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ABSTRACT
In the absence of pharmaceutical interventions to curb the spread
of COVID-19, countries relied on a number of nonpharmaceutical
interventions to fight the first wave of the pandemic. The most
prevalent one has been stay-at-home orders, whose the goal is to
limit the physical contact between people, which consequently will
reduce the number of secondary infections generated. In this work,
we use a detailed set of mobility data to evaluate the impact that
these interventions had on alleviating the spread of the virus in the
US as measured through the COVID-19-related deaths. To estab-
lish this impact, we use the notion of Granger causality between
two time-series. We show that there is a unidirectional Granger
causality, from the median percentage of time spent daily at home
to the daily number of COVID-19-related deaths with a lag of 2
weeks. We further analyze the mobility patterns at the census block
level to identify which parts of the population might encounter
difficulties in adhering and complying with social distancing mea-
sures. This information is important, since it can consequently drive
interventions that aim at helping these parts of the population.
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1 INTRODUCTION
Since the first reported case of COVID-19 in early December 2019 in
Wuhan, China, the world has experienced dramatic changes in an
effort for societies to deal with the pandemic. Given the absence of
pharmaceutical interventions (i.e., a medical treatment or a vaccine),
governments and health officials have relied on non-pharmaceutical
interventions, including shelter-at-home orders, contact tracing and
volume testing. The reasoning behind shelter-at-home interven-
tions is to limit the physical contacts between people, which fur-
thermore limits the transmission of the virus. Given the absence of
a vaccine, this does not mean that the virus will be eradicated but
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rather, limiting people’s mobility will allow the health systems to
operate under capacity and be as effective as possible, consequently
limiting the number of fatalities.

Of course, these measures have not been without controversy.
Hence, it is important to examine whether they are effective in
achieving their goal. Using a granular mobility dataset for the US
obtained from SafeGraphs (details provided in the following sec-
tions) and COVID-19-related fatalities we show that average frac-
tion of people staying home weekly Granger-causes the number of
COVID-19-related fatalities with a 3-weeks lag. We also examined
for and did not find any evidence of bidirectional Granger causality,
i.e., feedback effects of people altering their mobility as a response
to the change of the number of fatalities (e.g., as a reaction to the
news). We also provide a short-term prediction model for the num-
ber of COVID-19 related fatalities in US one-week out, using only
information about population-level mobility behavior and fatalities
over the past three weeks.

Given the effectiveness of these measures it is critical to un-
derstand who in the population complies and to what extent. Dif-
ferences in compliance levels are not necessarily by choice. For
example, many people are essential workers and hence, need to
spend time outside of their home. Others might not have to physi-
cally be at work, but they have to take care of family members living
in other households etc. Identifying these parts of the population
can provide critical information on possible policies/interventions
that could further increase compliance, without compromising the
needs of people. Therefore, in this work we build a framework
using a beta regression model to predict the percentage of time
spent daily at home within a census block based on demographic
characteristics. Using these models we can then examine various
hypotheses on whether specific demographics of interest are asso-
ciated with a change in mobility above and beyond of what was
expected from the mobility patterns prior to stay-at-home orders.
We focus on two particular demographics, age and race, and show
that show that minorities and older people, while significantly in-
creasing their stay at home, this increase is smaller compared to
that white and younger people. We further provide some possible
mechanisms that lead to this observation and show that income
disparities can explain a sizable part of this difference. The main
contributions of our work can be summarized as follows:

• Provide a Granger-causality analysis on the impact of stay-
at-home orders on COVID-19-related fatalities

• Design a framework for quantifying adherence to social
distancing according to various demographics

• Design a dynamic dashboard to visualize both the raw mo-
bility data as well as, the results from our analysis.
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We believe that our work can provide critical information to local
officials and policy makers. The rest of the paper is organized as
follows. Section 2 provides a description of the data we used for our
analysis, as well as, a brief review on related to our study literature.
Section 3 provides our Granger-causality analysis, while Section 4
introduces our framework for identifying the relationship between
social distancing compliance and demographics. We conclude our
work and discuss its limitations and directions for future work in
Section 5.

2 DATA AND RELATEDWORK
In this section we describe the dataset we use for our analysis, as
well as, relevant to our study literature. The code for the analysis
presented in the paper can be found on our github repository:
https://github.com/kpelechrinis/epiDAMIK20-COVID.

SafeGraph data: SafeGraph has released a detailed mobility
dataset based on the locations of about 18 million mobile phones
across the US. This information is obtained through various mobile
applications that partner with SafeGraph. This provides diverse
population coverage, while the data are provided in an aggregated
manner, with steps taken towards satisfying differential privacy
requirements. While a detailed description can be found on Safe-
Graph’s COVID-19 data consortium page [25], the main informa-
tion that we will use is the daily mobility patterns for census block
groups (CBG). In particular, for each day and each census block
group since 01/01/2020 we obtain - among other - the following
daily information:

• completely_home_device_count: This is the number of de-
vices within the CBG of interest that did not leave their home.

• distance_traveled_from_home: This is themedian distance
traveled during the day from all the devices whose home is
within the CBG of interest

• median_percentage_time_home: This is the median per-
centage of time spent at home during the day from devices
whose home is within the CBG of interest

• destination_cbgs: This is the CBGs that were visited dur-
ing the day from devices whose home is within the CBG of
interest. Each destination block is also associated with the
number of devices in the SafeGraph dataset that performed
this transition.

COVID-19 data: In order to evaluate any (Granger causal) im-
pact between mobility and COVID-19-related fatalities we need to
utilize data related to the number of confirmed cases and deaths.
While an accurate number for the daily number of infections would
be themost appropriate variable for this analysis, it is widely known
that the reported numbers are a severe undercount of the actual
number of infections. On the other hand the number of fatalities
is also inaccurate but it is considered a more robust signal for the
prevalence of the disease. Albeit it is a lagged signal, with an aver-
age of 15-20 days delay [15]. We obtain our data from the NY Times
github repository [28].

COVID-19 and mobility: Excluding clinical interventions (po-
tential treatments, vaccine, etc.), limitingmobility and inter-personal
contacts has been the most central intervention in an effort to
contain the pandemic. As such, several studies have analysed the
changes in human mobility across various regions using granular

mobility data (e.g., [4, 9, 13, 23] with the list being non-exhaustive).
Aleta et al. [2] further utilize these mobility information to drive
agent-based simulators in order to understand the impact of contact
tracing and testing on a possible second wave of the disease. Zhang
et al. [31] have further analyzed contact surveys from the early
epidemic stage in China and built transmission models to quantify
the impact of social distancing and school closures. This line of
research is of course still developing as restrictions are lifted, new
measures potentially coming in the possibility of a second wave
etc.

Public health non-pharmaceutical evaluation: Of course,
similar non-pharmaceutical interventions have been applied in the
past as well and there is a volume of research that evaluates their im-
pact. For example, Ahmed et al. [1] provide a review study on social
distancing measures in workplace. Their review includes both epi-
demiological as well as, modeling studies and they concluded that
overall workplace social distancing reduced the influenza attack rate
approximately 23%. Similarly, Rashid et al. [24] reviewed studies
that evaluated various measures (school closings, work-from-home
etc.) for dealing with the 2009 influenza pandemic. They identified
that workplace interventions provide moderate reduction in trans-
missions (20-30%). Other non-pharmaceutical interventions include
the banning of mass events. While intuitively this seems to be a
particularly effective strategy, prior literature has shown that this
is true only in combination with other interventions [12, 16]. One
of the reasons for this is the contact time at such events is relatively
small compared to the time spent in schools, workplaces, or other
community locations [7]. The literature aforementioned is not ex-
haustive. However, to the best of our knowledge, there is no study
that uses the notion of Granger causality for non-pharmaceutical
interventions. Contrary to the majority of existing studies that rely
on large-scale simulation models, or, analyzing a small case (e.g.,
a restaurant, a specific workplace etc.), we take a macroscopic ap-
proach, looking at the aggregate adherence to these interventions
and the macroscopic results (e.g., total fatalities).

3 EVALUATING SOCIAL DISTANCING
In this section we will begin by introducing the notion of Granger
causality between two time series and then we will see how it
applies to our case.

3.1 Granger Causality
Granger causality is a statistical test that aims at identifyingwhether
a time-series 𝑥 (𝑡) provides useful information in predicting time-
series𝑦 (𝑡) [10]. It is eminent to understand that Granger causality is
what Granger himself described, “temporally related” or “predictive
causality”, rather than the traditional notion of causality. Simply put,
𝑥 (𝑡) is said to Granger-cause 𝑦 (𝑡) if it precedes in time and is able
to improve the predictions of 𝑦 (𝑡) beyond auto-regressive models.
While this might not be a useful notion for what is needed in areas
like clinical treatments, it is particularly useful and has been exten-
sively used in econometrics, public policy etc. (e.g., [3, 5, 6, 11, 18]
with the list being non-exhaustive).

Formally, the examination of whether 𝑥 (𝑡) Granger-causes (G-
causes for short) 𝑦 (𝑡) one needs to build the following two models:
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𝑀0 : 𝑦 (𝑡) = 𝑎00 +
∑𝑚
𝑖=1 𝑎0𝑖𝑦 (𝑡 − 𝑖) + 𝜖0 (1)

𝑀1 : 𝑦 (𝑡) = 𝑎10 +
∑𝑚
𝑖=1 𝑎1𝑖𝑦 (𝑡 − 𝑖) +∑𝑝

𝑖=1 𝑏𝑖𝑥 (𝑡 − 𝑖) + 𝜖1 (2)

The first model (Eq. 1) is essentially a pure auto-regressive model
on 𝑦 up to lag𝑚 (called the restricted model), while the second one
includes lagged terms from the time-series 𝑥 (𝑡) to be explored as a
potential Granger cause (called the unrestricted model). Given this
setting the following null hypothesis is examined: via conducting
an F-test:

𝐻0 : 𝑏1 = 𝑏2 = · · · = 𝑏𝑝 = 0 (3)

The null here is the hypothesis that no explanatory power is
jointly added from the lags of 𝑥 . So eventually, we retain all the
lagged values of 𝑥 that are individually statistically significant (t-
statistic), but in order to reject𝐻0 that 𝑥 does not G-cause𝑦, all these
lags need to add explanatory power (as compared to the restricted
model). We would like to note here that the time series need to be
stationary before performing the Granger test. Hence, if the original
data are not stationary they should be transformed to eliminate the
possibility of autocorrelation (e.g., through differentiation).

3.2 Shelter-at-home and COVID-19 fatalities
We are interested in examining whether the mobility of people in
the US G-causes the number of fatalities from COVID-19. Here,
we would like to emphasize that for the latter, we are using the
number of COVID-19 deaths 𝜙 reported from health authorities
as discussed in Section 2. We do not make use of any information
related to excess fatalities, or any attempt to estimate the under-
reporting factor in fatalities. For the G-cause variable, we first
obtain the fraction of devices in each census block group 𝑏 that
stayed exclusively at home daily1 ℎ𝑏 . We then obtain a weighted
average value over all the CBGs, ℎ𝑈𝑆 (𝑡), for each day 𝑡 , where the
weights are the sample size in each block. We further aggregate
the data weekly, since there are known inconsistencies and delays
in reporting cases and deaths. Weekly aggregation should remove
some of the associated noise with COVID-19 daily reports.

Figure 1 shows the two weekly time-series of interest for the
period between 01/21/2020 (when the COVID-19 cases started being
recorded) and 07/03/2020. We apply the Kwiatkowski–Phillips–
Schmidt–Shin test [14] and we identify that these time-series are
not stationary. However, differentiating both time-series will lead
to stationarity. Running the Granger causality test for lags up to 6
weeks (given the length of our time-series longer lags cannot be
tested), we obtain the results in Table 1. As we can see, there is
evidence that mobility G-causes COVID-19-related fatalities at a lag
of about 2 weeks. We also examined for bidirectional G-causality,
i.e., people listening to the news and number of fatalities, and
reacting with changes in their mobility. However, we did not find
any supporting evidence.

Given the results from our Granger causality analysis we can
build a time-series prediction model for estimating the weekly
number of fatalities in the near-future (e.g., one week ahead). We
1We also examined the median percentage of time spent at home, with similar results.
In fact, the median percentage of time spent at home and the fraction of people staying
completely at home daily are highly correlated, with a correlation coefficient 𝜌 = 0.93.

Lag

1 2 3 4 5 6

𝑏1 263.4∗ 156.0 236.9∗ 230.9∗ 344.4∗∗ 289.5∗
𝑏2 - 401.4∗∗ 432.7∗∗ 539.6∗∗ 447.8∗∗ 574.9∗
𝑏3 - - 348.1∗ 516.2∗ 675.9∗∗ 760.1∗
𝑏4 - - - 186.7 −18.1 65.1
𝑏5 - - - - 145.6 −64.3
𝑏6 - - - - - −10.3

Adj 𝑅2 0.46 0.69 0.77 0.79 0.91 0.9
F-test 5.08 10.3 11.1 18.9 8.5 12.6
(p-val) (0.03) (<0.01) (<0.01) (<0.01) (<0.01) (<0.01)
**𝑝 < 0.01, *𝑝 < 0.05, .𝑝 < 0.1

Table 1: Individual coefficients’ significance and F-test result
for various lags.

experiment with two different models, namely, a Vector AutoRe-
gression (VAR) and a Long-Short Term Memory neural network.
The VARmodel is essentially the unrestricted model in the Granger-
causality test (Equation 2), where 𝑚 = 𝑝 = 3 Table 2 shows the
corresponding model. As we can see, increased fraction of people
staying home will result in a reduction in the predicted number of
fatalities 3 weeks ahead. We also examined a stacked LSTM archi-
tecture, with 2 layers with 50 hidden units each, followed by a dense
layer with ReLU activation. We use again a sequence of size of 3
and train the model over multiple epochs using early stopping. The
results from our two models are presented in Figure 2. In particular,
we provide predictions for the last 5 weeks (as of this writing) and
we train each model using all the data up to the week of interest.
Consequently we make our out-of-sample predictions with each
model which are overlaid with the actual fatalities. Overall, both
models perform relatively well, especially given the short span of
the time-series, as well as, the simplicity of the models in terms of
input features. We would like to note here that these models are
not appropriate for longer term predictions (e.g., fatality count in 4
months), which is the focus of most of the fatality-related prediction
models developed (https://www.cdc.gov/coronavirus/2019-ncov/
covid-data/forecasting-us.html).

4 QUANTIFYING SOCIAL DISTANCING
BEHAVIOR PER DEMOGRAPHICS

In the previous section, we saw that there is strong evidence that
limiting mobility Granger-causes fewer fatalities from COVID-19.
Therefore, it is important to understand if and which parts of the
population are not able to adhere to the guidelines. This information
is critical to be communicated to health officials and policy makers,
since it can drive interventions that will help everyone follow the
recommendations to the extent possible. In this section, we present a
framework based on a beta regression model from the daily percent-
age of time spent home and the difference-in-differences method
that can identify the relationship between demographics of interest
and the way they relate to social distancing behavior.
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Figure 1: Weekly time series for COVID-19-related fatalities (left) and percentage of people staying at home (right).

Figure 2: Both models perform reasonably out-of-sample, relative to the amount of data available for learning and the sim-
plicity of the input features.

Variable Coefficient p-val

ℎ𝑈𝑆 (𝑡 − 1) 137.9 0.21
ℎ𝑈𝑆 (𝑡 − 2) 252.4 0.15
hUS (t − 3) −384.7 < 0.01
y(t-1) 1.35 < 0.01
y(t-2) −0.59 0.16
y(t-3) 0.19 0.40

𝑅2 0.86
𝑆𝐸𝑟𝑒𝑠 1250

***𝑝 < 0.01, **𝑝 < 0.05, *𝑝 < 0.1
Table 2: VAR model for predicting weekly fatalities one-
week-out.

4.1 Beta regression model
Our goal is to model the percentage of time ℎP that a specific
population P spends home daily. Given that our dependent variable

ℎP is real-valued, bounded in the unit interval a linear regression is
not an appropriate model. Hence, we choose to use a beta regression
model [8], where essentially the data are assumed to follow a beta
distribution. A useful parametrization of the beta distribution for
this type of models is given by:

𝑓 (𝑦 |`, 𝜙) = Γ(𝜙)
Γ(`𝜙) · Γ((1 − `) (𝜙))𝑦

`𝜙−1 (1 − 𝑦) (1−`)𝜙−1 (4)

where ` is the mean of the beta distribution and 𝜙 is a parameter
called precision. 𝜙 controls the variance of the distribution; for a
fixed `, higher precision leads to smaller variance. With this setting
the beta regression model for ℎP is:

𝑔(ℎP ) = x𝑇P · b + 𝜖 (5)

where ℎP is the average daily fraction of time spent home for
P, xP is the vector of the model’s covariates, b is the vector of
the regression’s coefficients and 𝑔(·) is a link function (strictly
increasing and twice differentiable). This model is very similar
to a generalized linear model (e.g., logistic, Poisson or negative



binomial regression) and it is solved through aMaximumLikelihood
Estimation (MLE). The MLE identifies the coefficients b, but also
the precision parameter 𝜙 , which is a constant and not a function
of xP2.

4.2 Demographics Analysis
In this section we will begin by modeling the fraction of time spent
at home daily in each census block as a function of specific de-
mographics of the population. We start with race, where census
data provide information on the percentage of people within each
census block that belong to the following categories: White, Black,
Hispanic, Asian, American Indian or Native Alaskan, and Other
races3. Since we want to estimate the relationship between these
demographics and the changes observed after the social distancing
recommendations, we build two separate models; one that captures
the mobility prior to stay-at-home orders (𝑀𝑝𝑟𝑒 ) and one that cap-
tures mobility after these orders were put in place (𝑀𝑝𝑜𝑠𝑡 ). One of
the problems is that different parts of the country put these mea-
sures in place in different times through the course of the pandemic.
Given that the majority of the orders were put in place sometime
within March 2020, we build𝑀𝑝𝑟𝑒 using data from February 2020,
and𝑀𝑝𝑜𝑠𝑡 using data from April 2020. Table 3 presents the results
of these regressions. Using these results we can start examining the
average percentage of time spent daily at home by the population
of a hypothetic census block group (HCBG) with a specific racial
demographic composition. For example, Figure 3 presents the beta
distribution for racially homogeneous (hypothetical) census block
groups. As we can see, there are differences across these hypothet-
ical census block groups, both for the same time period, as well
as, their shift as the stay-at-home orders were put in place. More
specifically, Table 4 presents the average stay home percentage for
each of the hypothetical blocks.

Variable 𝑀𝑝𝑟𝑒 𝑀𝑝𝑜𝑠𝑡

White% −0.45∗∗∗ −0.48∗∗∗
Black% −0.27∗∗∗ −0.56∗∗∗

Hispanic% 0.29∗∗∗ 0.39∗∗∗
Asian% −0.40∗∗∗ 1.87∗∗∗

Natives+Others% −0.51∗∗∗ −0.93∗∗∗
constant 1.39∗∗∗ 2.5∗∗∗

𝜙 14.5 5.8
N 201,917 201,917

***𝑝 < 0.01, **𝑝 < 0.05, *𝑝 < 0.1
Table 3: Beta regressionmodel for the average daily percent-
age of time of stay home at a census block group before
(02/20) and after (04/20) stay-at-home orders.

Table 4, while providing us with a quick view of how specific
parts of the population might comply with the social distancing
recommendations (in terms of staying home), it does not provide the
2There are extensions of this model [26] that models the precision as a function of a
set of regressions z, i.e., 𝑔

′ (𝜙) = z𝑇 · c + 𝜖 .
3For the purposes of our analysis we merge the American Indian and Native Alaskan
category with the Other races category.

Hypothetical Block Pre Post

White 71.8% 89.6%
Black 75.6% 88.6%

Hispanic 84.4% 94.9%
Asian 72.9% 98.9%

Natives+Others 70.7% 84.8%
Table 4: Percentage of time spent home daily for hypotheti-
cal racially homogeneous census block groups based on the
beta regression models from Table 3.

whole picture. In particular, we can see that different demographics
are associatedwith different levels of mobility outside of their home
even before the stay-at-home order. So any change observed after
the orders were put in place, they need to be compared with the
original difference. This process is visualized in Figure 5, where
we see two populations P1 and P2, with their pre-lockdown daily
percentage of staying home, as well as, their post-lockdown daily
percentage of staying home. While Δ2 provides us with information
about what is happening in the two populations after the stay-at-
home orders were put in place, it does not adjust for the behavior
of the two populations prior to the intervention, and the difference
𝛿 (P1,P2) = Δ2−Δ1 is more informative. Hence, in order to identify
demographic discrepancies between two populations, P1 and P2, in
complying with stay-at-home orders, we performed the following
hypothesis test:

𝐻0 : 𝛿 (P1,P2) = 0 (6)
𝐻1 : 𝛿 (P1,P2) ≠ 0 (7)

In order to perform this test, we use the full beta distribution
for each population-time combination and repeatedly sample them
to build the distribution of 𝛿 (P1,P2). Then we can perform the
above hypothesis test. Table 5 presents the results for the various
comparisons between the minority HCBG and the white one. As we
can see all minority HCBG - except the Asian one - exhibit a smaller
increase as what was expected based on their pre-intervention pat-
terns. Particularly interesting is the case of the Hispanic HCBG,
which even though exhibits the second highest daily percentage
of staying home after the stay-at-home orders, the observed in-
crease is smaller as compared to the white HCBG. Furthermore,
it is interesting that the Asian HCBG exhibits a 7.5% higher com-
pliance as compared to the white HCBG. While the reasons for
this are not clear - and we cannot identify them through the data
we have - there are a few reasons that are plausible, including the
increase of racist attacks targeting Asians in the US at the wake of
the pandemic [19–22, 29, 30].

While for the Asian population, staying at home more might
also be a way of avoiding racist attacks, the question remains, why
are there discrepancies for the rest of the minorities as compared to
the white HCBG ? One plausible explanation is that a large fraction
of these minorities are essential workers and while overall they
increase their stay at home, they really need to go to their work.
Another possible reason is that minorities live in inner cities and as
such they are close to their families. Furthermore, these minorities



Figure 3: Beta distribution for hypothetical - racially homogeneous - census block group before (left) and after (right) stay-at-
home orders across the US.

P1 P2 𝛿 (P1,P2)

Black White −4.8%∗∗∗

Hispanic White −6.2%∗∗∗

Asian White 7.5%∗∗∗

Natives+Others White −3.6%∗∗∗

***𝑝 < 0.01, **𝑝 < 0.05, *𝑝 < 0.1
Table 5: Minority HCBGs exhibit lower percentage of stay-
at-home, as compared to white HCBGs.

have come to rely and support their extended families [27] and
hence, they might be providing them with help (e.g., childcare sup-
port for essential workers etc.) during this time, leading to higher
mobility outside the home. Other plausible reasons include the rela-
tionship between these groups and technology. In particular, ethnic
minorities have traditionally been slower in adopting new technol-
ogy for a variety of reasons [17] and this could mean in a situation
like the current pandemic, their inability or unwillingness to use
online platforms for essential errands such as grocery shopping.
While we cannot show with our current data whether any of these
plausible reasons are in play, we can examine one additional factor
that is relevant to all of the above possibilities; their median income.
Low income families typically live in inner-city and are of ethnic mi-
norities, they have issues with accessing and adopting technology,
while many of the essential workers are low-paid employees (e.g.,
grocery store workers, delivery, etc.). Tables 6 and 7 present the
same results when we adjust for the median income of an HCBG.
As we can see, the mobility differences between black and white
HCBGs, as well as native and other minorities and white HCBGs,
disappears, while for Hispanic and Asian HCBGs the differences
are reduced.

We also examined another demographic attribute, namely, age.
While census provides a breakdown of the age of a census block
group in several age brackets, we aggregated them into two bins;

Variable 𝑀𝑝𝑟𝑒 𝑀𝑝𝑜𝑠𝑡

White% −0.43∗∗∗ −0.61∗∗∗
Black% −0.29∗∗∗ −0.3∗∗∗

Hispanic% 0.27∗∗∗ 0.7∗∗∗
Asian% −0.29∗∗∗ 0.87∗∗∗

Natives+Others% −0.52∗∗∗ −0.79∗∗∗
Median Income −9.9 · 10−7 ∗∗∗ 9.9 · 10−6 ∗∗∗

constant 1.43∗∗∗ 2.13∗∗∗

𝜙 14.6 6.34
N 201,917 201,917

***𝑝 < 0.01, **𝑝 < 0.05, *𝑝 < 0.1
Table 6: Beta regressionmodel for the average daily percent-
age of time of stay home at a census block group before
(02/20) and after (04/20) stay-at-home orders adjusting for
median income (expressed in thousands of $s) in the CBGs.

P1 P2 𝛿 (P1,P2)

Black White 6 · 10−4%
Hispanic White −4.3%∗∗∗

Asian White 5.7%∗∗∗

Natives+Others White −5 · 10−3%
***𝑝 < 0.01, **𝑝 < 0.05, *𝑝 < 0.1

Table 7:When adjusting for income a large percentage of the
mobility differences between HCBGs during stay-at-home
orders is explained.

younger or older than 50 year old4. Again, we build a beta regres-
sion model with the same dependent variable as before but the

4Obviously one can repeat the analysis with more bins, but we wanted to keep things
simpler mainly for presentation purposes.



independent variable is the percentage of the population in the
CBG that is older than 50 years old. The results are presented in
Table 8, where as we can see the older population is associated with
a reduced stay-at-home daily time as compared to younger popula-
tion (less than 50). Figure 4 further visualizes the beta distributions
for hypothetical CBGs with only population older or younger than
50 years old. Furthermore, by performing a similar hypothesis test
as in Eq. (6)-(7), we find that the HCBG with population older than
50 years old stays at home 2.6% (p-val < 0.01) less time at home
on average as compare to younger population and based on their
pre-intervention patterns. In contrast to the race case, when adjust-
ing for the median income, the difference remains (-2.5%, p-val <
0.01). A potential reason for this difference between population in
the opposite side of the 50 years old mark, can be their technology
fluency. Younger people that are avid users of (mobile) technology
can take advantage of various services that can help people com-
plete their errands (e.g., grocery shopping), while staying at home.
This might not be the case for older people (at least to the same
extent). Again, while this is a plausible mechanism that can drive
the observed difference, the data in our disposal does not allow us
to further examine this.

Variable 𝑀𝑝𝑟𝑒 𝑀𝑝𝑜𝑠𝑡

Older50% 0.09∗∗∗ −0.28∗∗∗
constant 0.98∗∗∗ 2.39∗∗∗

𝜙 14.2 5.5
N 201,917 201,917

***𝑝 < 0.01, **𝑝 < 0.05, *𝑝 < 0.1
Table 8: Beta regressionmodel for the average daily percent-
age of time of stay home at a census block group before
(02/20) and after (04/20) stay-at-home orders based on the
percentage of the population that are older than 50 years
old.

4.3 Dashboard
We have also created a dashboard to visualize this mobility informa-
tion in an interactive manner5. Figure 6 presents a screenshot from
the dashboard that depicts the census block tracts of Allegheny
County on the left half. The user can choose a tract (the selected
tract will be colored red as in the figure) and information about
the outgoing mobility (i.e., movements of people whose home CBG
is the selected one) and incoming mobility (i.e., movements from
people whose home CBG is not the selected one but they visited
it) associated with it is presented. The choice between outgoing
and incoming mobility can be made through the control buttons
above the map. For example, in Figure 6 outgoing mobility infor-
mation for people whose home CBG is the selected origin CBG
(420035231001) is presented on the map. The color for each census
block group tract 𝑖 represents the fraction of the total foot traffic
from the residents of the origin CBG, over the period selected from
the user6, that visited CBG 𝑖 . On the right half of the figure, there
5http://mobility.pittsmartliving.com/.
6The user can select the time period through the slider under the map.

Figure 4: Beta distributions for the daily fraction of time
spent at home for population older and younger than 50.

02/2020 03/2020 04/2020

Before stay-at-home After stay-at-home

Date

ℎP

.

P1

P2

P1

P2

Δ2

Δ1

Stay-at-home
orders

Figure 5: When comparing the mobility post-lockdown for
different populations, we need to consider the pre-lockdown
mobility as well.

are two time-series depicted that provide temporal information for
the CBG that the user is currently hovering over (say CBGℎ). In the
specific situation depicted here, this is CBG 420035231001. The top
time series provides the daily number of visits in CBGℎ from the
origin CBG, while the bottom time series represents the fraction of
time residents of CBGℎ spent at home. It is interesting here to note
that if we hover over the origin CGB, i.e., CBGℎ is the selected CBG,
then the top time-series represents self-loops. That is, traffic from
residents of the CBG that was destined to other venues/points of
interest within the CBG. Finally, we also present a table with some
basic demographic information about the origin CBG related to
our analysis, such as racial and age composition of the population,
median income and total population.

We would also like to note here that this dashboard is still work-
in-progress in the sense that new features are being added prior

http://mobility.pittsmartliving.com/


Figure 6: Our dashboard for Allegheny County showing the outgoing mobility from the selected CBG (red) alongside with de-
mographic information. The two time-series plots further provide information related to the interaction between the selected
CBG and another CBG that the user hovers over.

to going publicly live. For example, our immediate future plan is
to visualize information about specific businesses and their geo-
graphical reach (i.e., where do customers of different establishments
come from?). This information can be very helpful for local health
authorities when identifying a plan for interventions and the corre-
sponding protocols.

5 CONCLUSIONS AND DISCUSSION
In this study we perform a macroscopic analysis of the effectiveness
of social distancing measures in the US during the COVID-19 pan-
demic using the notion of Granger causality. Our analysis indicate
that the average daily fraction of population staying completely
at home Granger-causes the number of COVID-19 fatalities in a
3-week period. We further examine the presence of bidirectional
Granger causality and we do not find any supporting evidence.
Using this observation, we also build two simple prediction models
for weekly COVID-19-related fatalities, using auto-regressive and
mobility features. We further provide a framework to identify the
relationship between demographics and social distancing behavior.
While this analysis does not provide causal relationships, it can
certainly provide important information for policy makers while
thinking of ways to increase compliance. Finally, we provide a visu-
alization dashboard with the raw data as well as, the results from
our analysis. This dashboard is constantly being updated with new
results and data.

We would like to emphasize here that even though we have
included a prediction model in our analysis, this is only to showcase
in practise the conclusions from the Granger causality analysis7.

7Furthermore, there are several well-performing prediction models in the public sphere
- tracked by CDC as well - and our goal is certainly not to add yet another model.

Furthermore, while the model performs well out-of-sample, several
improvements can be achieved by including even more informative
features. For instance, just an aggregate number of how many
hours a person spends out of their home does not capture factors
important for the prediction of infections. Was this movement to a
high-risk location (e.g., a grocery store) or was it for a stroll around
the neighborhood? Disentangling this is certainly not trivial and
we are working in methods for identifying the number of potential
contacts a person from a specific CBG is expected to have based on
their mobility and the POI foot traffic data. Furthermore, it will be
particularly useful to extend our analysis to a more (spatially) fine
granularity, focusing on a microscopic analysis (e.g., at the county,
or city, level). This will allow us to identify the exact time points of
interventions and possibly attempt to extract causal relationships
using quasi-experimental methods, such as instrumental variables
and difference-in-differences.
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[30] USA Today. 2020. Ẃe just want to be safe:́ Hate crimes,
harassment of Asian Americans rise amid coronavirus pan-
demic. https://www.usatoday.com/story/news/politics/2020/05/20/
coronavirus-hate-crimes-against-asian-americans-continue-rise/5212123002/

[31] Juanjuan Zhang, Maria Litvinova, Yuxia Liang, Yan Wang, Wei Wang, Shanlu
Zhao, Qianhui Wu, Stefano Merler, Cécile Viboud, Alessandro Vespignani, et al.
2020. Changes in contact patterns shape the dynamics of the COVID-19 outbreak
in China. Science (2020).

https://www.nbcnews.com/news/asian-america/smashed-windows-racist-graffiti-vandals-target-asian-americans-amid-coronavirus-n1180556
https://www.nbcnews.com/news/asian-america/smashed-windows-racist-graffiti-vandals-target-asian-americans-amid-coronavirus-n1180556
https://www.npr.org/sections/coronavirus-live-updates/2020/03/27/822187627/new-site-collects-reports-of-anti-asian-american-sentiment-amid-coronavirus-pand
https://www.npr.org/sections/coronavirus-live-updates/2020/03/27/822187627/new-site-collects-reports-of-anti-asian-american-sentiment-amid-coronavirus-pand
https://www.npr.org/sections/coronavirus-live-updates/2020/03/27/822187627/new-site-collects-reports-of-anti-asian-american-sentiment-amid-coronavirus-pand
https://www.pbs.org/newshour/nation/asian-americans-describe-gut-punch-of-racist-attacks-during-coronavirus-pandemic
https://www.pbs.org/newshour/nation/asian-americans-describe-gut-punch-of-racist-attacks-during-coronavirus-pandemic
https://www.washingtonpost.com/technology/2020/04/08/coronavirus-spreads-so-does-online-racism-targeting-asians-new-research-shows/
https://www.washingtonpost.com/technology/2020/04/08/coronavirus-spreads-so-does-online-racism-targeting-asians-new-research-shows/
https://www.safegraph.com/covid-19-data-consortium
https://www.safegraph.com/covid-19-data-consortium
https://github.com/nytimes/covid-19-data
https://github.com/nytimes/covid-19-data
https://www.nytimes.com/2020/03/29/us/politics/coronavirus-asian-americans.html
https://www.nytimes.com/2020/03/29/us/politics/coronavirus-asian-americans.html
https://www.usatoday.com/story/news/politics/2020/05/20/coronavirus-hate-crimes-against-asian-americans-continue-rise/5212123002/
https://www.usatoday.com/story/news/politics/2020/05/20/coronavirus-hate-crimes-against-asian-americans-continue-rise/5212123002/

	Abstract
	1 Introduction
	2 Data and Related Work
	3 Evaluating Social Distancing
	3.1 Granger Causality
	3.2 Shelter-at-home and COVID-19 fatalities

	4 Quantifying social distancing behavior per demographics
	4.1 Beta regression model
	4.2 Demographics Analysis
	4.3 Dashboard

	5 Conclusions and Discussion
	Acknowledgments
	References

