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Abstract
We present three new algorithms for construct-
ing differentially private synthetic data—a sani-
tized version of a sensitive dataset that approxi-
mately preserves the answers to a large collection
of statistical queries. All three algorithms are
oracle-efficient in the sense that they are compu-
tationally efficient when given access to an op-
timization oracle. Such an oracle can be imple-
mented using many existing (non-private) opti-
mization tools such as sophisticated integer pro-
gram solvers. While the accuracy of the synthetic
data is contingent on the oracle’s optimization
performance, the algorithms satisfy differential
privacy even in the worst case. For all three algo-
rithms, we provide theoretical guarantees for both
accuracy and privacy. Through empirical evalua-
tion, we demonstrate that our methods scale well
with both the dimensionality of the data and the
number of queries. Compared to the state-of-the-
art method High-Dimensional Matrix Mechanism
(McKenna et al., 2018), our algorithms provide
better accuracy in the large workload and high
privacy regime (corresponding to low privacy loss
ε).

1. Introduction
The wide range of personal data collected from individuals
has facilitated many studies and data analyses that inform
decisions related to science, commerce, and government
policy. Since many of these rich datasets contain highly
sensitive personal information, there is a tension between
releasing useful information about the population and com-
promising individuals’ privacy. In this work, we consider
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the problem of answering a large collection of statistical
(or linear) queries subject to differential privacy constraints.
Formally, we consider a data domain X = {0, 1}d of di-
mension d and a dataset D ∈ Xn consisting of the data
of n individuals. Our goal is to approximately answer a
large class of statistical queries Q about D. A predicate
φ : X → [0, 1] defines a statistical query, and the query
qφ : Xn → [0, 1] is given by qφ(D) = 1

n

∑n
i=1 φ(Di). An

approximate answer a ∈ [0, 1] must satisfy |a−qφ(D)| ≤ α
for some accuracy parameter α > 0. To preserve privacy,
we work under the constraint of differential privacy (Dwork
et al., 2006). Privately answering statistical queries is at the
heart of the 2020 US Census release (Abowd, 2018) and
provides the basis for a wide range of private data analysis
tasks. For example, many machine learning algorithms can
be simulated using statistical queries (Kearns, 1998).

An especially compelling way to perform private query re-
lease is to release private synthetic data – a sanitized version
of the dataset that approximates all of the queries in the class
Q. Notable examples of private synthetic data algorithms
are the SmallDB algorithm (Blum et al., 2008) and the pri-
vate multiplicative weights (PMW) mechanism (Hardt &
Rothblum, 2010) (and its more practical variant the multi-
plicative weights exponential mechanism MWEM (Hardt
et al., 2012)), which can answer exponentially many queries
and achieves nearly optimal sample complexity (Bun et al.,
2018). Unfortunately, both algorithms involve maintaining
a probability distribution over the data domain X = {0, 1}d,
and hence suffer exponential (in d) running time. Moreover,
under standard cryptographic assumptions, this running time
is necessary in the worst case (Ullman, 2016; Ullman & Vad-
han, 2011). However, there is hope that these worst-case
intractability results do not apply to real-world datasets.

To build more efficient solutions for constructing private syn-
thetic data, we consider oracle efficient algorithms that rely
on a black-box optimization subroutine. The optimization
problem is NP-hard in the worst case. However, we invoke
practical optimization heuristics for this subroutine (namely
integer program solvers such as CPLEX and Gurobi). These
heuristics work well on many real-world instances. Thus the
algorithms we present are more practical than the worst-case
hardness would suggest is possible. While our algorithms’
efficiency and accuracy are contingent on the solver’s perfor-
mance, differential privacy is guaranteed even if the solver
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runs forever or fails to optimize correctly.

Overview of our results. To describe our algorithms, we
will first revisit a formulation of the query release problem
as a zero-sum game between a data player who maintains
a distribution D̂ over X and a query player who selects
queries from Q (Hsu et al., 2013; Gaboardi et al., 2014).
Intuitively, the data player aims to approximate the private
dataset D with D̂, while the query player tries to identify
a query which distinguishes between D and D̂. The prior
work (Hsu et al., 2013; Gaboardi et al., 2014) showed that
any (approximate) equilibrium for this game gives rise to
an accurate synthetic dataset. To study the private equilib-
rium computation within this game, we consider a primal
framework and a dual framework that enables us to unify
and improve on existing algorithms.

In the primal framework, we perform the equilibrium com-
putation via the following no-regret dynamics: over rounds,
the data player updates its distribution D̂ using a no-regret
online learning algorithm, while the query player plays
an approximate best response. The algorithm MWEM in
prior work falls under the primal framework with the data
player running the multiplicative weights (MW) method
as the no-regret algorithm and the query player privately
responding using the exponential mechanism (McSherry
& Talwar, 2007). However, since the MW method main-
tains an entire distribution over the domain X , MWEM runs
in exponential time, even in the best case. To overcome
this intractability, we propose two new algorithms FEM
and sepFEM that follow the same no-regret dynamics but
importantly replace the MW method with two variants of
the follow-the-perturbed-leader (FTPL) algorithm (Kalai
& Vempala, 2005)—Non-Convex-FTPL (Suggala & Netra-
palli, 2019) and Separator-FTPL (Syrgkanis et al., 2016)—
both of which solve a perturbed optimization problem in-
stead of maintaining an exponential-sized distribution. FEM
achieves an error rate of α = Õ

(
d3/4 log1/2 |Q|/n1/2

)
,

and sepFEM achieves a slightly better rate of α =

Õ
(
d5/8 log1/2 |Q|/n1/2

)
, although the latter requires the

query class Q to have a structure called a small separa-
tor set. In contrast, MWEM attains the error rate α =

Õ
(
d1/4 log1/2 |Q|/n1/2

)
. Although the accuracy analysis

requires repeated sampling from the FTPL distribution (and
thus repeatedly solving perturbed integer programs), our
experiments show that the algorithms remain accurate even
with a much lower number of samples, which allows for a
much more reasonable running time.

We then consider the dual formulation and improve upon
the existing algorithm DualQuery (Gaboardi et al., 2014).
Unlike MWEM, DualQuery has the query player running
MW over the query class Q, which is often significantly
smaller than the data domainX , and has the data player play-

ing best response, which can be computed non-privately by
solving an integer program. Since the query player’s MW
distribution is a function of the private data, DualQuery
privately approximates this distribution with a collection
of samples drawn from it. Each draw from the MW dis-
tribution can be viewed as a single instantiation of the
exponential mechanism, which provides a bound on the
privacy loss. We improve DualQuery by leveraging the
observation that the MW distribution changes slowly be-
tween rounds in the no-regret dynamics. Thus can reuse
previously drawn queries to approximate the current MW
distribution via rejection sampling. By using this tech-
nique, our algorithm DQRS (DualQuery with rejection
sampling) reduces the number of times we draw new sam-
ples from the MW distribution and also the privacy loss, and
hence improves the privacy-utility trade-off. We theoreti-
cally demonstrate that DQRS improves the accuracy guar-
antee of DualQuery. Specifically DQRS attains accuracy

α = Õ
(

log(|X |/β)·log3(|Q|)
n2

)1/5
whereas DualQuery at-

tains accuracy α = Õ
(

log(|X |/β)·log3(|Q|)
n2

)1/6
. Even

though the dual algorithms DualQuery and DQRS have
worse accuracy performance than the primal algorithms
FEM and sepFEM, the dual algorithms run substantially
faster since they make many fewer oracle calls. Thus we
observe a trade-off not only between privacy and utility but
also with computational resources.

In addition to our theoretical guarantees, we perform a basic
experimental evaluation of our algorithms. As a benchmark,
we use DualQuery as well as the state-of-the-art High-
Dimensional Matrix Mechanism (HDMM) (McKenna et al.,
2018); HDMM is being deployed in practice by the US
Census Bureau (Kifer, 2019). We perform our experiments
with the standard Adult and Loans datasets and use k-way
conjunctions as a query workload. Our algorithms are com-
parable to the benchmarks on a small workload, and we
see that FEM and HDMM performs best overall. We then
compare HDMM and FEM on a large workload. Here we
see that the accuracy of FEM is still similar to HDMM (and
in some parameter regimes better). These results support
our theoretical analysis.

In Section 6, we compare the performance of our algorithms
against other practical algorithms for synthetic data gen-
eration. The benchmark we use is the High-Dimensional
Matrix Mechanism (McKenna et al., 2018), which itself
builds on the Matrix Mechanism (Li et al., 2015), but is
more efficient and scalable. Given a workload of queries Q,
this algorithm uses optimization routines (in a significantly
different way than ours) to select a different set of “strategy
queries” which can be answered with Laplace noise. An-
swers to the original queries in Q can then be reconstructed
by combining the noisy answers to these strategy queries.
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2. Preliminaries
Definition 2.1 (Differential Privacy). A randomized algo-
rithmM : X ∗ → R satisfies (ε, δ)-differential privacy if
for all databases x, x′ differing in at most one entry, and
every measurable subset S ⊆ R, we have

Pr[M(x) ∈ S] ≤ eε Pr[M(x′) ∈ S] + δ.

We will use the exponential mechanism as a key component
in our design of private algorithms.

Definition 2.2 (Exponential Mechanism (McSherry & Tal-
war, 2007)). Given some database x, arbitrary rangeR, and
score function S : X ∗ × R → R, the exponential mecha-
nismME(x, S,R, ε) selects and outputs an element r ∈ R
with probability proportional to

exp

(
εS(x, r)

2∆S

)
,

where ∆S is the sensitivity of S, defined as

∆S = max
D,D′:|D4D′|=1,r∈R

|S(D, r)− S(D′, r)|.

Lemma 1 ((McSherry & Talwar, 2007)). The exponential
mechanismME(x, S,R) is (ε, 0)-differentially private.

Theorem 2 (Exponential Mechanism Utility (McSherry &
Talwar, 2007)). . Fixing a database x, letOPTS(x) denote
the max score of function S. Then, with probability 1− β
the error is bounded by:

OPTS(x)− S(x,ME(x, u,R, ε)) ≤ 2∆S

ε
(ln |R|/β)

Theorem 3 (Advanced Composition (Dwork et al., 2010;
Bun & Steinke, 2016)). Let ε, δ, δ′ > 0. The adaptive T -
fold composition of T (ε, δ)-differentially private algorithms
is (ε′, T δ + δ′)-differentially private for

ε′ =
Tε2

2
+ ε
√

2T log(1/δ′).

We are interested in privately releasing statistical linear
queries, formally defined as follows.

Definition 2.3 (Statistical linear queries). Given as pred-
icate a linear threshold function φ, the linear query qφ :
Xn → [0, 1] is defined by

qφ(D) =

∑
x∈D φ(x)

|D|

The main query class we consider in our empirical evalua-
tions is 3-way marginals and 5-way marginals. We give the
definition here

Definition 2.4. Let the data universe with d categorical
features be X = (X1 × . . . × Xd), where each Xi is the
discrete domain of the ith feature. We write xi ∈ Xi to mean
the ith feature of record x ∈ X . A 3-way marginal query is
a linear query specified by 3 features a 6= b 6= c ∈ [d], and
a target y ∈ (Xa ×Xb ×Xc), given by

qabc,y(x) =

{
1 : xa = y1 ∧ xb = y2 ∧ xc = y3

0 : otherwise.

Furthermore, its negation is given by

q̄abc,y(x) =

{
0 : xa = y1 ∧ xb = y2 ∧ xc = y3

1 : otherwise.

Note that for each marginal (a, b, c) there are |Xa||Xb||Xc|
queries.

Finally, our algorithm will be using the following form of
linear optimization oracle. In our experiments, we imple-
ment this oracle via an integer program solver.

Definition 2.5 (Linear Optimization Oracle). Given as input
a set of n statistical linear queries {qi} and a d-dimensional
vector σ, a linear optimization oracle outputs

x̂ ∈ arg min
x∈{0,1}d

{
n∑
i=1

qi(x)− 〈x, σ〉

}

3. Query Release Game
Given a class of queries Q over a database D, we want to
output a differentially private synthetic dataset D̂ such that
for any query q ∈ Q we have low error:

error(D̂) = |q(D)− q(D̂)| ≤ α.

We revisit a zero-sum game formulation between a data-
player and a query player for this problem (Hsu et al., 2013;
Gaboardi et al., 2014). The data player has action set equal
to the data universe X and the query player has action set
equal to the query class Q. We make the assumption that
Q is closed under negation. That is, for every query q ∈ Q
there is a negated query q̄ ∈ Q where q̄(D) = 1− q(D). If
Q is not closed under negation, we can simply add negated
queries to Q. Since Q is closed under negations, we can
write the error as

|q(D)− q(D̂)| = max{q(D)− q(D̂),¬q(D)− ¬q(D̂)}

This allows us to define a payoff function that captures the
error of D̂ without the absolute value. In particular, the
payoff for actions x ∈ X and q ∈ Q is given by:

A(x, q) := q(D)− q(x) (1)
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The data player wants minimizes the payoff A(x, q) while
the query player maximizes it. Intuitively, the data player
would like to find a distribution over X with low error,
while the query player is trying to identify the query with
the highest error. Each player chooses a mixed strategy, that
is a distribution over their action set. Let ∆(X ) and ∆(Q)
denote the sets of distributions over X and Q, respectively.
For any D̂ ∈ ∆(X ) and Q̂ ∈ ∆(Q), the payoff is defined
as

A(D̂, ·) = Ex∼D̂ [A(x, ·)] , A(·, Q̂) = Eq∼Q̂ [A(·, q)] .

A pair of mixed strategies (D̂, Q̂) ∈ ∆(X )×∆(Q) forms
an α-approximate equilibrium of the game if

max
q∈Q

A(D̂, q)− α ≤ A(D̂, Q̂) ≤ min
x∈X

A(x, Q̂) + α, (2)

The following result allows us to reduce the problem of
query release to the problem of computing an equilibrium
in the game.

Theorem 4 (Gaboardi et al. (2014)). Let (D̂, Q̂) be any
α-approximate equilibrium of the query release game, then
the data player’s strategy D̂ is 2α-accurate, that is for all
q ∈ Q, error(D̂) = |q(D)− q(D̂)| ≤ 2α.

3.1. No-Regret Dynamics

To compute such an equilibrium privately, we will simulate
no-regret dynamics between the two players. Over rounds
t = 1, . . . , T , the two players will generate a sequence
of plays (D1, Q1), . . . , (DT , QT ) ∈ ∆(X ) × ∆(Q). The
regrets of the two players are defined as

Rdata =

T∑
t=1

A(Dt, Qt)−min
x∈X

T∑
t=1

A(x,Qt),

Rqry = max
q∈Q

T∑
t=1

A(Dt, q)−
T∑
t=1

A(Dt, Qt)

Theorem 5 (Follows from (Freund & Schapire, 1997)). The
average play (D,Q) given by D = 1

T

∑T
t=1D

t and Q =
1
T

∑T
t=1Q

t from the no-regret dynamics above is an α-
approximate equilibrium with

α =
Rdata +Rqry

T
.

In the next section we will now provide a general framework
to privately compute the approximate Nash equilibrium of
the game.

4. Primal Oracle-Efficient Framework
In the primal framework, we will have the data player run
a online learning algorithm to generate the distributions

D1, . . . , DT over rounds and have the query player play
an approximate best response Qt against Dt in each round.
The algorithm MWEM falls under this framework, but the
no-regret algorithm (MW) runs in exponential time even in
the best case since it maintains a distribution over the entire
domain X . We replace the MW method with two variants
of the follow-the-perturbed-leader (FTPL) algorithm (Kalai
& Vempala, 2005)—Non-Convex-FTPL (Suggala & Netra-
palli, 2019) and Separator-FTPL (Syrgkanis et al., 2016).
Both of these algorithms can generate a sample from their
FTPL distributions by calling on an oracle to solve a per-
turbed optimization problem. (In our experiments, we in-
stantiate this oracle with an integer program solver.) For
both algorithms, the query player will select a query qt
(that is Qt is point mass distribution on qt) using the expo-
nential mechanism. We present this primal framework in
Algorithm 1.

Algorithm 1 Primal Framework of No-Regret Dynamics

Require: FTPL algorithm A
input A dataset D ∈ Xn, query classQ, number of rounds
T , target privacy ε, δ.
Initialize ε0 such that ε = Tε20/2 + ε0

√
2T log (1/δ)

Get initial sample q0 uniformly at random.
for t = 1 to T do

Data Player: Generate D̂t with online learner A who
sees history of previous queries q0, . . . , qt−1.
Query player: Define score function St. For each
query q ∈ Q, set St(D, q) = q(D)− q(D̂t).
Sample qt ∼ME(D,St,Q, ε0)

end for
output 1

T

∑T
t=1 D̂

t

Now we instantiate the primal framework above with two
no-regret learners, which yield two algorithms FEM ((Non-
Convex)-FTPL with Exponential Mechanism) and sepFEM
(Separator-FTPL with Exponential Mechanism). First, the
FEM algorithm at each round t computes a distribution Dt

by solving a perturbed linear optimization problem polyno-
mially many times. The optimization objective is given by
the payoff against the previous queries and a linear pertur-
bation

arg min
x∈X

t−1∑
i=0

A(x, qi) + 〈x, σ〉

where σ is a random vector drawn from the exponential
distribution. Observe that the first term qi(D) in A(x, qi) =
qi(D)− qi(x) does not depend on x. Thus, we can further
simplify the objective as

arg max
x∈X

{
t−1∑
i=0

qi(x)− 〈x, σ〉

}
To solve this problem above, we will use an linear optimiza-
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tion oracle (Definition 2.5), which we will implement using
an integer program solver.

Algorithm 2 Data player update in FEM
input Queries q0, . . . , qt−1, exponential noise parameter η

and number of samples s
for j ← 1 to s do

Let σj ∈ Rd be a random vector such that each coordi-
nate of σj is drawn from the exponential distribution
Exp(η). Obtain a FTPL sample xtj by solving

xtj ∈ arg max
x∈X

{
t−1∑
i=1

qi(x)− 〈x, σj〉

}

end for
output D̂t as the uniform distribution over {xt1, . . . , xts}

The second algorithm is less general, but as we will show it
achieves a better error rate for important classes of queries.
Algorithm sepFEM relies on the assumption that the query
class Q has a small separator set sep(Q).

Definition 4.1 (Separator Set). A queries class Q has a
small separator set sep(Q) if for any two distinct records
x, x′ ∈ X , there exist a query q : X → {0, 1} in sep(Q)
such that q(x) 6= q(x′).

Many classes of statistical queries defined over the boolean
hypercube have separator sets of size proportional to their
VC-dimension or the dimension of the input data. For exam-
ple, boolean conjunctions, disjunctions, halfspaces defined
over the {0, 1}d, and parity functions all have separator sets
of size d.

Algorithm sepFEM then perturbs the data player’s opti-
mization problem by inserting “fake” queries from the sepa-
rator set:

arg max
x∈X


t−1∑
i=1

qi(x) +
∑

q̃j∈sep(Q)

σj q̃j(x)

 ,

where each σj ∈ R is sampled from the Laplace distribution.
This problem can be viewed as a simple special case of the
linear optimization problem in Definition 2.5 with no linear
perturbation term.

To derive the privacy guarantee of these two algorithms, we
observe that the data player’s update does not directly use
the private dataset D. Thus, the privacy guarantee directly
follows from the composition of T exponential mechanisms.

Theorem 6 (Privacy). Let 0 < δ < 1. For any no-regret
algorithm A, Algorithm 1 is (ε, δ)-differentially private.

To derive the accuracy guarantee of the two algorithms, we
first bound the regret of the two players. Note that the regret

Algorithm 3 Data player update in sepFEM
input Queries q0, . . . , qt−1, Laplace noise parameters η,

number of samples s.
Let sep(Q) = {q̃1, . . . , q̃M} be the serparator set for Q.
for i = 1 to s do

Let σ ∈ RM be a fresh random vector such that each
coordinate of σj is drawn from the Laplace distribution
Lap(η). Obtain a FTPL sample xtj by solving

xtj arg max
x∈X

{
t−1∑
i=1

qi(x) +
M∑
i=1

σj,iq̃i(x)

}

end for
output D̂t be a uniform distribution over {xt1, . . . , xts}

guarantee of the data player follow from the regret bounds
on the two FTPL algorithms (Suggala & Netrapalli, 2019)
and (Syrgkanis et al., 2016). The regret guarantee of the
query player directly follows from the utility guarantee of
the exponential mechanism (McSherry & Talwar, 2007).
We defer the details to the appendix.

Corollary 6.1 (FEM Accuracy). Let d = log(X ). For any
dataset D ∈ Xn, query class Q and privacy parameter
ρ > 0, there exists T, η, s so that with probability at least
1 − β, the algorithm FEM finds a synthetic database that
answers all queries in Q with additive error

α = Õ

d3/4 log1/2 |Q| ·
√

log( 1
δ ) log( 1

β )

n1/2ε1/2


Corollary 6.2 (sepFEM Accuracy). Let d = log(X ). For
any dataset D ∈ Xn and query class Q with a separator
set sep(Q) and privacy parameter ρ > 0, there exist T, η, s
so that with probability at least 1− β, algorithm sepFEM
finds a synthetic

α = O

 | sep(Q)|3/8d1/4 log1/2 |Q| ·
√

log( 1
δ ) log( 1

β )

n1/2ε1/2


Note that if the query class Q has a separator set of size
O(d), which is the case for boolean conjunctions, disjunc-
tions, halfspaces defined over the {0, 1}d, and parity func-
tions, then the bound above becomes

α = O

d5/8 log1/2 |Q| ·
√

log( 1
δ ) log( 1

β )

n1/2ε1/2


Remark. Non-convex FEM and Separator FEM exhibit
a better tradeoff between α and n than DualQuery, but a
slightly worse dependence on d compared to DualQuery
and MWEM.
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5. DQRS: DualQuery with Rejection
Sampling

In this section, we present an algorithm DQRS that builds
on the DualQuery algorithm (Gaboardi et al., 2014) and
achieves better provable sample complexity. In DualQuery,
we employ the dual framework of the query release game –
the query player maintains a distribution over queries using
the Multiplicative Weights (MW) no-regret learning algo-
rithm and the data player best responds. However, the query
player cannot directly use the distribution Qt proposed by
MW during round t because it depends on the private data.
Instead, for each round t, it takes s samples from Qt to
form an estimate distribution Q̂t. The data player then best-
responds against Q̂t. Sampling from the MW distribution
Qt can be interpreted as a sample from the exponential
mechanism. The sampling step incurs a significant privacy
cost.

Our algorithm DQRS improves the sampling step of
DualQuery in order to reduce the privacy cost (and the
runtime). The basic idea of our algorithm DQRS is to ap-
ply the rejection sampling technique to “recycle” samples
from prior rounds. Namely, we generate some samples from
Qt using the samples obtained from the distribution in the
previous round, i.e., Qt−1. This is possible because Qt is
close to Qt−1. We show that by taking fewer samples from
Qt for each round t, we consume less of the privacy budget.
The result is that the algorithm operates for more iterations
and obtains lower regret (i.e., better accuracy).

Theorem 7. DualQuery with rejection sampling (Algo-
rithm 4) takes in a private dataset D ∈ Xn and makes
T = O

(
log |Q|
α2

)
queries to an optimization oracle and

outputs a dataset D̃ = (x1, · · · , xT ) ∈ X T such that,
with probability at least 1 − β, for all q ∈ Q we have
|q(D̃) − q(D)| ≤ α. The algorithm is (ε, δ)-differentially
private and attains accuracy

α = O

(
log(|X |T/β) · log3(|Q|) · log(1/δ)

n2ε2

)1/5

.

In contrast, DualQuery (without rejection sampling) ob-
tains the same result except with

α = O

(
log(|X |T/β) · log3(|Q|) · log(1/δ)

n2ε2

)1/6

.

In other words, DQRS attains strictly better accuracy than
DualQuery for the same setting of other parameters.

The analysis of DQRS largely follows that of DualQuery.
The key difference is the analysis of the rejection sampling
step, which is summarized by the following two lemmas.
The first one shows that taking samples drawn from Q =

Algorithm 4 Rejection Sampling Dualquery

Require: Target accuracy α ∈ (0, 1), target failure proba-
bility β ∈ (0, 1)

input dataset D, and linear queries q1, . . . , qk ∈ Q
Set T = 16 log |Q|

α2 , η = α
4

s = 48 log(3|X |T/β)
α2

Construct sample S1 of s queries {qi} from Q according
to Q1 = Uniform(Q)
for t← 1 to T do

Let q̃ = 1
s

∑
q∈St

q

Find xt with AD(xt, q̃) ≥ maxxAD(x, q̃)− α/4
Let γt = 1

2t2/3

for all q ∈ Q do
Q̂t+1
q := e−η−γt · exp (−ηAD(xt, q))Qtq

end for
Normalize Q̂t+1 to obtain Qt+1

Construct St+1 as follows
Let s̃t = (2γt + 4η)s and add s̃t independent fresh
samples from Qt+1 to St+1

for all q ∈ St do
Add q to St+1 with probability Q̂q

t+1
/Qtq

If |St+1| > s, discard elements at random so that
|St+1| = s

end for
end for

output Sample y1, . . . , ys

Qt and performing rejection sampling yields samples from
P = Qt+1; thus St+1 is distributed exactly as if it were
drawn from Qt+1. The second lemma gives a bound on the
privacy loss of the rejection sampling step.

Lemma 8 (Rejection Sampling Accuracy). Let P and
Q be probability distributions over Q, and let M ≥
maxq∈Q Pq/Qq. Sample an element of Q as follows.
Sample q according to Q, and accept it with probability
Pq/(M ·Qq). If q is not accepted, sample q according to P .
Then the resulting element is distributed according to P .

Lemma 9 (Rejection Sampling Privacy). The subroutine
which accepts q with probability Q̂t+1

q /Qtq = e−η−γt ·
exp(−ηAD(xt, q)) is ε-differentially private for ε =
max {η/n, η/γtn}.

6. Experiments on the Adult dataset
We evaluate the algorithms presented in this paper on two
different datasets: the ADULT dataset from the UCI repos-
itory (Dua & Graff, 2017) and the LOANS dataset. The
datasets used in our experiments are summarized in table 1.
For the experiments in this section, we focus on answering
3-way marginal and 5-way marginal queries. We ran two
sets of experiments. One looks into how well the algorithms
scale with the privacy budget, and we test for privacy budget
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ε taking value in 0.1, 0.15, 0.2, 0.25, 0.5, and 1. The second
one looks into how the algorithms’ performance degrades
when we rapidly increase the number of marginals workload
to answer. To measure the accuracy of a synthetic dataset D̂
produced by the algorithm, we used the max additive error
over a set of queriesQ: error(D̂) = maxq∈Q |q(D)−q(D̂)|.

Table 1. Datasets

DATA SET RECORDS ATTRIBUTES

ADULT 48842 15
LOANS 42535 48

Our first set of experiments (fig. 1) fix the number of queries
and evaluate the performance on different privacy levels.
From the first result, we observe that FEM’s max error
rate increases more slowly than HDMM’s as we increase
the privacy level (decrease ε value). Our second set of
experiments (fig. 2) fix the privacy parameters and evaluates
performance on increasing workload size (or the number of
marginals). The results from this section, show that FEM’s
max error rate increases much more slowly than HDMM’s.
From the experiments, we can conclude that at least of the
case of k-way marginals and dataset ADULT and LOANS,
FEM scales better to both the high privacy regime (low
ε value) and the large workload regime (high number of
queries) than the state-of-the-art HDMM method.

(a) ADULT dataset on 3-way
marginal queries.

(b) LOANS dataset on 3-way
marginal queries.

(c) ADULT dataset on 5-way
marginal queries.

(d) LOANS dataset on 5-way
marginal queries.

Figure 1. Max-error for 3 and 5-way marginal queries on differ-
ent privacy levels. The number of marginals is fixed at 64. We
enumerate all queries for each marginal.(see definition 2.4)

(a) ADULT dataset on 3-way
marginal queries.

(b) LOANS dataset on 3-way
marginal queries.

(c) ADULT dataset on 5-way
marginal queries.

(d) LOANS dataset on 5-way
marginal queries.

Figure 2. Max-error for increasing number of 3 and 5-way
marginals. We enumerate all queries for each marginal (see def-
inition 2.4). The privacy parameter ε is fixed at 0.1 and δ is 1

n2 ,
where n is the size of the dataset. .

Hyper-Parameter Selection In our implementation, al-
gorithm FEM has hyperparameters ε0 and η. Both the
accuracy and the run time of the algorithm depend on how
we choose these hyperparameters. For FEM , we ran grid-
search on different hyperparameter combinations and re-
ported the one with the smallest error. The table 2 summa-
rizes the range of hyperparameters used for the first set of
experiments in fig. 1. Then table 3 summarizes the range of
hyperparameters used for the second set of experiments in
fig. 2.

However, in real-life scenarios, we may not have access
to an optimization procedure to select the best set of hy-
perparameters since every time we run the algorithm, we
are consuming our privacy budget. Therefore, selecting the
right combination of hyperparameters can be challenging.
We briefly discuss how each parameter affects FEM’s per-
formance. The η parameter is the scale of the random objec-
tive perturbation term. The data player samples a synthetic
dataset D̂ from the Follow The Perturbed Leader distribu-
tion with parameter η as in algorithm 2. The perturbation
scale η controls the rate of convergence of the algorithm.
Setting this value too low can make the algorithm unstable
and leads to bad performance. If set too high, the solver in
FTPL focuses too much on optimizing over the noise term.

The parameter ε0 corresponds to the privacy consumed on
each round by the exponential mechanism parameterized
with ε0. The goal is to find a query that maximizes the error
on D̂. Thus, the parameter ε0 controls the number of itera-
tions. Again we face a trade-off in choosing ε0, since setting
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this value too high can lead to too few iterations giving the
algorithm no chance to converge to a good solution. If ε0 is
too low, it can make the algorithm run too slow, and also it
makes it hard for the query player’s exponential mechanism
to find queries with large errors.

Table 2. First FEM hyperparameters for fig. 1.

PARAM DESCRIPTION RANGE

ε0 PRIVACY BUDGET
USED PER ROUND

0.003, 0.005, 0.007,
0.009, 0.011, 0.015,
0.017, 0.019

η SCALE OF NOISE FOR
OBJECTIVE PERTURBA-
TION

1, 2, 3, 4

Table 3. Second FEM hyperparameters for fig. 2.

PARAM DESCRIPTION RANGE

ε0 PRIVACY BUDGET
USED PER ROUND

0.0025, 0.003, 0.0035

η SCALE OF NOISE FOR
OBJECTIVE PERTURBA-
TION

0.75, 1, 1.25

Data discretization We discretize ADULT and LOANS
datasets into binary attributes by mapping each possible
value of a discrete attribute to a new binary feature. We
bucket continuous attributes, mapping each bucket to a new
binary feature.

Optimizing over k-way Marginals We represent a data
record by its one-hot binary encoding with dimension d,
thus X = {0, 1}d is the data domain. On each round
t the algorithm FEM takes as input a sequence of t
queries

(
q(1), . . . , q(t)

)
and a random perturbation term

σ ∼ Lap(η)d and solves the following optimization prob-
lem

arg max
x∈{0,1}d

{
t−1∑
i=1

q(i)(x)− 〈x, σ〉

}
(3)

Let Qk be the set of k-way marginal queries. We can repre-
sent any k-way marginal query q ∈ Qk for X in vector form
with a d-dimensional binary vector ~q such that ~q ∈ {0, 1}d
and ‖~q‖1 = k. Then we can define q ∈ Qk as

q(x) =

{
1 if k = 〈x, ~q〉
0 otherwise

Let Q̄k be the set of negated k-way marginals. Then for any
q ∈ Q̄k

q(x) =

{
0 if k = 〈x, ~q〉
1 otherwise

Next we formulate the optimization problem eq. (3) as
an integer program. Given a sequence of t queries(
q(1), . . . , q(t)

)
and a random perturbation term σ ∼

Lap(η)d. Let ci ∈ {0, 1} be a binary variable encoding
whether the query q(i) is satisfied.

max
x∈{0,1}d

t∑
i=1

ci − 〈x, σ〉

s.t. for all i ∈ {1, . . . .t}〈
x, ~q(i)

〉
≥ kci if q(i) ∈ Qk〈

~1d − x, ~q(i)
〉
≥ ci if q(i) ∈ Q̄k

Finally, we used the Gurobi solver for mixed-integer-
programming to implement FEM’s optimization oracle.

The implementation We ran the experiments on a
machine with a 4-core Opteron processor and 192 Gb
of ram. We made publicly available the see the exact
implementations used for these experiments via GitHub.
For HDMM’s implementation see https://github.
com/ryan112358/private-pgm/blob/master/
examples/hdmm.py and for FEM’s implementation
see https://github.com/giusevtr/fem.

7. Conclusion and Future Work
In this paper, we have studied the pressing problem of ef-
ficiently generating private synthetic data. We have pre-
sented three new algorithms for this task that sidestep known
worst-case hardness results by using heuristic solvers for NP-
complete subroutines. All of our algorithms are equipped
with formal privacy and utility guarantees and they are
oracle-efficient – i.e., our algorithms are efficient as long as
the heuristic solvers are efficient.

There is a very real need for practical private synthetic data
generation tools and a dearth of solutions available; the sci-
entific literature offers mostly exponential-time algorithms
and negative intractability results. This work explores one
avenue for solving this conundrum and we hope that there
is further work both extending this line of work and explor-
ing entirely new approaches. Our experimental evaluation
demonstrates that our algorithms are promising and sup-
ports our theoretical results. However, our experiments are
relatively rudimentary. In particular, we invested most time
into optimizing the most promising algorithm FEM. An

https://github.com/ryan112358/private-pgm/blob/master/examples/hdmm.py
https://github.com/ryan112358/private-pgm/blob/master/examples/hdmm.py
https://github.com/ryan112358/private-pgm/blob/master/examples/hdmm.py
https://github.com/giusevtr/fem
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immediate question is whether further optimization of the
other two algorithms could yield better results.
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