Summary-Based Symbolic Evaluation for Smart Contracts

Yu Feng
yufeng@cs.ucsb.edu
University of California, Santa
Barbara

ABSTRACT

This paper presents SOLAR, a system for automatic synthesis of
adversarial contracts that exploit vulnerabilities in a victim smart
contract. To make the synthesis tractable, we introduce a query
language as well as summary-based symbolic evaluation, which sig-
nificantly reduces the number of instructions that our synthesizer
needs to evaluate symbolically, without compromising the preci-
sion of the vulnerability query. We encoded common vulnerabilities
of smart contracts and evaluated SOLAR on the entire data set from
ETHERSCAN. Our experiments demonstrate the benefits of summary-
based symbolic evaluation and show that SoLAR outperforms state-
of-the-art smart contracts analyzers, TEETHER, MYTHRIL, and CON-
TRACTFUZZER, in terms of running time and precision.

ACM Reference Format:

Yu Feng, Emina Torlak, and Rastislav Bodik. 2020. Summary-Based Symbolic
Evaluation for Smart Contracts. In 35th IEEE/ACM International Conference
on Automated Software Engineering (ASE °20), September 21-25, 2020, Virtual
Event, Australia. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3324884.3416646

1 INTRODUCTION

Smart contracts are programs running on top of blockchain plat-
forms such as Bitcoin [19] and Ethereum [20]. They interact with
each other to perform effective financial transactions in a dis-
tributed system without the intervention from trusted third parties
(e.g., banks). A smart contract is written in a high-level program-
ming language (e.g., Solidity [23]), and it is typically comprised of
a unique address, persistent storage holding a certain amount of
cryptocurrency (i.e., Ether in Ethereum), and a set of functions that
manipulate the persistent storage to fulfill credible transactions
without trusted parties. For contract-to-contract interaction, some
functions are public and callable by other contracts. Thanks to the
expressiveness afforded by the high-level programming languages
and the security guarantees from the underlying consensus proto-
col, smart contracts have shown many attractive use cases, and their
number has skyrocketed, with over 45 million [11] instances cov-
ering financial products, online gaming, real estate [15], shipping,
and logistics [16].

Because all smart contracts deployed on a blockchain are freely
accessible through their public methods, any functional bugs or
vulnerabilities inside the contracts can lead to disastrous losses,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ASE °20, September 21-25, 2020, Virtual Event, Australia

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6768-4/20/09.

https://doi.org/10.1145/3324884.3416646

Emina Torlak
emina@cs.washington.edu
University of Washington

Rastislav Bodik
bodik@cs.washington.edu
University of Washington

as demonstrated by recent attacks [2, 4, 6, 27]. For instance, the
code (simplified) in Figure 1 illustrates the notorious REENTRANCY
attack [6]. When the victim program (3) issues a money transac-
tion to the attacker (2), it implicitly triggers the attacker’s callback
method, which invokes the victim’s method (i.e., withdraw) again
to make another transaction without updating the victim’s balance.
The attack maliciously extracted tokens from the victim and led
to a financial loss of $150M in 2016. To make things worse, smart
contracts are immutable—once they are deployed, fixing their bugs
is extremely difficult due to the design of the consensus protocol.

Improving robustness of smart contracts is thus a pressing prac-
tical problem. Unsurprisingly, a complex vulnerability like REEN-
TRANCY typically involves interactions between multiple contracts,
which requires an analyzer to model the inter-contracts commu-
nication and reason about the execution in a precise and scalable
way. But existing tools either aggressively overapproximate the
execution a smart contract and report warnings [34, 48] that do
not correspond to feasible paths and therefore cannot be exploited,
or they precisely enumerate [39, 42, 43] concrete traces of a smart
contract, so cannot scale to large programs with many paths.

This paper presents SOLAR, a new point in the design space of
smart contract analysis tools that achieves an effective trade-off
among expressiveness, precision, and scalability. SOLAR provides
the security analyst with a query language for expressing vulner-
ability patterns that can be exploited in an attack, as well as an
automatic engine for synthesizing an attack program (if one exists)
that exploits the given vulnerability. Our key insight is based on
the observation that an attacker typically exploits the vulnerability
by making a sequence of transitions (calls over public methods of
the victim), in which storage states are preserved across different
transitions. Because most types of vulnerabilities can be overap-
proximated through assertions over storage variables (Section 4.2),
this insight motivates an effective summary-based symbolic evalua-
tion technique where the summary of a method soundly models its
side-effect over storage variables, which dramatically reduces the
number of instructions that SOLAR has to re-evaluate symbolically.
As a result, SOLAR is able to scale reasoning with better precision
to large contracts that are out of reach of existing symbolic exe-
cution [42, 43] and fuzzing [39] tools. Furthermore, previous sum-
marization techniques [26, 33] rely on symbolic execution and can
therefore lead to summaries that are exponential in program size.
Our technique relies on Rosette [47], a hybrid symbolic evaluator
that combines symbolic execution and bounded model checking, to
compute compact (i.e., polynomially-sized) and precise (i.e., encod-
ing all feasible bounded paths) summaries at the procedure level.
Using these summaries, SOLAR can perform precise all-paths anal-
ysis of a given contract while symbolically executing significantly
fewer paths than Rosette alone.

ASE ’20, September 21-25, 2020, Virtual Event, Australia

contract Attacker {
Victim v;

Victim v;

Z

function exploit () {
v = Victim() ; 5 v = Victim(o%
v.27?; 6 v.withdraw (

} 7 }
function () payable {
v.??; 0
} 11
} 12}
(1) attack template

v.withdraw (

contract Attacker ({

function explo 1t(){

(2) attack program

Yu Feng, Emina Torlak, and Rastislav Bodik

contract Victim {

2 ces

msg.sender.call.value (a)

{
5 @balances[msg".sender] -= a;

)i

)i

function () payable<.fo....."

)i

(3) victim program

Attacker Victim Attacker Victim State
callback
*) 0) | bs,=c
transfer U U transfer
store
Observation: Query: a B,+B,>C
transfer, transfer, *..store uses Transfer t;, t;; Store s; Argument a;

matches {t;;
A (interfere? a

~s; ty;} where (ty.loc ==t;.loc A t;.gas > 2300

ty.recipient))

Figure 1: Sample contracts to show the Reentrancy attack.

To use our tool, a security analyst expresses a target vulnerability
query (e.g., the reentrancy vulnerability) as a declarative specifica-
tion. SOLAR then synthesizes an attack program that exploits the
victim’s public interface to satisfy the vulnerability query. Given
this problem, a naive approach is to enumerate all possible can-
didate programs and then symbolically evaluate each of them to
check if it satisfies the query. While precise, the naive approach
fails to scale to realistic contracts.

Even with summarization, the search space is still too large for
brute-force enumeration. To address this issue, we partition the
search space by case splitting on the range of symbolic variables,
which allows us to simultaneously explore multiple attack programs
using Rosette’s SMT-based symbolic evaluation engine [47].

We have evaluated SOLAR on the entire data set (>25K) from
ETHERSCAN [11], showing that our tool is expressive, efficient, and
effective. SOLAR’s query specification language is expressive in that
it is rich enough to encode common vulnerabilities found in the lit-
erature (such as the Reentrancy attack [6], Time manipulation [17],
and malicious access control [42]), Security Best Practices [10], as
well as the recent BATcHOVERFLOW Bug [13] (CVE-2018-10299),
which allows the attacker to create an arbitrary amount of cryp-
tocurrency. SOLAR is efficient: on average it takes only 8 seconds to
analyze a smart contract from ETHERsCAN, which is four times faster
than TEETHER [42] and two orders of magnitude faster than Con-
TRACTFUZZER [39]. SOLAR is also effective in that it significantly
outperforms state-of-the-art smart contracts analyzers, namely,
TEETHER, MYTHRIL, and CONTRACTFUZZER, in terms of false posi-
tive and false negative rates. The approximate queries also enable
SOLAR to generate compact summaries and explore deeper vulnera-
bilities in exchange for a minor loss in precision.

In summary, this paper makes the following contributions:

o We formalize the problem of exploit generation as a program
synthesis problem and provide a query language for express-
ing common vulnerabilities in smart contracts as declarative
specifications (Section 4.2).

We propose a new summary-based symbolic evaluation tech-
nique for smart contracts that significantly reduces the num-
ber of paths that SOLAR has to execute symbolically (Sec-
tion 5).

We develop an efficient attack synthesizer based on the
summary-based symbolic evaluation, which incorporates
a novel combination of search space partitioning and paral-
lel symbolic execution based on the semantics of candidate
programs (Section 6.2).

We perform a systematic evaluation of SOLAR on the entire
data set from ETHERSCAN. Our experiments demonstrate the
substantial benefits of our technique and show that SoLar
outperforms three state-of-the-art smart contracts analyzers
in terms of running time and precision. (Section 7).

2 BACKGROUND

We first review necessary background on smart contracts.

Smart Contract. Smart contracts are programs that are stored
and executed on the blockchain. They are created through the trans-
action system on the blockchain and are immutable once deployed.
Each smart contract is associated with a unique 160-bit address;
a private persistent storage; a certain amount of cryptocurrency,
expressed as a balance (i.e., Ether in Ethereum) held by the contract;
and a piece of executable code that fulfills complex computations to
manipulate the storage and balance. The code is typically written
in a high-level Turing-complete programming language such as
Serpent [22], Vyper [24], and Solidity [23], and then compiled to the

Summary-Based Symbolic Evaluation for Smart Contracts

Ethereum Virtual Machine (EVM) bytecode [21], a low-level stack-
based language. For instance, Figure 1 shows two smart contracts
written in the Solidity programming language [23].

Application Binary Interface. In the Ethereum ecosystem, smart
contracts communicate with each other using the Contract Ap-
plication Binary Interface (ABI), which defines the signatures of
public functions provided by the hosted contract. While ABI offers
a flexible mechanism for communication, it also creates an attack
surface for exploits that use the ABI of a given smart contract.

Threat Model. To synthesize an adversarial contract, we assume
that the attacker can obtain the victim contract’s bytecode and
the ABI specifying its public methods. To confirm an adversarial
contract is indeed an exploit, we must also be able to invoke public
methods by submitting transactions over the Ethereum Blockchain.
These requirements are easy to satisfy in practice.

3 OVERVIEW

In this section, we give an overview of our approach with the aid
of a motivating example.

3.1 Smart Contract Vulnerabilities

A security analyst, Alice, can specify various types of vulnerabil-
ities that may appear in a smart contract. For instance, Figure 1
shows a simplified example of a REENTRANCY attack. The withdraw
function does two steps: D send a given amount of Ether to the
caller, and) update the storage state to reflect the new balance. At
any point, the total amount of balances of the victim and attacker
should remain the same (i.e., By + B; = C). However, since (D hap-
pens before updating the state in), an attacker can re-enter the
withdraw function again through the anonymous callback function
triggered by . As a result, the execution of the attack program
can lead to an inconsistent state (i.e., Bj, + B/, > C), which enables
the attacker to extract a large amount of Ether from the victim.!

To automatically generate exploits for the REENTRANCY vulnera-
bility, Alice first specifies a query that characterizes the semantics
of REENTRANCY. As shown in the lower part of Figure 1, the attack
can be summarized using a sequence of key statements between the
victim and the attacker, i.e., two or more transfer 2 instructions
followed by a store operation, which can be expressed using the
first-order formula 3 in Figure 1.

Once Alice expresses the REENTRANCY vulnerability, the next
step is to construct an attack to confirm that the vulnerability indeed
exists in the victim contract. Alice can leverage existing symbolic
execution tools [12, 42, 43] to generate exploits for simple proper-
ties such as attack-control [42]) in a single contract. But for complex
vulnerabilities that require reasoning about interactions among
multiple contracts (e.g., attacker versus victim in REENTRANCY or
caller versus callee in Parity Multisig [14]), existing tools provide
either no support [42] or very limited support that leads to high
rates [43] of false positives and negatives (as shown in Section 7.1).
Yet Alice can easily initialize the boilerplate code for basic interac-
tions, like the “attack template" on the left hand side of Figure 1.
!Ethereum’s gas mechanism ensures that this callback loop terminates.
2We use transfer to denote the call instruction in EVM.

3SoLAR converts a query into its corresponding FOL formulas through a syntax-directed
translation.

ASE ’20, September 21-25, 2020, Virtual Event, Australia

{ "inputs": contract Victinm {

{"name": ", "type": "add "}, bool flag = false;
("name": "v', "fype": "uintooon},
"name": "I ‘ransfer™, “type": " " function makeFlag (bool fg) |
, (1) ABI flag = fg;
contract Attacker { function batchTransfer (address[] a

Victim v; uint256 v) {

1, I b[msg.sender]=b[msg.sender] .sub (w) ;
B R for (uint i=0; i<c; i++) {
) address rec: rlil;
recv. transfer (v) ;
function() payable (...} }

} (2) attack program } T

(3) victim program
uses Transfer f; BinaryExp e; Argument ajaz;
matches (e; ;) where
(e.opcode =="x" A [[e.oprand1]] > [[e.lhs]]
A (interfere? e.oprandl t.amount)
A (interfere? a; ty.recipient) A (interfere? a, t.amount))

(4) query

Figure 2: An example to show the BATcHOVERFLOW attack.

What she needs is an efficient way to fill in the details of the attack
program, which involves exploring the space of all programs that
can be obtained by completing the template with the methods from
the victim’s interface.

3.2 SoLAr

SoLAR helps automate this process by searching for attacks that
exploit a given vulnerability in a victim contract. The tool takes
as input a potential vulnerability V expressed as a declarative
specification. If V exists in the victim contract, SOLAR automatically
synthesizes an attack program that exploits V. An attacker interacts
with a vulnerable contract through its public methods defined in
the ABL Therefore, our goal is to construct an attack program that
exploits the victim’s ABI and that contains at least one concrete
trace where V holds.

To achieve this goal, SOLAR models the executions of a smart
contract as state transitions over registers, memory, and storage. The
vulnerability V is expressed in Racket [5] as a boolean predicate
over these state transitions. The technical challenge addressed by
SoLAR is to efficiently search for an attack program where V holds.

To illustrate the difficulty of this task, consider the problem of
synthesizing an attack program that exploits the BATCHOVERFLOW
vulnerability (CVE-2018-10299) [13] in Figure 2. The attack pro-
gram performs a complex three-step interaction with the victim
contract. First, the attacker must set the storage variable flag to
true to pass the check at line 11. Next, it needs to assign a large
number to v that leads to an overflow at line 10. Finally, it specifies
the attacker’s address as the beneficiary of the transaction (line
16). Synthesizing this attack program involves discovering which
methods to call, in what order, and with what arguments.

The naive approach to solving this problem is to generate all
possible concrete programs and explore the space of their concrete
traces. This approach suffers from two sources of exponential ex-
plosion. First, there are O(n¥) concrete programs of length k for
a victim contract with n public methods. Second, the number of
concrete traces in each of these programs is exponential in the size
of the program’s global control-flow graph obtained by inlining all
method calls.

To address the trace explosion challenge, SoLAR employs a novel
summary-based symbolic evaluation technique presented in Sec-
tion 5. Intuitively, this technique enables SOLAR to preserve only

ASE ’20, September 21-25, 2020, Virtual Event, Australia

(var) == def-symid ¢ where 7 € {boolean, number}
(pc) == (const) | (var)
(expr) == (const) | (var) | (expr) @ (expr)
(@®e{+-%/,V,A...})
(stmt) == (var) := (expr)
| (var) := mload (var) | mstore (var) (var)
| (var) := sload (var) | sstore (var) (var)
| (var) := {balance, gas, address }
(stmts) == (stmt) | (stmt); (stmts) | sha3 (var) (var)
| jumpl (pc) {expr) | jump (pc) | no-op
| transfer (var) (var) (...) | selfdestruct (var)
(param) ::= (var)
(params) == (param) | (param), (params)
(prog) == A(params). (stmts)

Figure 3: Intermediate language for smart contract

those state transitions that are persistent across different transac-
tions and are sufficient to answer the vulnerability query.

To address the program explosion challenge, Section 6 introduces
two additional optimizations. First, instead of exploring the space of
concrete programs, we leverage ROSETTE [47] to partition this space
into a small set of symbolic programs (Section 6.1). Second, instead
of executing each symbolic program sequentially, we partition the
search space by case splitting on the range of symbolic variables,
which enables SoLAR to simultaneously explore multiple symbolic
candidates (Section 6.2).

4 PROBLEM FORMULATION

This section formalizes the semantics of smart contracts, shows
how to express smart contract vulnerabilities in SOLAR, and defines
the problem of synthesizing an attack contract that exploits a given
vulnerability.

4.1 Smart Contract Language

Figure 3 shows the core features of our intermediate language for
smart contracts. This language is a superset of the EVM language.
It includes standard EVM bytecode instructions such as assignment
(x := e), memory operations (mstore,mload), storage operations
(sstore,sload), hash operation (sha3), sequential composition
(s1; $2), conditional (jumpi) and unconditional jump (jump). It also
includes the EVM instructions specific to smart contracts: transfer
denotes all functions that send tokens between different addresses,
balance accesses the current account balance, and selfdestruct
terminates a contract and transfers its balance to a given address.
Finally, our language extends EVM with features that facilitate
symbolic evaluation, including symbolic variables (introduced by
def-sym) and symbolic expressions (obtained by operating on sym-
bolic variables) whose concrete values will be determined by an
off-the-shelf SMT solver [44].

We define the operational semantics of each statement in Figure 3
based on the standard defined by the EVM yellow paper [7]. The
semantics is lifted to work on symbolic values in the standard
way [47]. The meaning of a statement is given by a state transition
rule that specifies the statement’s effect on the program state. We
define states and transitions as follows.

Definition 4.1. (Program State) The Program State T consists of
a stack E, memory M, persistent storage S, global properties (e.g.,

NG R W N

[S e N I N N

Yu Feng, Emina Torlak, and Rastislav Bodik

(a) Solidity program

require(_amount > 0);
vesting.amount = _amount.sub(1);
transfer (msg.sender,_to,vesting.amount);

uint256 v1 = _amount - 15;
uint256 wei = vi1;
uint t1 = vesting.startTime;

emit VestTransfer(msg.sender, _to, wei, t1, _);

(b) Symbolic evaluation

assert(_amount > 0);

r1 := _amount - 1;
sstore(vesting.amount, _amount - 1);
transfer (msg.sender, _to, _amount - 1);
r2 := amount - 15;

r3 := amount - 15;

r4 := sload(vesting.startTime);

no-op;

(c) Summary extraction

sstore(vesting.amount, I's[_amount] — 1)@ (I's [_amount] > 0);
transfer(Is[msg.sender], Is[_to], Is[_amount] — 1)@ (I's[_amount] > 0)

3

(d) Summary interpretation

if (T[_amount] > 0) sstore(vesting.amount,T'[_amount] —1);
if (T[_amount] > 0) transfer(I'[msg.sender],T'[_to],'[_amount] —1);

Figure 4: From Standard to Summary-Based Symbolic Evaluation

balance, address, timestamp) of a smart contract, and the program
counter pc. We use e;, m;, and y; to denote variables from the stack,
memory, and storage, respectively.

A program state also includes a model of the gas system in EVM,
but we omit this part of the semantics to simplify the presentation.
If a state maps a variable to a symbolic expression, we call it a
symbolic state.

Definition 4.2. (State transition over statement s) A State Tran-
sition T over a statement s is denoted by a judgment of the form
[+ s: I, 0. The meaning of this judgment is the following: assum-
ing we successfully execute s under program state I, it will result
in value v and the new state is I'’.

Example 4.3. Figure 4a shows a smart contract written in Solidity.
To analyze this contract, SOLAR first translates it to the program in
Figure 4b, using the intermediate language in Figure 3. The result-
ing program is then evaluated symbolically in an environment T’
that binds _amount to a fresh symbolic number. For instance, after
executing line 2 in Figure 4b, register r1 holds a symbolic value
represented by I'[_amount] — 1. Since SoLAR does not model the
event system in Solidity, we turn the corresponding instructions
(e.g., line 7 in Figure 4b) into no-ops.

Definition 4.4. (Abstract execution trace) An abstract execu-
tion trace R contains a list of events (i.e., statements) that are of
interest. Each event has an event type representing the type of
statement, and a list of attributes.

Summary-Based Symbolic Evaluation for Smart Contracts

4.2 Smart Contract Vulnerabilities

We now describe how to express smart contract vulnerabilities in
SoraRr and what it means for a vulnerability to appear in a program.

Figure 5 shows our query language over program traces. A query
consists of three parts. The uses block declares typed variables,
which are matched against variables or statements appearing in the
program. The matches block specifies a sequence of statements
that are matched against the program trace. The where clause
further refines the search criteria by imposing constraints over the
matched statements.

Query variables. Query variables in the uses block correspond
to variables or statements in the program trace. Common variables
include statements, storage variables, arguments, etc.

Statements. Statements in the query language correspond to
events in the execution trace discussed in Section 4. In particular,
an event is of type record whose fields are properties of that event.
Table 1 lists the fields of some representative statements appearing
in the query. Furthermore, a seqStmt such as a;b specifies that
the event a happens before b. Finally, the exclusion operator “~” is
used to prohibit an event from appearing in the trace.

Conditional clauses. The criteria of a query can be further refined
using the conditional clauses in the where block. In particular, a
conditional clause is a boolean expression whose sub-expressions
are constants, query variables, fields of query variables, or custom
predicate like interfere which we introduce later.

(query) ::= (uses declList;)
| (matches {seqStmt})
| (where cond)

(declList) ::= (typeName id (,id)*)
(typeName) ::= (id)
(stmt) == (transfer) | (sstore) | (jump) | (binaryExp) | (~stmt) ...
(seqStmt) == (stmt) | (stmt;stmt)
(cond) == (E) ® (E) (® € {+,—, >, # V, A, ...})
(E) == (const) | [[var]] | {var)
| (fieldAccess) | (interfere? (E) (E))
(var) == (localy | (argument)
(fieldAccess) = (id.id)
(id) == (A-Za-z)*

Figure 5: Query language for SoLAR

COMPILATION OF QUERY. SOLAR converts query into correspond-
ing FOL formulas through a syntax-directed translation. For queries

that contain quantifiers, we use skolemization to make them quantifier-

free (or reject them if they cannot be skolemized).

The rest of this section introduces a few representative vulnera-
bilities, and shows how they are encoded as formulas in SoLAR. But
first, we introduce an auxiliary function interfere? which will be
used by several vulnerabilities.

Definition 4.5. (Interference) A symbolic variable v interferes
with a symbolic expression e if they satisfy the following constraint:
Jog, v1. e[vo/v] # e[v1/v] A (vo # v1)

ASE ’20, September 21-25, 2020, Virtual Event, Australia

Fields of transfer statement

sender sender’s address

recipient | target’s address

loc program counter of the statement
gas gas budget for the transfer
amount amount of tokens

ret return value of the statement

Fields of jump statement I

condVar condition variable of jump statement
target target address

| Fields of sstore statement |
name name of storage variable
value new value that is used

Fields of binary statement I

lhs variable that is assigned
opcode opcode of the binary statement
oprand1 the first operand

oprand2 the second operand

Table 1: Fields of core statements appearing in the query lan-
guage

Intuitively, changing v’s value will also affect e’s output, which is
denoted as “(interfere? v e)". Interference precisely captures the
data- and control-dependencies between two expressions and turns
out to be the necessary condition of many exploits.

Section 3 describes the BATcHOVERFLOW vulnerability, which
enables an attacker to perform a multiplication that overflows and
transfers a large amount of tokens on the attacker’s behalf. This
vulnerability can be formalized as follows:

VULNERABILITY 1. BATCHOVERFLOW

uses Transfer t;; BinaryExp e; Argument aj, az;

matches {e; t;;} where

(e.opcode =="x" A [[e.oprand1]] > [[e.lhs]]

A (interfere? e.oprandl t;.amount)

A (interfere? a; tj.recipient) A (interfere? ay tj.amount))

The query specifies that the victim program contains a transfer
instruction whose beneficiary and value can be controlled by the
attacker. Furthermore, the transaction value is also influenced by a
variable from an arithmetic operation that overflows.

An Unchecked-send Vulnerability occurs when the programmer
fails to check the return values of critical instructions such as
delegatecall and call. If these instructions result in runtime
errors, the programmer is responsible for manually checking their
return values and restoring the program state. Failing to do so can
lead to unexpected behavior [18]. We formalize the absence of this
check as follows:

VuLNERABILITY 2. Unchecked-send (Gasless-send)

uses Transfer t; Jump j;
matches { t; ~j;} where ((interfere? t.ret j.condVar))

ASE ’20, September 21-25, 2020, Virtual Event, Australia

Here, the return value of a transfer instruction does not interfere
with the conditional variables of any conditional jump statements.
In other words, this return value is not checked.

The REENTRANCY vulnerability (introduced in Section 1) occurs
when an attacker’s call is allowed to repeatedly make new calls to
the same victim contract without updating the victim’s balance. It
can be overapproximated as follows:

VULNERABILITY 3. Reentrancy

uses Transfer t;, t;; Store s; Argument a;
matches {t;; ~s; f2;} where (#.loc==t;.loc A ty.gas > 2300
A (interfere? a ty.recipient))

In other words, let trace R contains a sequence instructions that
include multiple transfer statements that share the same program
counter, if there is no store statement between the two transfer
functions that has the minimum gas (i.e., 2300), then there may
exist a Reentrancy vulnerability.

4.3 Attack Synthesis

Given a vulnerability query, we are interested in synthesizing an at-
tack program that can exploit this vulnerability in a victim contract.
The basic building blocks of an attack program are called com-
ponents, and each component C corresponds to a public method
provided by the victim contract. We use Y to denote the union of
all publicly available methods.

Definition 4.6. (Component) A Component C from an ABI con-
figuration is a pair (f,) where: 1) f is C’s name, and 2) 7 is the
type signature of C.

Example 4.7. Consider the ABI configuration in Figure 2. Its first
element declares a component for the problematic batchTransfer
method. This component takes inputs as an array of address and
a 256-bit integer (uint256).

We represent a set of candidate attack programs as a symbolic
program, which is a sequence of holes to be filled with components
from Y. The synthesizer fills these holes to obtain a concrete program
that exploits a given vulnerability.

Definition 4.8. (Symbolic Attack Program) Given a set of com-
ponents Y = {(fi,71),..., (fn, 7n)}, a symbolic attack program S
for Y is a sequence of statement holes of the form

choose(fi(3r,), - -, v (Bzy))s

where f;(77,) stands for the application of the i-th component to
fresh symbolic values of types specified by ;.

Definition 4.9. (Concrete Attack Program) A concrete attack
program for a symbolic program S replaces each hole in S with
one of the specified function calls, and each symbolic argument to
a function call is replaced with a concrete value.

Example 4.10. Here is a symbolic program that captures the
attack candidate in Fig 2:

choose (makeFlag(x;),
choose (makeFlag(x;),

batchTransfer (y;,z1));
batchTransfer (yz,z2));

And here is a concrete attack program for this symbolic attack:

makeFlag(true);
batchTransfer ([0x123,0x345], 2%0-1);

Yu Feng, Emina Torlak, and Rastislav Bodik

(define (get-summary s ¢)
(match s
[transfer(x, y, z) transfer(Is(x), Ts[y], Ts[z])@¢]
[sstore(x, y) sstore(x, Is[y])ed]
[#f1))

Figure 6: Procedure for summary generation.

The choose construct is a notational shorthand for a conditional
statement that guards the specified choices with fresh symbolic
booleans. For example, choose(es, e2) stands for the statement
if by then eg else ey, where by is a fresh symbolic boolean value.
A concrete attack program therefore substitutes concrete values for
the implicit choose guards and the explicit function arguments of
a symbolic attack program.

The goal of attack synthesis is to find a concrete program P for
a given symbolic program S such that P reaches a state satisfying
a desired vulnerability query.

Definition 4.11. (Problem Specification) The specification for
our attack synthesis problem is a tuple (Iy, ‘V, S) where:

e S is a symbolic attack program for the set of components Y
of a victim contract V.

o T is the initial state of the symbolic attack program, obtained
by executing the victim’s initialization code.

o V is a first-order formula over the (symbolic) program state
[[S]Ir reachable from Iy by the attack program S.

Definition 4.12. (Attack Synthesis) Given a specification (Tp, V,
S), the Attack Synthesis problem is to find a concrete attack program
P for S such that: 1) [[P]l, = T, and 2) T’ | V. In other words,
executing P from the initial state Iy results in a program state T
that satisfies V.

5 SUMMARY-BASED SYMBOLIC
EVALUATION

Solving the attack synthesis problem involves searching for a con-
crete program P in the space of candidate attacks defined by a
symbolic program S. SoLAR delegates this search to an off-the-
shelf SMT solver, by using symbolic evaluation to reduce the attack
synthesis problem to a satisfiability query. Given a specification
(To, V., S), SoLAR evaluates S on the state Ij) to obtain the state
[[S1ly,. and then uses the solver to check the satisfiability of the for-
mula 35.V ([[S]] r,)» Where i denotes the symbolic variables in S. A
model of this formula, if it exists, binds every variable in & to a con-
crete value, and so represents a concrete attack program P for S that
triggers the vulnerability V. But computing [[S]]y;, is expensive
as it relies on symbolic evaluation [47]. In particular, evaluating a
choose statement in S involves symbolically evaluating each func-
tion call in that statement. So, for a symbolic program of length K,
every public function in the victim contract must be symbolically
executed K times on different symbolic arguments. As we will see in
section 7, this direct approach to evaluating S does not scale to real
contracts that contain a large number of complex public functions.
To mitigate this issue, we use a summary-based symbolic evaluation
that performs symbolic execution of each public method only once.

Summary-Based Symbolic Evaluation for Smart Contracts

Our approach is based on the following insight. An attack pro-
gram performs a sequence of transactions—i.e., method invocations—
that manipulate the victim’s persistent storage and global properties.
The transactions that comprise an attack exchange data and influ-
ence each other’s control flow exclusively through these two parts
of the program state. So, if we can faithfully summarize the effects
of a public method on the persistent storage and global properties,
evaluating this summary on the symbolic arguments passed to the
method is equivalent to symbolically executing the method itself.

Definition 5.1. A summary M in our system is a pair s@¢ where
s represents a statement that has a side effect on the persistent
state (i.e., storage and global properties) of a smart contract, and ¢
denotes the path condition under which s is executed.

We generate such faithful method summaries in two steps. First,
we evaluate the method on a program state I's that maps every
state variable (i.e., persistent storage location, global property, etc.)
to a fresh symbolic variable of the right type. This step produces
a path condition and symbolic inputs for each instruction that
capture every possible way to reach and execute the instruction
within the given method. Next, we use the procedure in Figure 6
to generate the method summary.* Given a storage-store instruc-
tion sstore(x,y) and its path condition, we generate a “summary
sstore" statement (i.e., sstore) that takes as input the name of the
storage variable (i.e., x) and the symbolic expression I's [y] held in
the register y. Similarly, given a call(gas,addr,value) instruc-
tion and path condition, we emit its “summary call" statement (i.e.,
call) that takes as input the symbolic expressions of the instruction’s
gas consumption, recipient address, and amount of cryptocurrency,
respectively. All other instructions are omitted from the summary
since they have no effect on the persistent state. By construction,
our summary therefore precisely captures all of the method’s effects
on the persistent state, and the summaries are polynomially-sized
as guaranteed by Rosette’s symbolic evaluator [47].

Example 5.2. Recall that we introduce the following code snippet
in Figure 4b:

1 assert(_amount > 0);

2 r1 := _amount - 1;

3 sstore(vesting.amount, _amount - 1);

4 transfer(msg.sender, _to, _amount - 1);
5 r2 := amount - 15;

6 r3 := amount - 15;

7 r4 := sload(vesting.startTime);

8 no-op;

Then using the rule in Figure 6, SOLAR generates the following
summary:

sstore(vesting.amount, I's[_amount] — 1)@ (I's[_amount] > 0);

transfer(Ts [msg.sender], Ts [_to], s [_amount] — 1)@ (T's [_amount] > 0) ;
In particular, our tool summarizes the side effects of the transfer
and sstore instructions at lines 2 and 3 in Figure 4b, respectively.
The remaining instructions (e.g., statements from line 5 to 8) are
omitted from the summary because they have no persistent side
effects.

Once SOLAR generates the summary for each procedure, we still
need to adjust the symbolic evaluation engine to take advantage

“We omit the details of other side-effecting instructions for simplicity.

AR W N e

[T, ISR R

ASE ’20, September 21-25, 2020, Virtual Event, Australia

(define (interpret-summary s@¢ I')
(define sr@¢r (substitute s@¢p I'))
(match sr
[transfer(xr,yr,zr) (when ¢r transfer(xr, yr, zr))]
[sstore(x,yr) (when ¢r sstore(x, yr))]
[_ no-opl))

Figure 7: Procedure for summary interpretation

(define (solar ¥V Y K)

(define program (for/list ([i KJ]) (apply choosex Y)))
(define i-pstate (get-initial-state Y))

(define o-pstate (interpret program i-state))

(define binding (solve (assert (V o-pstate))))
(evaluate program binding))

Figure 8: SOLAR implementation in ROSETTE.

of the summaries. Given a method summary and a program state
', we use the procedure in Figure 7 to reproduce the effects of
executing the method symbolically on I' as follows. Recall that we
generate the summary by executing the method on a fully symbolic
state I's = {x; > v1,...,xn > 0}, so every path condition and
symbolic expression in the summary is given in terms of the sym-
bolic variables vy, . . ., v,. Our summary interpretation procedure
works by substituting each v; in an instruction’s path condition
and inputs with its corresponding value in T, i.e., I'[x;]. The result-
ing instruction summary sr@¢r is therefore expressed in terms
of T, so applying its side effects st under the path condition ¢r is
equivalent to executing the instruction s in the original method on
the state T. Since we interpret every instruction in the summary in
this way, the combined effect on the persistent state is equivalent
to executing the original method symbolically on T

Example 5.3. Figure 4d shows an example for interpreting the
summary in Figure 4c by applying the procedure in Figure 7. Specif-
ically, given an environment I and the transfer summary at line
2 in Figure 4c, we first generate an if statement guarded by the
path condition ¢ in T, then in the body of the if statement, we
symbolically evaluate the transfer statement in the environment
I.

6 IMPLEMENTATION

This section discusses the design and implementation of SOLAR, as
well as two key optimizations that enable our tool to efficiently
solve the synthesis attack problem.

6.1 Symbolic Computation Using ROSETTE

SoLAR leverages ROSETTE [47] to symbolically search for attack pro-
grams. ROSETTE is a programming language that provides facilities
for symbolic evaluation. ROSETTE programs use assertions and sym-
bolic values to formulate queries about program behavior, which
are then solved with off-the-shelf SMT solvers. For example, the
(solve expr) query searches for a binding of symbolic variables
to concrete values that satisfies the assertions encountered during
the symbolic evaluation of the program expression expr. SOLAR
uses the solve query to search for a concrete attack program.
Figure 8 shows the implementation of SOLAR in Rosette. The tool
takes as input a vulnerability specification ‘V, the components Y of a

ASE ’20, September 21-25, 2020, Virtual Event, Australia

victim program, and a bound K on the length of the attack program.
Given these inputs, line 2 uses Y to construct a symbolic attack
program of length K. Next, lines 3 runs the victim’s initialization
code to obtain the initial program state, i-pstate, for the attack.
Then, line 4 evaluates the symbolic attack program on the initial
state to obtain a symbolic output state, o-pstate. Finally, lines 5-6
use the solve query to search for a concrete attack program that
satisfies the vulnerability assertion.

The core of our tool is the interpreter for our smart contract
language (Figure 3), which implements the semantics from the
EVM yellow paper [7]. We use this interpreter to compute the
symbolic summaries of the victim’s public methods (Section 5)
and to evaluate symbolic attack programs. The interpreter itself
does not implement symbolic execution; instead, it uses ROSETTE’s
symbolic evaluation engine to execute programs in our language
on symbolic values.

Another key component of SoLAR is the translator that converts
EVM bytecode into our language (Figure 3). The translator lever-
ages the Vandal Decompiler [34] to soundly convert the stack-based
EVM bytecode into its corresponding three-address format in our
language. The jump targets are resolved through abstract interpre-
tation [32]. We use the translator to convert victim contracts to
the SoLAR language for attack synthesis. Both the translator and
the interpreter support all the instructions defined in the Ethereum
specification [21].

6.2 Parallel Synthesis using Hoisting

SoLAR uses summary-based symbolic evaluation to efficiently re-
duce attack synthesis problems to satisfiability queries. But the
resulting queries can still be too difficult to solve in practice, espe-
cially when the victim contract has many public methods. To further
improve performance, SOLAR exploits the structure of symbolic at-
tack programs (Definition 4.8) to decompose the single solve query
in Figure 8 into multiple smaller queries that can be solved quickly
and in parallel, without missing any concrete attacks.

The basic idea is as follows. Given a set of N components and
a bound K on the length of the attack, line 2 creates a symbolic
attack program of the following form:

chooses (fi (dz,)s- - i (Birg)) s

choosex (fi(Ukz)s - v (Okop)) 5

This symbolic attack encodes a set of concrete attacks that can also
be expressed using NX symbolic programs that fix the choice of the
method to call at each line, but leave the arguments symbolic. So,
we can enumerate these NX programs and solve the vulnerability
query for each of them, instead of solving the single query at line
5. This approach essentially hoists the symbolic boolean guards
out of the choose statements in the original query, and SOLAR ex-
plores all possible values for these guards explicitly, rather than via
SMT solving.> As we show in Section 7, hoisting the guards leads
to significantly faster synthesis, both because it enables parallel
solving of the smaller queries, and because the smaller queries can
be solved quickly.

5For practical efficiency, our implementation hoists the guards to generate NX /¢
symbolic programs, where c is the number of available cores.

Yu Feng, Emina Torlak, and Rastislav Bodik

6.3 Practical EVM fragment

In this section, we briefly illustrate how SoLAR handles other chal-
lenging features of EVM.

Loops. Similarly to other analyzers based on symbolic execution,
SoLaR unrolls all potentially unbounded loops K times. We use
K = 2 as the default bound for unrolling.

SHA and Storage access. In the EVM bytecode, the address of an
array or map element is determined by the following function:

ali] := SHA-256(id(a))+ n X i

Here, SHA-256(id(a)) stands for the SHA-256 hash of the array’s
identifier, n is the size of the elements stored in the array, and i is the
array index. Reasoning about this function directly is intractable
for solvers. SOLAR circumvents this problem by leveraging uninter-
preted functions to soundly model both the SHA-256 hash and the
address computation function. That is, two addresses are the same
if they share the same array identifier, index, and element size.

GAS CONSUMPTION. SOLAR’s program state tacks gas usage by
accumulating the cost of instructions during symbolic evaluation. If
a transaction runs out of gas in the middle of the evaluation, SoLAR
terminates it with an “out of gas” assertion failure.

7 EVALUATION

We evaluated SOLAR by conducting a set of experiments that are
designed to answer the following questions:

e RQ1: Effectiveness: How does SOLAR compare against state-
of-the-art analyzers for smart contracts?

e RQ2: Efficiency: How much does summary-based symbolic
evaluation improve the performance of SOLAR?

To answer these questions, we perform a systematic evaluation
by running SoLAR on the entire set of smart contracts from ETHER-
SCAN [11]. Using a snapshot from Feb 13 2019, we obtained a total of
25,983 smart contracts (duplicate contracts were removed) with pub-
licly available source code. SOLAR starts from attack programs of size
one and gradually increases the size until finding the exploit or run-
ning out of time. All experiments in this section are conducted on a
t3.2x1large machine on Amazon EC2 with an Intel Xeon Platinum
8000 CPU and 32G of memory, running the Ubuntu 18.04 operating
system and using a timeout of 10 minutes for each smart contract.

7.1 Comparison with Existing Tools

To show the advantages of our proposed approach, we compare
SOLAR against three state-of-the-art analyzers for exploits gener-
ation: MYTHRIL and TEETHER, based on symbolic execution, and
CoNTRACTFUZZER, based on dynamic random testing.

Comparison with MyTHRIL. We first compare with MyTHRIL [12] ¢
by generating exploits for the reentrancy vulnerability. MYTHRIL
takes as input a smart contract and checks whether there are con-
crete traces that match the tool’s predefined security properties. If
so, the tool returns a counterexample as the exploit. We evaluate

%Since both SoLAR and MyYTHRIL are general-purpose analyzers for common vulnera-
bilities in smart contracts, for fair comparison, we only enable the relevant queries in
the evaluation.

Summary-Based Symbolic Evaluation for Smart Contracts

Sorar I 8 MyTHRIL

40

30

20 |- a
1 . *
0
FN FP

Figure 9: Comparing SOLAR against MYTHRIL

Percentage %

MyTHRIL and SOLAR on the ETHERSCAN data set, and both systems
use a timeout of 10 minutes.

Summary of results. For 156 contracts flagged as REENTRANCY
vulnerablity by at least one tool, we manually determine the ground
truth and summarize the results in Figure 9. The false negative (FN)
and false positive (FP) rates of SOLAR are 7% and 3%, while the FN
and FP rates of MYTHRIL are 26% and 12%.

PERFORMANCE. MYTHRIL takes an average of 23 seconds to ana-
lyze a contract, while SOLAR takes an average of 8 seconds for this
data set.

Discussion. The high false negative rate in MYTHRIL is caused by
low coverage on the corresponding benchmarks. In the presence
of large and complex methods, MYTHRIL fails to generate traces
that trigger the vulnerability. Moreover, MYTHRIL does not sup-
port cross-function re-entrancy—i.e., re-entrancy attacks that span
multiple functions of the victim contract.

We also investigated the cause of false positives reported by
SoLAR. It turns out that the false positives are caused by the im-
precision of our queries. In particular, we use a specific pattern of
traces to overapproximate the behavior of the Reentrancy attack.
While effective and efficient in practice, our query may generate
spurious exploits that are infeasible. To mitigate this limitation, one
compelling approach for developing secure smart contracts is to
ask the developers to provide invariants that the tool can use to
rule out infeasible attacks.

Comparison with TEETHER. We next compare SOLAR against
TEETHER [42], the most recent tool using dynamic symbolic execu-
tion for generating exploits that would enable the attacker to control
the money transactions of a victim contract. In particular, TEETHER
looks for so-called critical instructions (i.e., call, selfdestruct,
etc.) that include recipients’ addresses, which can be manipulated
by the attacker to withdraw tokens from a vulnerable contract.

Summary of results. In total, there are 198 contracts that are
marked as attack-control vulnerability by at least one tool. While
SoLAR covers all exploits generated by TEETHER, SOLAR also finds
21 extra exploits that cannot be generated by TEETHER.

PERFORMANCE. TEETHER takes an average of 31 seconds to ana-
lyze a contract in the ETHERSCAN data set, while SOLAR takes an
average of 8 seconds per contract.

ASE ’20, September 21-25, 2020, Virtual Event, Australia

SoLAR CoONTRACTFUZZER
No. | FP | FN | No. | FP | FN
Timestamp 16 |0 1 13 |3 7
Gasless Send | 17 | 0 0 14 |3 6

Bad Random | 9 0 0 5 1 5
Table 2: Comparing SOLAR against CONTRACTFUZZER

Vulnerability

Discussion. The missing exploits in TEETHER are caused by low
coverage on the corresponding benchmarks. For the 21 benchmarks
with exploits that cannot be generated by TEETHER, 14 involve at-
tack programs with four method calls, and each of the remaining 7
benchmarks contains over 3000 lines of source code with complex
control flow. As a result, TEETHER fails to explore sufficiently many
concrete traces to find the exploits, even if we increase the timeout
from 10 minutes to 1 hour.

Comparison with CoNTRACTFUZZER. We further compared So-
LAR against CONTRACTFUZZER [39], a recent smart contract analyzer
based on dynamic fuzzing. CONTRACTFUZZER takes as input the
ABI interfaces of smart contracts and randomly generates inputs
invoking the public methods provided by the ABIL To verify the
correctness of the exploits, CONTRACTFUZZER implements oracles
for different vulnerabilities by instrumenting the Ethereum Virtual
Machine (EVM) with extra assertions.

We use the docker image [8] provided by the author of Con-
TRACTFUZZER. The original paper does not discuss the performance
of the tool, but from our experience, CONTRACTFUZZER is slow,
taking more than 10 mins to fuzz a smart contract. Since it would
be time-consuming to run CONTRACTFUZZER on the ETHERSCAN
data set, we evaluate both tools on the 33 benchmarks from the
CoNTRACTFUZZER artifact [9] plus another 67 random samples from
ETHERSCAN for which we know the ground truth.

Summary of results. The results of our evaluation are summa-
rized in Table 2. For the timestamp dependency, CONTRACTFUZZER
flags 13 benchmarks as vulnerable. However, 3 of them are false
alarms, and CoNTRACTFUZZER fails to detect 7 vulnerable bench-
marks. On the other hand, SoLAR detects most of the benchmarks
with only one false negative, which is caused by a timeout of the
Vandal decompiler [34].

Similarly, for the Gasless-send vulnerability, 14 benchmarks are
flagged by ConTRACTFUZZER. However, 3 of them are false posi-
tives, and 6 vulnerable benchmarks can not be detected within 10
minutes. In contrast, SOLAR successfully generates exploits for all
the vulnerable benchmarks.

Performance. On average, CONTRACTFUZZER takes 10 mins to
analyze a smart contract. SOLAR takes an average of 11 seconds on
this data set.

Discussion. The cause of false negatives in CONTRACTFUZZER is
easy to understand as it is based on random, rather than exhaus-
tive, exploration of an extremely large search space. So if there are
relatively few inputs in this space that lead to an attack, CONTRACT-
Fuzzer is unlikely to find one in reasonable time. The false positives
in CONTRACTFUZZER are caused by the limited expressiveness of its
assertion language. For instance, the Time Dependency is defined

ASE ’20, September 21-25, 2020, Virtual Event, Australia

of Benchmarks Timeout
STASeST—s°]s°-s7
8s 35s 1846 548 17454
Table 3: Comparison between summary-based (ST) and non-
summary (5°). ST A 5%, 57 —$°, and 5° — S” represent number
of benchmarks timeout on both, S only, and S° only, respec-
tively.

ST-mean | S°-mean

as the following assertion in CONTRACTFUZZER:
TimestampOp A (SendCall v EtherTransfer)

The assertion raises a Time Dependency vulnerability if the smart
contract contains the timestamp and call instructions. It is easy
to raise false alarms with this assertion if the call instruction does
not depend on timestamp.

Result for RQ1: SoLAR outperforms three state-of-the-art
analyzers in terms of running time, false positives, and false
negatives.

7.2 Impact of Summary-based Symbolic
Evaluation

To understand the impact of our summary-based symbolic evalua-
tion described in Section 5, we use the REENTRANCY vulnerability as
the client and run SoLAR on the ETHERsCAN data set with (ST) and
without (S°) computing the summary. To speed up the evaluation,
for both settings, we enable the parallel synthesis optimizations
discussed in Section 6.

Figure 10 shows the results of running SoLAR with different set-
tings and a time limit of 10 minutes. Each dot in the figure represents
the pairwise running time of a specific benchmark under different
settings; a dot near the diagonal indicates that the performance of
two settings is similar. Our summary-based symbolic evaluation
significantly outperforms the baseline (i.e., non-summary) in the
vast majority of benchmarks. As shown in Table 3, if we exclude
the benchmarks that timeout in 10 minutes, the mean time of our
summary-based symbolic evaluation is only 8 seconds, while it takes
35 seconds without computing the summary. Furthermore, 1846
benchmarks time out for both settings, and only 548 benchmarks
time out on S but not on $°. However, without computing the sum-
mary, 17454 (i.e., 69.8%) benchmarks time out. The result confirms
that the summary-based technique is key to the efficiency of SoLAR.

Result for RQ2: Our summary-based technique is key to
the efficiency of SoLAR.

8 RELATED WORK

Smart contract security has been extensively studied in recent years.
This section briefly discusses prior closely related work.

Smart Contract Analysis. Many popular security analyzers for
smart contracts are based on symbolic execution [41]. Well-known
tools include Oyente [43], Mythril [12] and Manticore [3]. Their
key idea is to find an execution path that satisfies a given property
or assertion. While SoLAR also uses symbolic evaluation to search

Yu Feng, Emina Torlak, and Rastislav Bodik

Non-summary is better
10? o
(] * ® P ° .
[] ° .. ° .: . L)
10! * ASSERL ST N
0 ® .‘ o o &£
o o (A = .
s, fg’S s
o/ & o o X
@
10° .2 %
L]
[)
’:obb *
10! ® oo Summary-based is better
1071 10° 10 102

Figure 10: Comparison of run times (in seconds) between
non-summary (x-axis) and summary-based (y-axis) (log-
scale).

for attack programs, our system differs from these tools in two
ways. First, the prior tools adopt symbolic execution for bug finding.
Our tool can be used not only for bug finding but also for exploit
generation. Second, while symbolic execution is a powerful and
precise technique for finding security vulnerabilities, it does not
guarantee to explore all possible paths, which leads to false nega-
tive rates as shown in Section 7.1. In contrast, SOLAR analyzes all
(bounded) paths through a contract using summary-based symbolic
evaluation, which significantly reduces the number of paths that
the underlying Rosette engine has to execute symbolically while
maintaining the same precision.

To address the scalability and path explosion problems in sym-
bolic execution, researchers developed sound and scalable static
analyzers [34, 36, 40, 48]. Both Securify [48] and Madmax [34] are
based on abstract interpretation [32], which soundly overapprox-
imates and merges execution paths to avoid path explosion. The
ZEUS [40] system takes the source code of a smart contract and a
policy as inputs, and then compiles them into LLVM IRs that will
be checked by an off-the-shelf verifier [46]. The ECF [36] system
is designed to detect the DAO vulnerability. Similar to our tool,
Securify also provides a query language to specify the patterns of
common vulnerabilities. Unlike our tool, none of these systems can
generate exploits. We could not directly compare SoLAR with Zeus
as the tool and benchmarks are not publicly available. However, we
note that our system is complementary to existing static analyzers
such as Securify: in particular, we can use Securify to filter out
safe smart contracts and leverage SOLAR to generate exploits for
vulnerable ones.

Some systems [35, 38, 45] for reasoning about smart contracts
rely on formal verification. These systems prove security properties
of smart contracts using existing interactive theorem provers [1].
They typically offer strong guarantees that are crucial to smart con-
tracts. However, unlike our system, all of them require significant

Summary-Based Symbolic Evaluation for Smart Contracts

manual effort to encode the security properties and the semantics
of smart contracts.

Automatic Exploitation. Our work is also closely related to au-
tomatic exploitation [28, 31, 39, 42]. While prior systems rely on
constraint solvers to generate counterexamples as potential ex-
ploits, we note that there are additional challenges in automatic
exploitation for smart contracts. First, the exploits in classical vul-
nerabilities (e.g., buffer overflows, SQL injections) are typically
program inputs of a specific data type (e.g., integer, string) whereas
the exploits in our setting are adversarial smart contracts that faith-
fully model the execution environment (storage, gas, etc.) of the
EVM. Second, Keccak-256 hash is ubiquitous in smart contract for
accessing addresses in memory or storage. As shown in Section 7.1,
basic symbolic execution will fail to resolve the Keccak-256 hash, re-
sulting in poor coverage. To address this problem, the TEETHER [42]
system proposed a novel algorithm to infer the memory addresses
encoded as Keccak-256 hash. Unlike TEETHER, our system directly
synthesizes function calls that manipulate the memory and stor-
age thus avoids expensive computation to resolve the hash values.
Our evaluation in Section 7.1 shows that SoLAR outperforms the
TEETHER tool in terms of both running time and false negatives.
Similar to SOLAR, CONTRACTFUZZER [39] also generates exploits for
a limited class of vulnerabilities based on the ABI specifications
of smart contracts. However, as shown in Section 7.1, since CON-
TRACTFUZZER is based on random input generation, it is an order of
magnitude slower than SOLAR, resulting in many missed exploits
compared to SOLAR. Its assertion language is also less expressive
than ours, leading to false positives that SOLAR avoids.

SymBoLIC EVALUATION. SOLAR builds on the Rosette [47] sym-
bolic evaluation engine with a new summary-based technique for
scaling symbolic evaluation to large programs in the domain of
smart contracts. As shown in Section 7.2, this technique is criti-
cal for performance. The idea of computing summaries to speed
up symbolic evaluation has also been explored in the context of
symbolic execution (see [29] for a survey), leading to three main
approaches [26, 30, 33]. Two of these approaches [26, 33] com-
pute summaries path-by-path, so a full summary that encodes all
(bounded) paths through a program would be, in the worst case,
exponential in program size. Prior tools therefore avoid comput-
ing full summaries, instead summarizing a subset of all paths for
the purpose of test generation. SOLAR, in contrast, summarizes
all (bounded) paths through a procedure, and produces compact
(polynomially-sized) summaries by employing a symbolic evalu-
ator [47] that combines symbolic execution and bounded model
checking. Another summarization approach [30] uses a caching
scheme that lets the underlying symbolic execution engine termi-
nate the exploration of a path as soon as it reaches a previously
seen state. The scheme does not compute explicit summaries of
code; instead, it only stores enough information to soundly decide
when the symbolic execution of a path reaches a previously seen
state. In contrast, our approach computes an explicit and precise
summary of a procedure’s semantics.

PROGRAM SYNTHESIS. SOLAR uses syntax-guided synthesis [25] to
search for attack programs. Synthesizers of this kind (see [37] for a
survey) rely on either enumerative search (which can be stochastic

ASE ’20, September 21-25, 2020, Virtual Event, Australia

or exhaustive) or symbolic reasoning or a combination of the two.
SoLAR combines exhaustive enumeration with symbolic synthesis
(Section 6.1), and extends this with a parallel symbolic evaluation
technique (Section 6.2) for fast enumeration. Both optimizations are
specialized to the domain of smart contracts, and they are critical
for performance: disabling them renders the system unusable.

9 CONCLUSION

This paper presented SOLAR, a tool for automatic synthesis of ad-
versarial contracts that exploit vulnerabilities in a victim smart
contract. To make synthesis tractable, SoLAR introduces summary-
based symbolic evaluation, which enables our tool to perform precise
all-paths analysis of large real-world contracts, while significantly
reducing the number of paths that need to be executed symboli-
cally. SoLAR also introduces optimizations to partition the synthesis
search space for parallel exploration. Evaluating SOLAR on the en-
tire ETHERSCAN data set, we find that it significantly outperforms
state-of-the-art analyzers in terms of precision and execution time.

ACKNOWLEDGEMENTS

This work has been supported in part by the NSF Grants CCF-
1651225, ACI OAC-1535191, FMitF CCF-1918027, OIA-1936731,
SaTC-1908494, by the Intel and NSF joint research center for Com-
puter Assisted Programming for Heterogeneous Architectures (CAPA
NSF CCF-1723352), the CONIX Research Center, one of six centers
in JUMP, a Semiconductor Research Corporation (SRC) program
sponsored by DARPA CMU 1042741-394324 AMO1, grants from
DARPA FA8750-14-C-0011 and DARPA FA8750-16-2-0032, as
well as gifts from Adobe, Facebook, Google, Intel, and Qualcomm.

REFERENCES

[1] 2016. The Coq Proof Assistant. https://coq.inria.fr/. [Online; accessed 01/09/2019].

[2] 2016. GovernMental’s 1100 ETH payout is stuck because it uses too much gas.
https://tinyurl.com/y83dn2yf/. [Online; accessed 01/09/2019].

[3] 2016. Manticore. https://github.com/trailofbits/manticore/. [Online; accessed
01/09/2019].

[4] 2017. On the parity wallet multisig hack. https://tinyurl.com/yca83zsg/. [Online;
accessed 01/09/2019].

[5] 2017. The Racket Language. https://racket-lang.org/.
01/09/2019].

[6] 2017. Understanding The DAO Attack. https://tinyurl.com/yc308ffk/. [Online;
accessed 01/09/2019].

[7] 2018. ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSAC-
TION LEDGER. https://ethereum.github.io/yellowpaper/paper.pdf. [Online;
accessed 01/09/2019].

[8] 2018. The Ethereum Smart Contract Fuzzer for Security Vulnerability Detection.
https://github.com/gongbell/ContractFuzzer. [Online; accessed 01/09/2019].

[9] 2018. The Ethereum Smart Contract Fuzzer for Security Vulnerability Detection.
https://github.com/gongbell/ContractFuzzer. [Online; accessed 01/09/2019].

[10] 2018. Ethereum Smart Contract Security Best Practices. https://consensys.github.

io/smart-contract-best-practices/. [Online; accessed 01/09/2019].

2018. Etherscan. https://etherscan.io/. [Online; accessed 01/09/2019].

2018. Mythril Classic. https://github.com/ConsenSys/mythril-classic. [Online;

accessed 12/01/2018].

[13] 2018. New batchOverflow Bug in Multiple ERC20 Smart Contracts. https://
tinyurl.com/yd78gpyt. [Online; accessed 01/09/2019].

[14] 2018. Parity Multisig Wallet Hacked, or How Come? https://cointelegraph.

com/news/parity-multisig-wallet-hacked-or-how-come. [Online; accessed

01/09/2019].

2018. Real Estate Business Integrates Smart Contracts. https://tinyurl.com/

yawrkfpx/. [Online; accessed 01/09/2019].

[16] 2018. Smart contracts for shipping offer shortcut. https://tinyurl.com/yavel7xe/.

[Online; accessed 01/09/2019].

2018. Time manipulation. https://dasp.co/. [Online; accessed 01/09/2019].

2018. Unchecked Return Values For Low Level Calls. https://dasp.co. [Online;

accessed 01/09/2019].

[Online; accessed

[11
[12

(15

[17
[18

ASE ’20, September 21-25, 2020, Virtual Event, Australia Yu Feng, Emina Torlak, and Rastislav Bodik

[19] 2019. Bitcoin. https://bitcoin.org/. [Online; accessed 01/09/2019].
[20] 2019. Ethereum. https://www.ethereum.org/. [Online; accessed 01/09/2019].

smart contracts. In Proc. International Conference on Object-Oriented Programming,
Systems, Languages, and Applications. 116:1-116:27.

[21] 2019. Ethereum Yellow Paper. https://github.com/ethereum/yellowpaper. [On- [35] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. 2018. A Semantic
line; accessed 01/09/2019]. Framework for the Security Analysis of Ethereum Smart Contracts. In Principles
2019. Serpent. https://github.com/ethereum/serpent. ~ [Online; accessed of Security and Trust - 7th International Conference, POST 2018, Held as Part of
01/09/2019]. the European Joint Conferences on Theory and Practice of Software, ETAPS 2018,
2019. Solidity. https://solidity.readthedocs.io/en/v0.5.1/. [Online; accessed Thessaloniki, Greece, April 14-20, 2018, Proceedings. 243-269.

01/09/2019]. [36] Shelly Grossman, Ittai Abraham, Guy Golan-Gueta, Yan Michalevsky, Noam

2019. Vyper. https://github.com/ethereum/vyper. [Online; accessed 01/09/2019].
Rajeev Alur, Rastislav Bodik, Eric Dallal, Dana Fisman, Pranav Garg, Garvit
Juniwal, Hadas Kress-Gazit, P. Madhusudan, Milo M. K. Martin, Mukund
Raghothaman, Shambwaditya Saha, Sanjit A. Seshia, Rishabh Singh, Armando
Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2015. Syntax-Guided Synthe-
sis. In Dependable Software Systems Engineering. 1-25.

Saswat Anand, Patrice Godefroid, and Nikolai Tillmann. 2008. Demand-Driven
Compositional Symbolic Execution. In Tools and Algorithms for the Construction
and Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part
of the Joint European Conferences on Theory and Practice of Software, ETAPS
2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings. 367-381. https:
//doi.org/10.1007/978-3-540-78800-3_28

Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2017. A Survey of Attacks
on Ethereum Smart Contracts (SoK). In Principles of Security and Trust - 6th
International Conference, POST 2017, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017,
Proceedings. 164-186.

Thanassis Avgerinos, Sang Kil Cha, Brent Lim Tze Hao, and David Brumley. 2011.
AEG: Automatic Exploit Generation. In Proc. The Network and Distributed System
Security Symposium.

Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu, and
Irene Finocchi. 2018. A Survey of Symbolic Execution Techniques. ACM Comput.
Surv. 51, 3 (2018), 50:1-50:39. https://doi.org/10.1145/3182657

Peter Boonstoppel, Cristian Cadar, and Dawson R. Engler. 2008. RWset: Attacking
Path Explosion in Constraint-Based Test Generation. In Tools and Algorithms for
the Construction and Analysis of Systems, 14th International Conference, TACAS
2008, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings.
351-366. https://doi.org/10.1007/978-3-540-78800-3_27

Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley. 2012.
Unleashing Mayhem on Binary Code. In Proc. IEEE Symposium on Security and
Privacy. 380-394.

Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Proc. Symposium on Principles of Programming Languages. 238
252.

Patrice Godefroid. 2007. Compositional dynamic test generation. In Proceedings
of the 34th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2007, Nice, France, January 17-19, 2007. 47-54. https://doi.org/
10.1145/1190216.1190226

Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz, and
Yannis Smaragdakis. 2018. MadMax: surviving out-of-gas conditions in Ethereum

[37

[38

[39

[40

[41]

[42

[43

[44

[45

[46

[47]

[48

Rinetzky, Mooly Sagiv, and Yoni Zohar. 2018. Online detection of effectively
callback free objects with applications to smart contracts. In Proc. Symposium on
Principles of Programming Languages. 48:1-48:28.

Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. 2017. Program Synthesis.
Foundations and Trends in Programming Languages 4, 1-2, 1-119.

Yoichi Hirai. 2017. Defining the Ethereum Virtual Machine for Interactive Theo-
rem Provers. In Financial Cryptography and Data Security - FC 2017 International
Workshops, WAHC, BITCOIN, VOTING, WTSC, and TA, Sliema, Malta, April 7,
2017, Revised Selected Papers. 520-535.

Bo Jiang, Ye Liu, and W. K. Chan. 2018. ContractFuzzer: fuzzing smart contracts for
vulnerability detection. In Proc. International Conference on Automated Software
Engineering. 259-269.

Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. 2018. ZEUS:
Analyzing Safety of Smart Contracts. In Proc. The Network and Distributed System
Security Symposium.

James C King. 1976. Symbolic execution and program testing. Commun. ACM
19, 7 (1976), 385-394.

Johannes Krupp and Christian Rossow. 2018. teEther: Gnawing at Ethereum
to Automatically Exploit Smart Contracts. In Proc. USENIX Security Symposium.
1317-1333.

Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making Smart Contracts Smarter. In Proc. Conference on Computer and
Communications Security. 254-269.

Aina Niemetz, Mathias Preiner, and Armin Biere. 2014 (published 2015). Boolector
2.0 system description. Journal on Satisfiability, Boolean Modeling and Computa-
tion 9 (2014 (published 2015)), 53-58.

Daejun Park, Yi Zhang, Manasvi Saxena, Philip Daian, and Grigore Rosu. 2018.
A formal verification tool for Ethereum VM bytecode. In Proceedings of the 2018
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena
Vista, FL, USA, November 04-09, 2018. 912-915.

Zvonimir Rakamaric and Michael Emmi. 2014. SMACK: Decoupling Source
Language Details from Verifier Implementations. In Proc. International Conference
on Computer Aided Verification. 106-113.

Emina Torlak and Rastislav Bodik. 2014. A lightweight symbolic virtual machine
for solver-aided host languages. In Proc. Conference on Programming Language
Design and Implementation. 530-541.

Petar Tsankov, Andrei Marian Dan, Dana Drachsler-Cohen, Arthur Gervais,
Florian Biinzli, and Martin T. Vechev. 2018. Securify: Practical Security Analysis
of Smart Contracts. In Proc. Conference on Computer and Communications Security.
67-82.

	Abstract
	1 Introduction
	2 Background
	3 Overview
	3.1 Smart Contract Vulnerabilities
	3.2 Solar

	4 Problem Formulation
	4.1 Smart Contract Language
	4.2 Smart Contract Vulnerabilities
	4.3 Attack Synthesis

	5 Summary-based Symbolic Evaluation
	6 Implementation
	6.1 Symbolic Computation Using Rosette
	6.2 Parallel Synthesis using Hoisting
	6.3 Practical EVM fragment

	7 Evaluation
	7.1 Comparison with Existing Tools
	7.2 Impact of Summary-based Symbolic Evaluation

	8 Related Work
	9 Conclusion
	References

