS configurations. This proves that applying
our complexity reduction techniques (via hashing) is a must
for a practical system solution. Moreover, NeuOS is more
efficient than PredJoule and ApNet, especially in 4 Process
and 8 Process scenarios.

Memory: As discussed in Sec. 5.1, our implementation
keeps both the original and the lowrank approximation
of the model in GPU memory for fast switching at layer
boundaries. Moreover, NeuOS also holds the per-layer hash
tables containing approximation and DVFS configuration
information as described in Sec. 4. Table 3 depicts the
added overhead in terms of both raw and percentage of
the total NeuOS memory usage. As expected, the lowrank
approximated version of each model has slightly less overall
size compared to the original model. Nonetheless, this
technique sacrifices memory overhead to improve latency and
energy consumption. A viable alternative left as future work
is dynamic approximation on the fly, which trades off latency
for lower memory consumption. Moreover, the overhead of
the hash tables is negligible compared to the total memory
usage. Finally, the last two columns depict the cumulative
maximum percentage of total available memory occupied by
one instance of NeuOS for each platform (this memory usage
also includes the temporary intermediate layer data [39]).

Table 3: Raw and percentage based memory overhead of
applying NeuOS for each model.

(a) Overhead in addition to Caffe ‘ (b) Ratio to total memory
Lowrank Hash Table Ratio ‘ Jetson TX2 AGX Xavier

AlexNet 226 MB  331B 49% 10% 4%
GoogleNet 23 MB 2.1 KB 30% 2% 1%
ResNet-50 82 MB 3.2KB 45% 7% 3%
VGGNet 509MB 634B 48% 25% 12.7%

6 Related Work

Trading off latency and power efficiency has been a hot topic
in the related fields including real-time embedded systems
and mobile computing [40, 8, 41, 53, 59, 16, 37, 42, 47, 1].
Due to the explosion of approximation techniques in different
application domains, there has been several recent works [15,
35, 13] seeking to address this problem in a three dimensional
space covering accuracy as well. Unfortunately, these works
cannot resolve the problem as their applicability is limited
in scope in various ways. JouleGuard [21], MeanTime [13],
CoAdapt [20] and other similar approaches provide general
system or hardware solution for non-DNN applications that
claim to explore the three dimensional optimization space.

A very recent set of works including PredJoule [5], and
ApNet [3] are able to provide latency predictability (meeting
deadlines) for DNN-based workloads, yet they only consider
two out of the three dimensions and focus on single-DNN
scenarios. As we have discussed in Sec. 3.2, running ApNet
and PredJoule at the same time even at different frequencies
will result in a negative feedback loop. Thus, a better, more
coordinated approach is required.

Such limitations would dramatically reduce the complexity
of the optimization space, as the system-level and application-
level tradeoffs focusing on a single task can be considered
in an independent manner (e.g., pure system-level and
application-level optimization under Poet [23] and CoAdapt,
respectively). This results in solutions that are inapplicable to
any practical autonomous real-time system featuring a multi-
DNN environment.
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8 Conclusion

This paper presents NeuOS, a comprehensive latency pre-
dictable system solution for running multi-DNN workloads
in autonomous embedded systems. NeuOS can guarantee
latency predictability, while managing energy optimization
and dynamic accuracy adjustment based on specific system
constraints via smart coordinated system- and application-
level decision-making among multiple DNN instances. Ex-
tensive evaluation results prove the efficacy and practicality
of NeuOS.

382 2020 USENIX Annual Technical Conference

USENIX Association



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor
Aamodt, Natalie Enright Jerger, and Andreas Moshovos.
Cnvlutin: Ineffectual-neuron-free deep neural network
computing. In ACM SIGARCH Computer Architecture
News, volume 44, pages 1-13. IEEE Press, 2016.

Mohammadhossein Bateni, Aditya Bhaskara, Silvio
Lattanzi, and Vahab Mirrokni. Distributed balanced
clustering via mapping coresets. In Advances in
Neural Information Processing Systems, pages 2591—
2599, 2014.

Soroush Bateni and Cong Liu. Apnet: Approximation-
aware real-time neural network. In 2018 IEEE Real-
Time Systems Symposium (RTSS), pages 67-79, Dec
2018.

Soroush Bateni and Cong Liu. Predictable data-
driven resource management: an implementation using
autoware on autonomous platforms. In 2019 IEEE Real-
Time Systems Symposium (RTSS), pages 339-352. IEEE,
2019.

Soroush Bateni, Husheng Zhou, Yuankun Zhu, and
Cong Liu. Predjoule: A timing-predictable energy
optimization framework for deep neural networks. In
2018 IEEE Real-Time Systems Symposium (RTSS),
pages 107-118, Dec 2018.

Raunak P Bhattacharyya, Derek J Phillips, Changliu
Liu, Jayesh K Gupta, Katherine Driggs-Campbell, and
Mykel J Kochenderfer. Simulating emergent properties
of human driving behavior using multi-agent reward
augmented imitation learning. In 2019 International
Conference on Robotics and Automation (ICRA), pages
789-795. IEEE, 2019.

Wenlin Chen, James Wilson, Stephen Tyree, Kilian
Weinberger, and Yixin Chen. Compressing neural
networks with the hashing trick. In International
Conference on Machine Learning, pages 2285-2294,
2015.

Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen
Zhao, Yongpan Liu, Yu Wang, and Yuan Xie. Prime:
a novel processing-in-memory architecture for neural
network computation in reram-based main memory.
In ACM SIGARCH Computer Architecture News, vol-
ume 44, pages 27-39. IEEE Press, 2016.

European Commission. Rolling plan for ict standardisa-
tion, 2018.

NVIDIA Corp.
son agx xavier devices.

Power management for jet-
https://docs.

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

nvidia.com/jetson/14t/index.html#page/
TegralLinuxDriverPackageDevelopmentGuide/
power_management_jetson_xavier.html.

NVIDIA  Corp. Power
for jetson tx2 series devices.
//docs.nvidia.com/jetson/archives/
l4t-archived/14t-3231/index.html#page/
TegraLinuxDriverPackageDevelopmentGuide/
power_management_tx2_32.html.

management
https:

ETSI. Intelligent transport systems (its); vehicular com-
munications; basic set of applications; part 3: Specifica-
tions of decentralized environmental notification basic
service, Aug 2018.

Anne Farrell and Henry Hoffmann. Meantime: Achiev-
ing both minimal energy and timeliness with approxi-
mate computing. In USENIX Annual Technical Confer-
ence, pages 421435, 2016.

ISO International Organization for Standardization.
26262: 2018. Road vehicles—Functional safety.

Seungyeop Han, Haichen Shen, Matthai Philipose,
Sharad Agarwal, Alec Wolman, and Arvind Krishna-
murthy. Mcdnn: An approximation-based execution
framework for deep stream processing under resource
constraints. In Proceedings of the 14th Annual Interna-
tional Conference on Mobile Systems, Applications, and
Services, MobiSys ’16, pages 123—-136, New York, NY,
USA, 2016. ACM.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan
Pedram, Mark A Horowitz, and William J Dally. Eie:
efficient inference engine on compressed deep neural
network. In Computer Architecture (ISCA), 2016
ACM/IEEE 43rd Annual International Symposium on,
pages 243-254. IEEE, 2016.

Song Han, Huizi Mao, and William J Dally. Deep
compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. arXiv
preprint arXiv:1510.00149, 2015.

Song Han, Jeff Pool, John Tran, and William Dally.
Learning both weights and connections for efficient
neural network. In Advances in neural information
processing systems, pages 1135-1143, 2015.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770-778, 2016.

Henry Hoffmann. Coadapt: Predictable behavior for
accuracy-aware applications running on power-aware
systems. In Real-Time Systems (ECRTS), 2014 26th
Euromicro Conference on, pages 223-232, 2014.

USENIX Association

2020 USENIX Annual Technical Conference 383



[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

Henry Hoffmann. Jouleguard: energy guarantees for
approximate applications. In Proceedings of the 25th
Symposium on Operating Systems Principles, pages 198—
214. ACM, 2015.

Sean Hollister. Tesla’s new self-driving chip is here, and
this is your best look yet., Apr 2019.

C. Imes, D. H. K. Kim, M. Maggio, and H. Hoffmann.
Poet: a portable approach to minimizing energy under
soft real-time constraints. In 21st IEEE Real-Time and
Embedded Technology and Applications Symposium,
pages 75-86, April 2015.

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman.
Speeding up convolutional neural networks with low
rank expansions. arXiv preprint arXiv:1405.3866, 2014.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio Guadar-
rama, and Trevor Darrell. Caffe: Convolutional ar-
chitecture for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014.

Shinpei Kato, Shota Tokunaga, Yuya Maruyama, Seiya
Maeda, Manato Hirabayashi, Yuki Kitsukawa, Abraham
Monrroy, Tomohito Ando, Yusuke Fujii, and Takuya
Azumi. Autoware on board: Enabling autonomous vehi-
cles with embedded systems. In 2018 ACM/IEEE 9th
International Conference on Cyber-Physical Systems
(ICCPS), pages 287-296. IEEE, 2018.

Jaanus Kaugerand, Johannes Ehala, Leo Motus, and
Jiirgo-Soren Preden. Time-selective data fusion for in-
network processing in ad hoc wireless sensor networks.
International Journal of Distributed Sensor Networks,
14(11), 2018.

D. H. K. Kim, C. Imes, and H. Hoffmann. Racing
and pacing to idle: Theoretical and empirical analysis
of energy optimization heuristics. In 2015 IEEE 3rd
International Conference on Cyber-Physical Systems,
Networks, and Applications, pages 78-85, Aug 2015.

Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim
Choi, Lu Yang, and Dongjun Shin. Compression of deep
convolutional neural networks for fast and low power
mobile applications. arXiv preprint arXiv:1511.06530,
2015.

B. Kisacanin. Deep learning for autonomous vehi-
cles. In 2017 IEEE 47th International Symposium on
Multiple-Valued Logic (ISMVL), pages 142142, May
2017.

Olga Kouchnarenko and Jean-Frangois Weber. Adapting
component-based systems at runtime via policies with
temporal patterns. In International Workshop on

(32]

(33]

[34]

[35]

(36]

[37]

(38]

[39]

[40]

[41]

Formal Aspects of Component Software, pages 234-253.
Springer, 2013.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
Imagenet classification with deep convolutional neural
networks. In F. Pereira, C.J.C. Burges, L. Bottou,
and K.Q. Weinberger, editors, Advances in Neural
Information Processing Systems 25, pages 1097-1105.
Curran Associates, Inc., 2012.

TIMOTHY B. LEE. Tesla’s autonomy event: Impressive
progress with an unrealistic timeline, Apr 2019.

Jesse Levinson, Jake Askeland, Jan Becker, Jennifer
Dolson, David Held, Soeren Kammel, J Zico Kolter,
Dirk Langer, Oliver Pink, Vaughan Pratt, et al. Towards
fully autonomous driving: Systems and algorithms. In
2011 IEEE Intelligent Vehicles Symposium (1V), pages
163-168. IEEE, 2011.

Yongbo Li, Yurong Chen, Tian Lan, and Guru Venkatara-
mani. Mobiqor: Pushing the envelope of mobile edge
computing via quality-of-result optimization. In 2017
IEEE 37th International Conference on Distributed
Computing Systems (ICDCS), pages 1261-1270. IEEE,
2017.

Shiyu Liang and R Srikant. = Why deep neural
networks for function approximation? arXiv preprint
arXiv:1610.04161, 2016.

Robert LiKamWa, Yunhui Hou, Julian Gao, Mia Polan-
sky, and Lin Zhong. Redeye: analog convnet image sen-
sor architecture for continuous mobile vision. In ACM
SIGARCH Computer Architecture News, volume 44,
pages 255-266. IEEE Press, 2016.

Jane W. S. W. Liu. Real-Time Systems. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 1st edition, 2000.

Zongqing Lu, Swati Rallapalli, Kevin Chan, and Thomas
La Porta. Modeling the resource requirements of
convolutional neural networks on mobile devices. In
Proceedings of the 25th ACM international conference
on Multimedia, pages 1663-1671, 2017.

M. Maggio, E. Bini, G. Chasparis, and K. Arzén. A
game-theoretic resource manager for rt applications. In
2013 25th Euromicro Conference on Real-Time Systems,
pages 57-66, July 2013.

Nikita Mishra, Huazhe Zhang, John D Lafferty, and
Henry Hoffmann. A probabilistic graphical model-
based approach for minimizing energy under perfor-
mance constraints. In ACM SIGARCH Computer Archi-
tecture News, volume 43, pages 267-281. ACM, 2015.

384

2020 USENIX Annual Technical Conference

USENIX Association



[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Brandon Reagen, Paul Whatmough, Robert Adolf,
Saketh Rama, Hyunkwang Lee, Sae Kyu Lee,
José Miguel Herndndez-Lobato, Gu-Yeon Wei, and
David Brooks. Minerva: Enabling low-power, highly-
accurate deep neural network accelerators. In ACM
SIGARCH Computer Architecture News, volume 44,
pages 267-278. IEEE Press, 2016.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi
Kahou, Antoine Chassang, Carlo Gatta, and Yoshua
Bengio. Fitnets: Hints for thin deep nets. arXiv preprint
arXiv:1412.6550, 2014.

Francisca Rosique, Pedro J Navarro, Carlos Ferndndez,
and Antonio Padilla. A systematic review of perception
system and simulators for autonomous vehicles research.
Sensors, 19(3):648, 2019.

Tara N Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru
Arisoy, and Bhuvana Ramabhadran. Low-rank matrix
factorization for deep neural network training with high-
dimensional output targets. In 2013 IEEE international
conference on acoustics, speech and signal processing,
pages 6655-6659. IEEE, 2013.

Rick Salay, Rodrigo Queiroz, and Krzysztof Czar-
necki. An analysis of iso 26262: Using machine learn-
ing safely in automotive software. arXiv preprint
arXiv:1709.02435, 2017.

Ali Shafiee, Anirban Nag, Naveen Muralimanohar,
Rajeev Balasubramonian, John Paul Strachan, Miao
Hu, R Stanley Williams, and Vivek Srikumar. Isaac:
A convolutional neural network accelerator with in-
situ analog arithmetic in crossbars. ACM SIGARCH
Computer Architecture News, 44(3):14-26, 2016.

Akshay Kumar Shastry. Functional Safety Assessment
in Autonomous Vehicles. PhD thesis, Virginia Tech,
2018.

Karen Simonyan and Andrew Zisserman. Very
deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Nikolai Smolyanskiy, Alexey Kamenev, Jeffrey Smith,
and Stan Birchfield. Toward low-flying autonomous
mav trail navigation using deep neural networks for en-
vironmental awareness. In 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pages 4241-4247. IEEE, 2017.

I. Stoica, H. Abdel-Wahab, K. Jeffay, S. K. Baruah,
J. E. Gehrke, and C. G. Plaxton. A proportional share
resource allocation algorithm for real-time, time-shared
systems. In /7th IEEE Real-Time Systems Symposium,
pages 288-299, Dec 1996.

[52]

[53]

[54]

[55]

[56]

[57]
(58]

[59]

[60]

Chen Tang, Zhuo Xu, and Masayoshi Tomizuka.
Disturbance-observer-based tracking controller for neu-
ral network driving policy transfer. IEEE Transactions
on Intelligent Transportation Systems, 2019.

Yaman Umuroglu, Nicholas J Fraser, Giulio Gam-
bardella, Michaela Blott, Philip Leong, Magnus Jahre,
and Kees Vissers. Finn: A framework for fast, scal-
able binarized neural network inference. In Proceedings
of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pages 65-74. ACM,
2017.

Jean-Francois Weber. Tool support for fuzz testing of
component-based system adaptation policies. In Inter-
national Workshop on Formal Aspects of Component
Software, pages 231-237. Springer, 2016.

Wikipedia contributors. Ternary plot - wikipedia,the free

encyclopedia. https://en.wikipedia.org/wiki/
Ternary_plot, 2019. [Online; accessed 31-May-
2019].

Jian Xue, Jinyu Li, Dong Yu, Mike Seltzer, and Yifan
Gong.  Singular value decomposition based low-
footprint speaker adaptation and personalization for
deep neural network. In Acoustics, Speech and
Signal Processing (ICASSP), 2014 IEEE International
Conference on, pages 6359-6363. IEEE, 2014.

Taro Yamane. Statistics: An introductory analysis. 1973.

Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. De-
signing energy-efficient convolutional neural networks
using energy-aware pruning. arXiv preprint, 2017.

Huazhe Zhang and Henry Hoffmann. Maximizing
performance under a power cap: A comparison of
hardware, software, and hybrid techniques. SIGPLAN
Not., 51(4):545-559, March 2016.

Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong
Liu, and Sarfraz Khurshid. Deeproad: Gan-based
metamorphic autonomous driving system testing. arXiv
preprint arXiv:1802.02295, 2018.

USENIX Association

2020 USENIX Annual Technical Conference 385



QvF

This CVPR 2020 paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

PhysGAN: Generating Physical-World-Resilient Adversarial Examples
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Abstract

Although Deep neural networks (DNNs) are being per-
vasively used in vision-based autonomous driving systems,
they are found vulnerable to adversarial attacks where
small-magnitude perturbations into the inputs during test
time cause dramatic changes to the outputs. While most
of the recent attack methods target at digital-world ad-
versarial scenarios, it is unclear how they perform in the
physical world, and more importantly, the generated per-
turbations under such methods would cover a whole driv-
ing scene including those fixed background imagery such
as the sky, making them inapplicable to physical world
implementation. We present PhysGAN, which generates
physical-world-resilient adversarial examples for mislead-
ing autonomous driving systems in a continuous manner.
We show the effectiveness and robustness of PhysGAN via
extensive digital- and real-world evaluations. We compare
PhysGAN with a set of state-of-the-art baseline methods,
which further demonstrate the robustness and efficacy of
our approach. We also show that PhysGAN outperforms
state-of-the-art baseline methods. To the best of our knowl-
edge, PhysGAN is probably the first technique of generating
realistic and physical-world-resilient adversarial examples
for attacking common autonomous driving scenarios.

1. Introduction

While deep neural networks (DNNs) have established
the fundamentals of vision-based autonomous driving sys-
tems, they are still vulnerable to adversarial attacks and ex-
hibit erroneous fatal behaviors. Recent works on adversarial
machine learning research have shown that DNNs are rather
vulnerable to intentional adversarial inputs with perturba-
tions focusing on classification problems [4, 12, 19,22, 25].
To address the safety issues in autonomous driving sys-
tems, techniques were proposed to automatically generate
adversarial examples, which add small-magnitude pertur-

*Now at DeepMind
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Figure 1: Nlustration of an adversarial roadside advertising sign
(top-right) visually indistinguishable from the original sign (top-
left) and its deployment in the physical world (bottom).

bations to inputs to evaluate the robustness of DNN-based
autonomous driving systems [12, 8, 27].

However, these techniques mostly focus on generating
digital adversarial examples, e.g., changing image pixels,
which can never happen in real world [12]. They may not be
applicable to realistic driving scenarios, as the perturbations
generated under such techniques would cover the whole
scene including fixed background imagery such as the sky.
Very recently, a few works took the first step in study-
ing physical-world attacking/testing of static physical ob-
jects [2, 17], human objects [24, 7], traffic signs [23, 18, 8].
Although they are shown effective under the targeted sce-
narios and certain assumptions, they focus on studying a
static physical-world scene (e.g., a single snapshot of a stop
sign [8, 23]), which prevent themselves to be applied in
practice as real-world driving is a continuous process where
dynamically changes are encountered (e.g., viewing angles
and distances). Moreover, their generated adversarial ex-
amples are visually unrealistic (e.g., driver-noticeable black
and white stickers pasted onto a stop sign which is easily
noticeable for attack purposes [8]). Most of these methods
also have a focus on classification models different from
our studied steering model which is a regression model.
Also note that directly extending the existing digital per-
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turbation generation techniques (e.g., FGSM) to physical
world settings, i.e., inputting just the targeted roadside sign
into such techniques would output a corresponding adver-
sarial example, may be ineffective. The resulting attack ef-
ficacy may dramatically decrease (proved in our evaluation
as well) as the process of generating perturbations has not
considered any potential background imagery in the phys-
ical world (e.g., the sky) which would be captured by any
camera during driving.

We aim at generating a realistic single adversarial exam-
ple which can be physically printed out to replace the cor-
responding original roadside object, as illustrated in Fig. 1.
Since the target vehicle observes this adversarial printout
continuously, a major challenge herein is how to generate a
single adversarial example which can continuously mislead
the steering model at every frame during the driving pro-
cess. Additionally, for a practical physical-world deploy-
ment, any generated adversarial example shall be visually
indistinguishable from its original sign (the one already de-
ployed in the physical world).

To address these challenges, we propose a novel GAN-
based framework called PhysGAN ! which generates a sin-
gle adversarial example by observing multiple frames cap-
tured during driving while preserving resilience to certain
physical-world conditions. Our architecture contains an en-
coder (i.e., the CNN part of the target autonomous driving
model) that extracts features from frames during driving
and transforms them into a vector serving as the input to
the generator. By considering all factors extracted from the
frames, this design ensures that the generator could gener-
ate adeversarial examples that have attack effect. Without
this encoder, the efficacy would dramatically decrease.To
generate an adversarial example that can continuously mis-
lead the steering model, PhysGAN takes a 3D tensor as in-
put. This enhances the resilience of the generated exam-
ple against certain physical world dynamics, as using video
slices makes it more likely to capture such dynamics.

We demonstrate the effectiveness and robustness of
PhysGAN through conducting extensive digital- and real-
world experiments using a set of state-of-the-art steering
models and datasets. Digital experimental results show that
PhysGAN is effective for various steering models and sce-
narios, being able to mislead the average steering angle by
up to 21.85 degrees. Physical case studies further demon-
strate that PhysGAN is sufficiently resilient in generating
physical-world adversarial examples, which is able to mis-
lead the average steering angle by up to 19.17 degrees. Such
efficacy is also demonstrated through comparisons against
a comprehensive set of baseline methods.

To the best of our knowledge, PhysGAN is the first tech-
nique of generating realistic and physical-world-resilient
adversarial examples for attacking common autonomous

Uhttps://github.com/kongzelun/physgan.git

steering systems. Our contributions can be summarized in
three folds as follows.

e We propose a novel GAN-based framework Phys-
GAN which can generate physical-world-resilient ad-
versarial examples corresponding to any roadside traf-
fic/advertising sign and mislead autonomous driving
steering model with the generated visually indistin-
guishable adversarial examples.

e We propose a GAN architecture using 3D tensor as
input in optimizing the generator, which resolves a
key technical challenge in physical-world deployment
of using a single adversarial example to continuously
mislead steering during the entire driving process.

e We conduct extensive digital and physical-world eval-
uations with several metrics, which shows the superior
attack performance of PhysGAN over state-of-the-art
methods. We believe PhysGAN could contribute to fu-
ture safety research in autonomous driving.

2. Related Works

Adversarial Attacks. Many works have recently been
proposed to generate adversarial examples for attacking
in the white-box setting [21], where the adversary knows
the network’s parameters. The fast gradient sign method
(FGSM) [!1] represents the pioneer among such methods,
which performs a one-step gradient update along the direc-
tion of the sign of gradient at each pixel. FGSM is fur-
ther extended in [13] to a targeted attack strategy through
maximizing the probability of the target class, which is
referred as the OTCM attack. Optimization-based ap-
proaches [26, 14, 4, 5, 29] have also been proposed. GAN
was recently introduced in [10], implemented by a system
of two neural networks competing with each other in a zero-
sum game framework. GAN achieves visually appealing
results in both face generation [16] and manipulation [30].
[29] presents AdvGAN, which leverages GAN to produce
adversarial examples with high attack success rate on clas-
sification problems. These methods focus on applying per-
turbations to the entire input and consider only digital-world
attacking scenarios. It is hard to apply them to the real world
because it is impossible to use some of the generated pertur-
bations to replace the real-world background (e.g., the sky).

Generating Physical Adversarial Examples. To the
best of our knowledge, only a very recent set of works [15,

] started working on generating physical attacks. [15] fo-
cuses on the understanding of static physical adversarial
examples. [8] explicitly designs perturbations to be effec-
tive in the presence of diverse real-world conditions. Their
method mainly focuses on the classification of physical road
sign under dynamic distance and angle of the viewing cam-
era. Unfortunately, these works focus on static attacking
scenarios (e.g., maximizing the adversarial effectiveness
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Figure 2: Overview of the PhysGAN framework.

w.r.t. to a single snapshot of the physical example) and thus
do not require to resolve the one-to-many challenge.

Different from these works, PhysGAN is able to gener-
ate physical-world-resilient adversarial examples only cor-
responding to the roadside traffic/advertising sign; no per-
turbations will be generated on areas other than the street
sign. PhysGAN addresses the one-to-many challenge which
continuously attack the steering model, and generates real-
istic adversarial examples that are resilient to various physi-
cal world conditions and visually indistinguishable from the
original roadside sign.

3. Our Approach: PhysGAN

The goal of PhysGAN is to generate an adversarial ex-
ample that is visually indistinguishable from any common
roadside object (e.g., roadside traffic or advertising signs)
to continuously mislead the steering angle model (target
model) of a drive-by autonomous driving vehicle by phys-
ically replacing the roadside board with the adversarial ex-
ample. When an autonomous driving vehicle drives by the
roadside sign, the steering angle model would be fooled and
make incorrect decision.

3.1. Problem Definition

We define our problem and notations in this section. Let
X = {X;} be the video slice set such that X C Rnxwxh,
where n is the number of frames in the video slice, w and
h is the width and height of a frame, respectively. Let
Y = {Y;} be the ground truth steering angle set, Y C R™.
Suppose (X;,Y;) is the i*" sample in the dataset, which
is composed of video slice X; € X and Y; € ), each
element of which denotes the ground truth steering angle
corresponding to its frame. The pre-trained target steer-
ing model (e.g., Nvidia Dave-2, Udacity Cg23 and Rambo)
learns a mapping f: X — ) from the video slice set X’ to
the ground truth steering angle set )/ during training phase.

Given an instance (X;,Y;), the goal of PhysGAN is to
produce an adversarial roadside sign S,q,, which aims to

mislead the target autonomous driving model f as f(X;) #
Y; and maximize ), |f(X;) — Y;|. To achieve the goal,
PhysGAN needs to generate an adversarial roadside sign
Sadv to replace original roadside sign S,ri4 in digital- or
physical-world. The adversarial roadside sign Sy, is sup-
posed to be close to the original roadside sign S,i4 in terms
of /2-norm distance metrics, which implies that adversarial
roadside sign S,q4, and original roadside sign S,y are al-
most visually indistinguishable.

3.2. Physical World Challenges

Physical attacks on an object must be able to survive
changing conditions and remain effective at fooling the
steering angle model. We structure our decision of these
conditions around the common drive-by scenarios (i.e., the
vehicle drives towards the roadside sign).

The “One-to-Many” challenge. A key technical chal-
lenge is to resolve the “one-to-many” challenge, i.e., gen-
erating a single adversarial sample to continuously mislead
the steering angle decision of a vehicle throughout the entire
driving process. Considering multiple frames in generating
an adversarial sample is challenging because the vehicle-
to-board distance, view angle, and even subtle pixels on
each frame could be different. An effective adversarial sam-
ple must be able to exhibit maximum overall attack effect
among all the frames. To achieve this goal, the adversarial
sample needs to be resilient to the changing conditions ex-
hibited on each frame. To resolve this problem, PhysGAN
applies a novel GAN-based framework and consider the en-
tire drive-by video slice, rather than a single frame, as the
input in the generation process (see Sec. 3.5).

Limited manipulated area. Unlike most digital-world
adversarial methods which add perturbations to the entire
input image, techniques focused on physical-world scenar-
ios are constrained to add perturbations only to a fragment
of an image, i.e., the fragmented area corresponding to the
original physical object. Moreover, the underlying assump-
tion of a static image background does not hold in physical
attacks since the background can consistently change over
the driving process.

3.3. PhysGAN Overview

Fig. 2 illustrates the overall architecture of PhysGAN,
which mainly consists of four components: an encoder &,
a generator G, a discriminator D and the target autonomous
driving model f. The encoder £ represents the convolu-
tional layers of target autonomous driving model f, which
takes 3D tensors as inputs and is used to extract features of a
video (of both original and perturbed ones). To resolve the
challenge of generating only a single example which con-
tinuously impacts the driving process, we introduce a novel
idea of considering 3D tensors as inputs in the GAN-based
framework. 2D tensors often represent images while 3D
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tensors are used to represent a small slice of video, which
typically contains hundreds of frames.

As seen in Fig. 2, the extracted features of original video
slice X,,;4 are used as the input fed to the generator to gen-
erate an adversarial roadside sign S,4,. Doing so allows
us to take into account the fact that different original video
slice X,r;g may have different influence on the generated
adversarial roadside sign S, 4, thus ensuring the generator
G to generate the best adversarial roadside sign S, 4, corre-
sponding to a certain original video slice X,,.;4. The adver-
sarial roadside sign S,q4, and original roadside sign So,q
are sent to the discriminator D, which is used to distinguish
the adversarial roadside sign S, 4, and the original roadside
sign Sorig. The discriminator D represents a loss function,
which measures the visual distinction between adversarial
roadside sign S,q, and original roadside sign So,g, and
also encourages the generator to generate an example vi-
sually indistinguishable to the original sign.

3.4. Training GAN Along With the Target Model

In order to ensure the adversarial roadside sign Sy g4, to
have adversarial effect on the target autonomous driving
model f, we introduce the following loss function:

'C];DV = 6exp <_; : lf(f(Xom'g), f(Xadv))> (1)
where 3 is a sharpness parameter, [y denotes the loss func-
tion used to train the target autonomous driving model f,
such as MSE-loss or ¢!-loss, Xorig denotes the original
video slice X4, and X, 4, represents the adversarial video
slice X 4., which is generated by mapping the adversarial
roadside sign S,q4, into every frame of the original video
slice X,ig. By minimizing L’Q pv» the distance between
the prediction and the ground truth will be maximized,
which ensures the adversarial effectiveness.

To compute £f4 py» We obtain the adversarial video slice
Xadv by substituting the original roadside sign S,,;4 With
the generated adversarial roadside sign S,4,. Note that the
generated adversarial roadside sign S,4, is a rectangular
image and the original roadside sign S,,.;4 in the video slice
may exhibit an arbitrary quadrilateral shape which could
vary among different frames. We leverage a classical per-
spective mapping method [ ] to resolve this mismatch. We
first get the four coordinates of the original roadside sign
Sorig Within each frame, and then map the generated adver-
sarial roadside sign S,q4,, onto the corresponding quadrilat-
eral area inside each frame (details can be found in supple-
mentary material).

The final objective of PhysGAN is expressed as:

L=Loan +Mpy, 2)

where A denotes a co-efficient to balance the tradeoff be-
tween the two terms and Lgan is the classic GAN loss,

Algorithm 1 Optimization for PhysGAN
Require: [ - Iteration numbers;
Require: f - Target model with fixed parameters;

1: while: < I: do
Sadv = g(g(XoMg»;
L:GAN = logD(Sorig) + IOg(]. - D(Sadv));
/I fix the parameters of G
do back-propagation to optimize arg maxp LganN;
Sadv = g(g(Xorig))
Loan = IOgD(Som'g) +log(1 — D(Sadv));
/I fix the parameters of D
for each frame in the input video slice, perform per-
spective mapping to substitute the original roadside
sign S,r;g using the adversarial roadside sign Sqqs.
10:  do back-propagation to optimize arg ming LG an;
11: ﬁADV = Bexp(fé ’lf(f(Xorig)));
12: do back-propagation to optimize arg ming £L4pv;
13: end while

R A A A T o

which can be represented as

Loan =Es,,,~ps,,,, 108 D(Sorig)]

3)
+ Esad'uNpSad,U [log(1 — D(Sadv))] -

To interpret this objective function, Lc 4y encourages the
adversarial roadside sign S, 4, to be visually similar to the
original roadside sign S,;4, While EQ py 1s leveraged to
generate adversarial video slice X4, which maximizes at-
tack effectiveness. We obtain the encoder £, the generator
G, and the discriminator D by solving:

i . 4
arg mgln max L @

3.5. Attacks with PhysGAN

We assume that the target autonomous driving model f
was pre-trained and the parameters of target autonomous
driving model f are fixed, and the generator G of PhysGAN
can only access the parameters of the target autonomous
driving model f during training. Our algorithm to train
PhysGAN is illustrated in Algorithm 1, which consists of
two phases. As seen in Algorithm 1, the first phase is to
train the discriminator D, which is used later to form a part
of the Lgan (Line 2 — 5); the second phase is to train gen-
erator G with two loss functions, ﬁf; py and L 4N, which
encourages the generator G to generate a visually indistin-
guishable adversarial sample and make the generated sam-
ple be adversarial for the target autonomous driving model
f, respectively (Line 6 — 11). The encoder £, which is the
CNN part of the target autonomous driving model f, aims
at extracting features from all the observed frames during
driving and transforms them into a vector input to the gen-
erator. This design ensures that the generator could gener-
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ate visually indistinguishable examples with an attack ef-
fect through considering all useful features extracted from
the video slice. For physical world deployment, the attacker
shall print the adversarial example of the same size as the
target roadside sign to ensure visual indistinguishability.

4. Experiments

We evaluate PhysGAN via both digital and physical-
world evaluations using widely-studied CNN-based steer-
ing models and popular datasets.

4.1. Experiment Setup

Steering models. We evaluate PhysGAN on several
popular and widely-studied [0, 28, 3] CNN-based steering
models, like NVIDIA Dave-2 2, Udacity Cg23 3 and Udac-
ity Rambo #. Notably, since the original models applies 2D
CNNs which is trained with individual images, we adapt the
2D CNN into a 3D CNN, and train the 3D-CNNs with a set
of 20-frame video slices.

Datasets. The datasets used in our digital experi-
ments include (1) Udacity automatic driving car challenge
dataset °, which contains 101396 training images captured
by a dashboard mounted camera of a driving car and the si-
multaneous steering wheel angle applied by a human driver
for each image; (2) DAVE-2 testing dataset [20] ©, which
contains 45,568 images to test the NVIDIA DAVE-2 model;
(3) Kitti [9] dataset which contains 14,999 images from six
different scenes captured by a VW Passat station wagon
equipped with four video cameras; and (4) custom datasets
for physical-world evaluation, which contain more than
20000 frames used to train PhysGAN in physical cases.

For physical-world experiments, we first perform color
augmentation to improve the image contrast, making the
adversarial example be more robust against varying light il-
lumination conditions. Then, we print out the generated ex-
ample under each evaluated approach, and paste it on the se-
lected roadside object. We drive a vehicle by this object and
perform offline analysis using the captured driving videos.
To understand how PhysGAN would perform on actual au-
tonomous vehicles, we have also done online driving testing
which mimics a realistic driving process when facing with
such an adversarial roadside object.

Video slice selection criteria. Our driving scene selec-
tion criteria is that the roadside traffic or advertising signs
should appear entirely in the first frame of a driving video

Zhttps://devblogs.nvidia.com/deep-learning-self-driving-cars/
3https://github.com/udacity/self-driving-car/tree/master/steering-
models/community-models/cg23
“https://github.com/udacity/self-driving-car/tree/master/steering-
models/community-models/rambo
Shttps://medium.com/udacity/challenge-2-using-deep-learning-to-
predict-steering-angles-f42004a36ff3
Shttps://github.com/SullyChen/driving-datasets

Scenes [Images [ Size [ min | max |

Dave-straight1 20 455 x 256 | 21 x 22 | 41 x49
Dave-curvel 20 455 x 256 | 29 x 32 | 51 x 49
Udacity-straight1 20 640 x 480 | 48 x29 | 66 x 35
Udacity-curvel 20 640 x 480 | 51 x 51 | 155 x 156
Kitti-straight1 20 455 x 1392 | 56 x 74 | 121 x 162
Kitti-straight2 20 455 x 1392 | 80 x 46 | 247 x 100
Kitti-curvel 20 455 x 1392 | 64 x 74 | 173 x 223

Table 1: Scenes evaluated in the experiment.

with more than 400 pixels and partially disappear in the
last frame. We select 7 scenes from the aforementioned
datasets, and evaluate on all selected scenes. The selected
scenes in each dataset cover both straight and curved lane
scenarios. Since all these datasets do not contain coordi-
nates of roadside signs, we have to label the four corners
of the signs in every frame of the selected scenes. We use
the motion tracker functionality of Adobe After Effects ’ to
automatically track the movement of the signs four corners
among consecutive frames. Table 1 show the attributes of
the scenes we selected.

Baseline methods. We compare PhysGAN with several
baseline approaches:

e Original sign. The first baseline is to simply test the
original roadside sign. This comparison is important
as it verifies whether steering angle errors are due to
PhysGAN but not the original sign. We include this
baseline in both digital and physical evaluations.

e FGSM. FGSM [11] is remarkably powerful and it is
designed to attack neural networks by leveraging the
gradients. In our problem context, we directly apply
FGSM to generate perturbations given a captured in-
put frame. We only include FGSM in our digital eval-
uation, as it is impossible to apply the generated per-
turbations which covers the entire image frame (e.g.,
the sky) in physical world.

o PhysFGSM. In order to apply FGSM in a physical-
world setting, we develop a new method called Phys-
FGSM as an additional baseline, which is based on
FGSM and only generate perturbations for the targeted
roadside sign in an input image. Doing so allows us to
print the perturbed image and paste it onto the corre-
sponding sign. We include PhysFGSM in both digital
and physical evaluations. Since the video slice con-
tains multiple frames, PhysFGSM generate perturba-
tions based upon the middle frame.

e RP2. We also compare PhysGAN to a physical-world
baseline, RP2 [8], which is an optimization approach
that generated perturbations for a single input scene.
The original RP2 method focuses on classification

https://www.adobe.com/products/aftereffects.html
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Table 2: The original and the generated adversarial fragments and the corresponding image frames under various scenes.
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Figure 3: The illustration of Steering angle error variations along the timeline on steering model Nvidia Dave-2.

problems, so we extend it to be applicable to the steer-
ing module by substituting the classification loss with
the regression loss.

e Random Noise. We also print an image perturbed with
random noise and paste it on top of the roadside sign.

Evaluation metrics. In our experiments, we use two
metrics to evaluate the efficacy of PhysGAN: steering angle
mean square error (denoted steering angle MSE), and max
steering angle error (MSAE). Steering angle MSE mea-
sures the average of the squares of the error between the
predicted steering angle and the ground truth, and MSAE
denotes the maximum steering angle error observed among
all frames belonging to a video slice. A large steering angle
MSE and MSAE implies better attack efficacy.

In addition, we perform online driving testing case stud-
ies where we manually control the steering angle in each
frame (approximately) according to the real-time calcula-
tion of the resulting steering angle error under each eval-
uated approach. We use the metric time-to-curb herein to
measure the attack efficacy, which measures the amount of
time an actual autonomous driving vehicle would take to
drive onto the roadside curb. Please be advised that all the

results are relative to the ground truth steering angle.

4.2. Results

We first report the overall efficacy under PhysGAN in
both digital and physical-world scenarios. A complete set
of results is given in the supplementary document.

Results on digital scenarios. Table 2 shows a represen-
tative frame of each scene where the signs are replaced with
adversarial examples generated from PhysGAN (using the
targeted steering model NVIDIA Dave-2). Each column of
Table 2 represents a specific scene. It is observed that Phys-
GAN can generate rather realistic adversarial samples, vi-
sually indistinguishable from the original objects. The tar-
geted roadside signs in the original video slices are replaced
by our selected McDonald and Apple Watch signs, and the
modified video slices are used in all experiments. This is
because the roadside signs in the original video slices have
a low resolution, which makes it hard to verify whether our
generated roadside signs are visually distinguishable.

Fig. 3 shows the results on steering angle error along the
timeline in each frame scene, where the size of the adversar-
ial image increases nearly monotonically over time. Each
sub-figure in Fig. 3 indicates a specific scene, where the

14259



Original

big. banksy. bliss.

T

SWATCH

Feedom s

PhysGAN

big. banksy. bliss.

SWATCH

Freadomclls

PhysGAN frame

RP2

Random Noise

Baselines

big. banksy. bliss.

Baseline frame

Table 3: Illustration of physical-world adversarial scenarios under different approaches.

Frame # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Original Apple Sign 036 | -0.51 | 082 | 045 | 0.10 | -0.16 | 0.84 | -1.38 | -2.16 | -0.86 | 0.60 | -1.11 | 0.21 | -0.49 | -0.55 | -0.56 | 0.10 | -0.51 | 0.49 -1.00
PhysGAN (Apple) 0.17 | 0.89 | 1.68 | 7.94 | 1.93 | 479 | 2.87 | 634 | 2.08 | 3.54 | 9.06 | 837 | 593 | 12.51 | 1343 | 11.37 | 12.75 | 11.74 | 13.63 | 13.44
Original McDonald’s Sign | -0.17 | -0.42 | -1.49 | -1.34 | -0.51 | -0.08 | 0.60 | -0.35 | 0.70 | -0.75 | -0.43 | -0.35 | 0.59 | -0.89 1.49 0.61 094 | -099 | 1.13 -0.00
PhysGAN (McDonald’s) -124 | -1.37 | -0.02 | -0.30 | -2.48 | -0.17 | -1.06 | -0.80 | -0.01 | -5.37 | -1.60 | -2.62 | -2.45 | -4.68 | -11.71 | -10.85 | -9.83 | -8.74 | -11.35 | -19.17

Table 4: Per-frame steering angle error under physical-world experiments. Rows 2 and 4 (rows 3 and 5) show the steering
angle error when the original signs (corresponding adversarial signs generated by PhysGAN) are deployed.

x-axis represents the frame index along the timeline, and
the y-axis represents the steering angle error. We clearly
observe that PhysGAN leads to noticeable angle error for
almost all frames, even for earlier frames in which the ad-
versarial sample is relatively small compared to the back-
ground.

Results on physical-world scenarios. We perform
physical-world experiments as follows. We first record
training videos of driving a vehicle towards the original
roadside sign and use these videos to train the Dave-2
model. We then train PhysGAN following the same con-
figuration as the digital-world evaluation to generate adver-
sarial samples. The generated adversarial samples was then
printed and pasted on the original roadside sign. We then
recorded testing videos of the same drive-by process but
with the adversarial sample. The steering angle error are
then obtained by analyzing these testing videos. Specif-
ically, for both training and testing video slices, we start
recording at 70 ft away and stop recording when the ve-
hicle physically passes the advertising sign. For training
videos, the driving speed is set to be 10mph to capture suf-
ficient images. The speed for the testing video is set to be
20mph to reflect ordinary on-campus driving speed limit.
The physical case studies are performed on a straight lane
due to safety reasons. The size of the roadside advertising
board used in our experiment is 48" x 72'.

Table 3 shows the original sign and the corresponding
adversarial examples generated under different methods as
well as a camera-captured scenes for each example. To
clearly interpret the results, we list the per-frame steering
angle error due to PhysGAN and using the original sign

in Table 4 (additional comparison results are detailed in
Sec. 4.3). As seen in Table 4, PhysGAN is able to gen-
erate a single printable physical-world-resilient adversarial
example which could mislead the driving model for contin-
uous frames during the entire driving process. An interest-
ing observation herein is that the steering angle error tends
to increase along with the increased frame index. This is be-
cause, with a larger frame index, the size of the adversarial
sample occupies a relatively large space in the entire frame,
so being able to more negatively impact the steering model.
Also, we observe that with the original roadside sign, the
steering angle error is almost negligible under all frames.

4.3. Comparison against Baseline Approaches

Digital Baselines. For each steering model, we compare
our approach with four other baselines including FGSM,
PhysFGSM, random noise, and original sign. Table 5 shows
the results on seven different scenes. These results suggest
the following observations: (1) although FGSM achieves
the highest attacking effect, it needs to apply perturbations
to the entire scene, which is not applicable to the physi-
cal world; (2) the attacking effectiveness of our approach is
much better than PhysFGSM, implying that once consider-
ing physical world implementation constraints, PhysGAN
would outperform direct extensions of existing approaches.
(3) each steering model is reasonably robust as the angle
errors under random noise and original sign are trivial.

Physical Baselines. For physical-world scenarios, we
compare PhysGAN against PhysFGSM, random noise, and
original sign. The results are shown in Table 6. We observe
that both random noise and original sign have negligible im-
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. Dave Udacity Kitti

Steering Model | Approach Straightl | Curvel Straightl | Curvel Straightl | Straighz | Curvel
PhysGAN 106.69/15.61 | 66.79/11.63 81.76/17.04 | 114.13/14.64 | 108.76/17.72 | 150.00/17.34 | 95.87/15.83
FGSM 11591/17.41 | 199.27/19.47 | 141.23/16.17 | 192.19/21.23 | 156.16/17.84 | 217.52/19.50 | 103.38/14.54

Nvidia Dave-2 | PhysFGSM 15.8876.42 4.73/4.87 13.91/5.74 3.08/2.89 15.17/8.04 8.67/4.54 13.12/7.24
Random Noise 3.00/2.01 2.251/2.37 2.36/2.60 1.77/3.10 3.15/3.16 1.60/0.96 5.921/4.41
Original Sign 4.17/3.15 4.35/2.40 3.84/1.79 1.09/0.72 4.20/2.98 3.06/1.23 2.86/1.30
PhysGAN 91.85/13.80 | 113.41/14.78 | 50.61/1043 | 7856/ 1546 | 46.53/11.72 | 62.64/11.64 | 71.00/18.14
FGSM 203347 19.70 | 157.98/14.67 | 171.92/19.89 | 96.74/17.75 | 136.08/14.00 | 162.35/18.53 | 89.75/16.71

Udacity Cg23 PhysFGSM 58.53/11.86 36.44/10.68 30.72/9.41 46.74 / 8.88 28.89/11.37 22.63/7.61 61.23/10.95
Random Noise 5.32/3.67 3.7572.72 4.05/2.52 4.20/2.26 5.31/4.49 6.54/1.98 6.10/3.68
Original Sign 4.17/3.15 4.35/2.40 3.84/1.79 4.09/2.72 4.20/2.98 3.06/1.23 2.30/1.86
PhysGAN 61.87/11.28 | 113.78/15.29 | 87.68/13.90 | 42.71/12.55 | 564171242 | 58.67/1042 | 145.66/21.85
FGSM 200.81/21.78 | 1472871643 | 151.14715.28 | 166.50716.27 | 169.17/18.57 | 126.14714.19 | 175.28/19.36

Udacity Rambo | PhysFGSM 16.43/8.95 14.24/8.34 5.32/3.73 14.82/6.11 16.58/7.78 13.89/7.93 29.58/19.18
Random Noise 1.90/2.55 3.49/5.79 6.06/5.00 1.92/3.98 3.82/5.42 2.09/3.05 1.52/1.91
Original Sign 3.93/2.01 6.30/4.46 1.80/1.28 6.54/2.52 5.06/3.52 5.75/4.03 4.95/2.07

Table 5: Steering angle MSE (left) and MSAE (right) under all evaluated approaches. Although FGSM produces the maximal
attacks, it modifies the whole image observation and is not applicable to the real world. Among all physical-world attack
approaches, our approach PhysGAN produces the best performance.

PhysGAN Random Noise | Original Sign
Nvidia Dave-2 | 73.94/13.63 | 23.48/6.52 2.48/1.02 2.12/1.56
Udacity Cg23 99.23/14.56 | 25.15/7.86 2.56/2.11 2.15/1.73
Udacity Rambo | 87.56/17.60 | 32.54/7.51 1.51/1.15 3.12/2.48

Table 6: Steering angle MSE (left) and MSAE (right) under PhysGAN, RP2, random noise, and original sign.

pact on the steering models, which indicate the pre-trained
steering models (without being attacked) are sufficiently ro-
bust in physical world settings. As seen in Table 6, Phys-
GAN significantly outperforms RP2 and can achieve very
high attack efficacy under all steering models, which may
lead to dangerous driving actions in the real world.

PhysGAN | RP2 | Random Noise | Original
Time-to-curb 10s - - -
Distance-to-center 1.5m 1.09m 0.29m 0.47m

Table 7: Online driving testing results. The second row
shows the time-to-curb result and the third row shows the
maximum distance that the vehicle deviates from the correct
path (i.e., driving straight).

4.4. Online Driving Case Studies

The above evaluations are off-policy where the driving
trajectory was not affected by the adversarial signs. In this
section, we further conduct on-policy evaluation, i.e., online
driving case studies mimicking the actual driving scenario
to learn how would PhysGAN impact the steering decision
by an actual autonomous vehicle. In these case studies, we
manually control steering in a real-time fashion within each
frame according to the calculated steering angle error under
each approach with the steering model Nvidia Dave-2. We
ask a human driver to drive the vehicle at 5mph for 1 second
to reflect one frame and a corresponding manual steering ac-
tion. We note that this online evaluation setup is a proxy of

real autonomous vehicle and provides proper evaluation of
an attack system. We do not use virtual simulators for eval-
uation because they normally causes sim-to-real transfer is-
sues. So the evaluation results on a simulator would not
reflect the models capability in the physical world. As seen
in Table 7, PhysGAN outperforms the other baselines under
the two metrics. Also, only the adversarial sign generated
under PhysGAN leads the vehicle to drive onto the roadside
curb, which takes 10s (given the very low driving speed due
to safety concerns). This online driving case study further
demonstrates the dangerous steering action an autonomous
vehicle would take due to PhysGAN, indicating its effec-
tiveness when applied to actual autonomous vehicles.

5. Conclusion

We present PhysGAN, which generates physical-world-
resilient adversarial examples for misleading autonomous
steering systems. We proposed a novel GAN-based frame-
work for generating a single adversarial example that con-
tinuously misleads the driving model during the entire tra-
jectory. The generated adversarial example is visually in-
distinguishable from the original roadside object. Exten-
sive digital and physical-world experiments show the effi-
cacy and robustness of PhysGAN. We hope our work could
inspire future research on safe and robust machine learning
for autonomous driving.
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ABSTRACT

The automotive industry is increasingly employing software-
based solutions to provide value-added features on vehicles,
especially with the coming era of electric vehicles and au-
tonomous driving. The ever-increasing cyber components
of vehicles (i.e., computation, communication, and control),
however, incur new risks of anomalies, as demonstrated by
the millions of vehicles recalled by different manufactures.
To mitigate these risks, we design B-Diag, a battery-based
diagnostics system that guards vehicles against anomalies
with a cyber-physical approach, and implement B-Diag as
an add-on module of commodity vehicles attached to auto-
motive batteries, thus providing vehicles an additional layer
of protection. B-Diag is inspired by the fact that the auto-
motive battery operates in strong dependency with many
physical components of the vehicle, which is observable as
correlations between battery voltage and the vehicle’s corre-
sponding operational parameters, e.g., a faster revolutions-
per-minute (RPM) of the engine, in general, leads to a higher
battery voltage. B-Diag exploits such physically-induced
correlations to diagnose vehicles by cross-validating the ve-
hicle information with battery voltage, based on a set of
data-driven norm models constructed online. Such a design
of B-Diag is steered by a dataset collected with a prototype
system when driving a 2018 Subaru Crosstrek in real-life
over 3 months, covering a total mileage of about 1, 400 miles.
Besides the Crosstrek, we have also evaluated B-Diag with
driving traces of a 2008 Honda Fit, a 2018 Volvo XC60, and
a 2017 Volkswagen Passat, showing B-Diag detects vehicle
anomalies with >86% (up to 99%) averaged detection rate.

CCS CONCEPTS

« Computer systems organization — Sensors and actu-
ators.
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1 INTRODUCTION

e Background. The automotive industry is increasingly
employing software-based solutions to provide value-added
features on vehicles, such as automatic crash response and re-
mote diagnostics, especially with the coming era of (hybrid)
electric vehicles and autonomous driving. As a result, modern
vehicles are commonly installed with software systems con-
sisting of hundreds of millions of lines of codes distributed
across over 80 Electronic Control Units (ECUs) [1, 2], ren-
dering vehicles prototypical cyber-physical systems (CPSes).
The ever-increasing cyber components of vehicles, however,
prove to be a double-edged sword and incur new risks to
vehicles’ reliability/safety [3-5].

First, software system becomes error-prone with the ever
growing data volume in the in-vehicle network [6-8]. Taking
the automatic gear shifting in Fig. 1 as an example:

(a) the vehicle’s engine control module first gathers read-
ings of the crankshaft position sensor to calculate the
RPM!,

(b) it then actuates based on the thus-calculated RPM to
control the activation frequency of spark plug,

(c) the engine control module also broadcasts the RPM to
other ECUs via the in-vehicle network, e.g., in form of
the controller area network (CAN) [9],

(d) the transmission control module receives and then
processes the broadcasted RPM, and changes gears
accordingly.

As can be seen, any software defects in the computation/com-
munication/control of the above process could compromise
the gear shifting. Software flaws, unfortunately, have been
frequently identified in vehicles: (i) a bug causing unintended

IRevolutions per minute (RPM) quantifies the engine speed.
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(c) broadcasting processed information (e.g., RPM) to other ECUs on the in-vehicle network

Fig. 1: Vehicle’s cyber operations: gathering, processing,
transmitting information and actuating accordingly.

acceleration forced Toyota to recall 7.5 million vehicles be-
tween 2009-2011 [10], (ii) a glitch unlocking the door with-
out notifying drivers caused Jaguar to recall 65,000 Range
Rover in 2015 [11], (iii) defects in the cruise control software
caused Chrysler to recall 4.8 million vehicles in 2018 [12], to
name a few.

Second, the proliferation of in-vehicle sensing and com-
munication modules eases the inter-connection between cars
and third-party devices, thus exposing new vulnerabilities
to cyber attacks [13-19]. For example, many work on the
injection and modification of data packets in the in-vehicle
network through WiFi, Bluetooth, or other cyber interfaces
have been reported [20-24]. People have even successfully
stopped a Jeep Cherokee on a highway by masquerading its
in-vehicle data packets [25], triggering a recall of 1.4 million
vehicles by Jeep in 2015 [26].

These risks, albeit of different causes, lead to the same con-
sequence of unintended information in the in-vehicle network,
referred to as cyber anomalies, disrupting the automotive
industry and degrading vehicles’ reliability/safety.

o State-of-the-Art. Vehicle anomalies are traditionally diag-
nosed with the On-Board Diagnostics System (OBD-II) [27],
which however, is ineffective in detecting cyber-induced
anomalies, as demonstrated by the fact that many of the
above cyber flaws/attacks do not trigger any diagnostic trou-
ble code of OBD-IL To fill this need of anomaly diagnostics,
researchers have designed various solutions such as mes-
sage authentication [28-32] and intrusion detection [33-35].
These solutions, however, still suffer from the following three
deficiencies. First, these solutions are defective in systemati-
cally exploiting a vehicle’s CPS nature [36] — i.e., a system of
sub-systems interacted constantly in the cyber and physical
spaces — missing a reliable opportunity in vehicle diagnos-
tics, as we will see in this work. Second, these solutions are
commonly implemented at vehicles’ ECUs as part of the
in-vehicle network, and thus also suffer from the risks of
anomalies thereof, i.e., the diagnostics systems themselves
could be abnormal [31, 37, 38]. Last but not the least, many
existing solutions are grounded on an offline knowledge of
known vehicle anomalies, thus being defective in adapting
to unexpected but inevitable vehicle dynamics [39-43].
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Fig. 2: B-Diag diagnoses vehicles with a cyber-physical ap-
proach by exploiting automotive batteries as sensors.

batteries as sensors

physical dependency between
battery and other vehicle modules

Table 1: A (nonexclusive) list of vehicle information that are
corroborated to be diagnosable by B-Diag.

[ Vehicle Information

1) Absolute Throttle Position B 12) Intake Manifold Pressure

2) Accelerator PedalPosition D 3) Mass Air Flow Rate

3) Accelerator PedalPosition E 14) O2 Sensor1 Equivalence Ratio

Air Fuel Ratio (Commanded) 5) O2 Sensor1 Equivalence Ratio (alternate)

Commanded Equivalence Ratio 7) Throttle Position (Manifold)

3)
4)
5) Air Fuel Ratio (Measured) 6) O2 Sensorl Wide-Range Voltage
6)
7)

8) Engine Load 9) Transmission Temperature (Method 3)
9) Engine Load (Absolute) 0) Voltage (Control Module)
10) Engine RPM 1) Voltage (OBD Adapter)

)
)
)
)
)
Engine Coolant Temperature 18) Transmission Temperature (Method 1)
)
)
)
)

11) Fuel Level (From Engine ECU) 2) Volumetric Efficiency (Calculated)

o Battery-based Diagnostics of Vehicles. To mitigate
these deficiencies, we design a battery-based diagnostic sys-
tem for vehicles, called B-Diag, and implement B-Diag as
an add-on module of commodity vehicles attached to auto-
motive batteries, thus providing vehicles an additional pro-
tection on top of the traditional OBD-II (see Fig. 2). B-Diag
has the following salient properties.

(1) Diagnosing with a Cyber-Physical Approach. The
foundation of B-Diag is the fact that many physically
inter-connected modules of the vehicle operate in close
dependency — e.g., a faster engine RPM increases the alter-
nator’s output current and then the automotive battery’s
voltage — which is observable as correlations among the
vehicle’s operational parameters in the cyber space. B-Diag
exploits such correlations to diagnose vehicles with a cyber-
physical approach by: (i) capturing the physically-induced
correlations in the cyber space with data-driven norm
models constructed online, and (ii) detecting (and then
verify) vehicle anomalies by cross-validating, in real-time,
the vehicle information. These online constructed norm
models also make B-Diag adaptive to the inevitable changes
in vehicles.

(2) Exploiting Batteries as Sensors. B-Diag’s
validation of vehicle information requires a trustworthy
ground, to which no information from the in-vehicle net-
work satisfies due to the risks of cyber-induced anomalies.
As a mitigation, B-Diag novelly grounds its cross-validation
on the voltage of automotive batteries by exploiting batteries
as sensors: (i) battery voltage can be reliably (and easily)

Cross-
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Fig. 3: We have prototyped B-Diag as an add-on module of commodity vehicles attached to automotive batteries.
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Fig. 4: Using B-Diag’s prototype to collect the real-life driving data of a 2018 Subaru Crosstrek.

collected from the physical batteries without going through
the in-vehicle network, thus serving as the hardware-based
root of trust [44] and making the cross-validation reliable; (ii)
battery operates in strong dependency with many vehicle
modules, and thus battery voltage correlates with many
vehicle parameters, making the cross-validation effective.
This way, B-Diag’s anomaly detection will be robust and
effective even when the in-vehicle network is compromised.
Such a battery-based diagnostics of B-Diag also magnifies
its practicality because no re-designing of existing in-vehicle
network is needed, which is crucial for the cost-conscious
automotive industry with only 4-9% profit margin [45].
Table 1 summarizes the vehicle information that has been
corroborated to be diagnosable by B-Diag.?

The design of B-Diag is steered by a dataset collected with
a prototype system when driving a 2018 Subaru Crosstrek
in real-life over 3 months, covering a total mileage of about
1, 400 miles. Besides the Crosstrek, we have also evaluated
B-Diag using driving traces collected from a 2008 Honda Fit,
a 2018 Volvo XC60, and a 2017 Volkswagen Passat, show-
ing B-Diag detects anomalies in vehicle information with
>86% (up to 99%) detection rate on average. In this paper,
we use B-Diag’s diagnosis of engine RPM as a complete
walk-through example, and then validate B-Diag’s ability
of individually diagnosing the vehicle information listed in
Table 1. An integrated approach to diagnose all vehicle in-
formation in real-time, however, is still missing in this work.

2 SYSTEM PROTOTYPING

We have prototyped B-Diag as an add-on module of com-
modity vehicles attached to their automotive batteries, as

%Please see [46] for the details of these vehicle information.

shown in Fig. 3(a), including: (i) an Arduino-based micro-
controller attached to the automotive battery in the vehicle’s
engine cabin, (ii) a battery monitor collecting the voltage
of the automotive battery in real-time, (iii) a RS485-to-TTL
converter transforming the voltage signal and sending it
to the micro-controller, (iv) a Bluetooth module collecting
the vehicle information from the in-vehicle network — e.g.,
via the OBD-II port with off-the-shelf OBD-II adapters —
and reporting the results to the smartphone of the vehicle’s
driver/owner, and (v) a power supply supporting the above
components. This prototype is installed in a 3D-printed pro-
tective case, as shown in Fig. 3(b). Fig. 3(c) shows an exam-
ple of the prototype’s GUI on an Android phone. Note the
Bluetooth-based collection of vehicle information from the
OBD-II port is only for the ease of implementation. Wired
OBD-II adapters are readily available in the literature and
could be adopted to further improve the reliability. The total
hardware cost of this prototype is below US$50, which could
be further reduced, e.g., by using the automotive battery to
power the prototype and thus removing the power supply.
We have used this prototype of B-Diag to collect the real-
life driving traces of a 2018 Subaru Crosstrek, as shown in
Figs. 4(a) and (b). We used four commodity Bluetooth OBD-
IT adapters (Fig. 4(c)) to collect the vehicle information via
the OBD-II port at 10Hz (Fig. 4(d)) and upload the informa-
tion to B-Diag’s prototype. These data are collected over 3
months, on both highway and urban roads, and also when
driving during rush hour traffic jams and in snowing/raining
weather, as summarized in Fig. 4(e). These data cover most
of activities during driving such as turning, breaking, cruise
control, operating the vehicle’s e-systems such as air con and
radio, etc. No abnormal behavior of the vehicle is observed
during the collection of these traces, which is also confirmed
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Fig. 5: Other things being equal, a faster engine RPM leads to a higher battery voltage.

when performing its regular maintenance at the auto dealer.
This way, we treat these collected traces as normal. We have
also identified another Bluetooth OBD-II adapter (not among
the four adapters in Fig. 4(c)) that is not reliable in collecting
the driving traces. We will use the “abnormal” vehicle infor-
mation collected with this faulty adapter to evaluate B-Diag,
as we explain in Sec. 5.1.

Note that such an installment of B-Diag is general for
all vehicles because (i) all automotive batteries have pos-
itive/negative terminals exposed to the environment, via
which B-Diag can be connected and thus the battery voltage
collected; (ii) OBD-II port — under the dash in virtually all
modern vehicles — has been mandatory for all vehicles sold
in the US since 1996 and Europe since 2001, via which the
well-defined vehicle information can be collected in real-time
without knowing the vehicle architecture or the format of
the in-vehicle messages.

Knowing the hardware components of B-Diag, we ex-
plain B-Diag’s diagnostic algorithms in the next two sections,
steered by the above empirically collected driving traces.

3 CASE-STUDY: DIAGNOSING ENGINE
RPM WITH BATTERY

We first use B-Diag’s detection of anomalies in engine RPM
as an example to walk through its diagnostics of vehicles.
The related algorithms are also applicable to the detection
of anomalies in other vehicle information listed in Table 1,
as we elaborate in Sec. 4.

3.1 Automotive Battery and Engine

We first explain the physically-induced correlations between
the automotive battery and vehicle’s engine.

¢ Automotive Battery. Automotive battery — normally a
rechargeable lead-acid battery with 12/24V nominal voltage
depending on vehicle type — supplies the necessary current
to the starter motor and the ignition system while cranking to
start the engine. The battery will be charged by the vehicle’s
alternator once the engine is running. It is crucial to note
that even (hybrid) electric vehicles such as Chevrolet Volt
and Bolt — which use high-voltage (e.g., up to 400V) battery
packs to supply the driving power — have such low-voltage
batteries, ensuring their compatibility to standard 12/24V
automotive accessories.
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Fig. 6: Exemplary traces of battery voltage and engine RPM.

e Engine RPM. Revolutions per minute (RPM) is the met-
ric quantifying the engine speed, defined as the number of
rotations per minute made by engine’s crankshaft and mon-
itored by the crankshaft position sensor in real-time. RPM
is crucial to engine’s timing functions for ignition, fuel in-
jection, spark events, and valve timing. For example, RPM is
needed to determine the activation frequency of spark plugs,
normally every 10-17ms [36], to control the fuel injection
to each cylinder in real-time. As a result, inaccurate RPMs
cause a variety of problems such as misfiring, motor vibra-
tion, backfires, hesitant acceleration, abnormal shaking, or,
the car may simply do not start [47, 48]. Koscher et al. has
experimentally demonstrated the feasibility of fabricating
engine RPM via cyber attacks [22], rendering the abnormal
RPM a real-life risk. For example, fabricating a large RPM to
alow level could falsely convince the Power Steering Control
Module (PSCM) that the vehicle is driving slowly, thus trick-
ing PSCM to start a diagnostic session even when driving
on a highway, causing critical safety risk [24].

o Physical Dependency betw. Battery and Engine. The
automotive battery and engine operate in close dependency,
as summarized in Fig. 5. First, the engine’s rotation triggers
that of the alternator at a speed about 1-3 times of engine
RPM [49]. The alternator’s rotation, in turn, generates an
electric power that is monotonic to its rotation speed (up
to a certain safe level). This way, a faster RPM leads to a
larger output current Iy of the alternator (see part-A of
Fig. 5) [50]. Second, part of the alternator’s Ioy: is used to
power the vehicle’s electrical systems, and the remaining cur-
rent charges the battery. Other things being equal, a larger
Lt increases the battery’s charging current (see part-B of
Fig. 5). Third, a larger charging current increases the bat-
tery voltage. This can be explained by the battery’s circuit
model shown in Part-C of Fig. 5: the battery will have a volt-
age of Viart = Voev + 7 * Icharge When charging with current
Icharge [51], where r is the internal resistance of the battery.
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Fig. 9: B-Diag detects (and verifies) the anomalies in engine RPM based on battery voltage with an online data-driven model.

Combining these three facts uncovers a dependency between
the automotive battery and engine induced by their physical
design/connection — the battery will has a higher voltage
with a faster engine speed.

e Correlation betw. Battery Voltage and RPM. We next
examine if such a dependency between battery and engine
could be observed as a correlation between the vehicle’s
corresponding operational parameters.

Observation-I: Weakly Correlated Raw Readings.  Fig. 6
plots the traces of battery voltage and engine RPM during a
39-minute driving trip, and Fig. 7(a) shows the correspond-
ing scatter plot, confirming their dependency that a larger
RPM, in general, leads to a higher voltage. Significant vari-
ance, however, is observed: the battery voltage varies in a
wide range of [14.2,14.4]V when the RPM is about 2, 000,
rendering such a correlation weak. Also, the two traces have
only a small Pearson correlation coefficient of 0.06. Fig. 7(b)
plots all the voltages and RPMs of the 64 traces summarized
in Fig. 4(e), confirming again such weakly correlated raw
readings of battery voltage and engine RPM. A potential expla-
nation for such a weak correlation is that the battery voltage
is affected by, besides the engine RPM, a variety of other
factors, such as the power requirements of the vehicle’s elec-
trical systems (i.e., Igcus in Fig. 5), and thus rendering the
battery voltage highly dynamic [52].

Observation-II: Strongly Correlated Peaks. ~ We further

identify the local maximums of the RPM/voltage readings
in Fig. 6, referred to as peaks, and then use dynamic time
warping [53] to align these peaks’ time-stamps, as shown
in Fig. 8(a). The close-to-diagonal warp path indicates we
can find a voltage peak at a similar time whenever an RPM
peak is observed, i.e., the peaks of battery voltage and engine

RPM are synchronized (and hence correlated). Fig. 8(b) plots
the warp paths obtained by aligning the RPM/voltage peaks
of all the 64 Crosstrek traces in Fig. 4(e), validating again
such strongly correlated RPM/voltage peaks. Note that here
the correlation between RPM/voltage peaks is in a general
sense and not necessarily in terms of the Pearson correlation.

B-Diag exploits the above two correlations between the
battery voltage and engine RPM to detect the potential anom-
alies in RPM readings, as we explain next.

3.2 Detecting RPM Anomalies with Battery

Fig. 9 shows an overview of B-Diag’s detection of potential
anomalies in engine RPM: taking as input (i) the real-time
battery voltage collected from the battery directly and (ii) the
engine RPM from the in-vehicle network, B-Diag outputs an
online decision value indicating if anomalies are detected in
RPM readings. B-Diag conducts such an anomaly detection
with three steps: data preparation, norm model construction,
and anomaly detection. In what follows, we elaborate on the
design of B-Diag using the trace shown in Fig. 6.

e Data Preparation. B-Diag applies a set of operations to
prepare the collected battery voltage and engine RPM before
constructing the norm model.

Data Alignment. B-Diag collects battery information
from the battery and vehicle information from the in-vehicle
network. Such different approaches of data collection make
the collected battery voltage and engine RPM (likely) not
aligned in the time domain. B-Diag aligns the data by ex-
ploiting the engine’s cranking time as the anchor, which can
be reliably identified based on the fact that both the battery
voltage and engine RPM (i) keep stable before cranking and
then (ii) change abruptly and significantly while cranking,
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as shown in Fig. 10. B-Diag detects the cranking time by
identifying the local min/maximums of voltage/RPM with
significant magnitudes and are proceeded by stable readings.

Real-Time Peak Detection. B-Diag, besides collecting and
recording the battery voltage and engine RPM, also checks
the RPM to determine, in real-time, if a new RPM peak is
observed, and triggers its diagnostics of potential anomalies
if yes. Specifically, B-Diag identifies and maintains the cur-
rent trend of RPMs as increasing or decreasing — a peak is
detected if the trend changes from increasing to decreasing.
B-Diag confirms such a change in trend only when it has
been observed with three consecutive RPM samples, as illus-
trated in Fig. 11, reducing the variance in the peak detection
caused due to signal dynamics.

Time Window Construction. B-Diag maintains the time at
which the previous RPM peak is observed, denoted as t.
Once detecting a new RPM peak, B-Diag constructs a time
window of [tyre—Thy, tpre], Wwhere T, is the window size. The
window terminates at #,r, instead of the current time fnow,
because not all properties of the newly detected RPM peak
can be determined at t,oy, as we explain later.

Peak Identification in Time Window. B-Diag fetches the
two time-series of battery voltage and engine RPM within
the above-constructed time window, and then identifies the
peaks therein. B-Diag describes each peak by its peak value
v, width w, prominence p, and time-stamp ¢, as illustrated in
Fig.12,1.e.,peak = {v, w,p, t}.B-Diag stores the peaks in the
current time window to facilitate identification of peaks in
the next window, exploiting their (likely) overlapping. Also,
B-Diag discards the 10% of peaks (in both voltage and RPM)
with the least prominence in the window, further improving
its tolerance to the inherent dynamics of voltage and RPM
readings. Note that neither the width or the prominence of a
peak can be determined upon its detection. This is why the
time window ends at the time of previous peak.

e Norm Model Construction. B-Diag constructs an online
norm model capturing the relationship between the battery
voltage and engine RPM, based on the two correlations ob-
served in Sec. 3.1. Instead of manually constructing rules that
map the battery voltage to RPM, we opted to use a machine
learning-based classifier to increase the accuracy of B-Diag’s

prominence p.

mapping. Specifically, B-Diag abstracts each of the two sub-
traces of battery voltage and RPM in the time window to a
10-parameter feature vector, i.e.,

F={fi, fa,- - fio} for battery voltage,
G =1{9i,92, - - - 1o} for engine RPM,

and constructs a norm model that estimates Gs based on Fs.

Feature Extraction. B-Diag forms its feature vectors of Fs
and Gs based on the two correlations observed in Sec. 3.1:
(i) defining fi-fs and g;—gs based on the weakly correlated
raw readings of voltage and RPM, thus facilitating the detec-
tion of RPMs’ unusual values; (ii) defining fs— fio and gs—g10
based on the strongly correlated peaks of voltage and RPM,
thus facilitating the detection of RPMs’ unusual dynamics.
The weakly correlated raw readings of battery voltage and
RPM indicates the feasibility to infer RPMs based on bat-
tery voltage, but the accuracy of such an estimation may
be limited. As a mitigation, B-Diag uses the statistics, in-
stead of the raw values, of voltage/RPM readings to form
the first part of its feature vectors. Specifically, for each time
window, B-Diag uses the [10, 25, 50, 75, 90]% percentiles of
the voltage and RPM readings as f;—fs for F and g;—gs for
G, respectively. B-Diag forms the second part of its feature
vectors based on the strongly correlated peaks of voltage
and RPM. Specifically, for each time window, B-Diag uses
the mean of the voltage/RPM peaks’ value as fi/gs, width
as f7/g;, prominence as fg/gs, relative time-stamp as fo/go,
and the ratio of their counts over the window size as fio/g1o0-
The relative time-stamp of a peak is defined as its relative
position in the current time window, i.e., t; = t — (fpre — Tw)
where t is the peak’s time-stamp. Also, B-Diag defines fjo
and gjo as the normalized peak counts to the window size
— i.e., the rate at which peaks are observed — to reduce its
dependency to the particular setting of window size.

This way, by constructing two feature vectors for each
time window, B-Diag transforms the two time-series of bat-
tery voltage and engine RPM into another two time-series
of their corresponding feature vectors, i.e.,

F= {Fl, F? ... } for battery voltage,
G= {Gl, G, } for engine RPM.

Classifier. B-Diag uses machine learning-based classifiers
to construct a norm model that maps from F to G. We opted



o 2000 © 2000 © 2500 » 2500 » 3000
= = = —Truth = =
5 3 @ 5 3
8 1500 S S 2000 S S 2500
[5} (4] () [0 [0}
& & 1500 a o 2000 o
<
£ 1000 5 £ 1500 o £ 2000
- o s N S
e o > o o
500 1000 1000 1500 1500
0 1000 2000 0 1000 2000 0 1000 2000 0 1000 2000 0 1000 2000
Time (second) Time (second) Time (second) Time (second) Time (second)
(a) Estimating g; (b) Estimating g, (c) Estimating g3 (d) Estimating g4 (e) Estimating gs
3000 10 1200 350 o 0-06
E] £ E 2 K
© o S E o}
< 2500 s 9 & 1000 = 300 2 005
S c c = o
© ©
o 3 3 o 2
= 2000 s 8 S 800 = 250 € 0.04
o g o o =
(o)) (=) 0,7_
1500 7 600 200 0.03
0 1000 2000 0 1000 2000 0 1000 2000 0 1000 2000 0 1000 2000
Time (second) Time (second) Time (second) Time (second) Time (second)
(f) Estimating gs (g) Estimating g7 (h) Estimating gs (i) Estimating go (j) Estimating g;o
Fig. 13: Estimating the features of engine RPM based on those of battery voltage, with the traces in Fig. 6 as an example.
40 40 40 40 40
£ 20 £ 20 &£ 20 £ 20 £ 20
o o> > o >
e 0= e 0~ e 0O~ e 0= e 0=
5 5 & . 5, 5,
o -20 5 -20 T i 0 i 0
40 -40 -40 -40 -40
0 1000 2000 0 1000 2000 0 1000 2000 0 1000 2000 0 1000 2000
Time (second) Time (second) Time (second) Time (second) Time (second)
(a) Estimating g; (b) Estimating g, (c) Estimating g3 (d) Estimating g4 (e) Estimating gs
40 40 40 40 40
€ 20 £ 20 £ 20 £ 20 B
o> o o o o
s 0= g 0= g 0= e O~ g o
S S S S 5 .
520 = 20 5 20 5 20 220
-40 -40 -40 -40 -40
0 1000 2000 0 1000 2000 0 1000 2000 0 1000 2000 0 1000 2000
Time (second) Time (second) Time (second) Time (second) Time (second)
(f) Estimating g¢ (g) Estimating g; (h) Estimating gz (i) Estimating go (j) Estimating g1o

Fig. 14: An averaged error of 0.8-11% is achieved when estimating the features of RPM based on battery voltage, but with

significant variance.

to use decision tree as the classifier because of its simplicity
and high interpretability.? Again, taking the traces in Fig. 6 as
an example and with a 10-minute time window, Fig. 13 plots
the results when estimating G, or more specifically the g;s in
each of the feature vector GEG, based on F. Fig. 14 summa-
rizes the estimation errors normalized to the corresponding
true values (i.e., the error ratios): (i) the errors are clustered
around 0 and thus accurate, e.g., the mean errors when esti-
mating g;—gjo are within [0.8, 11]%; (ii) variance, however, is
observed in both the estimation errors of individual g;s and
across different g;s, thus requiring further mitigation when
grounding B-Diag’s anomaly detection on these errors.

3We have tried other classifiers such as KNN and SVM, and observed no
clear advantages over the decision tree.

e Anomaly Detection. For the i-th time window (and the
corresponding feature vectors F! and G'), B-Diag trains a
tree-based model based on the previous feature vectors (i.e.,
F! to Fi=! and G! to G'™1), and then uses the trained model
to estimate G’ based on F? — an anomaly in RPM is detected
if the empirically collected G' = {g]’} deviates significantly

from the model estimated Giz{g}’:} (i=1,2, -, 10). Specifi-
cally, B-Diag defines the error of estimating G as

10
e = |IG' =Gl = > \J(g - g2 /gi x 100%. (1)
7=

Such a summation of individual estimation errors of g;s sup-
presses their relatively large variance observed in Fig. 14. To
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Fig. 17: Adding anomalies to genuine RPM readings in Fig. 6.

collaborate this, Fig. 15(a) plots the accumulated e;s obtained
with the traces shown in Fig. 6, which increases steadily and
linearly. Fig. 15(b) plots the goodness-of-fit when fitting the
accumulated e;s linearly for each of the 64 traces summarized
in Fig. 4(e). The fact that all the fitting results are clustered
at the right-bottom corner of the figure — i.e., with close-to-
1 Adjusted-R? and close-to-0 NRMSE — validates the high
fitting goodness and thus the linearity of accumulated e;s.

This linearity of accumulated e;s allows B-Diag to de-
scribe it as a linear regression model. A linear parameter
identification problem is thus formulated as

Eaccli] = S[i] - ¢[i] + 8[i], ()

where for the i-th time window ending at time #[i], Eacc[i]
is the accumulated e;s, S[i] is the regression parameter, and
d[i] is the identification error. The regression parameter S
represents the slope of the linear model and thus the aver-
aged e; over time. The identification error § represents the
residual which is not explained by the model. B-Diag uses
the Recursive Least Squares (RLS) algorithm to solve such a
linear regression. Also, the reliable linear model of accumu-
lated e;s indicates the corresponding identification error ds
should be small and stable in the normal cases, motivating
B-Diag to make its decision on anomaly detection based on
ds. Specifically, B-Diag defines

7 = [6; — (1 : 8i-1)|/0(61 : biz1), 3)
i.e., 7; is the deviation of §; from the mean of {1, - - -, §;—1 } in

terms of their standard deviation, and concludes an anomaly
in RPM is detected if 7;>60. We set 6=5 by default [35, 54].

e Anomaly Verification. B-Diag further verifies the de-
tected anomalies by exploiting the fact that engine RPM,
besides correlates strongly with the battery voltage, also cor-
relates with other vehicle parameters. For example, we have

Throttle Posi. (%)

Acc. Ped. Posi. (%)

0
0 1000 2000 3000 4000 5000

(a) RPM v.s. acc. pedal

(b) RPM v.s. throttle position

Fig. 16: B-Diag verifies the detected RPM anomalies based
on the correlations between RPM and other vehicle informa-
tion, e.g., accelerator pedal position and throttle position.

identified the physically-induced correlations between RPM
and the accelerator pedal position and throttle position, as
shown in Fig. 16. B-Diag further exploits these non-battery
correlations with RPM to verify the above-detected RPM
anomalies, based on the hypothesis that RPM anomalies, be-
sides causing abnormal behavior with regard to the battery
voltage, will also cause its abnormal behaviors with regard to
other correlated vehicle information. B-Diag conducts such
an anomaly verification, again, via norm model construction
and then checking, with similar approaches explained above.
B-Diag will confirm the detected RPM anomalies if abnormal
behaviors between RPM and any of these correlated vehicle
information is detected.

e Walk-Through Example. Next we use a walk-through
example to show how B-Diag detects and then verifies anom-
alies in engine RPM based on the battery voltage. Specifi-
cally, we emulate RPM anomalies by injecting randomly
fabricated RPM readings into the traces in Fig. 6, and test if
B-Diag can detect such anomalies. Fig. 17 plots the altered
RPM trace after injecting anomalies during the time period
of [849, 1449]s. Applying B-Diag to the thus-altered trace
with a window size of 600s, Fig. 18 plots the errors when
estimating RPM’s feature parameters based on those of the
battery voltage, showing much degraded accuracy at {gs,
97, Gs> G99, gro} When compared to Fig. 14.* Fig. 19 plots the
accumulated estimation errors — i.e., e;s as defined in Eq. (1)
— showing the injected anomalies change the slope of the
accumulated e;s, and thus being detectable. Note that no
anomaly is detected when applying B-Diag to the raw traces
in Fig. 6, and thus no false detection is caused. We further
verify the detected RPM anomalies by cross-validating with
the accelerator pedal position and throttle position, which
are confirmed with the changed slopes of accumulated e;s
(see Fig. 20).

4 DIAGNOSING VEHICLE BEYOND RPM

We have used the detection of RPM anomalies with battery
voltage to walk through B-Diag’s cyber-physical approach
of vehicle diagnostics. Besides the engine, physical dependen-
cies with the automotive battery also exists at other vehicle

“The specific feature parameters with degraded estimation accuracy will
depend on the particular anomalies.
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change the slope of the
accumulated e;s with regard
to battery voltage, and thus
being detectable.

change the slopes of the
accumulated e;s regarding
to acc. pedal position and
throttle position.

Fig. 22: Errors in estimating feature vectors of vehicle infor-
mation listed in Table 1 (besides those relate to engine RPM).
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Fig. 21: Physically-induced correlations among a vehicle’s
accelerator pedal, throttle, engine, alternator, and battery.
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Fig. 23: B-Diag uses a correlation graph to abstract the vehi-

modules, thus offering opportunities to generalize B-Diag’s
cle and the correlations thereof.

anomaly detection to other vehicle information. Specifically,
examining the physical inter-connection among vehicle’s
sub-systems, Fig. 21 shows a dependency diagram among
vehicle’s accelerator pedal, throttle, engine, alternator, and
battery. Steered by this dependency diagram, we further
checked the related vehicle information collected when driv-
ing the Crosstrek, and confirmed the correlations with the
battery voltage at the information listed in Table 1. As an
example, Fig. 22 plots the averaged error when estimating
the vehicle information listed in Table 1 (besides those relate
to engine RPM), or more specifically their feature vectors,
based on the traces collected during the same trip as with
Fig. 6 , showing averaged errors within [0.9, 9.7]%. Note that
Fig. 21 may not be thorough in capturing the physical depen-
dency among vehicle’s sub-systems, and thus Table 1 may

not be exclusive. These multi-modal correlations between
battery voltage and other vehicle information enable B-Diag
to act as a comprehensive diagnostic system for vehicles.

To facilitate the systematic exploitation of these physically-
induced correlations for vehicle diagnostics, B-Diag ab-
stracts the vehicle with a 2-layer correlation graph Georr =
{V, E}, in which: (i) the vertex set V represents the opera-
tional parameters of the vehicle with the battery voltage at
the upper layer and other vehicle parameters at the lower
layer; (ii) the edge set E captures the correlations among
vehicle parameters, i.e., an edge e; ; connecting vertex v; and
v; exists in E if v; and v; are correlated. Fig. 23 shows an
exemplary correlation graph.
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(a) Raw traces

This 2-layer correlation graph facilitates exploiting the
uniqueness of automotive batteries to diagnose vehicles: (i)
battery voltage can be directly (and easily) collected from
the battery without going through the in-vehicle network,
thus being tolerable to the risks of cyber-induced anomalies
thereof and serving as a trustworthy ground for B-Diag’s
diagnostics of vehicles; (ii) battery draws power from the
alternator and supplies power to the vehicle’s electrical sys-
tems, implying strong correlations between battery voltage
and many vehicle parameters. As a result, the correlation
graph consists of two types of edges: the inter-layer edges
representing the correlations between battery voltage and
other vehicle parameters, and the intra-layer edges captur-
ing the pairwise correlations between vehicle parameters
besides battery voltage. Note the correlation graph also de-
fines B-Diag’s ability/limit of diagnosing vehicles, i.e., which
vehicle modules/parameters B-Diag can guard.

With such an abstracted correlation graph Georr, B-Diag’s
detection/verification of anomalies at each vehicle informa-
tion is transformed to the construction (and then checking) of
the data-driven norm model(s) defined by the corresponding
inter/intra-layer edges. This way, B-Diag can take a round-
robin approach to check the individual inter-layer edges of
Georr for anomaly detection: substituting the engine RPM in
Sec. 3 with the target vehicle information and detecting/ver-
ifying the anomalies thereof with similar approaches.’

5 EVALUATIONS

We have evaluated B-Diag with four vehicles: a 2018 Sub-
aru Crosstrek, a 2008 Honda Fit, a 2018 Volvo XC60, and a
2017 Volkswagen Passat. The major challenge in B-Diag’s

>It is possible to design advanced scheduling methods to check the edges
based on factors such as the criticality of vehicle information [55].
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Fig. 28: Accumulated e;s of
emulated anomalies.

Fig. 29: Example on injected
abnormal RPM with AM-2.

evaluation is the short of real-life cases on vehicle anomalies,
gathering of which incurs safety risks. We mitigate this by
evaluating B-Diag with (i) anomalies caused by an unreliable
OBD-II adapter, (ii) emulated anomalies based on wheel’s
RPM, and (iii) simulated anomalies by injecting fabricated
values to normal vehicle traces.

5.1 B-Diag against “True” Anomalies

e Methodology. We have identified one faulty Bluetooth
OBD-II adapter that is unreliable in collecting the vehicle
information, as plotted in Fig. 24 with the engine RPM as
an example: the RPM keeps constant for up to over 10 min-
utes when driving the Crosstrek in urban road with frequent
acceleration and braking. We have further verified the unre-
liability of this adapter with different vehicles. The abnormal
vehicle information collected with this faulty adapter serves
as a promising candidate to evaluate B-Diag’s ability in de-
tecting the anomalies thereof, even though these anomalies
are caused due to the faults of the OBD-II adapter and not the
vehicle. For example, the deficient updates of engine RPM in
Fig. 24 could map to faulty (or hacked [22]) tachometer of
the vehicle.

e Evaluation Results. We have collected 5 abnormal ve-
hicle traces with the Subaru Crosstrek using this “faulty”
adapter, each lasting about {25, 41, 33, 6, 6} minutes. We
then apply B-Diag with a moving window of 60s to these
traces, to detect the anomalies in the vehicle information
listed in Table 1. B-Diag successfully detects the anomalies
in all these vehicle information of all the 5 traces. As an ex-
ample, Fig. 25 plots the accumulated e;s of the engine RPM of
these abnormal traces: the abrupt changes in slopes validate
the detectability of anomalies thereof by B-Diag.
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Fig. 30: B-Diag’s detection rate, latency, and false detection against RPM anomalies, with the 64 Crosstrek traces in Fig. 4(e).

e Adapter Faults or Vehicle Faults? The above evaluation
of B-Diag leads to an interesting and important question:
can B-Diag differentiate the anomalies caused due to the
faults of its own data collection and those by the actual vehi-
cle failures? The answer is confirmative because the faults
of data collection will cause anomalies in all the collected
vehicle information, while the actual vehicle failures will,
unless in a rare case where most of the vehicle modules
fail, cause anomalies only in the vehicle information related
to the faulty vehicle modules. Also note the risk of these
adapter-caused anomalies can be reduced by employing reli-
able OBD-II adapters, e.g., using the wired OBD-II adapters
to collect the vehicle information instead of those based on
Bluetooth.

5.2 B-Diag against Emulated Anomalies

Next we evaluate B-Diag by emulating anomalies of engine
RPM based on the wheel’s RPM empirically collected during
the same driving trip. Wheel RPM quantifies the rotation
speed of the vehicle’s wheels. Mechanically,

RPMyheel = ai(t) . RPMengine, (4)
where «(t) is the gear ratio at time ¢, determined by the
real-time driving behavior. The empirically collected wheel’s

RPMs are a promising candidates to emulate the anomalies
of engine RPMs during the same driving trip, because: (i)

wheel’s RPMs fall in the legal range of engine RPM (i.e., with
a;(t)=1), making the thus-emulated anomalies possible to
occur in practice and not diagnosable by existing range-based
diagnostics systems [2, 36], (ii) the wheel RPM is strongly
correlated to, but different from, the engine RPM, and such
a correlation is dynamic over time.

Inspired by this, we build an Arduino-based RPM sensor
with a hall sensor and a magnetic, and attach it to the front-
right wheel of the Subaru Crosstrek (see Fig. 26). Fig. 27(a)
plots the collected wheel RPM, engine RPM, and battery
voltage during a 23-minute drive of the vehicle. The corre-
sponding gear ratio during this driving is plotted in Fig. 27(b).
We then emulate the abnormal engine RPMs by concatenat-
ing the first 10-minute trace of engine RPM and the last
13-minute trace of wheel RPM, and examine if B-Diag is
able to detect such emulated anomalies. Fig. 28 plots the
accumulated e;s obtained with such an emulation, whose
change in slope at about the 10.5th minute — i.e., about
0.5 minute after the emulated anomalies begin — validates
B-Diag’s ability of detecting such anomalies.

5.3 B-Diag against Simulated Anomalies

We also evaluated B-Diag against simulated anomalies in
the vehicle information.

e Anomaly Model. We emulate vehicle anomalies by in-
jecting fabricated vehicle information to the collected normal
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traces. Specially, denoting the genuine time series of the tar-
geting vehicle information (e.g., engine RPM) as v(t), we
inject anomalies to v(t) with the following two anomaly
models, emulating the fabrication and masquerade attacks
in practice [35].

AM-1: Injecting anomalies after a randomly selected time
tanom Dy fabricating v(t) within a legal range:

Ul(t) = (1-rand(a)) - Vmin + rand(a) - Vmax (t 2 tanom), (5)

where Uiy and v,y are the min/maximum of v(t), rand(a)
returns a random value in [0, a], and a€[0, 1] controls the
levels of the fabricated readings (a=0.8 unless specified oth-
erwise). The thus-fabricated vehicle information will still be
within the min/maximum of its genuine levels, thus voiding
existing range-based diagnostics systems [2, 36]. This is also
how we generate the RPM anomalies in Fig. 17.

AM-2: Injecting anomalies after a randomly selected time
tanom DYy shifting v(t)s from their true values randomly:

v'(t) = (1= b+ 2b-rand(1)) - v(t) (t > tanom),  (6)

where b controls the maximum shift of the fabricated v(t)s
from their true values (b=0.5 unless specified otherwise).
Fig. 29 shows an example of such generated RPM anomalies
based on the genuine trace in Fig. 6.

¢ Evaluation with Subaru Crosstrek. We first evaluate
B-Diag with the 64 driving traces of the Subaru Crosstrek
summarized in Fig. 4(e), taking again, the anomalies in engine
RPM as an example.

Overall Performance. Fig. 30 summarizes B-Diag’s perfor-
mance in anomaly detection, in terms of the detection rate
(Fig. 30(a)), detection latency (Fig. 30(b)), and false detec-
tion (Fig. 30(c)), with a 60s moving window. The results in
Figs. 30(a) and 30(b) are based on randomly injected RPM
anomalies according to AM-1 and AM-2, each with 100 tests.

0.1 02 03 04 05 06 0.7 08 09 1
b in AM-2

Fig. 35: Detection rate v.s. AM-2’s model
parameter b in Eq. (6).
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As shown in Fig. 30(a), B-Diag achieves an overall averaged
detection rate of 99% and 97% against the anomalies injected
according to AM-1 and AM-2, respectively, and archives 100%
detection rate for many of these 64 traces. The minimum de-
tection rate of these traces with AM-1/2 is 80/75%. Fig. 30(b)
shows B-Diag detects the anomalies with an averaged la-
tency of less than 31s and 68s, for the two anomaly models
respectively. The overall average detection latency across all
these 64 traces is 8s for AM-1 and 19s for AM-2. We have
also evaluated B-Diag’s false detection of anomalies. Specif-
ically, we apply B-Diag to the genuine RPM traces without
injecting anomalies, and check if any false detection of RPM
anomalies is triggered. Fig. 30(c) shows B-Diag falsely de-
tects RPM anomalies in only 4 of the 64 traces. Moreover,
B-Diag only falsely detects the anomalies in {1, 1, 2,2} of
the 60s moving windows in the 4 traces with false detection,
which last about {30, 26, 25, 25} minutes, respectively.
Impact of Window Size. We next evaluate the impact of
the size of B-Diag’s moving window on its performance
in anomaly detection, based on the RPM traces shown in
Fig. 6. Figs. 31 and 32 summarize B-Diag’s detection rate and
latency of injected anomalies with the window size varying
from 40-120s, showing an over 84/89% detection rate for all
the explored cases and an average latency of 13s and 24s, with
AM-1 and AM-2, respectively. No clear dependency between
B-Diag’s detection rate against anomalies and the window
size is observed from Fig. 31. On the other hand, Fig. 32
shows a larger moving window tends to increase the latency
of B-Diag’s anomaly detection, which is expected as a larger
window requires more samples of abnormal RPM readings to
conclude the detection of anomalies, thus requiring a longer
time. Fig. 33 summarizes the false detection of anomalies
when applying B-Diag to each of these genuine 64 traces
(and thus without anomalies) with varying window size. The
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(b) 2018 Volvo XC60 (c) 2017 Volkswagen Passat

Fig. 37: Further evaluating B-Diag with the driving traces collected with a 2008 Honda Fit, a 2018 Volvo XC60, and a 2017
Volkswagen Passat.
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Fig. 38: B-Diag detects the anomalies of Honda Fit, Volvo XC60, and Volkswagen Passat with averaged rate/latency of
{92%, 88%, 96%} /{91%, 86%, 87%} and {11, 26,12} /{15, 28, 18}s, with the two anomaly models of AM-1 and AM-2, respectively.

Table 2: Summary of the traces collected with a 2008 Honda

Fit, a 2018 Volvo XC60, and a 2017 Volkswagen Passat.

[ Vehicles H # of Traces [ Total Duration [ Total Distance ]
Honda Fit 11 4.7 hour ~160 miles
Volvo XC60 17 4.1 hour ~210 miles
Volkswagen Passat 7 29 hour ~1,840 miles

number of traces in which B-Diag falsely observes anomalies
increases as the window becomes larger, varying from 1-
9 with window size between 40-120s. Also note that even
for traces with falsely observed anomalies, only a limited
number of time windows therein detect such anomalies, e.g.,
with a maximum of 4 windows in all the cases in Fig. 33, and
thus accounting for only a limited period when compared to
the total driving duration of about 31 hours (as summarized
in Fig. 4(e)).

Impacts of Anomaly Models’ Parameters. Figs. 34 and 35

summarize B-Diag’s detection rates of injected anomalies
based on the RPM traces in Fig. 6, with varying a in Eq. (5)
and b in Eq. (6) respectively. The results are averaged over
100 tests for each setting. B-Diag detects the anomalies
fabricated with AM-1 with over 68% detection rates with
a€[0.1, 1] (see Fig. 34). The relatively low detection rate of
68% with a=0.4 is because in this case, the abnormal RPMs
deviate little from their genuine levels. Specifically, with
the RPM trace shown in Fig. 6, a = 0.4 leads to abnormal
RPMs within [573, 2069] according to Eq. (5), which are close
to their true values (as observed in Fig. 6). Also note that
other things being equal, a smaller deviation of RMP read-
ings from the genuine levels will cause less safety/reliability
risks, when compared to those change the RPMs dramati-
cally. Fig. 35 shows B-Diag accurately detects the anomalies

when the model parameter b in Eq. (6) is not too small, e.g.,
with over 93% detection rates when b>0.3. The low detection
rate with b=0.1 is because, again, a small b in AM-2 causes
little deviation of abnormal RPM readings from their true
levels.

e Evaluation with Other Vehicles. To validate B-Diag’s
generality with different vehicles, we have further evaluated
B-Diag based on the driving traces collected with a 2008
Honda Fit, a 2018 Volvo XC60, and a 2017 Volkswagen Passat
(see Fig. 37), each with its respective owner/driver. Table 2
summarizes the details of these traces. Different from the
Crosstrek traces where the battery voltage is collected with
our prototype and in physical separation of the in-vehicle
network, we use the control module voltage collected
from the in-vehicle network via the OBD-II port as a close
approximation of the battery voltage for these three vehi-
cles, for the ease of data collection. The control module
voltage represents the real-time voltage supplied to the ve-
hicle’s ECUs, i.e., the battery voltage minus any voltage drop
in the wiring between the battery and ECUs, normally less
than a few tenths of a volt. Fig. 36 compares the control
module voltage with the corresponding battery voltage
collected directly from the battery, corroborating their close-
ness. Fig. 38 plots B-Diag’s detection rate and latency against
the added anomalies, with a 60s moving window and aver-
aged over 100 runs. For the two anomaly models AM-1 and
AM-2, B-Diag detects the anomalies with (i) an averaged
detection rate of 92/91% and a latency of 11/15s for Honda
Fit, (ii) an averaged detection rate of 88/86% and a latency of
26/28s for Volvo XC60, and (iii) an averaged detection rate
of 96/87% and a latency of 12/18s for Volkswagen Passat.
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Fig. 39: Using B-Diag to diagnose the information in Fig. 22.

¢ Diagnosing beyond Engine RPM. We also corroborated
B-Diag’s feasibility as a comprehensive diagnostics system
for vehicles. Specifically, we use B-Diag to detect the anom-
alies at each of these vehicle information in Fig. 22, injected
according to the two anomaly models. Fig. 39 summarizes
the detection results: all of these anomalies are detected with
over 81/76% detection rate and a latency less than 42/31s,
with an average of 94/89% and 19/20s, respectively. Note
that no false detection is observed when applying B-Diag to
the raw traces without injecting anomalies.

Last but not the least, we further verify B-Diag’s gener-
ality in diagnosing the vehicle information listed in Table 1
— which are originally identified with the Subaru Crosstrek
— with the Honda Fit, Volvo XC60, and Volkswagen Passat.
The strong correlations of these vehicle information with the
battery voltage are observed in all these three vehicles, thus
validating B-Diag’s generality. This also demonstrates the
advantage of B-Diag’s cyber-physical approach in vehicle
diagnostics: the physical dependencies among a vehicle’s
individual modules are (likely) general for different vehi-
cles, making the correlations among corresponding vehicle
information universal.

6 LIMITATIONS

Below we discuss a few limitations of the current design/e-
valuation of B-Diag, and their potential mitigations.

¢ Norm Model Construction. B-Diag constructs the norm
models with a decision tree defined by 10 features. We will
further improve such a model construction by (i) reducing the
number of features and (ii) exploiting the (likely) overlapped
time windows, thus reducing the complexity and improving
the online diagnostics of vehicles. Also, B-Diag assumes the
availability of normal traces to construct the norm model. We
will further explore B-Diag’s ability of vehicle diagnostics
when the normal traces are not available.

e Anomaly Detection and Verification. B-Diag detects
the anomalies based on the 7;s (defined in Eq. (3)) for each
time window. An alternative is to conclude the detection
of anomalies only when multiple 7;s satisfying Eq. (3) have
been observed in several consecutive time windows, trading
off between the anomaly detection’s false positive and false
negative. We will also need to consider the latency of anom-
aly detection, which is desirable to be as small as possible.
We envision the window size should be a promising con-
trol knob to reduce the latency. B-Diag verifies the detected

anomalies by checking the norm models defining the inter-
plays among vehicle information, and confirms the detected
anomalies if any of these checkings fail. We will investigate
other methods for anomaly confirmation, e.g., by weighting
the checking results of individual norm models.

o Fault Identification. After detecting/verifying the anom-
alies, B-Diag will need to identify the corresponding causes,
i.e., which modules (or ECUs) of the vehicle fail? Such a fault
identification is required to provide a swift repair/forensic,
otherwise the vehicle remains unreliable no matter how ac-
curate the anomalies are detected. We will steer B-Diag’s
fault identification based on the correlation graph defined in
Fig. 23, by examining the connectivity among vertexes (i.e.,
vehicle information) with detected anomalies.

¢ Diagnosing beyond Engine RPM. We have validated
B-Diag’s ability in individually diagnosing other vehicle in-
formation beyond engine RPM in Sec. 4. An integrated solu-
tion that guards all vehicle information in real-time, however,
is still needed to make B-Diag a comprehensive solution for
vehicle diagnosis, especially in view of the possibility of cas-
caded anomalies in vehicles, i.e., anomalies in one vehicle
information may cause anomalies in other information.

e Evaluation against Real-Life Vehicle Anomalies. Al-
though we have validated B-Diag with different approaches
in Sec. 5, B-Diag’s evaluation against real-life vehicle anom-
alies is still missing. Such an evaluation of B-Diag may cause
vehicle malfunction and thus incur safety risks. We will mit-
igate these challenges with two steps: (i) testing when using
jack stands to raise the vehicle from the ground, thus ensur-
ing safety, and then (ii) testing when driving on testing field,
such as the Mcity Test Facility at University of Michigan.

7 CONCLUSION

In this paper, we have designed B-Diag, a battery-based
diagnostics system that guards vehicles against anomalies
in real-time, and implemented B-Diag as an add-on mod-
ule of commodity vehicles attached to automotive batteries.
B-Diag is inspired by the physically-induced correlations
between the battery voltage and other operational param-
eters of the vehicle such as engine RPM. B-Diag exploits
these correlations to diagnose vehicles by exploiting automo-
tive batteries as anomaly sensors: cross-validating vehicle
information with online constructed norm models with re-
gard to the battery voltage, steered by a dataset collected
when driving a 2018 Subaru Crosstrek in real-life for over
3 months. We have evaluated B-Diag based on the driving
traces collected with, besides the Crosstrek, a 2008 Honda Fit,
a 2018 Volvo XC60, and a 2017 Volkswagen Passat, showing
B-Diag detects anomalies in vehicle information with over
86% detection rate on average.

Acknowledgments. We would like to thank the anony-
mous reviewers and the shepherd, Dr. Marco Gruteser, for
constructive suggestions. The work reported in this paper
was supported by NSF under Grant CNS-1739577.



REFERENCES

[1] Car Software: 100M Lines of Code and Counting.

https://www.linkedin.com/pulse/20140626152045-3625632-car-
software-100m-lines-of-code-and-counting.

M. Muter, A. Groll, and F. C. Freiling. A structured approach to
anomaly detection for in-vehicle networks. In IAS’10, 2010.
Kyong-Tak Cho and Kang G. Shin. Error handling of in-vehicle
networks makes them vulnerable. In CCS’16, 2016.

Kyong-Tak Cho, Kang G. Shin, and Taejoon Park. CPS approach to
checking norm operation of a brake-by-wire system. In ICCPS’15,
2015.

[5] J. P. Hubaux, S. Capkun, and Jun Luo. The security and privacy of

[o
[10
[11

(12

[13

(14

[15

(16

(17

(18

[19
[20

[21

[23

]

— o =

]
]

]

—

—

[t

]

— =

—_

smart vehicles. IEEE Security Privacy, 2(3):49-55, 2004.

BMW cars found to contain more than a dozen flaws.
http://www.bbc.com/news/technology-44224794.

Software Glitches in the Auto Industry and What that Means for You.
https://www.proservicescorp.com/auto-industry-software-glitches/.
Study: Tesla, Jaguar highest in auto software defects.
https://www.usatoday.com/story/money/cars/2016/05/24/jd-power-
software-defects-tesla-motors-jaguar-land-rover/84841174/.

CAN Bus. https://www.csselectronics.com/screen/page/simple-intro-
to-can-bus/language/en.

Toyota vehicle recalls.

https://en.wikipedia.org/wiki/2009%E2%80%9311_Toyota_vehicle_recalls.

Jaguar recall shows how software glitches are the new speed bump.
http://fortune.com/2015/07/13/jaguar-recall-software-glitch/.

Fiat Chrysler recalls 4.8 million vehicles that could get stuck in cruise
control. http://money.cnn.com/2018/05/25/autos/fca-recall-cruise-
control/index.html.

R. R. Brooks, S. Sander, J. Deng, and J. Taiber. Automobile security
concerns. IEEE Vehicular Technology Magazine, 4(2):52-64, 2009.

D. Nilsson and U. Larson. A roadmap for securing vehicles against
cyber attacks. In NITRD National Workshop on High-Confidence
Automotive Cyber-Physical Systems, 2008.

D. Nilsson and U. Larson. Simulated attacks on CAN buses: vehicle
virus. In AsiaCSN’08, 2008.

Ishtiaq Rouf, Rob Miller, Hossen Mustafa, Travis Taylor, Sangho Oh,
Wenyuan Xu, Marco Gruteser, Wade Trappe, and Ivan Seskar.
Security and privacy vulnerabilities of in-car wireless networks: A tire
pressure monitoring system case study. In USENIX Security’10, 2010.
Tesla responds to Chinese hack with a major security upgrade.
https://www.wired.com/2016/09/
tesla-responds-chinese-hack-major-security-upgrade/.

Yasser Shoukry, Paul Martin, Paulo Tabuada, and Mani Srivastava.
Non-invasive spoofing attacks for anti-lock braking systems. In
CHES’13, 2013.

A. Palanca. A stealth, selective, Link-layer Denial-of-Service attack
against automotive networks. PhD thesis, Politecnico Milano, 2016.
Kyong-Tak Cho and Kang G. Shin. Viden: Attacker identification on
in-vehicle networks. In CCS’17, 2017.

Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson,
Hovav Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis,
Franziska Roesner, and Tadayoshi Kohno. Comprehensive
experimental analyses of automotive attack surfaces. In USENIX
Security’11, 2011.

K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage.
Experimental security analysis of a modern automobile. In S&P’10,
2010.

Charlie Miller and Chris Valasek. Adventures in automotive networks
and control units. In DEFCON’11, 2011.

[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]
[43]

[44]

[45]

[46]
[47]

[48]

Charlie Miller and Chris Valasek. CAN Message Injection.
http://illmatics.com/can%20message%20injection.pdf.

Hackers remotely kill a Jeep on the Highway — with me in it.
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-
highway/.

Charlie Miller and Chris Valasek. Remote exploitation of an unaltered
passenger vehicle. In Black Hat USA’15, 2015.

On-Board Diagnostics. http://www.car-engineer.com/introduction-to-
on-board-diagnostic-obd/.

D. K. Nilsson, U. E. Larson, and E. Jonsson. Efficient in-vehicle
delayed data authentication based on compound message
authentication codes. In VTC’08, 2008.

Anthony Van Herrewege, Dave Singelee, and Ingrid Verbauwhede.
CANAuth - A Simple, Backward Compatible Broadcast
Authentication Protocol for CAN bus. In LC’11, 2011.

Chris Szilagyi and Philip Koopman. Low cost multicast
authentication via validity voting in time-triggered embedded control
networks. In WESS’10, 2010.

Kyong Tak Cho. From Attack to Defense: Toward Secure In-vehicle
Networks. PhD thesis, University of Michigan, 2018.

W. Choi, H. J. Jo, S. Woo, J. Y. Chun, J. Park, and D. H. Lee. Identifying
ECUs through inimitable characteristics of signals in controller area
networks. IEEE Transactions on Vehicular Technology, pages 1-1, 2018.
M. Muter and N. Asaj. Entropy-based anomaly detection for
in-vehicle networks. In IV’11, 2011.

Tobias Hoppe, Stefan Kiltz, and Jana Dittmann. Security threats to
automotive can networks — practical examples and selected
short-term countermeasures. In SAFECOMP’08, 2008.

Kyong-Tak Cho and Kang G. Shin. Fingerprinting electronic control
units for vehicle intrusion detection. In USENIX Security’16, 2016.
Armin Wasicek, Mert D. Pese, Andre Weimerskirch, Yelizaveta
Burakova, and Karan Singh. Context-aware intrusion detection in
automotive control systems. In ESCAR’17, 2017.

Charlie Miller and Chris Valasek. A survey of remote automotive
attack surfaces. In Black Hat USA, 2015.

Patrick E. Lanigan, Soila Kavulya, Priya Narasimhan, Thomas E.
Fuhrman, and Mutasim A. Salman. Diagnosis in automotive systems:
A survey, 2011.

W. Choi, H. J. Jo, S. Woo, J. Y. Chun, J. Park, and D. H. Lee. Identifying
ECUs Using Inimitable Characteristics of Signals in Controller Area
Networks. ArXiv e-prints, 2016.

P. S. Murvay and B. Groza. Source identification using signal
characteristics in controller area networks. IEEE Signal Processing
Letters, 21(4):395-399, 2014.

David S. Breed. System and method for vehicle diagnostics, 2006.
David S. Breed. Telematics system for vehicle diagnostics, 2004.
Christopher R. Baker, David Ferguson, and John M. Dolan. Robust
mission execution for autonomous urban driving. In IAS’08, pages
155-163, July 2008.

Galen Hunt, George Letey, and Ed Nightingale. The seven properties
of highly secure devices. Technical report, 2017.

Selected worldwide automotive manufacturers’ profit margin
between January 2016 and June 2016.
https://www.statista.com/statistics/697263/automotive-
manufacturers-profit-margin-worldwide/.

OBD-II PIDs. https://en.wikipedia.org/wiki/OBD-II_PIDs.

6 Most Common Crankshaft Position Sensor Symptoms.
https://carfromjapan.com/article/car-maintenance/common-
crankshaft-position-sensor-symptoms;/.

How to Diagnose a Bad or Failing Transmission Speed Sensor?
https://www.yourmechanic.com/article/symptoms-of-a-bad-or-
failing-transmission-speed-sensor.


https://www.wired.com/2016/09/tesla-responds-chinese-hack-major-security-upgrade/
https://www.wired.com/2016/09/tesla-responds-chinese-hack-major-security-upgrade/

[49] Understanding Your Alternator. [52] J. Lepkowski, B. Wolfe, and W. Lepkowski. EMI/ESD solutions for the

http://www.hotrod.com/articles/0206sr-understanding-your- CAN network. In NSC’05, 2005.
alternator/. [53] Dynamic Time Warping.
[50] Robert Bosch. Bosch Automotive Electrics and Automotive Electronics. http://web.science.mq.edu.au/~cassidy/comp449/html/ch11s02.html.
Springer, 2014. [54] D. Montgomery. Introduction to statistical quality control. Wiley, 2000.
[51] L. He, G. Meng, Y. Gu, C. Liu, J. Sun, T. Zhu, Y. Liu, and K. G. Shin. [55] Stergios Mavromatis and Alexandra Laiou. Safety assessment of
Battery-aware mobile data service. IEEE Transactions on Mobile control design parameters through vehicle dynamics model. In RSS’17,

Computing, 6(16):1544-1558, 2017. 2017.



	Introduction
	Background
	Motivation
	Balancing in two-dimensional Space
	Balancing in three-dimensional Space
	Balancing for Multi-DNN Scenarios

	System Design
	NeuOS Overview
	Coordinated System- and Application-level Adjustments
	Constraints and Coordination

	Evaluation
	Experimental Setup
	Overall Effectiveness
	Small Cohort
	Medium and Large Cohorts

	Detailed Examination on Tradeoff
	Energy and Latency.
	Energy-Accuracy Tradeoff.

	Overhead

	Related Work
	Acknowledgment
	Conclusion

