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Abstract

This paper describes our experience applying formal meth-
ods to a critical component in the Linux kernel, the just-in-time
compilers (“JITs”) for the Berkeley Packet Filter (BPF) virtual
machine. We verify these JITs using Jitterbug, the first frame-
work to provide a precise specification of JIT correctness that
is capable of ruling out real-world bugs, and an automated
proof strategy that scales to practical implementations. Using
Jitterbug, we have designed, implemented, and verified a new
BPF JIT for 32-bit RISC-V, found and fixed 16 previously
unknown bugs in five other deployed JITs, and developed new
JIT optimizations; all of these changes have been upstreamed
to the Linux kernel. The results show that it is possible to
build a verified component within a large, unverified system
with careful design of specification and proof strategy.

1 Introduction

Downloading application code into the OS kernel is a general
approach to extensibility [26]. To extend the kernel, the applica-
tion submits a program written in a dedicated language, and the
kernel executes this program using an interpreter, or translates
itinto machine code for native execution via a just-in-time (JIT)
compiler [3]. Berkeley Packet Filter (BPF) [31] is one such lan-
guage, and it is used to implement a wide variety of extensions
for the Linux kernel, including networking [38], security [79],
and tracing [35], among many other services [18, 57].

Given the prevalence of BPF code and its execution in
the OS kernel, the correctness of BPF JIT compilers (or
simply “JITs”) is critical for the system. Compared to the
BPF interpreter, using the JITs is both more efficient and
more resistant to speculative attacks [84], leading major Linux
distributions to remove the BPF interpreter from the kernel
in favor of the JITs [9]. But the JITs are more susceptible to
subtle correctness bugs due to their complexity (§3).

This paper presents a formal approach to building JITs in
the kernel with high assurance of correctness. We develop
Jitterbug, a framework for writing JITs and proving them

correct. Using Jitterbug, we design, implement, and verify a
BPF JIT for RV32, the 32-bit RISC-V architecture [96]. We
also port the existing JITs for Arm32, Arm64, RV64, x86-32,
and x86-64 to Jitterbug, uncovering 16 previously unknown
bugs. We write patches that fix these bugs and introduce new
optimizations, all of which are verified to be correct. The
BPF JIT for RV32, bug fixes, and optimizations have been
upstreamed to the Linux kernel.

Jitterbug is designed to meet three competing requirements:
deployability of verified JITs with minimal changes to the
Linux kernel; proof automation to support rapid verification
of JITs; and separability of verified JITs from any verification
artifacts, making the resulting code auditable by kernel devel-
opers with no background in formal methods. Each of these
requirements comes with its own challenges and trade-offs.

First, BPF JITs and their generated code interact with a
monolithic kernel via an existing interface, which was not de-
signed for verification. As Jitterbug emphasizes deployability,
it cannot adopt the clean-slate design favored by previous
verification efforts [33, 65, 81, 94] or change this interface to
simplify verification. Therefore, it needs a correctness spec-
ification that is both capable of ruling out real-world bugs
and amenable to verification. Developing such a specification
is challenging even for clean-slate designs with strong sim-
plifying assumptions, and it is the core technical challenge
addressed by Jitterbug.

Second, verification needs to catch up with increasing
functionality and optimization of BPF JITs. Jitterbug thus
prioritizes proof automation to free developers from the burden
of writing manual proofs and to enable rapid verification in
the code review process. Prior work has shown success in
scaling automated verification to systems whose code does
not change in response to input [68, 70]. But verifying a JIT is
particularly challenging, because it requires reasoning about
not only the behavior of the JIT itself, but also that of the
machine code generated by the JIT for input BPF programs.

Third, kernel development emphasizes the efficiency and
clarity of source code, whereas formal development empha-
sizes managing code complexity to make verification tractable.



Jitterbug must resolve the tension and make the two develop-
ment processes cleanly separable. While formal development
can use specific tools and artifacts such as specifications, the
final implementation of a JIT needs to be C code that can be
reviewed assuming no knowledge of formal methods, and can
be compiled using a standard toolchain.

To address these challenges, Jitterbug makes the following
contributions:

* A precise stepwise specification for JIT correctness (§4).
The specification models both BPF and target architectures
as abstract machines, and it formulates JIT correctness as the
behavioral equivalence of running the machines with a source
BPF instruction and the target instructions produced by the JIT,
respectively. The specification assumes that a JIT translates a
single source instruction at a time. This assumption matches
real-world BPF JIT implementations and obviates the need to
reason about translating entire programs.

* An automated proof strategy that scales to practical BPF
JITs (§5). Building on Serval [68], Jitterbug uses symbolic
evaluation [10, 89] to produce a satisfiability query that
encodes the semantics of a JIT implementation, the semantics
of source BPF code, and the semantics of target machine code
produced by the JIT. It then discharges the query using an
SMT solver [21]. Since Serval was designed to reason about
systems whose code is statically known, it cannot be used
to verify symbolic instructions (e.g., with symbolic fields, at
symbolic addresses) generated by the symbolic evaluation
of a JIT. Jitterbug addresses this challenge with a symbolic
evaluation strategy that can reason about such symbolic code.

* An approach to writing JITs in a domain-specific lan-
guage (DSL) based on C (§6). The Jitterbug DSL is a shallow
embedding of a structured subset of C in Rosette [88, 89],
which extends Racket [29] for symbolic reasoning. That is, the
Jitterbug DSL implements a subset of C as a Rosette library.
We write new JITs in the DSL, which simplifies verification
and enables synthesis of JIT optimizations [59, 82]. Jitterbug
automates the step of translating JITs written in the DSL to
C through an (unverified) extraction mechanism. We verify
existing JITs by manually translating their C code to Rosette.

» Experience with using Jitterbug to build a BPF JIT for
RV32, find and fix bugs in five existing BPF JITs, perform
code review, develop optimizations, and port a JIT for a stack
machine [65], all with low verification overhead (§7). One of
the bugs has led to a clarification in the RISC-V instruction-set
manual. We report on the iterative process of improving
Jitterbug and upstreaming JIT code to the Linux kernel.

To our knowledge, Jitterbug is the first to provide a specifi-
cation that rules out bugs in practical JIT implementations, and
a proof strategy that scales automated verification to a class of
compilers. It demonstrates the feasibility of building a verified
component (i.e., the BPF JIT) within a large, unverified system
under active development (i.e., the Linux kernel), through care-
ful design of specification and proof strategy. This paper de-
scribes our design decisions and the rationale behind them (§8).

2 Related work

Code downloading for extensible systems. The Xerox
Alto allows applications to customize and optimize the system
through microcode [51, 85]. It pioneered the use of packet
filters for demultiplexing, debugging, and monitoring.

The CMU/Stanford Packet Filter [62] introduced a stack-
based virtual machine into the 4.3BSD kernel to interpret
packet filters. To enable more efficient implementations, the
Berkeley Packet Filter (BPF) [61] adopts a register-based
virtual machine instead, which consists of two 32-bit registers
and a scratch memory. BPF has gained a wide adoption in
BSD and Linux kernels. Besides BPF, DTrace [12] and Lua
on NetBSD [90] are two other in-kernel virtual machines.

A redesign of BPF in the Linux kernel started in 2014,
first as an optimization of the internal representation of BPF
instructions for 64-bit architectures [83]. It has since grown
into a full RISC-like virtual machine, with 64-bit general-
purpose registers, flexible control flow (e.g., bounded loops
and BPF-to-BPF calls), and safe access to kernel memory. The
generality and expressiveness have led to an explosion of tools
and systems based on BPF, ranging from networking [38],
security [79], tracing [35], to storage [7], virtualization [1, 71],
and hardware offloading [43]. The new design is also called
“extended BPF” or simply “BPF” in the Linux kernel, while the
original design is referred to as classic BPF to avoid ambiguity.
Unless otherwise noted, we follow this terminology and use
BPF to refer to the new design. This paper focuses on building
verified JITs for BPF.

More generally, the exokernels [26] demonstrate a diverse
set of mechanisms for code downloading, such as accelerating
packet filtering using JIT compilation [25], sandboxing ma-
chine code [92] using software-based fault isolation [77, 91],
and analyzing file-system metadata using an in-kernel virtual
machine [40]. Other extensibility mechanisms include using
safe languages [6, 28, 55] and proof-carrying code [67].

Correctness of JIT compilation. Just-in-time compilation
(JIT) is a well-studied dynamic code generation technique
dating back to Lisp [3, 42] and regular expressions in the QED
text editor [76, 87]. It has also been used for dynamically typed
languages [14], emulators [5], and specialization [60, 73].

This paper considers JITs that are realized as static compil-
ers, using static register allocation and performing no garbage
collection for memory management. In contrast to sophisti-
cated dynamic code generation systems such as those for Java
or JavaScript, this simplicity makes static JITs applicable to a
restricted environment such as the kernel [24].

There is a rich literature on compiler correctness. Read-
ers may refer to Young [98] and Leroy [54] for overviews.
Compilers, especially optimizing compilers, can have multiple
intermediate representations and translation passes, whereas
the JITs considered in this paper are much simpler and resem-
ble a one-pass compiler. On the other hand, compilers usually



output assembly code, relying on a separate assembler and
linker (e.g., GNU as and 1d) to produce final machine code.
The JITs run in the kernel and directly produce machine code,
effectively combining a compiler, assembler, and linker.

The closest efforts in this area are the verified JITs by
Myreen [65] and Jitk [94]. The former translates code in a
simple stack-based instruction set to x86-32 (see §7), and
is verified using the HOL4 theorem prover [80]. The JIT is
implemented in HOL4 and translated to x86-32 machine code
by a separate compiler [66]. Jitk builds on the CompCert
verified compiler [53] to translate classic BPF to assembly,
and is verified using the Coq theorem prover [86]. The JIT is
implemented in Coq and extracted to OCaml code; it runs in
user space rather than in the kernel due to the dependency on
the OCaml runtime, an assembler, and a linker. Both efforts
employ clean-slate designs, require manual proofs, and do not
have a C implementation. Jitterbug is inspired by these efforts
and shares the goal of building verified JITs, but prioritizes
applicability to existing systems, proof automation, and imple-
mentation that can be reviewed independent of verification.

Compiler testing and fuzzing tools employ effective strate-
gies to randomly generate input programs and check for
miscompilation [58]. Csmith [97] and EMI fuzzers [52] have
been used to find hundreds of bugs in GCC and LLVM. Kernel
fuzzers such as syzkaller and trinity support generation of ran-
dom BPF programs [23]. Serval [68] implements a bug finder
for the compilation of BPF arithmetic and bitwise instructions.
These tools generally do not exhaust all execution paths, thus
providing no correctness guarantees for JITs.

Designing verified systems for deployment. Deployability
is a desirable goal for formally verified systems, but it requires
navigating an extra set of design trade-offs. As the first veri-
fied general-purpose microkernel, sel.4 [46] pioneered many
aspects of the design and deployment processes. For instance,
it introduced a Haskell prototype as the bridge between formal
methods and kernel developers, separating verification arti-
facts from the C implementation [45]. It has been deployed as
a hypervisor to retrofit unverified, legacy software to power
safety-critical systems [37, 47]. Another example is CompCert,
the first verified C compiler. It has been integrated into the
development process of control software for safety-critical
systems [41, 53], replacing unverified compilers that were
configured to disable optimizations due to risk concerns.

Cryptographic libraries are an attractive target for verifica-
tion due to their essential role in security. For example, verified
code from EverCrypt/HACL" [75, 99] and Fiat-Crypto [27] is
used by Mozilla and Google, respectively. Amazon’s s2n TLS
implementation [16] is verified via a combination of manual
and automated proofs.

Jitterbug presents a case study in applying formal methods
to the BPF JITs in the Linux kernel. It shares these design
challenges and addresses them with a precise specification and
a proof strategy that scales to practical JIT implementations.

ALU/IMP/MEM instruction

prologue Q EXIT epilogue
O ® cnd

start @

Figure 1: Transitions during the execution of a BPF program.

3 Case study

This section presents a brief overview of BPF and a case
study of the BPF JIT bugs in the Linux kernel, which helped
motivate the design of Jitterbug.

3.1 An overview of BPF

The BPF virtual machine consists of 12 explicit 64-bit registers:
general-purpose registers Re—R9, a frame pointer R10 that points
to a stack memory region, and an internal register AX used
by the kernel for rewrites (e.g., constant blinding against JIT
spraying attacks [8]). It maintains a program counter PC and a
tail-call counter TCC; the latter bounds the number of tail calls
(to another BPF program without returning).

Currently, there are a total of 115 instruction opcodes, which
can be categorized into the following:

e ALU (arithmetic and bitwise) instructions,

* JMP (unconditional and conditional jump) instructions,

* MEM (1-, 2-, 4-, and 8-byte memory access, and 4- and 8-byte
atomic exchange-and-add) instructions,

* CALL to a kernel function or another BPF program; and

e TAIL_CALL and EXIT, which transfer control to another BPF
program and the kernel, respectively.

Figure 1 depicts the execution of a BPF program. The input

to a BPF program is provided by the kernel. Prologue and

epilogue refer to initialization and cleanup code, respectively,

for bridging the kernel. The BPF calling convention specifies

that Re holds the return value, R1-R5 pass arguments, and

R6—R9 are preserved across the call.

User processes may share data with BPF programs by
creating BPF maps in the kernel, which are key/value stores
of different data types. Maps may be accessed concurrently by
BPF programs and user processes. Though there have been
discussions, BPF has so far chosen not to specify a memory
consistency model to avoid performance penalties [19].

Each BPF program consists of a sequence of instructions
in bytecode (GCC/LLVM can compile C code to BPF). Upon
receiving a BPF program from user space, the kernel invokes
a checker to analyze whether the program is safe (e.g., free of
division by zero, unbounded loops, and uninitialized register
accesses) [34]; we refer to it as the BPF checker (rather than
“BPF verifier” as by the Linux kernel to avoid ambiguity). If
the BPF checker deems the program safe, the kernel invokes
the JIT for compilation and attaches the resulting machine



/* rd[@]: upper 32 bits of the destination register
rd[1]: lower 32 bits of the destination register
tmp2[1]: a temporary register */

if (val < 32) {

/* tmp2[1] = rd[1] >> val */
emit (ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
/* rd[1] = tmp2[1] | (rd[@] << (32 - val)) */
emit (ARM_ORR_SI(rd[1], tmp2[1], rd[@], SRTYPE_ASL,
32 - val), ctx);
/* rd[@] = rd[0] >> val */
emit(ARM,MOV,SI(rd[O], rd[@], SRTYPE_LSR, val), ctx);
} else if (val = 32) {
/* rd[1] = rd[@ */
emit (ARM_| MOV R(rd[1] rd[0]), ctx);
/* rd[0] =
emit (ARM_| MOV I(rd[@] ), ctx);
} else {
/* rd[1] = rd[0] >> (val - 32) */
emit(ARM_MOV_SI(rd[1], rd[@], SRTYPE_LSR,
val - 32), ctx);
/% rd[@] = @ %/
emit(ARM_MOV_I(rd[@], @), ctx);
}

Figure 2: Incorrect result with zero val for RSH64_IMM (Arm32).

instructions to various hook points in the kernel for execution;
otherwise, the kernel rejects the program. The JIT therefore
considers safe programs only.

3.2 Bugsin BPF JITs

We manually inspected every commit to the BPF JITs in the
Linux kernel from May 2014 (when the new BPF design
was introduced) to April 2020, and categorized those that
fixed JIT correctness bugs for Arm32, Arm64, RV64, x86-32,
and x86-64; those for RV32 will be discussed in §7. We
consider “correctness bugs” as JITs producing erroneous
machine instructions, and exclude non-correctness bugs (e.g.,
memory leaks during JIT compilation) from the study. In total,
there are 41 commits that fixed 82 JIT correctness bugs during
this period. See §A.2 for a complete list.

Below we describe some representative bugs we have found
using Jitterbug. These bugs are difficult to find even for veteran
developers, and were not caught by the existing test suite. They
can lead to security vulnerabilities, since the resulting machine
instructions run in the kernel and may process input from
untrusted sources. For clarity, BPF instructions and registers

are in uppercase, while target machine ones are in lowercase.

Subtle architectural semantics. Figure 2 shows an excerpt
of the Arm32 JIT for RSH64_IMM, the BPF logical right shift
instruction of a 64-bit register by an immediate. Since the
target architecture is 32-bit, the JIT uses two machine registers,
represented by rd[@] and rd[1], to hold the upper and lower
32 bits of a 64-bit BPF register, respectively. The BPF checker
ensures that the shift amount val is within the range [0, 63].
The emitted instructions work as follows:
¢ when the shift amount val is less than 32, the result of
the upper half is simply rd[@] >> val, and the result of the
lower half is rd[1] >> val combined with the bits shifted
from the upper half, rd[@] << (32 - val);

/% check if rvoff is in the range [-231,231—1] %/
if ('is_32b_int(rvoff))
return -ERANGE;

s64 upper = (rvoff + (1 << 11)) >> 12;

s64 lower = rvoff & Oxfff;

/* aupic t1,upper *x/

emit(rv_auipc(RV_REG_T1, upper), ctx);

/* jalr ra,lower(tl) */

emit(rv_jalr(RV_REG_RA, RV_REG_T1, lower), ctx);

Figure 3: Incorrect range check on rvoff for CALL (RV64).

* the result of the upper half is simply zero, as all the bits are
shifted out, and the result of the lower half holds the bits
shifted from the upper half.

One subtlety in Arm32 is that a zero immediate in the
1sr (logical shift right) instruction means right-shift by 32
bits (i.e., shifting all bits out) [2: §F5.1.103]. Therefore, when
the shift amount val is zero, the instructions produced by the
JIT incorrectly set the destination register to zero, instead of
behaving as a no-op. This is further complicated by inconsis-
tent semantics in Arm32: a zero immediate in the shift left
instruction means a no-op. We fixed the bug by changing the
JIT to emit no instructions when val is zero.

Figure 3 shows another subtle bug in the RV64 JIT. Using
a pair of auipc+jalr instructions is a standard way to support
pc-relative call with a 32-bit offset on RISC-V [96]:

* auipc t1,imm20@ appends 12 low-order zero bits to a 20-bit
immediate, sign-extends the 32-bit value to 64 bits, adds
the sign-extended value to the address of the instruction,
and writes the result in register t1;

* jalr ra,imm12(t1) jumps to a target address obtained by
adding a sign-extended 12-bit immediate to the register
t1 and clearing the least-significant bit of the result for
alignment; the address of the instruction following jalr is
written to register ra.

One misconception is that auipc+jalr can reach any 32-bit
offset in the range [—23',23! — 1] on 64-bit RISC-V (RV64),
by using certain imm2@ and imm12 values. Part of the confusion
stems from the “RV32I base integer instruction set” chapter in
the RISC-V instruction-set manual indicating that auipc+jalr

“can jump anywhere in a 32-bit pc-relative address range.”

But the same does not hold on RV64: both auipc and jalr
sign-extend their results to 64 bits, causing the reachable offset
range to shift by —2'!. Therefore, the range check on rvoff
in the JIT is incorrect, which can lead to an off-target jump.
Our report prompted the RISC-V instruction-set manual to
add the following clarification: “Note that the set of address
offsets that can be formed by pairing LUI with LD, AUIPC with
JALR, etc. in RV64Iis [-231 211 231 211 _ 1] ” We fixed the
bug in the JIT by using the clarified range for checking rvoff.

Subtle machine state. Figure 4 shows an excerpt of the
x86-32 JIT for compiling BPF’s JSET64_REG and JSET32_REG
(in the form BPF_JMP[32]|BPF_JSET|BPF_X in C). The seman-
tics of “JSET64_REG DST, SRC,OFF” is to perform a conditional



case BPF_JMP | BPF_JSET | BPF_X:
case BPF_JMP32 | BPF_JSET | BPF_X:
bool is_jmp64 = BPF_CLASS(insn->code) == BPF_JMP;

u8 dreg_lo = dstk ? IA32_EAX : dst_lo;
u8 dreg_hi = dstk ? IA32_EDX : dst_hi;
u8 sreg_lo = sstk ? IA32_ECX : src_lo;
u8 sreg_hi = sstk ? IA32_EBX : src_hi;
if (dstk) {

EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EAX),
STACK_VAR(dst_lo)); /* eax <- dst_lo */
if (is_jmp64)
EMIT3(0x8B, add_2reg(@x40, IA32_EBP, IA32_EDX),
STACK_VAR(dst_hi)); /#* edx <- dst_hi */
3

if (sstk) {
EMIT3(0x8B, add_2reg(@x40, IA32_EBP, IA32_ECX),
STACK_VAR(src_lo)); /* ecx <- src_lo */
if (is_jmp64)
EMIT3(0x8B, add_2reg(0x40, IA32_EBP, IA32_EBX),
STACK_VAR(src_hi)); /* ebx <- src_hi =/

}

/* and dreg_lo,sreg_lo x/

EMIT2(0x23, add_2reg(oxC0, sreg_lo, dreg_lo));

/* and dreg_hi,sreg_hi x/

EMIT2(0x23, add_2reg(@xC@, sreg_hi, dreg_hi));

/* or dreg_lo,dreg_hi */

EMIT2(0x09, add_2reg(0xCe@, dreg_lo, dreg_hi));
goto emit_cond_jmp; /* emit conditional jump */

Figure 4: Incorrect eflags value for JSET32_REG (x86-32).

jump when DST&SRC (“bitwise and” of two 64-bit BPF regis-
ters) is non-zero and fall through otherwise; the semantics of
“JSET32_REG DST, SRC,OFF” is similar, using only the lower 32
bits of both DST and SRC.

Due to the limited number of registers on x86-32, the JIT
spills some BPF registers on the stack. For simplicity, suppose
that both DST and SRC are on the stack (i.e., both dstk and sstk
are true). In this case, the JIT emits instructions to load the
lower 32 bits of DST and SRC to eax and ecx, respectively. It also
emits instructions to load the upper 32 bits to edx and ebx for
JSET64_REG; the two registers are uninitialized for JSET32_REG.

One way to implement JSET32_REG is to emit a bitwise and
of eax and ecx, followed by a conditional jump if the result is
non-zero (i.e., the zf bit in the eflags register is clear). But
the JIT emits extra and and or instructions that also use edx
and ebx, which are uninitialized for JSET32_REG, incorrectly
modifying eflags. The bug was not caught by the BPF selftests
suite because none of the tests “polluted” edx and ebx with
values that would cause the behavior to change. We fixed the
bug by moving the last two EMIT2 statements under a condition
that is_jmp64 is true.

There are other bugs in the excerpt: when DST is mapped to
x86 registers and not spilled on the stack (i.e., dstk is false), the
emitted instructions incorrectly clobber the registers, while the
semantics of the BPF instructions requires DST not to change.
We fixed the bugs by loading DST to eax and ecx, regardless
of whether DST is on the stack.

Subtle instruction encoding. Below is an encoding bug in
the x86-32 JIT for the BPF LDXB instruction, which loads a byte
from memory. As its semantics requires the result to be zero-

extended to 64 bits, the JIT attempts to emit “mov dst_hi,@”
to clear the upper 32 bits, using the following C code:

EMIT3(0xC7, add_1reg(oxCo, dst_hi), 0);

Notice that EMIT3 emits 3 bytes, but a correct “mov dst_hi,@”
expects 6 bytes: the opcode 0xC7, the ModR/M byte formed
by add_1reg(exCo, dst_hi), followed by 4 bytes of zeros as
the immediate. The consequence is not merely an incorrect
mov: it also “swallows” 3 bytes from the next instruction,
breaking the instruction stream and altering the meaning of
the subsequent instructions. We fixed the bug by emitting
“xor dst_hi,dst_hi” instead, which is also shorter (2 bytes).

3.3 Summary

Compared to the bugs in classic BPF JITs [15, 94], those
in today’s BPF JITs are more sophisticated due to the in-
creased power of the BPF virtual machine. On the other hand,
architecture-independent checks for BPF programs such as
division by zero are now performed by the BPF checker,
eliminating the need for the JITs to consider such cases.

While the Arm and RISC-V JITs emit instructions using
well-defined macros (e.g., Figure 2) or functions (e.g., Fig-
ure 3), the x86 JITs directly emits raw bytes (e.g., Figure 4),
partly due to the lack of a uniform instruction format on x86.
Jitterbug therefore needs to model the semantics of their target
architectures precisely; for x86, this means reasoning at the
level of raw instruction bytes.

4 Specification

Jitterbug aims to rule out subtle bugs in BPF JITs through a
formal specification, which is the focus of this section.

We begin with an intuitive description of what it means
for a JIT to be correct. At a high level, running the machine
code emitted by a JIT for a given source program should
be equivalent to running a BPF interpreter with that source
program. For example, both should compute the same return
value and invoke the same kernel functions with the same
arguments; any deviation indicates a bug. Jitterbug captures
this intuition as a JIT correctness specification (§4.1).

Specifications like this are usually proved by induction, and
the key to carrying out the proof is finding the right inductive
invariant—a property preserved by the JIT translation of each
individual source instruction. Inspired by the structure of the
existing BPF JITs in the Linux kernel, Jitterbug introduces a
stepwise specification that serves as our inductive invariant.
As shown in Figure 5, this specification consists of a set of
properties satisfied by individual translation steps, such as
the generation of machine code for a single BPF instruction.
Using the Lean theorem prover [22], we prove that any JIT
that satisfies the stepwise specification implies our intuitive
notion of correctness. This proof serves as the metatheory for



JIT correctness
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Figure 5: Jitterbug’s stepwise specification (rounded-corner
boxes) implies JIT correctness, shown by Theorem 1.

Jitterbug (§4.2). The stepwise specification itself is proved
automatically for each JIT.

To illustrate how to apply the stepwise specification to
prevent bugs, we use the BPF JIT for RV32 as an example. We
also analyze alternative JIT implementations to demonstrate
the generality of the specification (§4.3).

We end this section with a discussion of the limitations of
Jitterbug’s specification and how it relates to prior compiler
correctness specifications (§4.4).

4.1 JIT correctness

Formalizing JIT correctness requires formalizing the behavior
of the JIT, source BPF programs, and target machine programs,
as follows.

First, we model a JIT as a function JITCompile. It takes
a source program codes and JIT context ctx as input, and
returns either a target program coder on success, denoted as
JITCompile(codes, ctx) = coder; or L, indicating compilation
error. Both source and target programs are represented as
partial maps from addresses to instructions; some addresses
may be unmapped. We define code C code’ to mean that any
address that maps to some instruction in code maps to the
same instruction in code’.

The JIT context ctx is an implementation-defined data struc-
ture. It usually contains compiler configurations (e.g., the base
address of the target program allocated by the kernel, denoted
by ctx[base]) and analysis results of the source program, which
are used by the JIT for code generation. We assume that the
JIT context is well-formed with respect to the source program;
this assumption is captured using a predicate wf(codes, ctx)
specified by JIT developers. For example, one may specify
that ctx[base] is properly aligned.

Next, we model the execution of both source and target
programs as abstract machines, described by a set of states X
and a state transition function step. Given a state o € X, we
write o [-] to refer to a specific component of the state. For
example, o [pc] is the value of the program counter.

The step function takes as input a state -, a program code,
and an oracle denoted by nd. The oracle nd is an infinite
sequence of nondeterministically chosen bytes, which are
used for modeling external interactions with the kernel (e.g.,
values loaded from BPF maps or returned by calls to kernel

functions). Given these inputs, the step function produces the
next state and a trace of externally visible events generated by
executing the instruction at the program counter, code[o [pc]].
The execution gets stuck if it triggers undefined behavior (e.g.,
the address o [pc] is unmapped in code). As shorthands, we
write (o, code,nd) = {(o”’,tr) to mean step(o,code,nd) =
(o’,tr), and {0, code,nd) =" {(o’,tr) to mean that state o’
is reachable from zero or more applications of step starting
from state o, with concatenated trace tr.

The exact content of events is defined by each machine.
For example, consider the BPF machine in Jitterbug. It de-
fines the following events: load(addr,val), store(addr,val),
call(addr,args,val), atomic_begin, and atomic_end. It mod-
els each memory load as returning a fresh value provided by
the oracle and producing a load event in the trace, since BPF
maps may be modified outside the execution of a BPF pro-
gram (§3.1). Each step may produce zero or more events. For
example, the execution of XADD32 (32-bit atomic exchange-and-
add) produces atomic_begin, load, store, and atomic_end.

This model assumes read-only code, which prohibits JITs
that produce self-modifying code [65]. It also assumes that
the execution of a program is deterministic [53: §2.1], since
the next state is uniquely determined by the current state, code,
and oracle. Both assumptions match the BPF JITs in Linux.

In order to reason about the start and end of execution, each
machine defines two predicates:

e initial(x,ctx,0 ), where o is an initial state for input x and

JIT context ctx; and
e final(o”’,v), where o’ is a final state with return value v.

Recall that the JIT considers only safe source programs.
For example, the Linux kernel rejects BPF programs that the
BPF checker deems unsafe (§3.1). We capture this guarantee
with a predicate safe(code), which specifies that executing
code always reaches a final state (i.e., the execution terminates
without triggering any undefined behavior):

Y x,0,nd. initial(x,ctx,0) —

Ao, tr,v. {o,code,ndy =" (o’ ,tr) Afinal(c’,v).

In addition, since a target program generated by the JIT
runs within the kernel, it must behave like a regular function
and preserve the corresponding calling convention: for ex-
ample, stack pointer and callee-saved registers must hold the
same values before and after the execution. We capture these
requirements in the architectural safety predicate A(or,07.),
which constrains the initial and final values of all preserved
target registers 7 to be the same, i.e., or [r] = o7 [r].

Using our model, we define JIT correctness as follows.

Definition 1 (JIT correctness). A JIT is correct if for
any safe source program codes, well-formed JIT context
ctx, and target program coder generated by the JIT such
that safe(codes) Awf(codes, ctx) A JITCompile(codes, ctx) =
coder , the following two conditions hold:



1. The execution of source program codegs and that of target
program coder produce the same trace and return value.

Vx,o5,0T,nd,tr,v.

initialg(x,ctx,05) Ainitialy (x,ctx,o1) —
((3 0. (05, codes ,nd) =" (g, 1r) Afinalg (0§,v)) &
(3 o7 {or, coder ,ndy =" (o7, tr) Afinalr (O’%,V))).

2. Any final state reachable by executing target program
coder satisfies architectural safety.

Y x,0r, 0, nd, tr,v. initialr (x,ctx, o) Afinaly (07, v) A
(o, coder ,ndy =" {op,tr) = A(or,07).

The first property can be viewed as a bisimulation between
source and target machines [54: §2]: the JIT produces a target
program that preserves the behavior of the source program,
and any behavior of the target program is permitted by the
source program. Additionally, given that the source program
is safe, this property implies that the target program produced
by the JIT is safe (i.e., terminates without undefined behavior).
The second property further requires the target program to
correctly save and restore the corresponding architectural state.
Both guarantees are critical for in-kernel execution.

4.2 Stepwise specification

Given Definition 1, our goal is to devise a stepwise speci-
fication (i.e., an inductive invariant) that both implies JIT
correctness and is amenable to automated verification. We
achieve this goal by imposing structure on the JIT compila-
tion process so that we can reason about the correctness of
individual compilation steps, as follows.

Inspired by the existing BPF JITs in the Linux kernel, we sup-
pose that the JIT generates a target program in a per-instruction
fashion. Specifically, the target program consists of machine in-
structions for the prologue, each source instruction, and the epi-
logue (Figure 1). We do not assume any particular code layout.
For example, one may produce the target program sequentially:

coder = EmitPrologue(ctx)

for i in [0,|codeg|—1]:

coder += EmitInstruction(ctx,i,codeg|i])
coder += EmitEpilogue(ctx)

We formalize our assumptions about the JIT below.

Definition 2 (JIT assumptions). We assume that for any safe
source program codes, well-formed JIT context ctx, and target
program coder produced by a JIT such that safe(codes) A
wf(codeg,ctx) A JITCompile(codes, ctx) = coder, the target
program coder contains the machine instructions produced
by each translation step:
e J p.EmitPrologue(ctx) = p A p C coder .
* Vi, insn. codes[i] = insn —

3 p. EmitInstruction(ctx,i,insn) = p A p C coder .
* 3 p.EmitEpilogue(ctx) = p A p C coder.

With these assumptions, the stepwise specification boils
down to the correctness of each translation step: EmitPrologue,
EmitInstruction, and EmitEpilogue. Jitterbug allows devel-
opers to provide two relations as invariants maintained by
their JIT implementations:

* 05 ~cx O relates source state o and target state or
with respect to JIT context ctx. For example, it may specify
that the value of a BPF register in o7 is equal to that of the
machine register the JIT uses to realize the BPF register in or.

* I.x(07,, o) relates initial target state or, and non-final
target state or with respect to JIT context czx. For example, the
prologue usually saves callee-saved registers to a designated
memory region; J.., may specify that the values of callee-saved
registers in o7, are equal to those in that region in o7.

Below we describe the correctness definition for each trans-
lation step. We denote the empty trace as €.

Definition 3 (Prologue correctness). A JIT emits a correct
prologue if executing the prologue results in a target state that
establishes the invariants, and produces an empty trace:
Y codeg, ctx, p,x,0s, 0 ,nd. wf(codeg, ctx) A

EmitPrologue(ctx) = p A

initialg(x,ctx,05) Ainitialy (x,ctx,o7) —

Jor.{or.p.nd) =" (o, €) ANos ~cx 0p) Aax(oT 07 ).
Definition 4 (Per-instruction correctness). A JIT emits correct
target instructions for a given source instruction if executing
the emitted instructions results in a target state that preserves

the invariants, and produces the same trace as executing the
source instruction:

V codeg,ctx,i,insn, p,os,or ,07,,nd, tr. wf (codeg, ctx) A
codeg|i] =insn Aos[pc] =i A
EmitInstruction(ctx,i,insn) =p A
(os,codes,nd) = (og.tr) AN(Ts ~cx 0T) Ao (0, 07) =
Aop. (o, p,nd) =" (o, tr) AN(0g ~ctx 07 ) Aerx (0, 07 ).
Definition 5 (Epilogue correctness). A JIT emits a correct
epilogue if executing the epilogue results in a final target state
that satisfies architectural safety, and produces the same return
value as in the source final state and an empty trace:
Y codeg, ctx,p,0s,v,0r , 07, nd. wf(codeg, ctx) A
EmitEpilogue(ctx) =p A
finalg(os,v) A(0s ~crx OT) A-Z(:tx(U'ToaUT) -
oy (or,p,nd) =" (o, €) Afinaly (oF,v) AA(op,, o).

Together, these three properties imply JIT correctness given
the JIT assumptions. We prove the following theorem in Lean:

Theorem 1 (Stepwise soundness). JIT assumptions A pro-
logue correctness A per-instruction correctness A epilogue
correctness — JIT correctness.

With Theorem 1 as a metatheory, Jitterbug proves the cor-
rectness of a JIT implementation by proving the properties in



E3 KN 62 £ ©3 03 £3 G 03 53 D0 R &

| BPF stack | | BPF maps
«— low address high address —
| argument BPF stack | spilled registers | saved registers

Figure 6: Mapping from BPF state (upper half) to RV32 state (lower half). Rounded-corner boxes denote registers and rectangular
boxes denote memory. Shaded regions are memory accessible by BPF programs and crosshatched regions for internal use.

Definitions 3, 4, and 5 via automated verification (see §5). The
JIT context well-formedness wf and assumptions are assumed
to be correct and trusted. The invariants (~, and Z.,) are un-
trusted: if incorrect invariants are provided, verification fails.

4.3 Applying the stepwise specification

The stepwise specification is parameterized by assumptions
(well-formedness of JIT context wf) and invariants (~, and
1), which reflect how JIT developers intend to establish cor-
rectness. We illustrate how to apply the stepwise specification
to the BPF JIT for RV32 by specifying the assumptions and
invariants regarding registers, program counters, and memory.
We also describe how one may specify them for the alternative
JIT implementations we have considered.

Figure 6 shows the design of the BPF JIT for RV32. The
upper half denotes the BPF state, including registers (Re—R10,
AX), counters (tail-call counter TCC and program counter PC),
a stack memory region, and maps of shared data (§3.1). The
lower half denotes the RV32 state, including registers (fp,
sp, ad—a7, s1—s6, t6; those not mapped to BPF registers are
omitted), a machine program counter pc, and memory.

Registers. Since BPF registers are 64-bit and RV32 is a
32-bit architecture, the JIT realizes each BPF register using
either a pair of RV32 registers (e.g., R1 using a0 and a1) or 64
bits in the “spilled registers” memory region (e.g., R6). This
register mapping is static and pre-determined, eliminating the
need for register allocation at compilation time. Other BPF
JITs in the Linux kernel use similar register mappings.

The register mapping is handcrafted to achieve good perfor-
mance. For instance, recall that BPF designates R1-R5 to pass
function-call arguments, while the RISC-V calling convention
uses ad—a7, plus the stack if needed [20]. To minimize register
save and restore, the JIT realizes R1-R4 using ad—a7. For R5,
the JIT emits instructions to push the corresponding s3, s4 to
the “argument” memory region before the call.

To specify the relation os ~ o7 between source and target
states, let ¢reg (ctx, or, r) denote the value stored at the target lo-
cation(s) to which a BPF register r is mapped (e.g., R1 mapped
to a@, a1) with respect to JIT context ctx. A strawman approach
is to require a strict equivalence: os [r] = @reg (ctx, o7, 7) for
every BPF register . With this relation, the stepwise specifica-
tion would require that if every BPF register and the mapped

locations contain equivalent values initially, their values re-
main equivalent after executing a BPF instruction and the
emitted machine instructions, respectively. One such example
is the partial specification used by the BPF bug finder in
Serval [68: §7]; the specification is partial because it does not
support reasoning about control flow (e.g., program counters)
or memory and cannot be used to prove JIT correctness.

While it is useful for finding bugs, the strawman relation
is too restrictive for verification. First, if a BPF program does
not use a certain register, it should be safe for the JIT to
skip emitting code for initializing the corresponding target
locations, but doing so violates the strict equivalence. Second,
the relation is difficult to establish in the presence of calls. To
see why, consider the BPF register R1, which is not preserved
across a BPF CALL instruction (§3.1). R1 is thus considered
uninitialized after the call as per the BPF semantics (the BPF
checker ensures thatR1 will be written to before any furtheruse).
On the other hand,R1 is mapped to a0, a1, both of which hold the
return value after the call as per the RISC-V calling convention
(the JIT emits instructions to further copy their values to s1,
s2 to match the BPF calling convention for Re). Therefore, R1
and the corresponding a@, a1 do not hold equivalent values
after the call, which violates the strict equivalence.

To relax the strict equivalence and give the JIT more freedom
regarding uninitialized BPF registers, we augment the state of
the BPF machine with an initialized set, which represents
the set of registers that are initialized at this point; the set is
updated based on the semantics of each BPF instruction. For
example, DST is added to the set after “MOV64_IMM DST,IMM,” as
it is written to by the instruction. Similarly, R1-R5 are removed
from the set after CALL, as they are not preserved across the call
and become uninitialized. In doing so, it suffices to require
equivalence os|[r] = @reg(ctx,or,r) for every BPF register
r € os[initialized],effectively excluding uninitialized ones.

Program counters. Let ¢, (ctx, i) denote the target address
to which the i-th BPF instruction is mapped in JIT context ctx.
This is useful for a JIT to implement the compilation of jump
instructions. It also allows us to relate program counters in BPF
and machine states as an invariant ¢p(ctx, os[pc]) = or [pc].

To define ¢pc, one simple approach is to require the JIT
to emit a fixed number of machine instructions for each
BPF instruction (e.g., by padding with NOPs) [33]. In this
case, we have ¢pc(ctx,i) = ctx[base] +i X N, where ctx[base]



is the starting address of the emitted machine instructions
determined by JIT context and N is a pre-determined number
of machine instructions large enough to compile any BPF
instruction. This is simple to specify and implement, but the
emitted code wastes space and CPU cycles.

A more efficient approach is to emit a variable number of
machine instructions for each BPF instruction. For example,
the BPF JITs in the Linux kernel maintain an offset table in the
JIT context to map each BPF instruction index to an offset into
the emitted code; in this case ¢pc(ctx, i) is defined by simply
consulting the offset table. The JITs construct the offset table
by repeating the compilation process until the table converges,
or fail if an upper bound on the number of iterations is reached
(e.g., 16 in the BPF JIT for RV32).

For flexibility, we choose not to specify how to construct the
offset table in the JIT context. Instead, we specify the property
a valid JIT context should satisfy. A key observation is that
such JITs emit consecutive blocks of machine instructions,
one block for each BPF instruction. As a result, the difference
between the target addresses for a BPF instruction codeg [i]
and its successor codeg [i + 1] must be equal to the number of
bytes emitted for codeg [i]. We capture the observation using
the well-formedness predicate wf over source program codes
and JIT context ctx for any i-th BPF instruction:

EmitInstruction(ctx,i,codes[i]) =p —

[Pl = @pe(ctx,i+1) — ppe(ctx, D).

Here | p| denotes the length of machine instructions p (in bytes).

This allows for both NOP-padding and the more sophisticated
JIT implementations such as those in the Linux kernel. Note
that this is an assumption on the validity of the JIT context,
which does not rule out bugs in the construction of the offset
table (see §4.4). A JIT may validate the offset table by checking
that this predicate holds at compilation time.

Memory. One approach to relating the memory state of
source and target machines, denoted by o-s[mem] and o7 [mem],
respectively, is to require os [mem] (@) = or [mem] (a) for every
address a [65], where memory is modeled as a map from
addresses to values. But this approach assumes a closed system
(see §7 for such a JIT) and does not fit BPF. For example,
both user processes and other BPF programs may concurrently
modify memory to which a BPF program has access; therefore,
consecutive loads from the same address in the BPF program
may return different values. A further complication is that
BPF does not specify a memory consistency model (§3.1),
effectively assuming that of the underlying architecture.

We observe that a BPF JIT does not need to reason about
the behavior of concurrent memory accesses [13, 56]. Instead,
the goal is to faithfully translate BPF memory accesses to
ones in the target machine, which is a simpler task. Based on
this observation, we employ a hybrid approach to specify the
invariants for BPF JITs using traces and maps, as follows.

Each target machine models memory as consisting of two
disjoint parts, one corresponding to shared memory and the
other for internal use (Figure 6). The memory layout used by a
JIT determines which target addresses are shared and which are
internal. The internal memory is simply a map from addresses
to values, since it is private to each execution and the effects are
not externally visible. The shared memory captures memory-
related effects using events in a trace (§4.1). Since the BPF
machine adopts the memory model of the underlying architec-
ture, Jitterbug relates the traces of the BPF and target machines
by using the same memory model for both; i.e., the BPF and
target traces are drawn from the same set of all possible mem-
ory events. Given this correspondence, it suffices to require the
traces produced by the BPF and target machines to be identical.

The requirement of having identical traces suffices for the
BPF JITs. One exception is that older versions of the BPF JIT
for Arm64 use Arm’s exclusive access instructions in a busy
loop [2: §B2], which violates the requirement. Newer versions
of the JIT have switched to using atomic instructions, which sat-
isfies the requirement. We decide not to relax the requirement
of having identical traces to keep the specification simple.

4.4 Discussion and limitations

Jitterbug’s JIT correctness (Definition 1), especially the use
of traces, is inspired by the specification of CompCert [54].
Jitterbug’s specification differs in the following ways. First,
in-kernel execution imposes stricter requirements on the
source program (e.g., determinism, termination, and absence
of undefined behavior), allowing us to prove stronger prop-
erties. Second, Jitterbug uses fine-grained models of target
architectures to precisely reason about low-level state (e.g.,
program counter and stack pointer), whereas CompCert uses
a more abstract semantics for assembly [64: §5] and relies
on a separate assembler and linker. Third, the per-instruction
compilation process of such JITs enables us to develop a
stepwise specification amenable to automated verification.

Jitterbug trusts the correctness of the assumptions (§4.2).
Therefore, it cannot catch bugs in the JIT context (e.g., offset-
table construction) or layout of the target program. We man-
ually examine the existing BPF JIT correctness bugs in the
Linux kernel (§3.2), and determine that out of the 82 bugs, the
specification can catch all but two bugs, both in offset-table
construction. This shows the effectiveness of the specification.

Jitterbug’s specification permits “null” JIT implementations
that fail on all source programs; we use existing test suites (e.g.,
the BPF selftests) to assess the feature completeness of JITs. It
focuses on the JIT and cannot rule out bugs in the BPF checker,
memory management for code images, or how the kernel uses
the JIT. It does not model the instruction cache or memory
permissions, relying on the kernel to correctly flush the cache
and set up permissions. It does not provide any guarantees
against microarchitectural timing channels [32, 48].
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Figure 7: Jitterbug’s verification pipeline. Shaded boxes de-
note inputs provided by JIT developers.

S Proving JIT correctness

Jitterbug extends automated verification to JIT correctness, a
form of compiler correctness tailored for in-kernel execution.
This section describes how Jitterbug achieves the automation.

As shown in Figure 7, Jitterbug provides the stepwise
specification and the executable semantics (i.e., interpreters)
for BPF and various architectures. It asks JIT developers for a
JIT implementation, and assumptions and invariants regarding
the implementation. All the inputs are written in the Rosette
language (the JIT is written in the DSL described in §6).

Jitterbug builds on Serval for automated verification [68]. It
invokes Rosette to reduce all the inputs to symbolic constraints
via symbolic evaluation, and an SMT solver to check the
satisfiability of these constraints. For symbolic evaluation to
terminate, the JIT implementation and the execution of both
interpreters must be free of unbounded loops [88]. The BPF
JITs satisfy this requirement.

Below we highlight three key challenges in automated veri-
fication of JITs and how Jitterbug addresses these challenges.

Instantiation of existential quantifiers. To prove the step-
wise specification, Jitterbug has to construct some execution
of target instructions emitted by the JIT and show that the
execution exhibits the same behavior as that of a source
instruction. Automating the construction is challenging.

To see why, consider the specification for per-instruction
correctness (§4.2). Letting ¥ stand for the universally quantified
variables in Definition 4, the specification says that the target
machine executes some finite number of steps, k, to produce
a state o that satisfies the inductive invariant P. Making
the number of steps k explicit, we can write the correctness
formulaas VX. 3k. P(X, k),orequivalently, 3. Vx. P(X, f (X)),
where f is a Skolem function that computes the right k for
each combination of the variables X. The verification problem
that Jitterbug solves therefore involves constructing f. In other
words, Jitterbug must determine the number of steps to run
symbolic evaluation with emitted instructions, and this value
f(X) may depend on the source program, JIT context, source
and target states, etc.
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In a restricted setting where the JIT emits straight-line code
without any branches, f(X) is simply the number of emitted
instructions. The BPF bug finder in Serval and synthesis-
based superoptimizers [72] all assume this setting and use the
corresponding basic realization of f. But Jitterbug considers
JITs that can emit code with branches, and when executing such
code, the target machine can take a different number of steps
depending on the input state. This rules out the straightforward
realization of f that counts the number of emitted instructions.

To illustrate the challenge of computing f in our setting,
consider the instructions emitted by the RV32 JIT for the BPF
instruction “JNE64_REG DST,SRC,OFF” (jump to offset OFF if
the values in DST and SRC differ). The JIT may emit different
blocks of RV32 instructions, conditioned on whether it spills
the registers (requiring lw to load from stack) or the offset
requires a far jump (jal or auipc+jalr). Figure 8 shows
three examples of these blocks and the f(X) values for
executing them, which vary depending on the register state
and instructions. In general, constructing f requires human
insight [63, 98], so Jitterbug allows JIT developers to provide
a manually constructed f. In practice, however, Jitterbug can
automate the construction of f for BPF JITs as follows.

To compute f, Jitterbug requires the target interpreter
to maintain the symbolic program counter in the form
base + offset, where base is the (symbolic) starting address
of instructions. Maintaining this form is straightforward for
most instructions. For instructions with subtler semantics, the
interpreter achieves this by rewriting the program counter
via symbolic optimization [68, 74]. For example, RISC-V’s
jalr sets the least-significant bit of the program counter to
zero (§3.2), causing it to take the form (base + offset) & mask.
The interpreter rewrites this expression by dropping the mask
and checking that the resulting expression is equivalent (i.e.,
that the program counter is properly aligned).

Given a program counter of the form base + offset, Jitterbug
provides a reusable procedure for constructing f through
symbolic evaluation. It extracts the offset from the program
counter expression and applies a simple rule: stop symbolic
evaluation either if the offset is concrete but leaves the block
of emitted instructions, or if the offset becomes symbolic.
The intuition is that branching with a symbolic offset likely
leaves the block, because the JIT generally produces such
branching instructions by consulting the offset table in the JIT
context (§4.3), which is considered symbolic for verification.
Internal branching tends to have a concrete offset, for which
symbolic evaluation continues.

This procedure guesses an f for verifying that the target
machine reaches a desired state after taking f(X) steps. It
does not guarantee to find the right f if one exists, though it
is sufficient for all the JITs we have studied and works well
in practice. The procedure is untrusted: choosing a wrong f
causes the target machine to either get stuck or enter a state
that violates the inductive invariant, but it does not cause an
erroneous JIT implementation to pass verification.
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Figure 8: Emitted RV32 instruction blocks for BPF’s JNE64_REG with registers (a) R1, R2; (b) R1, R6; and (c) R6, R7 and with an
offset of different ranges. R1 and R2 are realized using RV32 registers, and R6 and R7 are spilled on the stack (Figure 6). Straight
and elbow arrows denote falling through and branching, respectively; those leaving the blocks are labeled with values of f(X).

Symbolic evaluation of symbolic instructions. As shown
in Figure 8, the JIT may emit different blocks of target instruc-
tions for a given source instruction opcode. When Jitterbug
symbolically evaluates a JIT implementation, it produces a
symbolic representation of all of these instruction blocks.
This representation takes the form of symbolic instructions
that may contain symbolic values in register and immediate
fields. To verify the JIT, Jitterbug must then evaluate the target
interpreter on both a symbolic input state and a symbolic
program. This is in contrast to prior work on verifying systems
code such as Serval, where the input state is symbolic but
the program itself is concrete (e.g., all register and immediate
fields are concrete bytes). Reasoning about symbolic programs
both magnifies existing challenges to scaling verification and
creates new ones. We discuss one example of each.

The first challenge is path explosion. While common to all
tools based on symbolic evaluation, this problem becomes
exponentially worse in the presence of symbolic code. For ex-
ample, the BPF JIT for RV64 compiles LD64_IMM to a variable
number of instructions to load a 64-bit immediate in chunks,
selecting each instruction based on the chunk value and des-
tination register. This amounts to reasoning about a total of
2,181 types of blocks of RV64 instructions for downstream
stages, out of which 307 are feasible, applied to all possible
input instructions (roughly, 2%%). Symbolic execution [17, 44],
which explores individual paths separately, is thus not a good
fit for this verification pipeline.

Jitterbug instead adopts Rosette’s strategy for symbolic eval-
uation [89: §4] to merge the program state at each control-flow
join, but it forces a split on every possible (concrete) opcode
of symbolic instructions. The intuition is that both the JIT and
interpreters tend to handle each opcode separately; splitting
on the opcode enables opportunities for concrete evaluation.
This strategy works well in practice: it avoids path explosion
and leads to easier-to-solve constraints.

The second challenge is that Jitterbug interpreters, unlike
those in Serval, must be designed to work on both symbolic
state and symbolic instructions. Failing to do so both causes
state explosion and produces constraints difficult for SMT
solving. For example, the interpreters in Serval represent
the CPU state using a vector of bitvectors (one bitvector per
register), and encode accessing register 7; as indexing into the
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vector using integer i. This is suitable for concrete instructions,
where i is concrete and the generated constraints are restricted
to the theory of bitvectors. But with symbolic instructions,
a symbolic register index i causes symbolic evaluation to
produce constraints that also use the theory of (mathematical)
integers. Mixing integers and bitvectors is expensive for
solving and can lead to verification bottlenecks [39: §3].

We develop interpreters that account for symbolic instruc-
tions and thus can work with Jitterbug. For example, we
carefully avoid integers in instruction semantics to restrict
resulting constraints to the theories of equality with unin-
terpreted functions and bitvectors, a decidable fragment of
first-order logic. Additionally, recall that the BPF JITs for x86
emit raw bytes (§3.2) and thus require a decoder for verifica-
tion. We implement an x86 decoder that works on symbolic
bytes. The development process is guided by using symbolic
profiling to identify verification performance bottlenecks [10]
and applying symbolic optimization to fine-tune symbolic
evaluation [68: §4].

Axiomatization of expensive SMT operations. Both BPF
and machine interpreters provide arithmetic instructions for
multiplication, division, and remainder. Reasoning about these
operations is expensive for SMT solvers [4, 49], and has been
a source of timeouts in verification practice [30, 36].

To avoid such expensive reasoning, Jitterbug takes a stan-
dard axiomatization approach [50: §3.2] by replacing these
bitvector operations with uninterpreted functions mul,, div,,
and rem,, (n =32,64) in instruction semantics. For example,
the BPF JIT for RV32 translates BPF’s DIV32_REG into using
RISC-V’s divu; both instructions are encoded using uninter-
preted function divzp (with variations for handling division
by zero). Proving the correctness of this translation does not
require the semantics of division, thereby scaling verification.

This approach is less general than using SMT’s built-in
bitvector operations, because it ignores the semantics of these
operations and might reject valid JIT implementations. For
example, the JIT may reorder the operands of a multiplication
in emitted instructions; for target architectures lacking native
instructions for remainder or 64-bit multiplication, the JIT may
emit instructions that emulate the behavior. Proving such a
JIT correct requires additional properties about the operations.



Jitterbug captures these properties using the following axioms,
which are sufficient to verify all the JITs we have studied:
e commutativity of mul: mul, (x,y) =mul, (y,x);
* remainder: rem, (x,y) =x—mul,(div,(x,y),y);
e commutativity of mulhu: mulhu, (x,y) = mulhu,(y,x); and
* decomposition of mules: mules(x,y) = (mulhusz(xi0, Vio) +
mul32 (Xhi, Yio) +mul3z (Xio, Yhi)) ©@mulss (Xios Vio)-
Here x and y are bitvectors; subscripts “lo” and "’hi” denote
the lower and upper half bits, respectively; @ denotes bitvector
concatenation; and mulhu is an auxiliary uninterpreted function
for modeling the upper bits of a product. For example, x86’s
32-bit unsigned multiplication instruction stores a 64-bit
product in registers edx and eax; the x86 interpreter encodes
their values using mulhusz; and muls;, respectively.
These axioms are shared by the verification of the BPF
JITs across architectures. As a sanity check, we formalize and
manually prove them using Lean [22].

6 Implementing a JIT

DSL. Figure 9 shows an excerpt of the BPF JIT for RV32,
written in the Jitterbug DSL. The DSL is implemented as a
Rosette library and reflects a structured subset of C: booleans,
(machine) integers, array accesses (“@”), as well as conditional
and switch statements. This subset is minimal and sufficient to
support the development of the BPF JIT for RV32. It does not
support address-of, dereference, or unstructured constructs
(e.g., goto or fallthrough in switch).

Jitterbug extracts the final C code from JIT fragments
written in the DSL, a code template (including glue code not
covered by the DSL), and a type mapping (not shown here; both
array accesses to bpf2rv32 and calls to bpf_get_reg64 return
a value of type “const s8 *”). Jitterbug does not perform any
type checking for the C code.

Using the DSL simplifies verification by avoiding the need
to model the C semantics. One can also “escape” from the DSL
to use the full Rosette language, though in that case Jitterbug
is unable to perform C code extraction; we leverage this to
simplify porting the existing BPF JITs from C to Jitterbug.

Synthesis. As an application of Jitterbug’s specification and
verification, we use Rosette’s support for program synthesis to
optimize the BPF JIT for RV32 [59]. We do so by synthesizing
JIT fragments written in (a subset of) the DSL, where each
fragment takes as input a BPF instruction with a given opcode
(e.g., ADD64_REG) and emits a short sequence of RV32 instruc-
tions with equivalent behavior. We use the standard approach
of writing program sketches [11, 82] to compactly define a
space of JIT fragments for compiling ALU instructions. The
synthesizer searches this space for the shortest fragment that
satisfies per-instruction correctness (Definition 4), according
to the Jitterbug verifier.
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(func (emit_alu_r64 dst src ctx op)
(var [tmp1 (@ bpf2rv32 TMP_REG_1)]
[tmp2 (@ bpf2rv32 TMP_REG_2)]
[rd (bpf_get_reg64 dst tmpl ctx)]
[rs (bpf_get_regb4 src tmp2 ctx)])
(switch op
[ (BPF_ADD)
(cond
[(equal? rd rs)
(emit (rv_srli RV_REG_T@ (lo rd) 31) ctx)
(emit (rv_slli (hi rd) (hi rd) 1) ctx)
(emit (rv_or (hi rd) RV_REG_T@ (hi rd)) ctx)
(emit (rv_slli (lo rd) (lo rd) 1) ctx)]

[else
(emit (rv_add (lo rd) (lo rd) (lo rs)) ctx)
(emit (rv_sltu RV_REG_T@ (lo rd) (lo rs)) ctx)
(emit (rv_add (hi rd) (hi rd) (hi rs)) ctx)
(emit (rv_add (hi rd) (hi rd) RV_REG_TQ) ctx)1)]

D))
(a) JIT implementation written in the DSL.

void emit_alu_r64(const s8 *dst, const s8 *src,
struct rv_jit_context *ctx, const u8 op)

// clang-format on
@lemit_alu_r64|
// clang-format off

(b) C code template, where @| . . . | expands to generated code.

void emit_alu_r64(const s8 *dst, const s8 *src,
struct rv_jit_context *ctx, const u8 op)
{

const s8
const s8
const s8
const s8

switch (op) {
case BPF_ADD:
if (rd == rs) {
emit(rv_srli(RV_REG_T@, lo(rd), 31), ctx);
emit(rv_slli(hi(rd), hi(rd), 1), ctx);
emit(rv_or(hi(rd), RV_REG_TQ, hi(rd)), ctx);
emit(rv_slli(lo(rd), lo(rd), 1), ctx);
} else {
emit(rv_add(lo(rd), lo(rd), lo(rs)), ctx);
emit(rv_sltu(RV_REG_T@, lo(rd), lo(rs)), ctx);
emit(rv_add(hi(rd), hi(rd), hi(rs)), ctx);
emit(rv_add(hi(rd), hi(rd), RV_REG_T@), ctx);

*tmp1 = bpf2rv32[TMP_REG_1];
*tmp2 = bpf2rv32[TMP_REG_2];
*rd = bpf_get_reg64(dst, tmpl, ctx);
*rs = bpf_get_reg64(src, tmp2, ctx);

break;
3
(c) Final (extracted) JIT implementation in C.

Figure 9: Excerpt of the BPF JIT for RV32 for compiling the
“ADD64_REG DST, SRC” instruction.

Using this approach, we found two JIT fragments better than
our manual implementation for compiling ADD64_REG (Figure 9)
and SUB64_REG. In each case, the synthesized fragment emitted
four instructions, whereas our manual implementation emitted
five. We adopted the synthesized fragments in the JIT.

7 Experience

Figure 10 shows the code size of the Jitterbug framework and
the interpreters for verifying JITs, all written in Rosette. We
wrote the interpreters in an idiomatic way [36: §3.3], adding
instructions as needed. We borrowed part of the BPF and RV64
semantics from Serval [68], but rewrote the interpreters to
support symbolic instructions (§5); we wrote the others from
scratch. We developed the metatheory for JIT correctness and
the bitvector axiomatization using 1,492 lines of Lean code.



Component (in Rosette) Lines of code

Jitterbug framework 1,825
BPF interpreter 471
Arm32 interpreter 1,265
Arm64 interpreter 1,166
RISC-V interpreter (32- and 64-bit) 1,571
x86 interpreter (32- and 64-bit) 2,299

Figure 10: Line counts of Jitterbug’s components.

JIT impl. Per-opcode verification time

Spec.

C DSL Min Max Mean Median
RV32 1,964 1,420 336 16 401 73 55
RV64 1,862 1,225 284 4 7,542 116 24
Arm32 1,620 839 192 23 925 130 99
Arm64 1,025 653 163 4 110 26 23
x86-32 1,683 1,074 185 24 488 122 109
x86-64 1,382 644 182 5 170 33 27

Figure 11: Line counts and per-opcode verification time (in
seconds) of the BPF JITs for six architectures.

The primary application of Jitterbug is a new BPF JIT
for RV32, which we wrote in the DSL, proved against the
stepwise specification, and extracted to a C implementation.
To validate the generality of Jitterbug, we ported the existing
BPF JITs for RV64, Arm32, Arm64, x86-32, and x86-64 in
the Linux kernel to Jitterbug for verification. Each port was
line-by-line transcription from C to the DSL (and Rosette),
emitting the same instructions as the original JIT. These ports
did not cover the support for legacy instruction sets (e.g., those
lacking atomic instructions mentioned in §4.3), compiling
TAIL_CALL, or optimizing register saving.

Figure 11 lists the line counts for each BPF JIT. The speci-
fication effort comprises writing assumptions and invariants
for the implementation (§5). Since Jitterbug performs veri-
fication for each source instruction opcode individually, we
measured the per-opcode verification time, using an Intel Core
i7-7700K CPU at 4.5 GHz, with Boolector 3.2.1 as the SMT
solver [69]. Verification time across the JITs depends on many
factors (e.g., the JIT implementation or solver), though archi-
tectural differences are a contributing factor. For example, the
most time-consuming case is verifying the JIT for RV64 with
BPF’s LD64_IMM (loading a 64-bit immediate), which emits
307 types of blocks of RISC-V instructions; the JIT for x86-64
emits six types for the same opcode.

Below we describe our experience using Jitterbug for the
BPF JITs and a previously verified JIT for a stack machine [65].

The BPF JIT for RV32. We chose to implement a BPF JIT
for RV32 because there was not one in the Linux kernel. The
development took five iterations of code reviews.

The first two iterations occurred in June 2019. We sent an
initial implementation to kernel developers to gather feedback
and gauge interest. The implementation was written in Rosette
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and manually translated to C, and was unverified. The feedback
was positive, with suggestions to add support for eliminating
zero extensions [93], an optimization BPF had just introduced.

We submitted the third implementation in February 2020. It
was switched to using the DSL (§6), which was less prone to
errors in manual translation. It passed the BPF selftests suite,
and was verified against an early version of the specification.
One of the suggestions from kernel developers was to factor
out the common code to be shared among the JITs, such as the
per-instruction structure (§4.2). We addressed the suggestions
in the next two iterations, after which the JIT was accepted
into the Linux kernel (see §A.1.1).

Throughout this process, we refined both the specification
and the implementation. The early version of the specification
missed two bugs that were also missed by testing. The first bug
was an off-by-one error for TAIL_CALL: the emitted instructions
limited the TCC (tail-call counter) to 32, rather than the correct
value 33. The second bug was that the JIT did not maintain
16-byte alignment of the stack as per the calling convention.
We found the two bugs once we completed the specification.

Automated verification supported this development process
in two ways. First, it minimized the proof burden for develop-
ing the JIT, which must be feature-complete for deployability.
Second, it enabled us to catch up with new features being
introduced (e.g., support for eliminating zero extensions) and
address code reviews by kernel developers in a timely manner.

Code review. As listed in §A.1.2, we found 16 new bugs in
the existing BPF JITs, wrote patches that fix these bugs, and
verified the fixed code. In addition, we found two new bugs
in the Arm64 instruction encoding library, a core component
shared by BPF and other kernel subsystems (e.g., KVM). We
wrote new test cases to be included in the BPF selftests suite.
This is useful for catching similar bugs across the JITs, as
various “bots” are running selftests continuously for the Linux
kernel. Finding subtle bugs in well-tested code shows the
effectiveness of the specification and verification.

The main effort for porting and verifying these JITs was
in writing the target interpreters for Jitterbug. Verifying the
JITs for Arm32 and Arm64 took one week each. Verifying
the JITs for x86-32 and x86-64 took three weeks in total,
due to the complexity of the x86 interpreter (e.g., instruction
decoding). Translating C code to Rosette was mechanical
and straightforward, though mistakes in manual translation
might hide bugs; extending Jitterbug to work on C code is
future work. For specification, we adopted the assumptions and
invariants for the JIT for RV32 and adjusted them accordingly.

In our experience, automated verification is key to rapid
code review using formal methods. As an example, in Decem-
ber 2019, the developer of the BPF JIT for RV64 submitted
patches to add support for far jumps. We ported the patches
to Jitterbug and verified their correctness within days of the
patch submission. We reported the verification results to kernel
developers; the patches were accepted with our review.



Optimization. Another advantage of verification is that it
enables developing complex optimizations by providing a
high degree of confidence in their correctness. As listed in
§A.1.3, we developed 12 patches optimizing the existing BPF
JITs. Like code review, we verified the correctness of these
optimizations by manually translating the C code to Rosette.

One of the optimizations adds support for RISC-V com-
pressed instruction-set extension (RVC) to the BPF JIT for
RV64. RVC improves code density and reduces instruction
cache misses by adding short 2-byte instructions for common
operations [95: §5], but it poses a challenge to verification:
the JIT may choose either base (4-byte) or RVC (2-byte) for
emitting each instruction, depending on the immediate value
or registers. This leads to an exponential increase in the num-
ber of paths in the JIT, emitted instructions, and machine state
(e.g., variable code lengths causing the program counter to
take different values). Developing and verifying this optimiza-
tion took approximately 3 weeks, following the proof strategy
described in §5 to scale verification.

Beyond BPF JITs. While Jitterbug focuses on the BPF JITs,
we also applied it to a JIT for a stack machine to x86-32. We
ported the “version 1” JIT described by Myreen [65] to the
Jitterbug DSL and extracted it to C code; the port emitted the
same x86-32 instructions and was able to run the example as in
the paper (Jitterbug does not support the “version 2” JIT that
emits self-modifying code). For specification, we excluded
registers from the invariants, since the stack machine had no
registers; and modeled memory as a map from addresses to
values without using traces, since the stack machine had no
shared memory (§4.3). For verification, we wrote an interpreter
for the stack machine and reused the x86 interpreter provided
by Jitterbug. This process took one day.

Jitterbug reported two bugs in the JIT implementation: the
offsets for two conditional jump instructions are given as 5
in the original paper, but we concluded that the correct value
should be 8. We fixed the offsets and verification succeeded.
We believe that both are typos in the paper, as our (fixed) JIT
is consistent with the paper’s HOL4 code and proof.

8 Reflection and conclusion

Our work on Jitterbug was inspired by an earlier effort, started
in 2015, to use the Coq theorem prover to develop a verified
BPF JIT for x86-64. We chose to implement the JIT itself
in x86-64 so as to minimize the trusted computing base. In
hindsight, this was a mistake: doing so required reasoning
about low-level machine state for both the compiler and emitted
code, which hindered the completion of the proof; and the JIT
implementation was impractical to audit and deploy due to
the lack of C code and the optimizations seen in the Linux
kernel. We suspended this effort two years later, in 2017.
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Our interest in BPF JITs was revived with the development
of symbolic profiling [10] and optimization [68, 74], which
together demonstrated a systematic approach for scaling
automated verification of low-level code. As an experiment,
we wrote a bug finder for BPF JITs in Serval, which checked
for strict equivalence of registers (§4.3) over straight-line
instructions (§5). It enabled us to find 15 bugs regarding ALU
instructions in two BPF JITs, although it was insufficient for
verification or finding the bugs described in §3.2 due to the
lack of a correctness specification and proof strategy (e.g.,
support for symbolic instructions).

For Jitterbug, we spent most of our effort devising a speci-
fication of JIT correctness that is general enough to cover a
broad range of in-kernel JITs (e.g., without requiring padding
emitted instructions), expressive enough to catch real bugs,
and amenable to automated verification. We found the use of
the Lean theorem prover valuable for navigating this trade-off,
developing several iterations of the stepwise specification and
a proof that implies the correctness of compiling entire pro-
grams. It also improved our confidence in the axiomatization
of bitvector operations.

A key lesson from lJitterbug is that deciding what not
to verify is as important as deciding what to verify. For
instance, while ideally we would write and verify the BPF
JIT for RV32 in C directly, the use of the DSL enabled us to
fine-tune symbolic evaluation, which was critical for scaling
verification. If we could not scale verification to JITs written
in the DSL, verifying JITs written in C would surely be out of
reach. Inspired by sel.4 [78] and Ironclad [36], we bridged the
resulting gap through validation, separately verifying that the
instruction encoding functions in C emitted the same bytes as
their original DSL code.

Through this paper, we presented our experience with spec-
ifying and verifying BPF JITs, a critical and rapidly evolving
component in the Linux kernel. Our experience demonstrates,
for the first time, the feasibility of extending automated verifica-
tion to a restricted but practically important class of compilers.
The source code of Jitterbug and the JITs is publicly available
at https://github.com/uw-unsat/jitterbug.
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A Artifact appendix

A.1 Patches to the Linux kernel developed using Jitterbug

The following tables list the upstreamed patches to the Linux kernel that we have developed using Jitterbug.

A.1.1 Development of the BPF JIT for RV32

Commit Architecture  Description

5f316b65e99f  RV32 Add RV32G eBPF JIT

cabcb5447cec RV32 Factor common RISC-V JIT code
745abfaa9eaf RV32 Fix tail call count off by one in RV32 BPF JIT
91f658587a96 RV32 Fix stack layout of JITed code on RV32

A.1.2 Bug fixes and new test cases

Commit Architecture  Description

bb9562cf5c67  Arm32 Fix bugs with ALU64 RSH, ARSH BPF_K shift by 0
4178417cc535  Arm32 Fix offset overflow for BPF_ MEM BPF_DW
579d1b3faa37  Arm64 Fix two bugs in encoding 32-bit logical immediates
1€692f09e091 RV64 Clear high 32 bits for ALU32 add/sub/neg/Ish/rsh/arsh
489553dd13a8 RV64 Fix offset range checking for auipc+jalr on RV64
6fa632e719ee  x86-32 Fix bug with ALU64 LSH, RSH, ARSH BPF_K shift by 0
68a8357ec15b  x86-32 Fix bug with ALU64 LSH, RSH, ARSH BPF_X shift by 0
801118503635 x86-32 Fix bug with JMP32 JSET BPF_X checking upper bits
5fa%9a98fb103  x86-32 Fix incorrect encoding in BPF_LDX zero-extension
50fe7ebb6475  x86-32 Fix clobbering of dst for BPF_JSET

aee194b14dd2  x86-64 Fix encoding for lower 8-bit registers in BPF_STX BPF_B
d2b6c3ab70db  — Add test for BPF_STX BPF_B storing R10

93e5fbb18cec  — Add test for IMP32 JSET BPF_X with upper bits set
ac8786¢c72eba  — Add tests for shifts by zero

A.1.3 Optimizations for existing BPF JITs

Commit Architecture  Description

cf48db69bdfa  Arm32 Optimize ALU64 ARSH X using orrpl conditional instruction
c648c9c7429¢  Arm32 Optimize ALU ARSH K using asr immediate instruction
fd49591cb49b  Arm64 Optimize AND,OR,XOR,JSET BPF_K using arm64 logical immediates
fd868f148189  Arm64 Optimize ADD,SUB,JMP BPF_K using arm64 add/sub immediates
46dd3d7d287b  RV64 Enable zext optimization for more RV64G ALU ops

0224b2aceadf RV64 Enable missing verifier_zext optimizations on RV64

21a2099abb765 RV64 Optimize FROM_LE using verifier_zext on RV64

ca349a6al04e RV64 Optimize BPF_JMP BPF_K when imm == 0 on RV64
073ca6a036%e RV64 Optimize BPF_JSET BPF_K using andi on RV64

bfabff3cbefe RV64 Modify JIT ctx to support compressed instructions

804ec72c68c8 RV64 Add encodings for compressed instructions

18a4d8c97b84  RV64 Use compressed instructions in the rv64 JIT
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A.2 Bug-fixing commits in BPF JITs in the Linux kernel (May 2014-April 2020)

The following table lists bug-fixing commits in the BPF JITs in the Linux kernel for Arm32, Arm64, RV64, x86-32, and x86-64.
The superscripts J and S mark those for fixing bugs found using Jitterbug and the BPF bug finder in Serval, respectively.

Commit Architecture  Year  Description

ALU:

bb9562cf5c677  Arm32 2020  Fix bugs with alu64 rsh, arsh bpf_k shift by 0
14e589ff4aa3 Arm64 2015  Fix mod-by-zero case

251599e1d690 Arm64 2015  Fix div-by-zero case

d63903bbc30c Arm64 2015 Fix endianness conversion bugs

1e4df6b72081 Armo64 2015  Fix signedness bug in loading 64-bit immediate
1e692f09¢091°  RV64 2019  Clear high 32 bits for alu32 add/sub/neg/Ish/rsh/arsh
fel121ee531d1 RV64 2019  Clear target register high 32-bits for and/or/xor on alu32
6fa632e719eed  x86-32 2019  Fix bug with alu64 Ish, rsh, arsh bpf_k shift by 0
68a8357ec15hS  x86-32 2019  Fix bug with alu64 Ish, rsh, arsh bpf_x shift by 0
b9aa0b35d878 x86-32 2019  Fix bug for bpf_alu64 | bpf_neg

343f845b3759 x86-64 2015  Fix from_bel6 and from_le16/32 instructions

JMP:

2b589a7e2bd3 Arm32 2018  Correct check_imm24

ddc665a4bb4b Arm64 2017  Fix jit branch offset related to 1dimm64
8eee539ddead Arm64 2015  Fix out-of-bounds read in bpf2a64_offset()
50fe7ebb64757  x86-32 2020  Fix clobbering of dst for bpf_jset

80185036357  x86-32 2020  Fix bug with jmp32 jset bpf_x checking upper bits
711aef1bbf88 x86-32 2019  Fix bug for bpf_jmp | bpf_jsgt, bpf_jsle, bpf_jslt, bpf_jsge
7c2e988f400e x86-64 2019  Fix x64 jit code generation for jmp to 1st insn

MEM:

4178417¢c5357  Arm32 2020  Fix offset overflow for bpf_mem bpf_dw
ec19e02b343d Arm32 2018  Fix ldx instructions

8968c67a82ab Arm64 2019  Remove prefetch insn in xadd mapping
7005cade1bdb Arm64 2017  Use separate register for state in stxr

5calca@lfael x86-32 2020  Fix logic error in bpf_ldx zero-extension
5fa9a98fb103’  x86-32 2020  Fix incorrect encoding in bpf_ldx zero-extension
aee194b14dd2’  x86-64 2020  Fix encoding for lower 8-bit registers in bpf_stx bpf_b
CALL:

8cllea5cel3d Arm64 2018  Fix getting subprog addr from aux for calls
489553dd13a8’  RV64 2020  Fix offset range checking for auipc+jalr on rvo4
TAIL_CALL and EXIT:

02088d9b392f Arm32 2018  Fix register saving

f4483f2ccl1fd Arm32 2018  Fix tail call jumps

51c9fbb1b146 Arm64 2014  Lift restriction on last instruction

16338a9b3ac3 Arm64 2018  Fix out of bounds access in tail call

a2284d912bfc Arm64 2018  Fix stack_depth tracking in combination with tail calls
d8b54110ee94 Arm64 2017  Fix faulty emission of map access in tail calls
96bc4432f5ad RV64 2019  Limit to 33 tail calls

769e0de6475e x86-64 2014  Fix epilogue generation for ebpf programs
90caccdd8cco x86-64 2017  Fix bpf_tail_call() x64 jit

2482abb93ebf x86-64 2015  Fix general protection fault when tail call is invoked
Prologue and epilogue:

d1220efd2348 Arm32 2018  Fix stack alignment

f1003b787c00 RV64 2019  Fix broken bpf tail calls

9e4e5b5c8666 x86-32 2018  Fix regression caused by commit 24dea04767¢e6
fe8d9571dc50 x86-64 2019  Fix stack layout of jited bpf code
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