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Figure 1: These figures show a sequence of steps followed to add a rotation  affordance to the door of a washer machine. (a) An 
object in the scenario (b) Cylinder  shape selection wrapping  the door. (c) A user sets the amount of rotation the door will be 
constrained to. (d) An animation generated from the affordance can be visualized. 

 
ABSTRACT 

In this paper we present AffordIt!, a tool for adding affordances 
to the component parts of a virtual object. Following 3D scene 
reconstruction  and segmentation procedures, users find themselves 
with complete virtual objects, but no intrinsic  behaviors have been 
assigned, forcing  them to use unfamiliar  Desktop-based 3D editing 
tools. AffordIt!  offers an intuitive solution that allows a user to 
select a region of interest for the mesh cutter tool, assign an intrinsic 
behavior and view an animation preview of their work. To evaluate 
the usability and workload of AffordIt! we ran an exploratory study 
to gather feedback. In the study we utilize two mesh cutter shapes 
that select a region  of interest and two movement behaviors that 
a user then assigns to a common  household  object. The results 
show high usability with low workload ratings, demonstrating the 
feasibility of AffordIt!  as a valuable  3D authoring tool. Based on 
these initial results we also present a road-map of future work that 
will improve the tool in future iterations. 

 

Index Terms:   Human-centered computing—Human  computer 
interaction (HCI)—Interaction paradigms—Virtual reality; Human- 
centered computing—Interaction  design—Interaction design pro- 
cess and methods—Scenario-based design 

 
1   INTRODUCTION 

As the prevalence of virtual reality increases for simulations and 
video games, there is an increasing desire for the development of 
virtual content that is based on real scenes and environments.   A 
problem  arises when a user whose technical  skills are based in 
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realistic  experiences necessary to a VR scene, but not asset creation 
(a situation described in Hughes et al. [17]) which are needed to 
build a virtual scene. To alleviate this problem, recent research has 
been focusing on frameworks to ease users’ authoring  process as 
seen in [9, 12, 35]. 3D scene reconstruction  [32, 34, 44, 49] provides 
a suitable  solution to the problem. Initially a 3D reconstructed 
environment will be composed of a continuous mesh which can be 
segmented via autonomous tools as shown in George et al. [10] and 
Shamir et al.’s survey [39] or human in the loop solutions  as seen 
in [36, 47]. 

However,  these tools fall short at identifying and applying af- 
fordances, the intrinsic  properties, of the components of the object. 
For example,  a storage cabinet may be segmented from a larger 
mesh, but the movements of the cabinet door remains absent. One 
solution is the use of a 3D modeler, such as Autodesk Maya [33] 
or Blender [3], but if the user is unfamiliar with the software then a 
technical expert in asset creation  is required. This solution carries a 
cost, however, as the user’s own intuition and understanding of an 
object’s affordances could be lost in translation, either in relaying 
requirements to a third party or to software they are not experts of. 
As our solution we introduce AffordIt! an online tool that allows a 
3D scene author to isolate key components of virtual content and 
assign affordances to it using their own intuitive understanding of 
the object. 

In this paper we define  a 3D reconstructed  scene as being a 
recreation of a real world environment that contains one or more 
virtual  representations of an object captured within that environment. 
The component of an object is then defined as a segmented portion 
of the mesh that is not removed, but rather used to assign intrinsic 
behaviors. The term affordance is defined as an action that can be 
performed over an object (or objects) by an agent in an environment 
according to Gibson et al. [11].  This concept  has been further 
expanded in the robotics field [13, 18]. 

AffordIt! provides an intuitive method for a scene author to select 
a region of interest within a continuous mesh and apply affordances 
to it using procedures outlined in [27, 28, 40]. Rather than relying 
on a sketch-based interface, we looked to the work of Hayatpur et 
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al. [16], in which users could invoke a plane, a ray or a point to con- 
strain the movements of a virtual object. As such, our procedure has 
a user first selecting a region of interest using shape geometry fol- 
lowed by defining a specific movement constraint. After processing 
the operation on the mesh an animation demonstrates the behavior 
attached to it as shown in Figure 1. We evaluate this technique in 
an exploratory study where perceived usability and workload of the 
system is collected and analyzed.  For the study we only use two 
mesh cutter geometries and two movement constraint definitions, 
though the concepts of AffordIt!  could apply to other selection 
geometries or affordance definitions. 

Our contributions in this paper are: 

 
1. An interaction technique for intuitive creation of 3D shapes 

for mesh selection. 

 
2. An adaptation of the Affordance template concept [11] to 

attach affordances to components of an object. 

 
3. An exploratory study that analyzes how well the techniques 

proposed are perceived. 

 
2   RELATED WORK 

 

There are several domains which AffordIt!  touches upon. In this 
section we review previous research in authoring tools, geometric 
content creation, tools that manipulate 3D geometric constraints and 
smart objects in context of the internet of things. 

 
2.1   VR/AR 3D Scene Authoring 

 

The domain of 3D scene authoring  is often explored in the context of 
scenario based authoring.  In the work by Ens et al. [9] an application 
to author Internet of Things (IoT) devices in VR using activation 
links is presented, also a set of guidelines for game authoring in AR 
is outlined by Ng et al. in [35]. The differences between authoring 
in a desktop versus augmented reality is outlined in the usability 
study by Gonzalez et al. [12], which shows higher usability in the 
desktop tools than the augmented reality ones. We found Gonzalez 
et al.’s study to be related to ours except that they focus on individual 
behaviors that can be a part of a general scenario, but are not specific 
to the component of an object and lack the interactions AffordIt! 
can create. Further research into AR authoring  can be seen in Lee 
et al. [23] that introduce the concept of an “immersive  authoring” 
tool which uses tangible  AR interaction techniques for authoring. 
This research allows for direct specification and testing of the con- 
tent within the execution environment, similar to the results from 
AffordIt!  that are visible at run-time. Narratives are defined in an 
augmented reality scene in Kapadia et al. [21]. Interestingly they 
create a framework  for affordances that would apply well to future 
iterations of AffordIt!. 

We also consider desktop-based authoring, which does not reflect 
AffordIt!, but instead show the status quo for scene development. 
We have found that most of this research focuses on user interac- 
tions needed when defining  a tracking fiducial  [24, 25, 38], such as 
attaching actions and behaviors to virtual content. Past research 
by MacIntyre et al. [25] presented many novel features for author- 
ing an AR scene inside a MacroMedia  environment,  but creation 
does not happen at run-time.  Commercial  companies like ScopeAR 
with WorkLink [1], NGrain with Producer Pro [20], or Microsoft 
with Dynamics 365 Guides [31] offer solutions  that ease the bur- 
den of developing complex applications, but instead allow for rapid 
prototyping of training experiences that can be deployed on AR 
devices. While we find these systems to be useful, they still rely 
upon asset store virtual content or 3D reconstructed content that 
lacks affordances. 

2.2   Geometric Content Creation and Manipulation 

Deering presented HoloSketch  a novel VR sketching tool at the time 
to create geometric content, manipulate it and add simple anima- 
tions [8]. Our work is different from HoloSketch in the interaction 
techniques, mesh segmentation and use context. However, different 
features from HoloSketch  can be adapted to AffordIt!.  For mesh 
manipulation we have found Sketch based applications  to be the pre- 
dominant research in this domain. SKETCH by Zeleznik et al. [50] 
is an early example of creating 3D objects from 2D sketches.  In 
SKETCH  constrained transformations are applied to objects, a con- 
cept that we utilize in AffordIt!. In Shao et al. [40] a sketch based 
application is presented that applies behaviors to concept sketches 
based on a region of interest selection followed an animation added 
to an individual part. This is similar to our approach, except that 
their interface is entirely 2D interactions  upon a 2D object while 
AffordIt! explores 3D interactions  and seamless visualizations with 
a 3D object. Commercial  companies have also begun to provide 
a variety of tools [5, 42] that easily create 3D geometric content. 
AffordIt! is complimentary to these tools by providing an extension 
of capabilities in applying intrinsic behavior to an object. 

Our interaction techniques derive from the research in object 
authoring by Hayatpur et al. [16] which presents three techniques for 
object alignment and manipulation in VR. These techniques invoke 
a plane, ray, or point and use hand gestures to apply movement 
constraints to a virtual object. Their research presents a rich set 
of interaction possibilities, however the idea of changing an object 
geometry to tie behaviors to its component parts is not studied. 
We address this by proposing two techniques to generate intrinsic 
object behaviors at run-time.  First, a user is allowed to define each 
object component behavior from the interaction in a VR environment. 
Second, we apply authoring behaviors similar to [27, 28] except that 
we transition from a 2D sketch based interface to a 3D interaction 
paradigm. 
 
2.3   3D Geometric Constraints 

Authoring  constraints has been explored in the context of objects 
associations  based on geometries  as in [43, 46].  For instance  a 
book if placed on the top of a desk is associated to the table with 
one face facing the desk. In the work by Oh et al. [37], authoring 
objects is constrained to movements in a plane, when a collision  is 
detected. While this is similar to our movement constraint behaviors, 
it is a Desktop based solution  rather than authoring  from within the 
VR environment. The theory of affordances by Gibson is divided 
into the concepts of attached and detached object affordances [11]. 
Attached objects cannot be removed from their parent object unless 
they become a detached one and usually have constraints in their 
movements. While there are successful work in robotics to apply 
affordance theory to provide guidelines for object manipulation 
[13, 19, 26], the application on 3D objects authoring is limited. 
 
2.4   Smart Objects 

Smart Objects are physical  artifacts,  enhanced with sensors and 
connected in a network that allows communication with humans and 
other artifacts as a part of the Internet of Things (IoT) paradigm by 
McEwen and Cassimally [30]. From an HCI perspective humans 
interacting with such objects face a usability  challenge.  Work by 
Matassa et al. [29] emphasize the problem of smart objects being 
unable to immediately communicate to people what they can afford 
to do. Baber et al in [2] propose a conceptual framework  to exploit 
the affordance concept through an understanding of how humans 
engage with objects. The forms of engagement proposed are envi- 
ronmental, perceptual, morphological, motor, cultural and cognitive. 
As much as Internet of Things tends to lean towards a human-in- 
the-loop approach, the systems usability  and user engagement need 
to be accounted for as explained  by Cervantes-Solis and Baber [6]. 
Our approach does not fall in the IoT category but could be used as 



a stepping stone to define affordances for smart objects in the IoT 
domain. 

 
3   IMPLEMENTATION 

Our technique works by first cutting a mesh using simple geometries 
then applying intrinsic behavior to the segmented portion.  Both steps 
require interactions with a user to define the region of interest and 
the behavior. The user’s interactions can be performed independent 
of the mesh manipulation.  For the exploratory study we focused on 
two mesh cutter shapes and two behaviors which are defined below. 

 

3.1   Mesh Cutting 

For the cutting  step a mesh cutter geometry is used to define the 
region of interest. When a cut is performed the original  mesh is di- 
vided into two, one inside the mesh cutter and the other one outside. 
The algorithm  clips the mesh using each face from the mesh cutter 
primitive using a brute force method as shown in Algorithm 1 in the 
Appendix A. The algorithm is derived from the Slicer implementa- 
tion by CGAL [45] and is extended to be used on a more complex 
shape as the slicing  tool rather than a simple plane. Triangles  falling 
inside and outside the mesh cutter volume are segmented in two 
sets, while the ones who share vertices inside and outside the mesh 
volume are triangulated accordingly to fit in the appropriate set. The 
number of triangles on high polygon objects were reduced to opti- 
mize the cutting time to an order of magnitude of seconds. For more 
details refer to the Appendix A for a pseudocode  implementation. 

In the exploratory study we focused on two mesh cutters, a cuboid 
and a cylinder, which will be created by the user using VR con- 
trollers. Mesh cutters can be extended to any shape, a possible 
approach is explained in section 3.1.3. The shape geometry editing 
is not part of the experiment but shed some light on supporting 
different geometries for the mesh cutters. 

 

3.1.1   Cuboid 

Creation - To create a cuboid  in the VR environment we imple- 

translation of the controller. A second widget is placed at PR which 
can be moved to alter the radius and height of the cylinder (see 
Figure 4b). 
 
 

 
(a) Creating cuboid face (b) Adjusting the depth using P3 

 
Figure 2: Cuboid creation 

mented an interaction  technique that uses three points.  The first two 
points (P1 ) and (P2 ) fix the corners of an initial rectangle (R) in 3D 
with a normal (−n→R ) parallel to the floor plane (Figure 2a). Moving 
P2 around will adjust the dimensions of the rectangle as well as its 

(a) Adjusting the orientation and 
height of the cylinder by moving C2 

in 3D space 

(b) Adjusting the radius using projec- 
tion of Pv on C2 plane 

rotation over the y-axis. The final point (P3 ) will define the depth 
of the cuboid with R as its base. Let R be the line that goes through 
P2 and is parallel to −n→R , and Pv as the controller’s location. We will 

Figure 3: Cylinder creation 

have P3 = pro jR 
→−
Pv which is the projection of Pv on R. After creating 

the cuboid, it can be manipulated further to adjust its transformation 
matrix (Figure 2b). 
Manipulation - In this context we define a widget as a small sphere 
which can be grasped by pressing a button on the controller and 
can be moved around in the 3D space while the button remains 
pressed. For rotation and translation we place a widget in the center 
of the cuboid that while pressed passes the rotation and translation 
information from the controller to the shape. Three more Widgets 
are placed at the defining points, P1 , P2 and P3 can be dragged to 
adjust the scale of the cuboid. Moving any of these widgets will fix 
the diagonal vertex of the cuboid in space and will scale the shape 
according to the position of the widget (see Figure 4a). 

 

3.1.2   Cylinder 

Creation - A cylinder is first created by defining  a line with two 
points (C1 , C2 ) which will be the orientation and height of the shape 

 
 
 
 
 
 
 
 
 
 
 
 
(a) P4 allows cuboid translation and 

rotation.  P1 , P2 and P3 scale the 

cuboid. 

 
 
 
 
 
 
 
 
 
 
 
 
(b) C4 allows cylinder translation and 

rotation. C1 , C2 and C3 allow scaling 

of the cylinder. 

(Figure 3a). After fixing C2 , the controller’s location will define PR 

which is the closest point on the C2 plane from the controller (Figure 
3b). The radius of the cylinder is then calculated  as ||C2 − PR ||. 
Similar to the cuboid, the transformation matrix of the cylinder can 
be altered after its creation. 
Manipulation - A widget is placed in the center of the cylinder 
that maps the shape’s rotation and translation  to the rotation and 

Figure 4: Manipulation widgets on primitives 
 
 
3.1.3   Extend to Any Geometric Shape 

Editing Geometry Mode - The mesh cutter allows for any shape ge- 
ometry to be used for segmenting an object component. Participants 
begin with an initial primitive which can be modified by adding 



extra vertices to the mesh. As can be seen in Figure 5, on the left 
side of the image an extra vertex is placed in the cuboid edge by 
pressing and releasing the trigger button from the Vive controller 
on the desired position. In each vertex a widget is generated to ma- 
nipulate the mesh morphology.  These widgets can be dragged and 
the mesh changes according to the new widget position. Figure 5, 
shows how the newly created vertices on the right side of the image 
are translated upwards from the original  position forming  a semi-arc. 
While  use of this feature was not a part of the study, it demonstrates 
how a starting primitive can be manipulated  into a more complex 

point is the end trajectory point (Pe ), which shows the location that Pg 

will end up after rotating around £a . This is defined by calculating 
the complete rotation path of a circle starting at Pg and rotating 
around £a . Given the controller’s location PV , circle center Pc is 

calculated by Pc = pro j£a 

→
Pg . When the user presses the controller 

button, Pe is defined using: 

 
→v£  = pro j£a 

→
Pv − Pv 

shape. 
→g£ = pro j£a 

→
Pg − Pg 

Pe = 
→
Pc + ||→g£ ||.v̂£ 

(1) 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Highlighted in yellow a new vertex is created in editing 
geometry mode. Once positioned on an edge, affected faces are 
triangulated. 

 
 

3.2   Interactions 

An affordance we defined as part of the exploratory study was on 
constraining the movement of a component  defined by the mesh 
cutter. An example of this is the key on a keyboard,  which can 
only move in one direction (downward) and only for a fixed amount. 
Another example is a fridge door which can be rotated, but only 
around the axis of the hinge and within a specific range of angles. 

We created two tools to define the movement constraints for 
a component  based on whether it is a perpendicular  or rotational 
interaction. Additional  interactions can be implemented but a more 
thorough analysis on the affordance concept is required  as in the 
work by Baber et al in [2]. Such a study falls out of the scope of this 
work. 

 
3.2.1   Perpendicular 

A perpendicular interaction is movement of an object in a straight 
line perpendicular to a plane (Figure 6a). This is first defined by cre- 
ating three non-linear points which outline the plane perpendicular 
to the movement. For point placement we cast a ray from the con- 
troller to the surface of the object. Next, a grasp point (Pg ) is placed 
on the object. The system automatically defines £ as the orthogonal 
line from Pg to the plane. Finally the user defines the interaction end 
point (Pe ), where the grasp location will end up after the interaction. 
The projection point can be moved by moving the controller, but its 
location is calculated by projection of the controller’s location on £. 
Once Pe is defined, the interaction is complete and the system will 
animate the object to demonstrate the newly defined behavior for 
the user. 

 
3.2.2   Rotation 

Rotation interactions are used for movements that are based on the 
rotation of an object around an axis (Figure 6b). To create this 
interaction the user will define the axis of rotation by placing two 
points (P1 and P2 ) creating a line that forms the axis of rotation (£a ). 
Next the grasp point (Pg ) will be placed on the object to represent the 
location of effort (for example the door handle on a door). The final 

 
After fixing the location of Pe we will have a complete rotation 

interaction  and the behavior can be animated as a demonstration  to 
the user. 
 
 

 
(a) Perpendicular interaction (b) Rotation interaction 

 
Figure 6: Interactions 

 
 
4   USER STUDY 

We performed an exploratory user study to understand the usability 
of AffordIt!. Post-participation surveys gathered qualitative informa- 
tion on usability, workload and perceived ease of use of the different 
aspects of the techniques. All participants  used an HTC Vive Pro 
Eye for the study and started at the center position of a room with 
approximate dimensions of 4x4 meters. All virtual elements were 
conveniently placed so participants would not collide with real world 
elements during the study. We hypothesize that our tool will have 
high usability and low workload ratings. 
 

4.1   Scenario and User Interface 

The virtual scenario chosen for the experiment is a kitchen  with 
different household appliances placed within the scene. We chose a 
kitchen environment so that any user can relate and have familiarity 
with the behavior of an appliance. Participants were allowed to 
interact with four objects in the scene: an oven, a washing machine, 
a storage cabinet and a coffee machine. Every combination of mesh 
cutter and affordance definition  was performed on the objects. Figure 
7, shows a side view of the physical area where the user study took 
place. The four virtual objects are super-imposed in the real room 
used for the study. 

For the user interface we used HTC Vive Controllers as the input 
device. The mesh cutters and the interactions to add affordances 
could be invoked from a menu (see Figure 8) attached to the left 
hand controller with the non-dominant hand. In the same controller 
the track-pad button is used to show and hide the menu when pressed. 
For the controller  on the dominant hand, a blue sphere is attached 
to the controller to be used as a custom pointer.  The trigger  button 
is equivalent to a “click” on a mouse and when pressed submits an 
action depending on the context. The gripper button when pressed 



 

 
 

Figure 7: Side view of the 3D scanned area participants were allowed 
to walk. Virtual objects of interest for the study are positioned in the 
real world. 

 
 

executes an undo. The custom pointer is used to choose an option 
from the Menu as shown  in Figure 8 by physically hovering the 
button and pressing the trigger. Once an option is selected the 
pointer is used to place the points required to perform the operations 
described in the previous section. 

 

 

Figure 8: Menu with the different options to choose for participants. 
 
 

4.2   Tasks 

To complete the tasks participants were required to add behaviors to 
the objects in the scenario by invoking  a mesh cutter tool (cuboid or 
cylinder) and define the behavior (perpendicular or rotation) of the 
segmented mesh. 

 

4.2.1   Use a Mesh Cutter Tool to Define a Region of Interest 

Participants were randomly  assigned one object at a time. They 
decided which shape worked better to perform the object segmen- 
tation. After selecting the mesh cutter from the menu, participants 
approached the object and added the necessary points to create a 
cylinder or cube around the region of interest. If a mistake is done, 
the gripper button from the dominant hand controller would restart 
the procedure. After spawning the mesh cutter, users were allowed 
to transform  the shape using widgets placed on the mesh geometry 
(see Section 3). Examples for cuboid and cylinder mesh cutters 
placed on objects are shown in Figure 1b and Figure 9, respectively. 

 

4.2.2   Add an Interaction to the segmented part 

Next, users added an interaction  to the selected region by placing 
points following the steps defined Section 3. For each step instruc- 
tions are visualized as text in the menu to help participants remember 
which step they are performing. For the final point, widgets are 
spawned to visualize the object trajectory constrained to a path (See 
Figure 1c). For the perpendicular interaction the path is linear and 

 

 
Figure 9: Cuboid mesh cutter placed on an object 

 
Table 1: Post Questionnaire.  Participants answered these questions 
on a 7 point Likert scale (1 = Very Little or Totally Disagree, 7 = A 
lot or Totally Agree). 

 
#         Question 

Q1 How much did the WEIGHT of the headset affected you? 
Q2 How ACCURATE  the HTC-Vive controllers felt? 

Q3 
How much did the PHYSICAL BUTTONS  on the HTC-Vive helped 
with the overall experience? 

Q4      
How much did the VIRTUAL BUTTONS  on the left-hand MENU 
helped with the overall experience? 

Q5 
How easy was to perform a selection of a region of interest from 
an object using a CUBE  shape? 

Q6 
How easy was to perform a selection of a region of interest from 
an object using a CYLINDER shape? 

Q7      How easy was to perform  a ROTATION affordance around a hinge? 
Q8      How easy was to perform a PERPENDICULAR to a plane affordance? 
Q9      I enjoyed using the system overall 
Q10    The objects  and assets in the scenario seemed realistic 

 

 
for the rotation it is circular. Users are allowed to undo one step 
at a time by pressing the gripper button. When the interaction is 
complete, the selected component will be separated from the original 
mesh and an animation shows the trajectory that the component is 
constrained to. 
 

4.3   Participants and Apparatus 

Sixteen people (10 male, 6 female) aged 18 to 29 (µ = 21.31, σ = 
3.20) engaged in the study. Participants were recruited from the Uni- 
versity of Central Florida. Davis’ Likert scale ratings [7] from 
1 to 7, (with 1 representing not experienced  or not frequently 
and 7 representing very experienced or very frequent) was used 
to measure in a pre-questionnaire  the following: VR experience 
(µ = 4.00, σ = 1.5), user experience with modeling toolkits & game 
engines (µ = 2.88, σ = 1.27) and how frequently they played video 
games (µ = 5.75, σ = 1.39). To validate the usability of the pro- 
posed techniques a VR application was developed using a HTC Vive 
Pro Eye headset with a resolution  of 1600x1400  per eye and a field 
of view of 110 degrees. Two controllers  were used for bi-manual in- 
teraction. Headset and controllers were tracked by HTC lighthouses. 
The application was implemented in Unity3D game engine using 
C# and SteamVR. The experiment ran on a desktop computer with 
an Intel Processor Core i7-8700K  CPU 3.70GHz, 32 Gb RAM and 
a Nvidia GTX 1080Ti graphics card. 
 

4.4   Study Design and Procedure 

Our exploratory  study was designed to be completed in approxi- 
mately 45 minutes. Study participants were asked to fill out de- 
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mographics and pre-questionnaire forms. Next, the problem was 
explained for 2 minutes followed by a 5 minute video tutorial ses- 
sion, which allowed participants to familiarize themselves with the 
concepts and user interface. This was followed  by a training session 
which was performed for an additional 5 minutes. The training 
session required participants to use the tools of AffordIt! following 
proctor instructions. An example object in the form of a modular 
sink with three drawers and two doors was used for training. For the 
experiment, participants were randomly assigned 4 different objects 
from the scene in Figure 10 to perform selection cuts in the objects’ 
mesh and assign affordances to the component generated. After 
task completion  a post-questionnaire  (see Table 1) with a Likert 
Scale [7] from 1 (Very Little or Totally Disagree) to 7 (A lot or To- 
tally Agree), was provided to the participant. In addition,  a SUS [4] 
questionnaire for perceived usability of the tool and a NASA TLX 
questionnaire [15] for perceived workload were given to participants. 
Finally,  participants were asked about their overall experience and 
any thoughts or suggestions they could have about the interface. 

 

 

Figure 10: User study virtual environment setup 
 
 

5   RESULTS 

All participants were able to complete every task. Surveys provided 
to participants gathered qualitative  data (Table 1) which results are 
shown in Figure 11. The purpose of this analysis is to identify users’ 
scores on each individual aspect of the system, how much workload 
was perceived, how usable were the techniques and observations 
that can bring insights on future directions. 

 
 
 
 
 
 
 
 
 
 
 
 

Menu Buttons  Cube  Cylinder  Rotation  Perpendicular       Enjoyment 

Aspects of the User Interface 

 
Figure 11: Plot shows the mean values and standard errors for each 
one of the aspects of the interface. 

 
 

5.1   Usability and Perception 

The user interface involved the use of menu buttons fixed to the 
left controller and placing points to define four different operations. 
These aspects of the interface (Q4, Q5, Q6, Q7, Q8, Q9) asked in 
Table 1 were rated by participants and results are shown in Figure 11. 
For overall usability,  results from SUS scores (µ = 83.10, σ = 12.9) 
show high usability for the user interface. Additionally, aspects of 
the hardware,  such as weight  of the headset, causing issues had a low 

rating (Q1) (µ = 2.44, σ = 1.46), accuracy had a high rating (Q2) 
(µ = 6.00, σ = 0.94) and buttons from the controller (µ = 6.25, σ = 
1.03) were well received by participants.  We conclude that these 
variables did not influence the correctness of the experiment. Finally 
we saw a high rating for the perception of realism in the environment 
(Q10) (µ = 5.88, σ = 0.78). 
 

5.2   Workload 

Figure 12, shows scores for each subscale of an unweighted (raw) 
NASA TLX. A raw TLX is preferred for this study since no dif- 
ference has been found in sensitivity when compared to the full 
version [14]. The overall subjective workload score per participant 
is (µ = 37.35, σ = 12.22), which shows a low workload perception. 
The six factors of the NASA TLX include: Mental Demand (MD), 
Physical Demand (PD), Temporal Demand (TD), Own Performance 
(OP), Effort (EF), and Frustration Level (FL). 
 

 
 
 
 
 
 
 
 
 
 
 
 

MD  PD  TD  OP  EF  FL 

NASA−TLX  Subscales 

 
Figure 12: Plot shows the mean values and standard errors for NASA 
TLX workload ratings. 
 
 
5.3   Implications 

This paper evaluates the usability  of AffordIt!  as a tool to create 
behaviors in objects’ components. In line with work by Hayatpur et 
al. [16] and Shao et al. [40], the creation and manipulation of prim- 
itives resulted in an intuitive task for participants  as shown in the 
results. An aspect not evaluated by this work nor explored in previ- 
ous work is how to extend such primitives to adapt to specific shapes 
that could be found in a real world scenario. This work suggests 
to create or generate primitives for the purpose of selecting and 
segmenting mesh components. Evaluation of how such primitives 
can be adjusted to specific  shapes is left for future work. 

The interactions presented in this work were perceived highly 
usable as results shown.  However,  based on work by Hayatpur et 
al. [16] and participants’ comments in our study, it is suggested that 
constrained movements should be authored  in real-time. This 
means, real-time visualization of the outcome while authoring the 
interaction. 

Finally, the use of interactions  can be extended to support more 
complex behaviors. In Deering [8] animation editing is conceived 
through components called elemental-animation objects. Following 
this principle, this work suggests to implement interactions that 
can be easily extendable by combining them or attaching them 
to one or more objects. 
 

6   DISCUSSION AND OBSERVATIONS 

Our exploratory study was successful in offering us several points 
of feedback which  are discussed below. 
 

6.1   Usability and Workload Analysis 

In our SUS and TLX analysis we found users to rate AffordIt!  as 
having high usability and low perceived workload. This tells us 



that even this initial iteration has value in its use for affordance 
assignment to the components of an object. We were concerned that 
the virtual environment would be perceived as difficult, but the low 
workload rating from the TLX score assures us that users did not 
perceive themselves to be under a strenuous activity. 

 

6.2   Post-Questionnaire Analysis 

The Likert scale results from the post questionnaire provide us with 
additional feedback about how users felt toward the system. The 
low score for the headset weight (Q1) and the high score for the 
accuracy of the controllers (Q2) show us that the use of the HTC 
Vive Pro Eye did not have a negative impact on the user experience. 
Users found that they liked the virtual buttons (Q3) and the physical 
buttons (Q4). For the assigned tasks they found the creation of 
the cube and cylinders to be easy (Q5, Q6) and the assignment of 
the movement constraints to also be easy (Q7, Q8). Overall users 
enjoyed  the system (Q9)  and they found  the objects  and assets within 
the scenario to be realistic (Q10), suggesting high immersion within 
the scene. 

 

6.3   Comment Observations 

While all participants were able to create the shapes for selection 
and the interactions to define behaviors we found their suggestions 
intriguing and an avenue for opportunities for improvement. 

 

6.3.1   Bring objects to the users rather than users to the 
objects 

The study was conceived as an immersive authoring experience so 
the size of objects and the placement of objects within the environ- 
ment replicate a real life scenario. A participant mentioned that they 
would prefer objects floating in the air to avoid bending to interact. 
We note that this is a valid point for a full VR authoring tool like in 
Hayatpur et al. [16]. 

 
User: “Sometimes I had to move my body a lot, like squating, 

to reach an object.” 
 

6.3.2   Visual aid guidance on movement path while editing 

Another intriguing set of comments was a user stating they had a 
good experience because of the thinking process involved while 
another participant did not like the outcome because of misplaced 
rotation points. We believe that more visual aid in the form of 
animations showing the movement path can help ease the thinking 
process of participants. 

 
User: “I liked how the experiment made me think about how 

objects move.” 
 

User: “I liked how accurate the movements were represented 
in VR. I disliked how sometimes the rotation points did not come 
out how I expected them to.” 

 
6.3.3   Depth perception 

Depth was perceived different among participants with the use of 
transparency while authoring the object behavior affected user per- 
ception of depth in some cases. A possible solution is to allow toggle 
transparency depending on user needs. Also outlining the edges of 
the shape was suggested by a participant. 

 
User: “Making the meshes transparent helps with setting the 

location of the cylinder/box, however it makes some interactions 
with the object such as adding hinges difficult.” 

 
User: “I liked how easy affecting objects was. I’d suggest 

making the textures not so transparent or emphasizing the out- 
lines of the cube and cylinder shapes.” 

6.3.4   Possible applications 

Participants  also suggested a possible use-case of AffordIt! in the 
following areas: game design, building interior design, education, 
3D modeling programs and animations. 

 
User: “useful for game design for the object interaction 

without coding ” 

 
User: “It can be used for designing interiors or developing 

accurate  gaming  scenes with accurate animations. ” 

 
User: “I think this can be useful for 3D modeling programs 

using VR, and for video game interactions.” 

 
User: “creating a situation before actually building the real 

thing in irl (in real life)” 
 
7   LIMITATIONS AND FUTURE WORK 

This study is exploratory in nature, and to the best of our knowledge 
there is no tool available for comparison at the moment. A possible 
baseline condition could be 3D modelers on the desktop such as 
Maya or Blender but the number of features and complexity  would 
not provide a fair comparison. As so, this paper acknowledges 
limitations on AffordIt!, that leave room for future improvements. 
The study is designed  as a human-in-the-loop approach, therefore 
inherit intuition from the users is expected to accomplish the tasks. 
Ideally an autonomous technique could be designed in which the 
geometry of the object is analyzed and a mesh cutter is designed 
and an affordance applied.  However, we believe that the intuitive 
understanding of the user should be included within the process. 

Segmenting the objects’ parts can be done automatically through 
approaches such as [22, 41, 48]. AffordIt!  can be used together 
with these tools as a human-in-the-loop tool to modify or adjust the 
outputs of the automatic segmentation. Intertwining  the automatic 
approaches with AfforfIt!   will  provide the user an easy to use 
interface to correct the errors on the automatically  segmented areas 
or use the quickly  segmented areas to create affordances. 

AffordIt! can be extended with more affordances and mesh cutters 
with a possible combination  of them to produce more complex 
behaviors. For instance we could have an interaction that requires 
moving an object in a certain trajectory while rotating it at the same 
time, such as the behavior  of a screwdriver.  The mesh cutter can 
be extended to allow for more flexibility in shapes, for instance we 
could create convex polyhedrons  as shown in [42]. Furthermore 
we intend to adopt an affordance framework as seen in Kapadia et 
al. [21]. 

Some meshes contain no internal faces, exposing  a hole once 
the affordance is applied. We could advance our mesh cutting algo- 
rithm to also extrapolate face and normal data to the newly exposed 
sections of the mesh. 

Also, we can develop interactions similar to [42] such that a user 
can draw the region of interest, snapping points to the most likely 
portion of the object, rather than relying on pre-defined selection 
shapes. This could provide increased accuracy and remove human 
error. As one user commented: 
 

User: “Snapping surfaces of the mesh cutter to parallel sur- 
faces of the object of interest” 

 
Finally, in order to provide a direct comparison to 3D modeling 

software, as future work  we would  like to conduct a larger study that 
seeks out modeling  software  experts to compare AffordIt! with tradi- 
tional modeling software tools on a desktop environment. Likewise, 
an additional baseline condition in a desktop environment  following 
the same principles  could be implemented for direct comparison 
with AffordIt!. 



8   CONCLUSION 

This paper introduces AffordIt!, a set of techniques that author object 
components behaviors in Virtual Reality. Despite the limitations 
and observations found, usability results show that the interface 
and interaction techniques were well received by participants,  as 
seen in the high usability  scores for SUS, and had a low workload 
for the tasks, as shown  in the low scores for TLX. Participants 
comments showed that they enjoyed the experience. Furthermore, 
the affordance techniques scored higher than the mesh cutters which 
can be improved,  as discussed in our future work section. 

There is work to be done in refining AffordIt!, but we have shown 
that even our initial iteration allows 3D scene authors to intuitively 
segment and assign affordances to an object either for scene author- 
ing or in the development of 3D assets for a variety of use cases. 
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A   APPENDIX 

 
Algorithm 1 The mesh cutter algorithm 

1: triangles ← getOb jectT riangles() 
2: selector ← getSelectorSha pe() 
3: in, out ← List() 
4: procedure MESHCUTTER(triangles, selector, in, out) 
5: for all triangle ∈ triangles do 
6: if selector.isF ullInside(triangle) then 
7: in.Add(triangle) 
8: else if selector.isF ullOutside(triangle) then 
9: out.Add(triangle) 

10: else 
11: CutT riangle(triangle, selector, in, out) 

return in, out 

12: procedure CUTTRIANGLE(triangle, selector, in, out) 

13: vertsin, vertsout ← array[2] 
14: inCount, outCount ← 0 
15: for i = 0 to 3 do 
16: if selector.isInside(triangle.vertices[i]) then 
17: vertsin[inCount ] ← triangle.vertices[i] 
18: inCount ← inCount + 1 
19: else 
20: vertsout[outCount] ← triangle.vertices[i] 
21: outCount ← outCount + 1 
22: tm pT ← T riangle() 
23: if inCount == 1 then 
24: tm pT ← T riangle(vertsin[0], vertsout[0], vertsout[1]) 
25: else 
26: tm pT ← T riangle(vertsout [0], vertsin[0], vertsin[1]) 

27: v1, v2, v3 ← tm pT.getVertices() 
1>  /*getIntersectionPoint  returns a point on line connecting the 
first two parameters where selector intersects the line*/ 

28: Pt1 ← getIntersectionPoint(v1, v2, selector) 
29: Pt2 ← getIntersectionPoint(v1, v3, selector) 

1>  /*Pt1 and Pt2 are the points where selector cut the edges of 
the triangles*/ 

30: if inCount == 1 then 
31: in.Add(T riangle(vertsin[0], Pt1, Pt2)) 
32: out.Add(T riangle(vertsout[0], Pt1, Pt2)) 
33: out.Add(T riangle(vertsout[0], vertsout[1], Pt2)) 
34: else 
35: out.Add(T riangle(vertsout[0], Pt1, Pt2)) 
36: in.Add(T riangle(vertsin[0], Pt1, Pt2)) 
37: in.Add(T riangle(vertsin[0], vertsin[1], Pt2)) 

return in, out 
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