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Abstract—Network intrusion detection systems (IDS) has ef-
ficiently identified the profiles of normal network activities,
extracted intrusion patterns, and constructed generalized models
to evaluate (un)known attacks using a wide range of machine
learning approaches. In spite of the effectiveness of machine
learning-based IDS, it has been still challenging to reduce high
false alarms due to data misclassification. In this paper, by using
multiple decision mechanisms, we propose a new classification
method to identify misclassified data and then to classify them
into three different classes, called a malicious, benign, and
ambiguous dataset. In other words, the ambiguous dataset
contains a majority of the misclassified dataset and is thus the
most informative for improving the model and anomaly detection
because of the lack of confidence for the data classification in
the model. We evaluate our approach with the recent real-world
network traffic data, Kyoto2006+ datasets, and show that the
ambiguous dataset contains 77.2% of the previously misclassified
data. Re-evaluating the ambiguous dataset effectively reduces
the false prediction rate with minimal overhead and improves
accuracy by 15%.

Index Terms—Network Intrusion Detection, Machine Learn-
ing, , Ensemble Classifiers

I. INTRODUCTION

The interest to apply advanced machine learning techniques
for the intrusion detection system has been steadily grow-
ing since the late 1990s [1]-[4]. Machine learning methods
discover hidden, valid patterns and relationships among the
attributes in a large dataset to find malicious actions through
automatic model construction. These approaches allow for
a more flexible and distributable way to identify network
activity based on limited, incomplete, and nonlinear data
sources by identifying adversarial activities [5]-[9]. Due to
these promising capabilities, machine learning-based IDSs
have been extensively studied by the research community for
many years [10]-[16]. Network intrusion detection system
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(NIDS) endeavors to discover unauthorized access to network
resources by analyzing the network traffic data and detect
the signs of malicious activities which undermine the normal
operation of a network [17], [18].

However, in real-world operational settings, only misuse
detectors are predominantly used in the form of signature
systems that scan the network traffic for characteristics byte
sequences [19]. The imbalance between the extensive amount
of research and the lack of operational deployments of such
systems stems in large part from specifics of the problem
domain. The high error rate is one of the primary reasons
for the lack of success of machine learning-based intrusion
detection systems in operational settings. Furthermore, to
reduce misclassification errors and minimize false alerts is one
of the major challenges in machine learning-based intrusion
detection systems [20], [21].

To address the challenge of the misclassification errors in
the machine learning-based intrusion detection system, this
paper introduces a new category to embrace the ambiguity
of the decision process and classify the dataset into three
categories, benign (confident), malicious (confident), and am-
biguous dataset. To categorize the confident and ambiguous
datasets, we develop a confidence score system and utilize it
for the decision of the classification. The ambiguous dataset
is a collection of data that receive mixed decision predictions
or unanimously indecisive predictions in the classification
process of the model. The proposed system uses an ensemble
model for classification and we evaluate our approach with re-
cent real network traffic data. We extract the ambiguous dataset
and show that it contains most of the misclassified data in the
datasets. In other words, most of the misclassified results in the
model, either false alerts or missed attacks, are included in the
ambiguous dataset. We re-evaluate the ambiguous dataset to
reduce the uncertainty in the decision process. Re-evaluating
the ambiguous dataset effectively reduces false predictions
with minimal overhead and improves the system performance
for intrusion detection. Also, our scheme makes correction
decisions on the dataset labeled as “Unknown” attacks which



resulted in poor performances previously, and classify them
as malicious with high confidence. Our contributions are
summarized as follows.

1) The concept of an ambiguous dataset is first introduced
to identify a subset of test data that contains the most
uncertainty in the decision process of the model for the
intrusion detection system.

2) We evaluate our approach with the recent real network
traffic data and show that the ambiguous dataset contains
77.2% of misclassified data in our experiment.

3) We show that re-evaluating the ambiguous dataset ef-
fectively reduces false predictions and improves the
accuracy of the anomaly detection by contributing to
classify the full dataset completely into a specific class
with almost no ambiguous data.

The rest of the paper is organized as follows. Section 2
describes the motivation of reconstructing classification by
embracing the ambiguity in the intrusion detection system.
Section 3 presents the structure of the classification and deci-
sion model used for intrusion detection. In section 4 we discuss
the public datasets available for the evaluation of intrusion
detection systems and our model. Section 5 and section 6
include the details of our evaluations and results, respectively.
The details of the ambiguous dataset and its impact on our
detection model are discussed. Section 7 summarizes related
works. We conclude our work with discussion and future
works in Section 8.

II. RECONSTRUCTING CLASSIFICATION BY EMBRACING
AMBIGUITY

While the classification of variable sources and transient
events can be obtained using real-time and archival data, the
classification will be ambiguous in many cases. Additional
data and analysis with other datasets would be needed for the
confidence of classification results in the case of interesting
events. This poses a challenge of the automated decision-
making process for the optimal use of the available, finite com-
puting resources, and limited time constraints. Most machine
learning algorithms make the assumption that training data is a
random sample drawn from a stationary distribution. A fixed
set of features can represent the data when the underlying
structure of the data is stationary. When we have more data
and especially use optimized feature sets that differentiate
malicious activities from benign ones, we can reduce the
ambiguity in classification. However, continuous and rapid
changes in network usage patterns, as well as the attack
patterns, have added another level of challenges [20], [21].

Alternatively, instead of maximizing classification accuracy,
we consider a scenario where the algorithm chooses a set
of data that are most uncertain, determines the follow-up
analyses, and improves the accuracy of classification in the
subsequent analysis. The goal of the algorithm is to select a
set of data that is the most interesting. The subsequent analysis
then provides information on how interesting the dataset is. We
follow the second approach and select a set of data that are
most uncertain, called an ambiguous dataset. The ambiguous

dataset is a dataset that is expected to be most informative and
can most effectively improve the model in subsequent analysis.
The source of the ambiguous dataset is not the intrinsic
characteristics of the data but the deficiency of the model
used. The selection of the ambiguous dataset thus depends on
the balance between efficiency and accuracy of the detection
model. There are two parts to this challenge. First, the selected
dataset should be the most uncertain sample that is expected
to be the most informative and is capable of most improving
the model in subsequent analysis. And second, what type of
follow-up measurement and/or analysis, given the available
set of resources, would yield the maximum information gain
in a situation? The subsequent section describes the way to
classify the dataset into three classes, malicious, benign, and
ambiguous. The definition of the ambiguous dataset and its
relation to the misclassified dataset are followed.

A. Classify into Three Classes

Algorithm 1 shows the pseudo-code of three-class classifi-
cation. Firstly, predicted probability is evaluated for each base
classifier used in the ensemble model (see lines 1-2). These
values are used to evaluate the predicted probability of the
ensemble classifier (see lines 3-4). Based on the evaluated
predicted probability system classifies data into three classes,
malicious (lines 5-6), benign (lines 7-8), and ambiguous (lines
9-10). Base classifiers and ambiguous threshold 64 are pro-
vided as inputs. For the confident (either benign and malicious)

Algorithm 1: Three-Class Classification
Inputs:
classifiers: {C; }
ambiguous threshold 6 4
Output :
prediction result
1: Calculate the predicted probability from base
classifier C;:
2: P; = Predicted Probability (C;)
3: Take the average of individual predicted probabilities
to get the ensemble predicted probability:
4: Pepns = Avg(P;)
5:0f Pens >1—04
6: return malicious
7: else if Popns < 04
8: return benign
9:else (04 < Pens <1—04)
10: return ambiguous

dataset, we take actions based on the type of a decision,
benign and malicious, as other traditional intrusion detection
systems do. But we take further analysis and evaluation of the
ambiguous dataset since most of the false alerts or missed
attacks belong to this category and even novel (unknown)
attacks can be included in this dataset. Since the ambiguous
dataset is a small portion of the full dataset (~ 10% of the full
dataset), the re-evaluation process is light in resource usage
and fast in the computing process.

B. Ambiguous Dataset

We define the ambiguous dataset as those received mixed
decision predictions or unanimously indecisive predictions in



the multiple classifier systems. For a system of binary classes,
either 1 (malicious) or O (benign), each classifier estimates
the prediction probability for a specific category (benign or
malicious) indicating its decision about the class of the object.
The system chooses the class with the highest values of the
prediction probability for the object. If most of the classifiers
vote for malicious, the prediction probability for the class
of the object will be close to 1. Otherwise, the prediction
probability will be close to 0 when most of them vote for
benign. The ambiguous dataset consists of the data that receive
the value near 0.5. When using a probabilistic model for the
binary classification, the ambiguous dataset simply queries the
instance whose posterior probability of being malicious is near
0.5.

We introduce an ambiguous threshold value, 64 where 0 <
04 < 0.5, to determine the range of prediction probability for
an ambiguous dataset. The threshold is the value our model
uses for a classification decision to be confident. For binary
classification (e.g., malicious and benign), our model classifies
to confident “malicious” when prediction probability > 1—0 4
and confident “benign” when prediction probability < 0 4. The
ambiguous dataset is defined as those with 04 < prediction
probability <1 — 0 4.

a) Misclassified Dataset: One of the challenges in apply-
ing machine learning techniques to intrusion detection systems
is the high rate of false alerts. Even though the error rate
is very low (1 ~ 2%), the number of misclassified data is
not negligible with the growing number of data that need to
be processed and analyzed. Our analysis in the subsequence
section shows that most of the misclassified data — either
false alerts or missed attacks — are included in the ambiguous
dataset. Figure 5 shows the distribution of the predicted
probability in the misclassified dataset. More than 77% of the
misclassified dataset are distributed within the window for the
ambiguous dataset, 04 < prediction probability < 1 — 0 4.
This result indicates that most of the misclassified samples
distribute near the boundary of two target classes and define
the ambiguous dataset.

b) Evaluation of Ambiguous Dataset: The most uncer-
tain samples are expected to be the most informative and
are capable of most improving the model. As we show, the
ambiguous dataset contains the majority of the misclassified
dataset and is the most uncertain subset in our decision
model. The measured performance metrics for the ambiguous
dataset show low values compared to those of the confident
dataset which excludes the ambiguous dataset from the full
test dataset. We re-evaluate the ambiguous dataset to reduce
the uncertainty in the decision process. This process concerns
not only the uncertainty but also the outcomes and risks of
this uncertainty. We build a model for the ambiguous dataset
and re-evaluate the performance. The accuracy of detecting
malicious activities increases to 90%. The importance of fea-
tures is re-evaluated for the ambiguous dataset and compared
to that of the full dataset.

III. MODEL BUILD

In this section, we describe the classification model used
in our intrusion detection system. We use an ensemble of
classifiers that combines multiple base classification algo-
rithms (Figure 1). Ensemble classifier systems (also called
multiple classifier systems) exploit the mutually complemen-
tary decision boundaries produced from individual classifiers
to improve the performance of the whole. The goal of an
ensemble method is to combine different classifiers into a
meta-classifier that has a better generalization performance.
Ensemble classifier systems have shown to produce favorable
results compared to those of single-expert systems for a broad
range of applications and under a variety of scenarios [22].
Many studies have applied the diversity of ensemble methods
to the intrusion detection problem [23].

Network
Data

Confident
Dataset

Fig. 1. Design for ensemble classifier system: C1,Ca,---Cy, are base
classifiers and P1, Ps, - - - Py, are for predicted probability of each individual
classifier

We build our ensemble classifier model using base classi-
fiers with different machine learning techniques; Decision Tree
[24], [25], Gradient Boosted Tree [26], [27], Random Forest
[28], [29] and Multi-layer Perceptron model [30]. We evaluate
individual classifier using Receiver Operator Characteristic
(ROC) graphs [31].

A. Classification Algorithms

Classification is one of the most frequently encountered
decision making processes [32] and used when an object needs
to be assigned into a predefined group or class based on a
number of observed attributes related to that object. For a
classification problem, a set of NV training examples of the
form (X,Y) is given, where Y is a discrete class label and
X is a vector of n attributes. From these examples a model
Y = f(X) is inferred and used to predict the class Y of
future examples X with high accuracy. Intrusion detection
can be approached as a classification problem that classifies
audit events as belonging to a benign or malicious class.
The learned model labels or predicts new unseen audit data
as belonging to one of them [33]-[35]. An ideal application
in intrusion detection would gather sufficient “normal” and
“abnormal” audit data for a user or a program to correctly
train the classifier and then apply a classification algorithm to
make decisions for the (future) audit data as belonging to the
normal or abnormal class.



B. Confidence of Decision

The general formulation of the design problem of an en-
semble system is to generate several individual classifiers and
then employ some fusion functions (e.g., majority voting) to
combine classifier outputs to achieve high performance. In
simple majority voting, a class label is selected when it has
been predicted by the majority classifiers, that is, received
more than 50% of the votes. For multi-class settings, it can be
popularity voting where the class label that received the most
votes is selected. In this paper, we use the probability of a
predicted class label to make a decision in an ensemble of the
classifiers. Each classification algorithm returns the probability
of a predicted class label. We calculate the average value of
the probability of a predicted class label instead of simply
counting the number of votes for a class label. The modified
version of the majority vote for predicting class labels from
probabilities can be written as follows:

N
V=) P (M
j=1

Here, P;; is the predicted probability for a class ¢ by a classifier
J-

We are interested in not only the final decision from
the ensemble classifiers but also the confidence level of the
decision. To formalize the confidence level of the final decision
in ensemble classifier, we introduce the “Confidence Score”
P which is defined as the ratio of a number of the decision
vote (Np) to the total number of a vote (/N) for class label

counting:
Np
=— 2
N @

When the final decision of the classification for a sample is
malicious, the number of decision votes is the number of votes
for the malicious class. The confidence score for a class label ¢
in the predicted probability approach can be calculated simply
by taking the average of the predicted probability of each base
classifier:

P

1 N
P, = N;Pij 3)

where N is the number of base classifiers.

Let’s consider simple cases of the decision process for a
binary classification problem (e.g., 1 is malicious and O is
benign) in an ensemble classifier to see the difference from
the simple majority voting approach. Five base classifiers are
used and each classifier predicts the probability for the class
label to be malicious internally as shown in table I and votes to
either malicious or benign based on the predicted probability
with equal weights. For example, every base classifier predicts
a “malicious” label with a predicted probability of 0.6 for a
sample data Ds. Majority vote method will predict malicious
with 100% confidence because all classifiers unanimously vote
to “malicious”. For sample data D3, the majority vote method
will predict malicious with 60% confidence since 3 out of
5 base classifiers vote to “malicious”. However, the modified

Cr | O | C3 | Cy | Cs || Pr(%) | P2(%)
D, 0.9 0.9 0.9 0.9 0.9 100 90
Do 06 | 06 | 0.6 | 0.6 | 0.6 100 60
D3 06 | 06 | 0.6 | 0.1 0.1 60 40
Dy 04 | 04 | 09 0.9 0.4 40 60
Ds 04 | 04 | 04 ] 04| 04 0 40
Dg 020202102 0.2 0 20

ABLE T
SAMPLE DATASET TO DEMONSTRATE THE DIFFERENCE IN THE

CALCULATION OF CONFIDENCE SCORE BETWEEN MAJORITY VOTING AND
THE PREDICTION USING THE AVERAGE VALUE OF THE PROBABILITY OF A
PREDICTED CLASS LABEL. D1, D2, -+, Dg ARE DIFFERENT SAMPLES.

C1,C4a,- -+ ,Cs ARE DIFFERENT BASE CLASSIFIERS. VALUES IN EACH
CELL ARE THE PREDICTED PROBABILITY BY EACH CLASSIFIER FOR THE

“MALICIOUS” LABEL. P; AND P> ARE CONFIDENCE SCORES IN % FOR

EACH CASE USING MAJORITY VOTING AND AVERAGING PREDICTED
PROBABILITY, RESPECTIVELY.

version of the majority vote from predicted probabilities shows
different results. For sample data D, the modified version
predicts the class label as malicious as the same as that of
the majority vote method but with lower confidence (60%).
More different results come for the sample data D3 and D,.
Even though more classifiers vote for malicious (benign), final
predictions are reversed in the modified version since two of
them predict the very low(high) probability for D3 (D).

By using the predicted class probabilities instead of count-
ing the class labels for majority voting, we have more fine-
grained confidence levels for the prediction. The same 100%
confident prediction can be distributed 50 ~ 100% confidence.
Some 0% confidences can have higher confidence scores.
Since not only the final decision but also the confidence level
of the decision of the individual classifier is taken into account,
this approach is accurate when each classifier in the ensemble
is well calibrated.

I1V. EVALUATION

We use the recent Kyoto2006+ dataset, which has been
accumulated for the year 2015. Kyoto 2006+ datasets have
built on the real traffic data which are obtained from diverse
types of honeypots [36]. During the observation period, there
were 6,581,188 normal sessions and 130,135,437 known attack
sessions. Among the attack sessions, 2,770 sessions were
related to unknown attacks. All traffic data on honeypots
were thoroughly inspected using security software since all
traffic data captured from honeypots have been collected as
attack data [36]. Among traffic data captured from honeypots,
however, there are some sessions that did not trigger any
alerts but contained shellcodes. These sessions were labeled
as “Unknown” attacks.

We analyze the dataset for the year 2015 month by month
and present the result for the January 2015 dataset which has
11,218,206 known attack sessions, 1,186,780 normal sessions,
and 553 “Unknown” attack sessions. There are more attack
data than normal data, which makes the whole dataset imbal-
anced. We randomly select from the attack dataset and make
the both normal and attack dataset balanced. The data labeled
as “Unknown” attacks are collected separately and used own



analysis but not used in either training or testing process as
shown in table II. Results for each month are similar even
though there are small differences in details.

Total 2,374,113
Normal 1,186,780
Known Attack 1,186,780
Unknown Attack 553

TABLE I
SUMMARY OF THE TEST DATASET USED IN THE EVALUATION

A. Feature Sets

The Kyoto 2006+ dataset consists of twenty-four statistical
features; fourteen features based on features of the KDD Cup
99 dataset and ten additional features [36]. Among the original
41 features of the KDD Cup 99 dataset, insignificant features
and content features were excluded in Kyoto 2006+ dataset,
because they are not suitable for network-based intrusion de-
tection systems. Fourteen statistical features, which are signifi-
cant and essential features, were extracted from honeypot data.
In addition to the 14 statistical features, additional 10 features
were extracted, which allow investigating more effectively
what kinds of attacks happened on networks. They also can be
utilized for IDS evaluation with the 14 conventional features,
and users are able to extract more features using the additional
10 features. In additional ten features, label feature is included.
Label feature indicates whether the session was attacked or
not; ‘1’ means the session was normal, ‘-1’ means a known
attack was observed in the session, and ‘-2’ means an unknown
attack was observed in the session.

B. Preprocessing

In our evaluation, we don’t include IDS, Malware, Ashula
detection, and IP address and port number for both source
and destination features. For Start Time (indicates when the
session was started) data, we divide it into day parting
period, “Overnight”, “Morning”, “Midday”, “Afternoon” and
“Evenings”. There are four categorical features: Service (the
connection’s service type, e.g., DNS, SSH, etc.) Start Time,
Flags (the state of the connection at the time the connection
was written), Protocols (TCP, ICMP, etc.). Each categorical
feature expressing m possible categorical values is trans-
formed to a value in R™ using a function e that maps the ;"
value of the feature to the j* component of an m-dimensional
vector:

e(z;) =(0,---,1,---,0) ifz; =5 “)
1 at position j
The set of features presented in Kyoto 2006+ dataset contains
categorical and numerical features of different source and
scales. Both the numerical and the categorical features are
scaled with respect to each feature’s mean g and standard
deviation o

®)

After encoding all categorical features and excluding irrele-
vant features, there are 47 feature sets used in the experiment.

The importance of the features in Kyoto 2006+ data sets
are evaluated. Using the Random Forest algorithm, we can
measure the importance of a feature as the averaged impurity
decrease computed from all decision trees in the forest without
making any assumptions whether data is linearly separable or
not. For the evaluation of the importance of features, we train
a forest of 1,000 trees on the Kyoto2006+ dataset and rank the
features by their respective importance measures. In Figure 2
we plot the ranks of features in the Kyoto 2006+ dataset by
their relative importance; note that the feature importance is
normalized so that they sum up to 1.0. First, 10 features among
47 features take 81% of importance.

Feature Importances

0.20

0.15
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0.00

Flag_SF

Same srv rate |

Dst host serror rate 4

Protocol icmp

Srv serror rate

Dst host srv serror rate

Dst host count
Destination bytes 4
Service_other H
Source bytes

Dst host srv count 4
Count
Service_dns -
Duraticn
Protocol tocp 4
Protocol udp
Flag S0 4

Serror rate
Service_ssh
Flag_SHR 4

Fig. 2. Relative importance of feature in 2015 data set from Kyoto 2006+
dataset. The feature importances are normalized so that they sum up to 1.0.

In importance feature sets, there are features related to
destination characteristics, as shown in the paper [36]. In
table III, the first 10 features are listed in order of importance
(“Full Dataset”). Four out of ten most important features are
related to destination characteristics, such as Dst host count,
Destination bytes, Dst host srv count, and Dst host serror rate.
Two of them are service types, Service other and Service
DNS. Source bytes, Count, Duration, and Protocol TCP are
also listed in the ten most important features.

Full Dataset Ambiguous Dataset
1 Dst host count Destination bytes
2 Destination bytes Duration
3 Service other Dst host count
4 Source bytes Source bytes
5 Dst host srv count Count
6 Count Dst host srv count
7 Service dns Srv serror rate
8 Duration Dst host srv serror rate
9 Protocol tcp Period Midday
10 | Dst host serror rate Service dns

TABLE IIT
THE IMPORTANCE OF FEATURES FOR THE WHOLE AND AMBIGUOUS
DATASET. THE FIRST 10 IMPORTANT FEATURES ARE LISTED IN ORDER OF
IMPORTANCE.



C. Results: Performance of Base Classifiers

The ROC graphs for individual classification algorithms are
evaluated on the data and results are shown in figure 3. The
ensemble classifiers with Random Forest and Gradient Boost
Tree classifier show the best results which attain 99% and
89% True Positive rate, respectively, at 2% False Positive
rate. Decision Tree algorithm and MLP show relatively low
performance.

L
]
=4
Lt
2
E
Lt
=1
SR .
oz ¥ Decision Tree (auc = 0.9750)
—-= Random Forest {auc = 0.9%72)
""" MLP {auc = 0.9619)
0.0 — Gradient Boost (auc = 0.98382)
0.00 0.02 D.04 0.06 0.08 0.10

False Positive Rate
Fig. 3. ROC-curves for classifiers evaluated

Based on the ROC curve, we compute the area under the
curve (AUC) to characterize the performance of a classification
model. The 10-fold cross-validations were used to calculate
ROC-AUC in the training phase and average values (mean) are
obtained with standard deviation values (std). Test datasets are
used to evaluate the model in the separated dataset to measure
its capability to generalize the predictions to unseen data. Table
IV shows the summary of results. Results for the test dataset
are consistent with those for train datasets within errors and
show that there is no indication of over-fittings in the trained
models.

the total predicted positives and recall are the ratio of the true
positives to the actual positives that are the sum of true positive
and false negative predictions. In practice, often F1 score
which is a combination of precision and recall is used. These
performance metrics are used to quantify the performance of
a model in general.

Results are summarized in table V (Full) with 96.7%
accuracy, 96.2% precision, 97.1% recall and 96.6% F1 score.
Relatively low value of precision compared to that of recall
indicates that there are more false positives (false alerts) than
false negatives (missed attacks).

Classifier mean std test

Decision Tree 0.9749 4+ 0.0006 | 0.9753

Random Forest | 0.9972 £ 0.0001 | 0.9973

MLP 0.9624  + 0.0003 | 0.9622

Gradient Boost | 0.9880 4+ 0.0009 | 0.9873
TABLE TV

ROC-AUC FOR CLASSIFIERS. COLUMNS “MEAN” AND “STD” ARE
RESULTS CALCULATED FOR THE TRAIN DATASET WITH 10-FOLD
CROSS-VALIDATIONS AND COLUMN “TEST” ARE FOR THE TEST DATASET

D. Results: Performance of Ensemble Classifier

We evaluate our model using performance metrics, such as
accuracy(ACC), precision(PRE), recall (REC), and F1 score
(F1). Accuracy provides general information about how many
samples are classified correctly and is calculated as the sum of
correct predictions divided by the total number of predictions.
Precision and recall are performance metrics that are related
to a true positive rate that is especially useful for imbalanced
class problems. Precision is the ratio of the true positives to

Dataset ACC PRE REC F1

Full 0.9665 0.9618 | 0.9711 0.9664

Confidence | 0.9915 0.9958 | 0.9871 0.9914

Ambiguous | 0.7477  0.7030 | 0.8267  0.7598
TABLE V

COMPARISON OF PERFORMANCE METRICS AMONG DATASET WITH ALL
(WHOLE), DATASET EXCLUDING AMBIGUOUS DATASET (CONFIDENCE),
AND ONLY AMBIGUOUS (AMBIGUOUS) DATASET

For the decision process, we use the probability of a
predicted class label, predicted probability P, in our model.
Figure 4 shows the distribution of the probability for predicted
malicious in the full dataset. 1 means confident malicious
(attack) and 0 means confident benign (normal) class. Most
of the sessions are classified either as confident malicious (1)
or as confident benign (0).

100000

80000

E0000

40000

No. of Sessions

20000

0 T T T T T T T T T
o0 01 02 03 04 05 06 O0OF7 08 09 10

Predicted Probability

Fig. 4. Distribution of the probability of predicted values for malicious in
the full dataset : 1 means malicious (attack) and O means benign (normal).

E. Results: Misclassified Dataset

In our evaluation, 3.4% of sessions in the test dataset are
incorrectly classified. We collect those misclassified sessions,
called misclassified dataset, and analyze them. Figure 5
shows the prediction probability distribution of sessions in the
misclassified dataset. There are two bands where predicted
probabilities of misclassified datasets are distributed. One
narrow band is at predicted probability ~ 1.0 and the other
band is rather broad and distributed between 0.2 ~ 0.8. The
misclassified dataset with predicted probability ~ 1.0 can
be false alerts in our model or missed attacks in the test



dataset. We need more investigation for these misclassified
sessions and reserve it for future work. Other misclassified
dataset is distributed around the boundary of the malicious and
benign dataset and rather broadly distributed with predicted
probabilities 0.2 ~ 0.8.

10

- o [=:]

Predicted Probability

=
[ =}

0.0

Fig. 5. Distribution of predicted values for misclassified datasets: 1 means
attack and 0 means normal. Two horizontal lines (0.2 and 0.8) indicate the
window for the ambiguous dataset

We define the ambiguous dataset as those have predicted
probability in a range close to the boundary between malicious
and benign dataset (P =~ 0.5). Since misclassified datasets are
distributed around the boundary, most of them will belong to
ambiguous datasets. When we select a wider range of ambigu-
ous datasets, more datasets are categorized as ambiguous and
more misclassified datasets belong to. Figure 6 presents the
ratio of the ambiguous dataset to the total dataset and in the
misclassified dataset with different selections of the predicted
probability range. The ratio of the ambiguous dataset to the
total dataset (red graph) increases rapidly when the predicted
probability range is after [0.2 ~ 0.8]. But the increase of the
ratio in misclassified datasets is saturated after [0.25 ~ 0.75].

We use the ambiguous threshold, 64 where [04] < 0.5,
to determine the range of prediction probability for the
ambiguous dataset. The ambiguous threshold value, 64, is
optimized to maximize the ratio of the ambiguous dataset
to the misclassified dataset and to minimize the portion of
the ambiguous dataset in the entire dataset. Let the ratio
of the ambiguous dataset to the misclassified dataset as a
function of the ambiguous threshold f1(64) and the portion
of the ambiguous dataset in the entire dataset as f5(64). The
ambiguous threshold 64 is determined by maximizing

f(04) = f1(04) + (1 — f2(04)) (6)

Figure 7 presents the f1(64) — f2(04) obtained in our exper-
iments as a function of 0 4. It shows the maximum is reached
at 04 = 0.2. We set #4 = 0.2 and the range for ambiguous
dataset as 0.2 < P < 0.8 based on this observation. With
this selection, the ambiguous dataset contains 77.2% of the
misclassified dataset but is only 10.24% of the total dataset.
We regroup the test dataset into “Confident” (either mali-
cious or benign) and “Ambiguous” and re-evaluate our model
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—— % in total dataset
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with the confident and ambiguous dataset separately. Results
are summarized in table V as Confident and Ambiguous,
respectively. The accuracy of the confident dataset is improved
by 2.5% to 99.2%. On the other hand, it is decreased for
the ambiguous dataset to 74.8%. The same changes can be
seen in other performance metrics. This result shows that the
ambiguous dataset contains the most uncertain samples. In
section IV-G, we re-train the ambiguous dataset alone and
resolve these misclassified sessions.

E Results: Unknown Datasets

In our test dataset, there are 553 “Unknown” attacks which
are not included in the training phase of the model. We use
our model and classify these “Unknown” datasets. Figure 8
shows the distribution of the predicted probabilities. We can
see two interesting results for the dataset labeled “Unknown”.
First, our results show that all of the unknown datasets are
classified as attacks in our model (prediction probability >
0.5). Second, most of them are categorized as a malicious
dataset with high confidence prediction probability > 0.8).
Thus, any novel attacks which are not filtered by the existing



intrusion detection systems used in Kyoto 2006 + dataset are
classified as malicious and detected in our model.
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Fig. 8. Distribution of predicted values for unknown datasets: 1 means attack
and 0 means normal. Two horizontal lines (0.2 and 0.8) indicate the window
for ambiguous dataset

G. Results: Re-Evaluation of Ambiguous Dataset

In this section, we show that the performance of intrusion
detection can be improved by re-evaluating ambiguous datasets
with minimum overhead. Since the number of ambiguous
datasets is much less than that of the full datasets (10% of
the full dataset in our case), the re-evaluation process is light
in resource usage and fast in the computing process. We first
review the importance of features for the ambiguous dataset.
Table III compares the first 10 important features in two
datasets, full and ambiguous dataset. Three different features
are included in the 10 important features for the ambiguous
dataset and the order in the importance of features also gets
changed. This difference indicates that a separate model has
to be learned (trained) for the optimal classification of the
ambiguous dataset.

We re-train the ambiguous dataset and rebuild a model.
Table VI shows the performance metrics of retraining results
for the ambiguous dataset and compare to previous values.
In re-evaluation, the accuracy (ACC), precision (PRE), recall
(REC), and F1 scores (F1) are improved by 15%, 20%,
9%, and 15% respectively. We can improve performance and
resolve many misclassified samples in the re-training process.

ACC PRE REC Fl1
Before | 0.7477  0.7030 | 0.8267  0.7598
After 0.9029 0.9077 | 09194 09135
TABLE V.

COMPARISON OF PERFORMANCE METRICS FOR AMBIGUOUS DATASETS
BETWEEN BEFORE AND AFTER RE-EVALUATION.

V. RELATED WORKS

Machine learning and data mining approaches for intrusion
detection derive associative rules from available sample data
and use statistical techniques to discover subtle relationships
between data items and to find consistent and useful patterns
that describe programs and user behavior. There are many
survey papers [11]-[13], [16], [37] which summarize achieve-
ments, current trends, challenges, even limitations in various

machine learning-based approaches. Because of simplicity,
high detection accuracy, and fast adaptation, many supervised
learning algorithms have been adopted in intrusion detection
systems. Decision Trees are one of the most commonly used
supervised learning algorithms in IDS [38]. The advantages
of a decision tree are intuitive knowledge representation, high
classification accuracy, and simple implementation. However,
the larger the tree, the less intuitive the knowledge representa-
tion is because it is difficult to extract the rules for deeper
and wider trees. Large trees often have high classification
accuracy, but not a high generalization. Kruegel and Toth
[33] used decision trees in Snort’s misuse detection engine
[9]. Zhang et al. [35] applied a Random Forest classifier to
anomaly detection where an anomaly detector was used to
feed the second intrusion classifier. Sahu et.al. used Decision
Tree (J48) algorithm to classify the network packet in Kyoto
2006+ data set that can be used for NIDS [39].

The Naive Bayes classifier is a well-known machine learn-
ing technique and is also used for machine learning-based
IDS. However, because Naive Bayes assumes conditional
independence of data capabilities, the correlated features of
network data for intrusion detection can degrade performance.
Amor et al. [40] and Panda et al. [34] have used the Naive
Bayes classifier and applied it to the KDD 1999 dataset for
training and testing. In [41], authors present a method that
automatically extracts only unknown attacks from anomaly-
based intrusion detection system alerts. They modified the
existing feature extraction method with new features; duration,
source bytes, and destination bytes, and applied one-class
SVM to them. Authors in [19] found, however, that machine
learning-based intrusion detection system is rarely used in
operational “real world” settings despite extensive academic
research compared to other intrusion detection methods. This
indicates that finding attacks might be fundamentally different
from tasks in other applications, making it much more difficult
for the intrusion detection community to adopt machine learn-
ing effectively. There are many types of ensembles proposed
in the machine learning literature. With respect to architecture,
individual classifiers can, in general, be structured in forms of
parallel (e.g., bagging), sequential (e.g., boosting), or hybrid
[42]. For making a decision, the composer of classifiers can
apply various mechanisms such as majority voting, Bayesian
combination, distribution summation, entropy weighting, and
so on [23], [42].

VI. CONCLUSION

In this paper, we propose a method to improve the perfor-
mance of machine learning-based intrusion detection systems
and reduce the rate of false alerts. Our focus is the ambiguity
of the classification model which leads to misclassification
and false alerts. We look for a practical approach to reduce
these ambiguities in the domain-specific environment where
usage patterns, as well as attack patterns, are continuously
and rapidly changed. We take the strategy to choose a set of
data that are the most uncertain and thus most informative
and improve the accuracy of classification in the subsequent



analysis. Those uncertain data are collected as an ambiguous
dataset. The goal is to extract the most uncertain dataset
and re-evaluate them to reduce the ambiguity and improve
the performance of the model. We show that the ambiguous
dataset contains 77.2 % of misclassified data in our model.

We

can resolve many misclassified data in the re-training

process. We also evaluate the “Unknown” attacks in collected
Kyoto 2006+ network traffic data. Our model predicts those
data as malicious with high confidence. In future work, we
will continue to advance the proposed framework using ad-
vanced techniques, such as data stream mining for real-time
processing, secure adversarial machine learning, and timely
and intelligent response systems.
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