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Abstract. In stream fingerprinting, an attacker can compromise user
privacy by leveraging side-channel information (e.g., packet size) of
encrypted traffic in streaming services. By taking advantages of machine
learning, especially neural networks, an adversary can reveal which
YouTube video a victim watches with extremely high accuracy. While
effective defense methods have been proposed, extremely high bandwidth
overheads are needed. In other words, building an effective defense with
low overheads remains unknown. In this paper, we propose a new defense
mechanism, referred to as SmartSwitch, to address this open problem.
Our defense intelligently switches the noise level on different packets
such that the defense remains effective but minimizes overheads. Specif-
ically, our method produces higher noises to obfuscate the sizes of more
significant packets. To identify which packets are more significant, we
formulate it as a feature selection problem and investigate several fea-
ture selection methods over high-dimensional data. Our experimental
results derived from a large-scale dataset demonstrate that our proposed
defense is highly effective against stream fingerprinting built upon Con-
volutional Neural Networks. Specifically, an adversary can infer which
YouTube video a user watches with only 1% accuracy (same as random
guess) even if the adversary retrains neural networks with obfuscated
traffic. Compared to the state-of-the-art defense, our mechanism can
save nearly 40% of bandwidth overheads.

Keywords: Encrypted traffic analysis - Machine learning - Feature
selection

Introduction

Millions of Internet users steam videos from service providers, such as YouTube,
Amazon Prime, Netflix, Hulu, etc., on a daily basis. As streaming videos has
become a routine to Internet users, privacy of streaming services has become one
of the primary concerns to both service providers and customers. For example,
all the network traffic between a service provider and a user are encrypted to
prevent eavesdroppers from learning the content of video streams.
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However, recent research studies [5,11,18,20,21,28] have shown that steam-
ing services are vulnerable under encrypted traffic analysis. An attacker can
compromise user privacy due to the use of adaptive bitrate streaming technique
(e.g., Dynamic Adaptive Streaming over HTTP), which is the key for service
providers to offer high quality streaming. Specifically, the side-channel infor-
mation of encrypted traffic (e.g., packet size) has a strong correlation with the
content of a video. As a result, an attacker, who can eavesdrop a user’s network
traffic, can infer which video a user watches based on the side-channel infor-
mation of encrypted traffic and achieve extremely high accuracy with machine
learning. For example, an attacker can achieve 99% accuracy by leveraging Con-
volutional Neural Networks [21,28]. Revealing users’ sensitive information and
interests through streaming fingerprinting can lead to unintended disclosure and
can be leveraged by other cyberattacks, such as email phishing [16] and targeted
advertising [25], which will cause more severe damages to individuals.

Traffic obfuscation, which adds noise (i.e., dummy data) to preserve real
packet size, is one of the primary approaches to mitigate privacy leakage against
encrypted traffic analysis [7,17,28]. However, it is often challenging for traf-
fic obfuscation to be both efficient and effective in defense. Namely, producing
small noise would introduce low bandwidth overheads but is often not effective.
On the other hand, significant amounts of noises can effectively preserve user
privacy but could easily introduce high bandwidth. For instance, Zhang et al.
[28] proposed an effective defense to obfuscate packet sizes. Unfortunately, their
method produces over 600% bandwidth overheads. The extremely high over-
head is an enormous burden to both service providers and users, and impedes
the implementation of traffic obfuscation in streaming services.

In this paper, we develop a new defense mechanism, referred to as
SmartSwitch. The main idea of our proposed mechanism is to smartly switch
the noise level in traffic obfuscation. More specifically, our proposed method
obfuscates side-channel information of each packet (i.e., the size of each packet)
differently, where more significant packets are obfuscated with higher noises while
others are obfuscated with lower noises. The reason that switching the noise level
can optimize efficiency while remain effective in defense is because not every
packet leaks privacy equally. In other words, adding higher noises to more signif-
icant packets can maintain efficacy in defense and applying lower noises on less
significant packets can save bandwidth overheads.

To identify which packets are more critical and need to be protected
with higher noises, we formulate this problem as a feature selection problem
([3,4,15,27]), where packet sizes are considered as features. However, addressing
feature selection in the context of encrypted traffic is not trivial as the number
of dimensions (i.e., the number of packets) is over hundreds or even thousands,
which faces the curse of dimensionality [3,4,15,27]. In this study, we investigate
and customize several feature selection methods to examine their different trade-
offs in the context of encrypted traffic. The main contributions of this paper are
summarized below:
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Fig. 1. The system model.

— To advance the understanding of privacy leakage in stream fingerprinting, we
collect a large-scale encrypted traffic dataset of YouTube videos. The dataset
consists of 100 classes (i.e., 100 YouTube videos) with 200 traffic traces per
classes. Our dataset has a greater number of classes and a greater number of
traces per class compared to datasets examined in previous studies [21,28].

— We build a Convolutional Neural Network (CNN) for stream fingerprinting.
Our CNN is more comprehensive than the CNN used in previous studies,
and outperforms it in attack accuracy. Specifically, our CNN achieves 91.4%
accuracy while the previous one achieves 80.1% accuracy over our dataset.

— We investigate a fundamental research problem—uwhich packets are more
critical against encrypted traffic analysis?—and leverage feature selection
to address it. We leverage and customize several feature selection meth-
ods, including feature permutation importance and mutual-information-based
algorithms, to evaluate which packets are more critical than others and should
be protected with higher noises.

— While our mechanism is generic, we leverage d*-privacy used in [26,28] as
the underlying noise generation algorithm to demonstrate its efficacy and
efficiency. Specifically, even an attacker retrains neural networks with obfus-
cated traffic, our mechanism reduces attack accuracy to around 1%, which is
the same as random guess over 100 classes. Compared to the previous research
[28], our mechanism can reduce nearly 40% of bandwidth overhead.

— Our study promotes the interpretability of encrypted traffic analysis as many
of the recent attacks [12,19,21-23,28] utilize neural networks as black boxes
and do not reason which parts of an encrypted traffic trace leak more privacy.
Our study also sheds lights on optimizing overheads of defenses against other
encrypted traffic analysis, such as website fingerprinting.

2 Background

System Model. In the system model, which is described in Fig. 1, we assume
there is a client and a streaming service provider. The network traffic between
the client and service provider is encrypted with AES (Advanced Encryption
Standard) with TLS (Transport Layer Security) protocol. The streaming ser-
vice provider utilizes Dynamic Adaptive Streaming over HTTP (MPEG-DASH)
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technique in order to delivery high quality streaming services. MPEG-DASH
creates different sizes of segments from a video and the service provider sends
those segments to the client through TLS [21]. We assume the client watches a
single YouTube video each time.

Threat Model. In this study, we assume an attacker is an eavesdropper who
has passive on-path access to the network traffic between a client and the service
provider [9]. For instance, an adversary could be someone who can sniff a client’s
WiFi traffic or on the same local-area network as the client. We also assume an
attacker knows the IP addresses of the client and the service provider. The
network packets between the client and the service provider are encrypted. The
attacker dose not have the secret key to decrypt the content of traffic packets.

We denote the packets sent by the client as outgoing packets and packets
received by the client as incoming packets. We assume that the attacker knows
the start time of each traffic trace. Note that this is feasible to learn in the
context of streaming traffic as outgoing packets usually locate at the beginning
of each trace to initiate the connection and a significant amount of incoming
packets would be received by the client when a video starts to play.

Closed-World Setting. We measure stream fingerprinting attacks and
defenses in the closed-world setting by following the literature in this line of
research. Specifically, the closed-world setting assumes that an attacker knows a
list of stream videos that a client could watch (e.g., popular videos on YouTube).
In addition, the closed-world setting assumes a traffic trace that is captured from
a victim is associated with one of the stream videos in the attacker’s list.

The attacker collects labeled traffic traces by itself to train its machine learn-
ing models, and then infers the label (i.e., which video) of a captured traffic trace
from a victim. We leverage the accuracy of the classification to measure the pri-
vacy leakage of stream fingerprinting. A higher accuracy indicates more privacy
leakage in encrypted stream traffic.

3 Stream Fingerprinting Attack

To advance our understanding of privacy leakage in stream fingerprinting, we
collected a dataset in a greater scale and built a more comprehensive neural
network compared to previous studies.

Data Collection. We collected a large-scale dataset of encrypted traffic traces
from YouTube videos. The dataset consists of 20,000 traffic traces in total. Specif-
ically, we selected 100 videos (classes), played each selected video 200 times and
captured a traffic trace each time. For the 100 videos we investigate in this
study, we selected videos recommended by YouTube in five categories, including
gaming, music, talk, news and sports. In each category, we selected 20 different
videos. For each video, we collected the encrypted traffic for the first 3 min and
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Fig. 2. Structure of our CNN model.

discarded the rest if a video lasts longer than 3 min. If there are advertisements at
the beginning of each video, we keep the corresponding traffic of advertisements
in our data collection.

We implemented a traffic crawler in Python and ran it on a Linux machine
(Ubuntu 18.04, 3.40 GHz CPU, 16 GB Memory) to collect traffic. In our traffic
crawler, we leveraged Selenium to automatically open a YouTube video page and
utilized pyshark to capture the corresponding traffic. We used Chrome (Version
80.0) as the web browser during our data collection. It took one month of efforts
(from September 2019 to October 2019) to complete the data collection.

Compared to the largest YouTube encrypted traffic dataset in the existing
literature [28], where this dataset has only 40 classes and 100 traces per class,
our dataset outperforms it in both the number of classes and the number of
traces per class. The increases in those two aspects are critical to advance the
understanding of the privacy leakage under stream fingerprinting in the real
world.

Data Format. Raw traffic traces in our dataset are further processed to extract
side-channel information of traffic, such that they can be used as inputs for neural
networks. Existing studies [21,28] in stream fingerprinting aggregate packets into
bins and use the size of aggregated traffic in a bin as a feature, where each bin
contains all the packets in a fixed interval.

We follow the same method to extract bins from raw traffic traces. For exam-
ple, given a 180-second traffic trace and an interval size of w = 1s, a traffic trace
is transformed into a vector of 180 elements, where each element is the size of
aggregated traffic in a bin. When interval size w = 0, it indicates that there is
no bins anymore and we use the size of each packet as a feature in that case. As
the majority of packets (over 99% packets) are incoming packets in each trace,
we only keep incoming packets by following previous studies.

Convolutional Neural Networks. We built a new Convolutional Neural Net-
work and leveraged it as the classifier in stream fingerprinting. As shown in Fig. 2,
our CNN consists of 11 layers, including 1 input layer, 4 convolutional layers, 5
pooling layers, and 1 output layer. It is more comprehensive than the CNN used
in previous studies. For instance, the CNN used in [21,28] has only 6 layers at
most.
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Fig. 3. Comparison of Our CNN and USENIX17 CNN in attack accuracy.

Attack Results in Stream Fingerprinting. Similar as [28], we stud-
ied the attack results of stream fingerprinting over a dataset by consider-
ing different bin sizes. Specifically, we applied five different bin sizes, w =
{0.05,0.25,0.5, 1,2} seconds on our YouTube dataset, and obtained 5 versions
of the dataset, where each version maps to a bin size. The number of elements
n in a vector in each version depends on the corresponding bin size w and can
be computed as n = 180/w.

To implement our CNN, we used Keras (front end) and Tensorflow (back
end). We trained our CNN on a Linux machine with Ubuntu 18.04, 2.80 GHz
CPU, 16GB Memory and a GPU (NVIDIA Titan RTX). We used 64% of
data for training, 16% of data for validation, and 20% of data for test. We
also performed 5-fold cross-validation in our evaluation. In addition, we used
BatchNormalization() function from Keras to normalize the data. We tuned
hyperparamters of our CNN using NNT (Neural Network Intelligence) [1], a free
toolkit offered by Microsoft. Specifically, we ran at most 50 epochs with NNT or
stopped the search if the accuracy did not further improve after 10 consecutive
epochs. It took us about 6h to tune hyperparameters for bin size w = 0.05.
These tuned hyperparameters are described in Appendix. If a different bin size
was used, we retuned hyperparameters in our experiments. The hyperparameters
for other bin sizes are skipped in this paper due to space limitations.

The attack results of our CNN on test data are summarized in Fig. 3. Over-
all, the attack achieves high accuracy and successfully infers user privacy across
different bin sizes. For instance, given w = 0.05s, our CNN achieves 91.4% accu-
racy in stream fingerprinting compared to 1% of random guess over 100 classes.
We also noticed that the accuracy decreases if we increase the bin size. This is
reasonable as a greater bin size leads to more coarse side-channel information,
which reveals less privacy over encrypted traffic analysis.

To compare with previous attacks, we also implemented the CNN used in
[21] and [28], which we referred to as USENIX17 CNN in this paper. As the
tuned hyperparameters rendered in [21] only achieved 1% of accuracy over our
YouTube dataset, we retuned the parameters of USENIX17 CNN again based
on our YouTube dataset, and the attack results are reported in Fig. 3. As we can
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Fig. 4. A high-level overview of SmartSwitch.

MarkFeature(F, D): Given a set of features F = {f1,..., fn} over a traffic dataset
D, where D has m traffic traces and each trace has n elements, run and output
a binary vector b

b= (bi,...,bn) < FeatureSelectAlgo(F')
where b; = 1 if f; is a selected feature and b; = 0 otherwise.

ObfuTraffic(a, b): Given a traffic trace a = {a1,...,a,} and a binary vector b =
{b1,...,bn}, generate two noise parameters eg and e;, where eg represents for a
lower noise level and e; represents for a high noise level, for 1 <7 < n, run

r_ Jai+ NoiseGeneAlgo(eg) if b; =0
* 1 a; + NoiseGeneAlgo(e1) if b; = 1

and output an obfuscated traffic trace a’ = (al, ..., ay,).

Fig. 5. The Details of SmartSwitch.

observe, our CNN outperforms USENIX17 CNN in almost each bin size except
w = 2. For instance, given bin size w = 0.05s, the attack accuracy of our CNN
is 11.4% higher than the one derived by USENIX17 CNN.

We would like to point out that the USENIX17 CNN achieved 94.4% accuracy
on the dataset of 40 classes in [28] and 99% accuracy on the dataset of 20
classes in [21]. The accuracy of USENIX17 CNN dropped over our dataset as our
evaluation involves more classes. For a machine learning problem, it is common
to see that the accuracy of a same model decreases when the number of classes
increases.

4 SmartSwitch: Our Proposed Defense Mechanism

We present our defense mechanism in this section. It consists of two building
blocks, including a feature selection method and a noise generation algorithm.
A feature selection method decides which packets are more significant, and can
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be one of the methods we will discuss in the next section. A noise generation
algorithm produces noises to obfuscate the size of each packet using privacy-
preserving techniques, such as differential privacy [26,28] or padding [6,7].

SmartSwitch first runs a feature selection method to distinguish packets,
where more significant packets are marked as 1s and others are marked as Os.
Then, to generate an obfuscated traffic trace, the noise generation algorithm
will apply a higher noise level to packets marked with 1s and add a lower noise
level to packets marked with Os. The high-level idea of SmartSwitch is illustrated
in Fig.4. The more rigorous technical details are summarized in Fig. 5. We use
MarkFeature to describe the feature selection step and use ObfuTraffic to illustrate
the generation of an obfuscated trace. We denote the two underlying building
blocks as FeatureSelectAlgo and NoiseGeneAlgo.

Discussion. SmartSwitch is a generic defense mechanism, which can be inte-
grated with concrete feature selection methods and noise generation algorithms.
It is also feasible to apply it to defend against other fingerprinting attacks over
encrypted traffic, such as website fingerprinting [6,10,13,14,19,22].

5 Which Packets Are More Significant?

In this section, we investigate a fundamental research problem—which packets
are more significant against encrypted traffic analysis? Specifically, we consider
the side-channel information of each bin as a feature, and formulate the question
above as a feature selection problem. However, evaluating important features
over encrypted stream traffic is not trivial as the number of features could be
more than hundreds or even thousands. For instance, if the bin size is w = 0.05s,
then our dataset has 3,600 dimensions, which is challenging to identify critical
features from others.

As how to effectively and accurately select features over high dimensional
data remains open in the current literature, we explored and customized two
approaches, including permutation feature importance and mutual-information-
based algorithms, in the context of encrypted traffic analysis.

5.1 Permutation Feature Importance

Feature selection methods can be grouped into two categories, wrapper methods
and filter methods. A wrapper method modifies data associated with one fea-
ture each time and evaluates the corresponding change of accuracy of a trained
classifier. A greater change in accuracy suggests a feature is more important.
Permutation Feature Importance (PFI) is one of the most common wrapper
methods. It modifies the input to a classifier by permuting data in one fea-
ture each time. However, directly permuting data in one feature each time in
our problem is not effective as the number of dimensions in our dataset is high.
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Fig. 6. An example of Sliding Window PFI, where a window include 2 features. In
this figure, Sliding Window PFI permutes data inside the window to evaluate the
importance of the 2 features.

Specifically, in our preliminary experiments, we did not notice changes of accu-
racy on a classifier and failed to evaluate the importance of a feature when we
only permuted data related to one feature each time.

To overcome this limitation, we customize the algorithm of PFI by permut-
ing data within a sliding window each time, where a sliding window consists of
multiple consecutive features. In addition, the permutation within each sliding
window is performed both vertically (i.e., across traces) and horizontally (i.e.,
across features) to create differences in data in order to examine the poten-
tial change of accuracy of a classifier. We refer our method as Sliding Window
Permutation Feature Importance (Sliding Window PFI). An example of Sliding
Window PFI is illustrated in Fig. 6.

Details of Sliding Window PFI. Given a dataset with m traces and n fea-
tures, which can be represented as a m x n matrix, Sliding Window PFT initiates
from the very left and takes a m x p submatrix, where p is the width of the
sliding window and p < n. Within the sliding window, Sliding Window PFI
first performs row-permutation to shuffle data across traces and then operates
column-permutation to shuffle data across features. The rest of the matrix out-
side the current window keeps unchanged. The entire dataset after this permu-
tation is fed into the trained CNN to measure the change in terms of accuracy
in classification. This accuracy change is recorded to indicate the importance
of the p consecutive features within the sliding window. A greater change on
accuracy indicates the consecutive features within the sliding window is more
significant. Our method keeps the size of the window the same but strides the
sliding window to the right with one feature to measure the importance of the
p features inside the sliding window for the next iteration. Our method iterates
until it records the accuracy change of the last p features on the right in the
matrix.
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Tradeoff of Sliding Window PFI. Sliding Window PFI can effectively eval-
uate the changes of a classifier compared to the original PFI. As a necessary
tradeoff, the significant features selected by Sliding Window PFIT are groups of
consecutive features, where each group of consecutive features is derived from
one sliding window.

5.2 Mutual-Information-Based Algorithms

Unlike wrapper methods, filter methods analyze features based on statistic infor-
mation. Therefore, filter methods are independent of machine learning classifiers
and they are more efficient and generic. Mutual Information (MI) is a primary
metric to measure the importance of features in filter methods. Given two ran-
dom variables F', C, the mutual information of these two random variables can
be calculated as below:

I(F;C) = H(C) - H(F|C) (1)

where H(F') is the entropy of random variable F' and H(F|C) is the conditional
entropy for F' given C'. Mutual information of two random variables is greater
than zero, and a higher mutual information indicates two random variables are
more dependent.

In the context of feature selection, F' is a random variable over data in a
feature (or a subset of features) and C is a random variable over all the classes.
A greater mutual information between F' and C suggests that the feature (or
the subset of features) is more important to classify the data. Given the number
of features k£ that a method would like to select, the goal of this method is to
maximize the mutual information of random variable F' based on a subset of k
selected features and target variable C' [2].

As feature selection over high dimensional data using mutual informa-
tion is a NP-hard problem [12], we leveraged three greedy algorithms, includ-
ing Max-Relevance [2,15], Minimal-Redundancy-Maximal-Relevance [15] and
Joint Mutual Information Maximisation [3,27], to address feature selection over
encrypted stream traffic. The main idea of each greedy algorithm is briefly dis-
cussed below. More details can be found in the references.

Max-Relevance (MR). MR [2,15] evaluates the relevance between features
and classes. It first calculates the MI score between each single feature and
classes. Then, the features with top-k highest MI scores will be selected.

Given a set of features F' = { f1, ..., fn }, the MI score of feature f; and random
variable of classes C' can be computed as I(f;,C'). MR selects a set of features
S ={fs1s» for }» where S C F and f,;, € F for 1 < j <k, such that

arg max D(S, C) (2)
s

where D(S,C) = I?ll Zfsjes I(fs;; C).
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Fig. 7. The results of Sliding Window PFI. The x-axis is the time difference compared
to the starting point of traffic traces.

Minimal Redundancy Maximal Relevance (mRMR). In addition to mea-
suring the relevance between features and classes as in MR, mRMR [15] also
measures the redundancy among features. When two features highly depend on
each other, classification accuracy would not change significantly if only one of
them is selected. Therefore, the other feature is considered as redundant and can
be removed from the result of feature selection.

Specifically, given a set of features F' = {f1, ..., fn}, the MI score of feature
fi and random variable of classes C' is denoted as I(f;, C)). mRMR selects a set
of features S = {fs,, ..., fs, }, where S C F and fs, € F for 1 < j <k, such that

arg;nax D(S,C) — R(9), (3)

where redundancy R(S) = # >t g es I(fsi3 fs;). mRMR uses a greedy selec-
tion, which iterates each feature to find these top-k features.

Joint Mutual Information Maximisation (JMIM). JMIM [3,27] utilizes
joint mutual information score to examine redundancy. Specifically, given two
features f;, f; and random variable of classes C, the joint mutual information
can be evaluated as

I(fi, [;:C) = I(fi;C|f;) + I(f;; C) (4)

Given a set of features F' = {fi,..., fn} and an empty set S = @&, JMIM
first selects the feature with the maximum mutual information and adds it to
set S. Then, JMIM adds one feature to set S in each iteration. Specifically, an
unselected feature f,, € {F —S} is selected in an iteration such that it maximizes
the minimum joint mutual information of itself, any selected feature fs € S and
random variable C', which can be formulated as below:

fil"eg;{;nfg}(g\;g(f(fu, fs:©))) (5)
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Table 1. Attack accuracy with data from selected features only

n = 3600 (bin size w = 0.05s) | n = 720 (bin size w = 0.255)
k=180|k = 360 k=72 k=144

Sliding window PFI | 35.1% |48.5% 46.4% 61.7%

MR 30.5% | 57.7% 39.8% | 47.6%

mRMR 30.1% | 57.5% 39.7% | 46.7%

JMIM 322% | 52.3% 47.8% | 50.2%

Feature f, is added to set S = S U f, and removed from the unselected set
{F — S} at the end of this iteration. JMIM continues the iterations until a total
number of k features is selected.

6 Evaluation of Feature Selection

Next, we evaluate the results of feature selection over our YouTube dataset and
show that each packet is not equally significant in stream fingerprinting.

Results of Sliding Window PFI. We examine Sliding Window PFI over our
dataset by examining different sizes of sliding windows. Specifically, given the
overall number of features n of a dataset, we examine sliding window size p,
where p = r - n and parameter r is the ratio of the sliding window size to the
overall number of features.

Given each n, which is decided by bin size, we examine parameter r =
{5%,10%, 15%,20%}. We implemented Sliding Window PFI in Python and uti-
lized our CNN described in Sect.3 as the trained classifier. Specifically, after
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each permutation within a sliding window is completed, the accuracy change of
classification on test data is recorded.

Due to the limitation of space, we only report the results of Sliding Window
PFI when bin size is w = 0.05 and w = 0.25s as our CNN achieves higher attack
accuracy given these two bin sizes. As we can observe from Fig.7, significant
accuracy changes introduced by the permutation on data are identified at the
first 40s of traffic traces. This indicates that the beginning of encrypted traffic
traces are more significant and leaks more privacy.

In addition, we can observe that, given the same bin size (or the number
of features), a wider sliding window (i.e., a greater value of r) will cause more
changes in attack accuracy. This is expected as a wider sliding window will
cause more data to be permuted in each iteration. Moreover, we notice that
permutation on data over a smaller bin size will cause more differences in the
classification results. This is consistent with our attack results, where data over
a smaller bin size leaks more privacy.

Results of Mutual-Information-Based Algorithms. Next, we examine the
results of the three mutual-information-based greedy algorithms. Compared to
the evaluation of Sliding Window PFI, where the feature importance is reported
based on each sliding window, the three greedy algorithms report feature impor-
tant based on each feature.

We implement the three methods using feast in Matlab [4]. feast is an open
source framework for mutual-information-based feature selections. For each bin
size, we select the top t% of features by following each greedy algorithm. The
results of feature selection for bin size w = 0.05 and ¢t = 10% are described
in Fig.8. Given w = 0.05s and t = 10%, there are 3,600 features in total and
360 features are selected. As we can see that, all the three greedy algorithms
indicate the features at the beginning of traffic traces are more significant. We
have the same observation for other bin sizes. We skip further details due to
space limitation. In addition, we observe that although the selected top t% of
features from each greedy algorithm might be different, but overall the selected
feature set is relatively similar.

Validation of Results with CNN. In addition to visualizing the selected
features, we also run experiments to valid selected features are more significant
to the classification in stream fingerprinting. Specifically, we perform stream
fingerprinting, retune hyperparameters and re-train CNN based on data that
is associated with selected features. As shown in Table 1, by selecting a much
smaller number of features, the CNN model can achieve an accuracy that is
much higher than random guess of 1%. For instance, give n = 3600 (bin size
w = 0.05s), selecting top k = 360 (¢t = 10%) features can achieve more than 50%
of accuracy in stream fingerprinting. In addition, we can also confirm that Sliding
Window PFI and the three greedy algorithms obtain similar attack accuracy if
they select a same number of features on the same dataset. We also notice that
mRMR is outperformed by other methods in most of the cases shown in Table 1.
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7 Evaluation of SmartSwitch

In this section, we use a concrete noise generation algorithm, named d*-privacy
[26], as a case study to demonstrate that our proposed defense mechanism Smart-
Switch can effectively mitigate privacy leakage against fingerprinting attacks but
can also significantly save bandwidth overhead.

To prove the advantage of our defense mechanism, we compare SmartSwitch
with an existing defense [28], which also leverages d*-privacy as the underlying
noise generation algorithm but applies the same level of noise on all packets.
We denoted this defense mechanism as NDSS19 in the rest of this paper. To
conduct a fair comparison, we report the efficacy and efficiency of the two defense
mechanisms over the same dataset—our YouTube dataset and utilize the same
classifier—our CNN.

Details of d*-privacy can be found in Appendix. The security analysis of it
can be found in [26]. We would like to point out that applying the same level of
noise in the context of d*-privacy means that using the same privacy parameter
€ to generate noise for all the packets in a traffic trace. In our evaluation, we
assume a strong attacker who can adapt in aware of a defense and can re-train
CNN with obfuscated traffic generated by a defense.

7.1 Defense Performance of NDSS19 on YouTube Dataset

We first reproduce the results of the defense mechanism, NDSS19, on our dataset.
By reproducing it, we aim to validate that NDSS19 is effective against our
CNN model, but not efficient in bandwidth. This evaluation will be used as
the baseline in our comparison. We examine YouTube dataset with bin size
w = {0.05,0.25} seconds, and we choose privacy parameter ¢ = {5 x 1077,
5x107%, 5x107%, 5x 1074, 5x 1072, 5 x 1072} to obfuscate data with each bin
size by using NDSS19. We would like point out that a smaller privacy parameter
indicates a higher level of noise in differential privacy. We skip other bin sizes
(w = {0.5,1,2} seconds) investigated in Sect.3 as those bin sizes derived lower
attack accuracy.

Attack Accuracy on Obfuscated Traffic Generated by NDSS19. We
performed the attack on obfuscated traffic by using our CNN model. We re-
tuned hyperparameters and re-trained CNN over each obfuscated dataset for
each combination of bin size w and privacy parameter e. The attack accuracy is
shown in Fig. 9. As we can observe, NDSS19 is effective on our dataset when we
choose privacy parameter € < 5 x 107°, which we denote it as privacy parameter
threshold. When choosing a greater privacy parameter than the threshold, the
noise level is no longer effective against the attack using CNN. In addition, given
the same privacy parameter, a smaller bin size leads to a higher attack accuracy,
which is expected.

The overall observations in Fig.9 are consistent with the results in the
paper of NDSS19, which suggests that we successfully reproduced the results
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Fig. 9. Attack accuracy on obfuscated traffic generated by NDSS19.

Table 2. Bandwidth overhead of NDSS19

Privacy parameter € | w = 0.05s | w = 0.255s
5x107* 50.8% 8.7%
5x107° 487.5% | 87.6%
5x107° 4895.1% | 881.4%

of NDSS19 on our dataset. It is worth to mention that, in the paper of NDSS19,
the defense remains effective when privacy parameter € < 5 x 10~%, which is dif-
ferent from our privacy parameter threshold e < 5 x 1075, This is likely because
our dataset is different from the dataset used in their paper.

Bandwidth Overhead of NDSS19. We report the bandwidth overhead of
NDSS19 on our YouTube dataset. As shown in Table2, given bin size w =
0.25s privacy parameter € = 5 x 107°, NDSS19 introduces, on average, 87.6%
(14.9 MB) bandwidth overhead per trace to generate obfuscated traffic traces.
If we keep the bin size the same but change the privacy parameter to privacy
parameter € = 5 x 1075, the bandwidth overhead increases to 881.4% (149.8 MB)
per trace on average. We also observed that a smaller bin size will need more
bandwidth overhead given the same privacy parameter. The observation we have
in bandwidth overhead is also consistent with the results in the paper of NDSS19.
Given a same privacy parameter, the degree of bandwidth overhead is similar. The
actual numbers are different due to the difference in datasets.

7.2 Defense Performance of SmartSwitch on YouTube Dataset

Next, we report the defense performance of SmartSwitch using d*-privacy as the
underlying noise generation algorithm. In terms of the underlying feature selec-
tion algorithms, we investigate Sliding Window Permutation Feature Impor-
tance, Max-Relevance, and Joint Mutual Information Maximisation, respec-
tively. We skip Minimal Redundancy Maximal Relevance in the rest of this
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Fig. 10. Attack accuracy on obfuscated dataset generated by SmartSwitch with Max-
Relevance.

evaluation as it has a similar but weaker results in feature selection than the
other two mutual-information-based algorithms as we shown in Table 1.

The Number of Selected Features. While we have addressed how Smart-
Switch can select features and how SmartSwitch can apply noise to obfus-
cate packets, another critical question we have not answered yet is—how many
features should SmartSwitch select? To answer this question, given bin size
w = 0.25s, we selected top-t% of features using different feature selection
algorithms on YouTube dataset, where ¢t = {20, 40,60,80}. We applied privacy
parameter €, = 5 x 1072 to generate noise for unselected features and privacy
parameter e, = {5 x 107°,5 x 107} respectively to produce noise for selected
features. We re-tuned hyperparameters and re-trained CNN over each obfus-
cated dataset for each combination of bin size w, privacy parameter € and the
proportion of selected features t.

As we can see from Fig. 10, if Max-Relevance is the underlying feature selec-
tion algorithm, SmartSwitch should select more than top-60% features to effec-
tively defend against stream fingerprinting. For instance, given ¢, = 5 x 1072,
SmartSwitch can reduce the attack accuracy close to 1%. We can also observe
that, if we compare the defense performance between ¢, = 5 x 107° and
€s = 5x 1075, a higher noise level on selected feature is more effective in defense.
If Sliding Window PFI serves as the underlying feature selection algorithm, as
shown in Fig. 11, our observations are consistent.

Note that we did not report the cases with Joint Mutual Information Max-
imization for bin size w = 0.05s (i.e., 3,600 features), as it is computationally
challenging to select more than top-20% of features from a total number of
n = 3,600 features. For example, after running 2 days with Joint Mutual Infor-
mation Maximization, our desktop ran out of memory. Thus, we only used JMIM
to analyse the datasets with w = 0.25s which is shown in Fig.12. As we shown
above, SmartSwitch in that case needs to obfuscate top-60% of features to be
effective in defense.
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Fig. 11. Attack accuracy on obfuscated dataset generated by SmartSwitch with Sliding
Window PFI.
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Fig. 12. Attack accuracy on obfuscated dataset generated by SmartSwitch with Joint
Mutual Information Maximisation (bin size w = 0.25s).

Bandwidth Overhead of SmartSwitch. As SmartSwitch only needs to pri-
marily protect top-60% of all the features, it can save bandwidth overhead com-
pared to NDSS19. As shown in Table 3, SmartSwitch can reduce the overhead
from 87.6% to 52.9% when w = 0.25s. And also, when €, = 5 x 1079, which is
the threshold to make the defense effective in [28], SmartSwitch can reduce the
overhead from 881.4% to 528.9%. In other words, SmartSwitch can save nearly

40% (= %W) bandwidth compared to NDSS19.

8 Related Work

Website Fingerprinting. During the early stage, researchers focused on using
traditional machine learning methods to identify encrypted traces [6,10,13,14],
These studies rely on hand-crafted features as inputs. Panchenko et al. [13]
proposed the state-of-art fingerprinting method which leverages the cumulative
size of traffic data as features and their proposed method is able to achieve an
accuracy of 93%. Recently, researchers adapted deep learning model as attack
which can automate the feature extraction process and achieve a very high accu-
racy. [19,22] used a carefully designed and tuned Convolutional Neural Network
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Table 3. Comparison between NDSS19 and SmartSwitch (bin size w = 0.25s and
€ =5 x 1072 in SmartSwitch)

NDSS19 SmartSwitch | NDSS19 SmartSwitch
e=5x10"° e, =5x10"°e=5x10"°% e, =5x 1076
Attack accuracy | 8.1% 4.5% 1.1% 1.0%
Bandwidth 87.6% 52.9% 881.4% 528.9%

(CNN) and achieved 98% accuracy. Besides website fingerprinting, Schuster et al.
[21] demonstrated that fingerprinting video streaming traffic is also feasible. They
applied CNN on video streams collected from different service providers and
their classification accuracy can reach as high as 99%. Recent studies [8,23] also
demonstrated that it is feasible to fingerprint voice commands from encrypted
traffic of smart speakers.

Defense Against Fingerprinting. Dryer et al. [6] revealed that burst-related
information is one of the most important feature for website fingerprinting and
they proposed BuFLO (Buffered Fixed-Length Obfuscation) which sends packets
at a fixed size within a fixed interval. Compared with BuFLO, WTF-PAD [7]
introduces no latency. Wang et al. [24] designed Walkie-Talkie, which changes
the communication pattern into half-duplex and also apply burst-modeling to
change the burst patterns of traffic. However, both WTF-PAD and Walkie-Talkie
can be compromised by deep learning model based attacks. The attack in [22]
can achieve 90% accuracy against WTF-PAD and 49.7% against Walkie-Talkie
with their CNN model. In [28], Zhang et al. explored differential privacy in
order to against the deep learning based attacks. They applied d*-privacy on
video streaming traffic and is able to reduce the accuracy to nearly 1%.

Feature Selection. In general, feature selection methods can be divided into
two different categories, classifier dependent (wrapper methods ) or classifier
independent (filter methods). Wrapper methods analyse feature space by eval-
uate the classifier’s results on each subset [12]. Therefore, the performance of
Wrapper methods heavily relies on a well-designed and fine-tuned classification
model.

Filter methods use information theory to estimate the relevance between fea-
tures and class labels. Mutual Information is one of the most popular approaches.
Battiti [2] proposed mutual information based feature selection. This method
leverages the mutual information between candidate features and labels to select
the informative subset. Yang et al. [27] proposed a feature selection method based
on JMI (Joint Mutual Information), which estimates the relevance between pairs
of features and class labels. Compared to MI, JMI considers conditional mutual
information between each two individual features such that JMI treats features
dependently. Peng et al. [15] devised a MI-based feature selection criterion, called
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mRMR (Minimal-Redundancy-Maximal-Relevance). The redundancy and rele-
vance of candidate features are both considered for the purpose of reducing the
dimension of feature set. Bennasar et al. [3] proposed JMIM (Joint Mutual Infor-
mation Maximisation) which selects features based on JMI. The major difference
between mRMR and JMIM is that, JMIM considers labels when it estimates the
redundancy of features. In general, relevance and redundancy are two major fac-
tors for MI and JMI based filter methods when they evaluate candidate features.

9 Conclusion

We propose a novel defense mechanism to reduce the bandwidth overhead against
stream fingerprinting. Our analysis results show that not every encrypted packet
leaks privacy evenly, and protecting more significant packets with higher noise
level is sufficient to maintain the efficacy in defense. Our defense mechanism
is generic and can also be extended to defenses again other encrypted traffic
analysis, such as website fingerprinting.
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Cincinnati were partially supported by National Science Foundation (CNS-1947913),
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Appendix

Hyperparameters of CNN. The tuned hyperparameters of our CNN are
described in Table 4. For the search space of each hyperparameter, we represent
it as a set. For the activation functions, dropout, filter size and pool size, we
searched hyperparameters at each layer. The tuned parameters we report in the
table are presented as a sequence of values by following the order of layers we
presented in Fig. 2. For instance, the tuned activation functions are selu (1st
Conv), elu (2nd Conv), relu (3rd Conv), elu (4th Conv), tanh (the second-to-
last Dense layer).

d*-privacy. Xiao et al. [26] proposed d*-privacy, which is a variant of differ-
ential privacy on time-series data, to preserve side-channel information leakage.
They proved that d*-privacy can achieve (d*,2¢)-privacy, where d* is a distance
between two time series data and e is privacy parameter in differential privacy.

Let = (21, ...,z) and y = (y1, ..., Y» ) denote two time series with the same
length. The d*-distance between  and y is defined as:

d*(z, y) ZZ\(% — 1) = (yi — Yi-1)] (6)

d*-privacy produces noise to data at a later timestamp by considering data
from an earlier timestamp in the same time series. Specifically, let D(i) denote
the greatest power of 2 that divides timestamp ¢, d*-privacy computes noised
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Table 4. Tuned hyperparameters of CNN When w = 0.05s

Hyperparameters Search Space CNN (w = 0.05) s
Optimizer {Adam, SGD, Adamax, Adadelta} | Adam

Learning rate {0.001, 0.002, ..., 0.01} 0.006

Decay {0.00, 0.01, 0.02, ..., 0.90} 0.71

Batch size {32, 64, 128, 256, 512} 64

Activation function |{softsigh, tanh, elu, selu, relu} [selu; elu; relu; elu; tanh]
Dropout {0.1, 0.2, ..., 0.7} [0.3; 0.4; 0.4; 0.7]
Dense layer size {100, 110, ...,200} 170

Convolution number | {32, 64, 128, 256, 512} [256; 128; 128; 512]
Filter size {4, 6, ..., 26} [14; 20; 16; 24]
Pool size {1, 3,5, 7} [1; 3; 15 3]

data z; at timestamp i as T; = :EG(Z.) + (z; — xG@) + r;, where x1 = 1 = 0,
function G(-) and r; are defined as below

0 ifi=1
G(i) =< 1/2 if i = D(i) (7)
i—D(i) ifi> D(i)
Laplace(?) if i = D(i)
ri = Elog i . (8)
Laplace(+——-2=) otherwise
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