
AffordIt!: A Tool for Authoring Object Component Behavior

in Virtual Reality

Sina Masnadi* André s N. Vargas Gonzá lez† Brian Williamson ‡ Joseph J. LaViola Jr.§

Department of Computer Science

University of Central Florida

(a) (b) (c) (d)

Figure 1: These figures show a sequence of steps followed to add a rotation affordance to the door of a washer machine. (a) An
object in the scenario (b) Cylinder shape selection wrapping the door. (c) A user sets the amount of rotation the door will be
constrained to. (d) An animation generated from the affordance can be visualized.

ABSTRACT

In this paper we present AffordIt!, a tool for adding affordances
to the component parts of a virtual object. Following 3D scene
reconstruction and segmentation procedures, users find themselves
with complete virtual objects, but no intrinsic behaviors have been
assigned, forcing them to use unfamiliar Desktop-based 3D editing
tools. AffordIt! offers an intuitive solution that allows a user to
select a region of interest for the mesh cutter tool, assign an intrinsic
behavior and view an animation preview of their work. To evaluate
the usability and workload of AffordIt! we ran an exploratory study
to gather feedback. In the study we utilize two mesh cutter shapes
that select a region of interest and two movement behaviors that
a user then assigns to a common household object. The results
show high usability with low workload ratings, demonstrating the
feasibility of AffordIt! as a valuable 3D authoring tool. Based on
these initial results we also present a road-map of future work that
will improve the tool in future iterations.

Index Terms: Human-centered computing—Human computer
interaction (HCI)—Interaction paradigms—Virtual reality; Human-
centered computing—Interaction design—Interaction design pro-
cess and methods—Scenario-based design

1 INTRODUCTION

As the prevalence of virtual reality increases for simulations and
video games, there is an increasing desire for the development of
virtual content that is based on real scenes and environments. A
problem arises when a user whose technical skills are based in

* e-mail: sina@knights.ucf.edu
† e-mail: andres.vargas@knights.ucf.edu
‡ e-mail: brian.m.williamson@knights.ucf.edu
§ e-mail: jjl@cs.ucf.edu

Graphics Interface Conference 2020
28-29 May

Copyright held by authors. Permission granted to
CHCCS/SCDHM to publish in print and digital form, and
ACM to publish electronically.

realistic experiences necessary to a VR scene, but not asset creation
(a situation described in Hughes et al. [17]) which are needed to
build a virtual scene. To alleviate this problem, recent research has
been focusing on frameworks to ease users’ authoring process as
seen in [9, 12, 35]. 3D scene reconstruction [32, 34, 44, 49] provides
a suitable solution to the problem. Initially a 3D reconstructed
environment will be composed of a continuous mesh which can be
segmented via autonomous tools as shown in George et al. [10] and
Shamir et al.’s survey [39] or human in the loop solutions as seen
in [36, 47].

However, these tools fall short at identifying and applying af-
fordances, the intrinsic properties, of the components of the object.
For example, a storage cabinet may be segmented from a larger
mesh, but the movements of the cabinet door remains absent. One
solution is the use of a 3D modeler, such as Autodesk Maya [33]
or Blender [3], but if the user is unfamiliar with the software then a
technical expert in asset creation is required. This solution carries a
cost, however, as the user’s own intuition and understanding of an
object’s affordances could be lost in translation, either in relaying
requirements to a third party or to software they are not experts of.
As our solution we introduce AffordIt! an online tool that allows a
3D scene author to isolate key components of virtual content and
assign affordances to it using their own intuitive understanding of
the object.

In this paper we define a 3D reconstructed scene as being a
recreation of a real world environment that contains one or more
virtual representations of an object captured within that environment.
The component of an object is then defined as a segmented portion
of the mesh that is not removed, but rather used to assign intrinsic
behaviors. The term affordance is defined as an action that can be
performed over an object (or objects) by an agent in an environment
according to Gibson et al. [11]. This concept has been further
expanded in the robotics field [13, 18].

AffordIt! provides an intuitive method for a scene author to select
a region of interest within a continuous mesh and apply affordances
to it using procedures outlined in [27, 28, 40]. Rather than relying
on a sketch-based interface, we looked to the work of Hayatpur et

mailto:sina@knights.ucf.edu
mailto:andres.vargas@knights.ucf.edu
mailto:andres.vargas@knights.ucf.edu
mailto:brian.m.williamson@knights.ucf.edu
mailto:jjl@cs.ucf.edu

al. [16], in which users could invoke a plane, a ray or a point to con-
strain the movements of a virtual object. As such, our procedure has
a user first selecting a region of interest using shape geometry fol-
lowed by defining a specific movement constraint. After processing
the operation on the mesh an animation demonstrates the behavior
attached to it as shown in Figure 1. We evaluate this technique in
an exploratory study where perceived usability and workload of the
system is collected and analyzed. For the study we only use two
mesh cutter geometries and two movement constraint definitions,
though the concepts of AffordIt! could apply to other selection
geometries or affordance definitions.

Our contributions in this paper are:

1. An interaction technique for intuitive creation of 3D shapes

for mesh selection.

2. An adaptation of the Affordance template concept [11] to

attach affordances to components of an object.

3. An exploratory study that analyzes how well the techniques

proposed are perceived.

2 RELATED WORK

There are several domains which AffordIt! touches upon. In this
section we review previous research in authoring tools, geometric
content creation, tools that manipulate 3D geometric constraints and
smart objects in context of the internet of things.

2.1 VR/AR 3D Scene Authoring

The domain of 3D scene authoring is often explored in the context of
scenario based authoring. In the work by Ens et al. [9] an application
to author Internet of Things (IoT) devices in VR using activation
links is presented, also a set of guidelines for game authoring in AR
is outlined by Ng et al. in [35]. The differences between authoring
in a desktop versus augmented reality is outlined in the usability
study by Gonzalez et al. [12], which shows higher usability in the
desktop tools than the augmented reality ones. We found Gonzalez
et al.’s study to be related to ours except that they focus on individual
behaviors that can be a part of a general scenario, but are not specific
to the component of an object and lack the interactions AffordIt!
can create. Further research into AR authoring can be seen in Lee
et al. [23] that introduce the concept of an “immersive authoring”
tool which uses tangible AR interaction techniques for authoring.
This research allows for direct specification and testing of the con-
tent within the execution environment, similar to the results from
AffordIt! that are visible at run-time. Narratives are defined in an
augmented reality scene in Kapadia et al. [21]. Interestingly they
create a framework for affordances that would apply well to future
iterations of AffordIt!.

We also consider desktop-based authoring, which does not reflect
AffordIt!, but instead show the status quo for scene development.
We have found that most of this research focuses on user interac-
tions needed when defining a tracking fiducial [24, 25, 38], such as
attaching actions and behaviors to virtual content. Past research
by MacIntyre et al. [25] presented many novel features for author-
ing an AR scene inside a MacroMedia environment, but creation
does not happen at run-time. Commercial companies like ScopeAR
with WorkLink [1], NGrain with Producer Pro [20], or Microsoft
with Dynamics 365 Guides [31] offer solutions that ease the bur-
den of developing complex applications, but instead allow for rapid
prototyping of training experiences that can be deployed on AR
devices. While we find these systems to be useful, they still rely
upon asset store virtual content or 3D reconstructed content that
lacks affordances.

2.2 Geometric Content Creation and Manipulation

Deering presented HoloSketch a novel VR sketching tool at the time
to create geometric content, manipulate it and add simple anima-
tions [8]. Our work is different from HoloSketch in the interaction
techniques, mesh segmentation and use context. However, different
features from HoloSketch can be adapted to AffordIt!. For mesh
manipulation we have found Sketch based applications to be the pre-
dominant research in this domain. SKETCH by Zeleznik et al. [50]
is an early example of creating 3D objects from 2D sketches. In
SKETCH constrained transformations are applied to objects, a con-
cept that we utilize in AffordIt!. In Shao et al. [40] a sketch based
application is presented that applies behaviors to concept sketches
based on a region of interest selection followed an animation added
to an individual part. This is similar to our approach, except that
their interface is entirely 2D interactions upon a 2D object while
AffordIt! explores 3D interactions and seamless visualizations with
a 3D object. Commercial companies have also begun to provide
a variety of tools [5, 42] that easily create 3D geometric content.
AffordIt! is complimentary to these tools by providing an extension
of capabilities in applying intrinsic behavior to an object.

Our interaction techniques derive from the research in object
authoring by Hayatpur et al. [16] which presents three techniques for
object alignment and manipulation in VR. These techniques invoke
a plane, ray, or point and use hand gestures to apply movement
constraints to a virtual object. Their research presents a rich set
of interaction possibilities, however the idea of changing an object
geometry to tie behaviors to its component parts is not studied.
We address this by proposing two techniques to generate intrinsic
object behaviors at run-time. First, a user is allowed to define each
object component behavior from the interaction in a VR environment.
Second, we apply authoring behaviors similar to [27, 28] except that
we transition from a 2D sketch based interface to a 3D interaction
paradigm.

2.3 3D Geometric Constraints

Authoring constraints has been explored in the context of objects
associations based on geometries as in [43, 46]. For instance a
book if placed on the top of a desk is associated to the table with
one face facing the desk. In the work by Oh et al. [37], authoring
objects is constrained to movements in a plane, when a collision is
detected. While this is similar to our movement constraint behaviors,
it is a Desktop based solution rather than authoring from within the
VR environment. The theory of affordances by Gibson is divided
into the concepts of attached and detached object affordances [11].
Attached objects cannot be removed from their parent object unless
they become a detached one and usually have constraints in their
movements. While there are successful work in robotics to apply
affordance theory to provide guidelines for object manipulation
[13, 19, 26], the application on 3D objects authoring is limited.

2.4 Smart Objects

Smart Objects are physical artifacts, enhanced with sensors and
connected in a network that allows communication with humans and
other artifacts as a part of the Internet of Things (IoT) paradigm by
McEwen and Cassimally [30]. From an HCI perspective humans
interacting with such objects face a usability challenge. Work by
Matassa et al. [29] emphasize the problem of smart objects being
unable to immediately communicate to people what they can afford
to do. Baber et al in [2] propose a conceptual framework to exploit
the affordance concept through an understanding of how humans
engage with objects. The forms of engagement proposed are envi-
ronmental, perceptual, morphological, motor, cultural and cognitive.
As much as Internet of Things tends to lean towards a human-in-
the-loop approach, the systems usability and user engagement need
to be accounted for as explained by Cervantes-Solis and Baber [6].
Our approach does not fall in the IoT category but could be used as

a stepping stone to define affordances for smart objects in the IoT
domain.

3 IMPLEMENTATION

Our technique works by first cutting a mesh using simple geometries
then applying intrinsic behavior to the segmented portion. Both steps
require interactions with a user to define the region of interest and
the behavior. The user’s interactions can be performed independent
of the mesh manipulation. For the exploratory study we focused on
two mesh cutter shapes and two behaviors which are defined below.

3.1 Mesh Cutting

For the cutting step a mesh cutter geometry is used to define the
region of interest. When a cut is performed the original mesh is di-
vided into two, one inside the mesh cutter and the other one outside.
The algorithm clips the mesh using each face from the mesh cutter
primitive using a brute force method as shown in Algorithm 1 in the
Appendix A. The algorithm is derived from the Slicer implementa-
tion by CGAL [45] and is extended to be used on a more complex
shape as the slicing tool rather than a simple plane. Triangles falling
inside and outside the mesh cutter volume are segmented in two
sets, while the ones who share vertices inside and outside the mesh
volume are triangulated accordingly to fit in the appropriate set. The
number of triangles on high polygon objects were reduced to opti-
mize the cutting time to an order of magnitude of seconds. For more
details refer to the Appendix A for a pseudocode implementation.

In the exploratory study we focused on two mesh cutters, a cuboid
and a cylinder, which will be created by the user using VR con-
trollers. Mesh cutters can be extended to any shape, a possible
approach is explained in section 3.1.3. The shape geometry editing
is not part of the experiment but shed some light on supporting
different geometries for the mesh cutters.

3.1.1 Cuboid

Creation - To create a cuboid in the VR environment we imple-

translation of the controller. A second widget is placed at PR which
can be moved to alter the radius and height of the cylinder (see
Figure 4b).

(a) Creating cuboid face (b) Adjusting the depth using P3

Figure 2: Cuboid creation

mented an interaction technique that uses three points. The first two
points (P1) and (P2) fix the corners of an initial rectangle (R) in 3D
with a normal (−n→R) parallel to the floor plane (Figure 2a). Moving
P2 around will adjust the dimensions of the rectangle as well as its

(a) Adjusting the orientation and
height of the cylinder by moving C2

in 3D space

(b) Adjusting the radius using projec-
tion of Pv on C2 plane

rotation over the y-axis. The final point (P3) will define the depth
of the cuboid with R as its base. Let R be the line that goes through
P2 and is parallel to −n→R , and Pv as the controller’s location. We will

Figure 3: Cylinder creation

have P3 = pro jR
→−
Pv which is the projection of Pv on R. After creating

the cuboid, it can be manipulated further to adjust its transformation
matrix (Figure 2b).
Manipulation - In this context we define a widget as a small sphere
which can be grasped by pressing a button on the controller and
can be moved around in the 3D space while the button remains
pressed. For rotation and translation we place a widget in the center
of the cuboid that while pressed passes the rotation and translation
information from the controller to the shape. Three more Widgets
are placed at the defining points, P1 , P2 and P3 can be dragged to
adjust the scale of the cuboid. Moving any of these widgets will fix
the diagonal vertex of the cuboid in space and will scale the shape
according to the position of the widget (see Figure 4a).

3.1.2 Cylinder

Creation - A cylinder is first created by defining a line with two
points (C1 , C2) which will be the orientation and height of the shape

(a) P4 allows cuboid translation and

rotation. P1 , P2 and P3 scale the

cuboid.

(b) C4 allows cylinder translation and

rotation. C1 , C2 and C3 allow scaling

of the cylinder.

(Figure 3a). After fixing C2 , the controller’s location will define PR

which is the closest point on the C2 plane from the controller (Figure
3b). The radius of the cylinder is then calculated as ||C2 − PR ||.
Similar to the cuboid, the transformation matrix of the cylinder can
be altered after its creation.
Manipulation - A widget is placed in the center of the cylinder
that maps the shape’s rotation and translation to the rotation and

Figure 4: Manipulation widgets on primitives

3.1.3 Extend to Any Geometric Shape

Editing Geometry Mode - The mesh cutter allows for any shape ge-
ometry to be used for segmenting an object component. Participants
begin with an initial primitive which can be modified by adding

extra vertices to the mesh. As can be seen in Figure 5, on the left
side of the image an extra vertex is placed in the cuboid edge by
pressing and releasing the trigger button from the Vive controller
on the desired position. In each vertex a widget is generated to ma-
nipulate the mesh morphology. These widgets can be dragged and
the mesh changes according to the new widget position. Figure 5,
shows how the newly created vertices on the right side of the image
are translated upwards from the original position forming a semi-arc.
While use of this feature was not a part of the study, it demonstrates
how a starting primitive can be manipulated into a more complex

point is the end trajectory point (Pe), which shows the location that Pg

will end up after rotating around £a . This is defined by calculating
the complete rotation path of a circle starting at Pg and rotating
around £a . Given the controller’s location PV , circle center Pc is

calculated by Pc = pro j£a

→
Pg . When the user presses the controller

button, Pe is defined using:

→v£ = pro j£a

→
Pv − Pv

shape.
→g£ = pro j£a

→
Pg − Pg

Pe =
→
Pc + ||→g£ ||.v̂£

(1)

Figure 5: Highlighted in yellow a new vertex is created in editing
geometry mode. Once positioned on an edge, affected faces are
triangulated.

3.2 Interactions

An affordance we defined as part of the exploratory study was on
constraining the movement of a component defined by the mesh
cutter. An example of this is the key on a keyboard, which can
only move in one direction (downward) and only for a fixed amount.
Another example is a fridge door which can be rotated, but only
around the axis of the hinge and within a specific range of angles.

We created two tools to define the movement constraints for
a component based on whether it is a perpendicular or rotational
interaction. Additional interactions can be implemented but a more
thorough analysis on the affordance concept is required as in the
work by Baber et al in [2]. Such a study falls out of the scope of this
work.

3.2.1 Perpendicular

A perpendicular interaction is movement of an object in a straight
line perpendicular to a plane (Figure 6a). This is first defined by cre-
ating three non-linear points which outline the plane perpendicular
to the movement. For point placement we cast a ray from the con-
troller to the surface of the object. Next, a grasp point (Pg) is placed
on the object. The system automatically defines £ as the orthogonal
line from Pg to the plane. Finally the user defines the interaction end
point (Pe), where the grasp location will end up after the interaction.
The projection point can be moved by moving the controller, but its
location is calculated by projection of the controller’s location on £.
Once Pe is defined, the interaction is complete and the system will
animate the object to demonstrate the newly defined behavior for
the user.

3.2.2 Rotation

Rotation interactions are used for movements that are based on the
rotation of an object around an axis (Figure 6b). To create this
interaction the user will define the axis of rotation by placing two
points (P1 and P2) creating a line that forms the axis of rotation (£a).
Next the grasp point (Pg) will be placed on the object to represent the
location of effort (for example the door handle on a door). The final

After fixing the location of Pe we will have a complete rotation

interaction and the behavior can be animated as a demonstration to
the user.

(a) Perpendicular interaction (b) Rotation interaction

Figure 6: Interactions

4 USER STUDY

We performed an exploratory user study to understand the usability
of AffordIt!. Post-participation surveys gathered qualitative informa-
tion on usability, workload and perceived ease of use of the different
aspects of the techniques. All participants used an HTC Vive Pro
Eye for the study and started at the center position of a room with
approximate dimensions of 4x4 meters. All virtual elements were
conveniently placed so participants would not collide with real world
elements during the study. We hypothesize that our tool will have
high usability and low workload ratings.

4.1 Scenario and User Interface

The virtual scenario chosen for the experiment is a kitchen with
different household appliances placed within the scene. We chose a
kitchen environment so that any user can relate and have familiarity
with the behavior of an appliance. Participants were allowed to
interact with four objects in the scene: an oven, a washing machine,
a storage cabinet and a coffee machine. Every combination of mesh
cutter and affordance definition was performed on the objects. Figure
7, shows a side view of the physical area where the user study took
place. The four virtual objects are super-imposed in the real room
used for the study.

For the user interface we used HTC Vive Controllers as the input
device. The mesh cutters and the interactions to add affordances
could be invoked from a menu (see Figure 8) attached to the left
hand controller with the non-dominant hand. In the same controller
the track-pad button is used to show and hide the menu when pressed.
For the controller on the dominant hand, a blue sphere is attached
to the controller to be used as a custom pointer. The trigger button
is equivalent to a “click” on a mouse and when pressed submits an
action depending on the context. The gripper button when pressed

Figure 7: Side view of the 3D scanned area participants were allowed
to walk. Virtual objects of interest for the study are positioned in the
real world.

executes an undo. The custom pointer is used to choose an option
from the Menu as shown in Figure 8 by physically hovering the
button and pressing the trigger. Once an option is selected the
pointer is used to place the points required to perform the operations
described in the previous section.

Figure 8: Menu with the different options to choose for participants.

4.2 Tasks

To complete the tasks participants were required to add behaviors to
the objects in the scenario by invoking a mesh cutter tool (cuboid or
cylinder) and define the behavior (perpendicular or rotation) of the
segmented mesh.

4.2.1 Use a Mesh Cutter Tool to Define a Region of Interest

Participants were randomly assigned one object at a time. They
decided which shape worked better to perform the object segmen-
tation. After selecting the mesh cutter from the menu, participants
approached the object and added the necessary points to create a
cylinder or cube around the region of interest. If a mistake is done,
the gripper button from the dominant hand controller would restart
the procedure. After spawning the mesh cutter, users were allowed
to transform the shape using widgets placed on the mesh geometry
(see Section 3). Examples for cuboid and cylinder mesh cutters
placed on objects are shown in Figure 1b and Figure 9, respectively.

4.2.2 Add an Interaction to the segmented part

Next, users added an interaction to the selected region by placing
points following the steps defined Section 3. For each step instruc-
tions are visualized as text in the menu to help participants remember
which step they are performing. For the final point, widgets are
spawned to visualize the object trajectory constrained to a path (See
Figure 1c). For the perpendicular interaction the path is linear and

Figure 9: Cuboid mesh cutter placed on an object

Table 1: Post Questionnaire. Participants answered these questions
on a 7 point Likert scale (1 = Very Little or Totally Disagree, 7 = A
lot or Totally Agree).

Question

Q1 How much did the WEIGHT of the headset affected you?
Q2 How ACCURATE the HTC-Vive controllers felt?

Q3
How much did the PHYSICAL BUTTONS on the HTC-Vive helped
with the overall experience?

Q4
How much did the VIRTUAL BUTTONS on the left-hand MENU
helped with the overall experience?

Q5
How easy was to perform a selection of a region of interest from
an object using a CUBE shape?

Q6
How easy was to perform a selection of a region of interest from
an object using a CYLINDER shape?

Q7 How easy was to perform a ROTATION affordance around a hinge?
Q8 How easy was to perform a PERPENDICULAR to a plane affordance?
Q9 I enjoyed using the system overall
Q10 The objects and assets in the scenario seemed realistic

for the rotation it is circular. Users are allowed to undo one step
at a time by pressing the gripper button. When the interaction is
complete, the selected component will be separated from the original
mesh and an animation shows the trajectory that the component is
constrained to.

4.3 Participants and Apparatus

Sixteen people (10 male, 6 female) aged 18 to 29 (µ = 21.31, σ =
3.20) engaged in the study. Participants were recruited from the Uni-
versity of Central Florida. Davis’ Likert scale ratings [7] from
1 to 7, (with 1 representing not experienced or not frequently
and 7 representing very experienced or very frequent) was used
to measure in a pre-questionnaire the following: VR experience
(µ = 4.00, σ = 1.5), user experience with modeling toolkits & game
engines (µ = 2.88, σ = 1.27) and how frequently they played video
games (µ = 5.75, σ = 1.39). To validate the usability of the pro-
posed techniques a VR application was developed using a HTC Vive
Pro Eye headset with a resolution of 1600x1400 per eye and a field
of view of 110 degrees. Two controllers were used for bi-manual in-
teraction. Headset and controllers were tracked by HTC lighthouses.
The application was implemented in Unity3D game engine using
C# and SteamVR. The experiment ran on a desktop computer with
an Intel Processor Core i7-8700K CPU 3.70GHz, 32 Gb RAM and
a Nvidia GTX 1080Ti graphics card.

4.4 Study Design and Procedure

Our exploratory study was designed to be completed in approxi-
mately 45 minutes. Study participants were asked to fill out de-

L
ik

e
rt

 R
a
ti

n
g

s

0

1

2

3

4

5

6

7

N
A

S
A

−
T

L
X

W

o
rk

lo
a

d

R

a
ti

n
g

s

 0

2
0

4

0

6
0

8

0

1
0

0

mographics and pre-questionnaire forms. Next, the problem was
explained for 2 minutes followed by a 5 minute video tutorial ses-
sion, which allowed participants to familiarize themselves with the
concepts and user interface. This was followed by a training session
which was performed for an additional 5 minutes. The training
session required participants to use the tools of AffordIt! following
proctor instructions. An example object in the form of a modular
sink with three drawers and two doors was used for training. For the
experiment, participants were randomly assigned 4 different objects
from the scene in Figure 10 to perform selection cuts in the objects’
mesh and assign affordances to the component generated. After
task completion a post-questionnaire (see Table 1) with a Likert
Scale [7] from 1 (Very Little or Totally Disagree) to 7 (A lot or To-
tally Agree), was provided to the participant. In addition, a SUS [4]
questionnaire for perceived usability of the tool and a NASA TLX
questionnaire [15] for perceived workload were given to participants.
Finally, participants were asked about their overall experience and
any thoughts or suggestions they could have about the interface.

Figure 10: User study virtual environment setup

5 RESULTS

All participants were able to complete every task. Surveys provided
to participants gathered qualitative data (Table 1) which results are
shown in Figure 11. The purpose of this analysis is to identify users’
scores on each individual aspect of the system, how much workload
was perceived, how usable were the techniques and observations
that can bring insights on future directions.

Menu Buttons Cube Cylinder Rotation Perpendicular Enjoyment

Aspects of the User Interface

Figure 11: Plot shows the mean values and standard errors for each
one of the aspects of the interface.

5.1 Usability and Perception

The user interface involved the use of menu buttons fixed to the
left controller and placing points to define four different operations.
These aspects of the interface (Q4, Q5, Q6, Q7, Q8, Q9) asked in
Table 1 were rated by participants and results are shown in Figure 11.
For overall usability, results from SUS scores (µ = 83.10, σ = 12.9)
show high usability for the user interface. Additionally, aspects of
the hardware, such as weight of the headset, causing issues had a low

rating (Q1) (µ = 2.44, σ = 1.46), accuracy had a high rating (Q2)
(µ = 6.00, σ = 0.94) and buttons from the controller (µ = 6.25, σ =
1.03) were well received by participants. We conclude that these
variables did not influence the correctness of the experiment. Finally
we saw a high rating for the perception of realism in the environment
(Q10) (µ = 5.88, σ = 0.78).

5.2 Workload

Figure 12, shows scores for each subscale of an unweighted (raw)
NASA TLX. A raw TLX is preferred for this study since no dif-
ference has been found in sensitivity when compared to the full
version [14]. The overall subjective workload score per participant
is (µ = 37.35, σ = 12.22), which shows a low workload perception.
The six factors of the NASA TLX include: Mental Demand (MD),
Physical Demand (PD), Temporal Demand (TD), Own Performance
(OP), Effort (EF), and Frustration Level (FL).

MD PD TD OP EF FL

NASA−TLX Subscales

Figure 12: Plot shows the mean values and standard errors for NASA
TLX workload ratings.

5.3 Implications

This paper evaluates the usability of AffordIt! as a tool to create
behaviors in objects’ components. In line with work by Hayatpur et
al. [16] and Shao et al. [40], the creation and manipulation of prim-
itives resulted in an intuitive task for participants as shown in the
results. An aspect not evaluated by this work nor explored in previ-
ous work is how to extend such primitives to adapt to specific shapes
that could be found in a real world scenario. This work suggests
to create or generate primitives for the purpose of selecting and
segmenting mesh components. Evaluation of how such primitives
can be adjusted to specific shapes is left for future work.

The interactions presented in this work were perceived highly
usable as results shown. However, based on work by Hayatpur et
al. [16] and participants’ comments in our study, it is suggested that
constrained movements should be authored in real-time. This
means, real-time visualization of the outcome while authoring the
interaction.

Finally, the use of interactions can be extended to support more
complex behaviors. In Deering [8] animation editing is conceived
through components called elemental-animation objects. Following
this principle, this work suggests to implement interactions that
can be easily extendable by combining them or attaching them
to one or more objects.

6 DISCUSSION AND OBSERVATIONS

Our exploratory study was successful in offering us several points
of feedback which are discussed below.

6.1 Usability and Workload Analysis

In our SUS and TLX analysis we found users to rate AffordIt! as
having high usability and low perceived workload. This tells us

that even this initial iteration has value in its use for affordance
assignment to the components of an object. We were concerned that
the virtual environment would be perceived as difficult, but the low
workload rating from the TLX score assures us that users did not
perceive themselves to be under a strenuous activity.

6.2 Post-Questionnaire Analysis

The Likert scale results from the post questionnaire provide us with
additional feedback about how users felt toward the system. The
low score for the headset weight (Q1) and the high score for the
accuracy of the controllers (Q2) show us that the use of the HTC
Vive Pro Eye did not have a negative impact on the user experience.
Users found that they liked the virtual buttons (Q3) and the physical
buttons (Q4). For the assigned tasks they found the creation of
the cube and cylinders to be easy (Q5, Q6) and the assignment of
the movement constraints to also be easy (Q7, Q8). Overall users
enjoyed the system (Q9) and they found the objects and assets within
the scenario to be realistic (Q10), suggesting high immersion within
the scene.

6.3 Comment Observations

While all participants were able to create the shapes for selection
and the interactions to define behaviors we found their suggestions
intriguing and an avenue for opportunities for improvement.

6.3.1 Bring objects to the users rather than users to the
objects

The study was conceived as an immersive authoring experience so
the size of objects and the placement of objects within the environ-
ment replicate a real life scenario. A participant mentioned that they
would prefer objects floating in the air to avoid bending to interact.
We note that this is a valid point for a full VR authoring tool like in
Hayatpur et al. [16].

User: “Sometimes I had to move my body a lot, like squating,

to reach an object.”

6.3.2 Visual aid guidance on movement path while editing

Another intriguing set of comments was a user stating they had a
good experience because of the thinking process involved while
another participant did not like the outcome because of misplaced
rotation points. We believe that more visual aid in the form of
animations showing the movement path can help ease the thinking
process of participants.

User: “I liked how the experiment made me think about how

objects move.”

User: “I liked how accurate the movements were represented
in VR. I disliked how sometimes the rotation points did not come
out how I expected them to.”

6.3.3 Depth perception

Depth was perceived different among participants with the use of
transparency while authoring the object behavior affected user per-
ception of depth in some cases. A possible solution is to allow toggle
transparency depending on user needs. Also outlining the edges of
the shape was suggested by a participant.

User: “Making the meshes transparent helps with setting the

location of the cylinder/box, however it makes some interactions
with the object such as adding hinges difficult.”

User: “I liked how easy affecting objects was. I’d suggest

making the textures not so transparent or emphasizing the out-
lines of the cube and cylinder shapes.”

6.3.4 Possible applications

Participants also suggested a possible use-case of AffordIt! in the
following areas: game design, building interior design, education,
3D modeling programs and animations.

User: “useful for game design for the object interaction

without coding ”

User: “It can be used for designing interiors or developing

accurate gaming scenes with accurate animations. ”

User: “I think this can be useful for 3D modeling programs

using VR, and for video game interactions.”

User: “creating a situation before actually building the real

thing in irl (in real life)”

7 LIMITATIONS AND FUTURE WORK

This study is exploratory in nature, and to the best of our knowledge
there is no tool available for comparison at the moment. A possible
baseline condition could be 3D modelers on the desktop such as
Maya or Blender but the number of features and complexity would
not provide a fair comparison. As so, this paper acknowledges
limitations on AffordIt!, that leave room for future improvements.
The study is designed as a human-in-the-loop approach, therefore
inherit intuition from the users is expected to accomplish the tasks.
Ideally an autonomous technique could be designed in which the
geometry of the object is analyzed and a mesh cutter is designed
and an affordance applied. However, we believe that the intuitive
understanding of the user should be included within the process.

Segmenting the objects’ parts can be done automatically through
approaches such as [22, 41, 48]. AffordIt! can be used together
with these tools as a human-in-the-loop tool to modify or adjust the
outputs of the automatic segmentation. Intertwining the automatic
approaches with AfforfIt! will provide the user an easy to use
interface to correct the errors on the automatically segmented areas
or use the quickly segmented areas to create affordances.

AffordIt! can be extended with more affordances and mesh cutters
with a possible combination of them to produce more complex
behaviors. For instance we could have an interaction that requires
moving an object in a certain trajectory while rotating it at the same
time, such as the behavior of a screwdriver. The mesh cutter can
be extended to allow for more flexibility in shapes, for instance we
could create convex polyhedrons as shown in [42]. Furthermore
we intend to adopt an affordance framework as seen in Kapadia et
al. [21].

Some meshes contain no internal faces, exposing a hole once
the affordance is applied. We could advance our mesh cutting algo-
rithm to also extrapolate face and normal data to the newly exposed
sections of the mesh.

Also, we can develop interactions similar to [42] such that a user
can draw the region of interest, snapping points to the most likely
portion of the object, rather than relying on pre-defined selection
shapes. This could provide increased accuracy and remove human
error. As one user commented:

User: “Snapping surfaces of the mesh cutter to parallel sur-
faces of the object of interest”

Finally, in order to provide a direct comparison to 3D modeling

software, as future work we would like to conduct a larger study that
seeks out modeling software experts to compare AffordIt! with tradi-
tional modeling software tools on a desktop environment. Likewise,
an additional baseline condition in a desktop environment following
the same principles could be implemented for direct comparison
with AffordIt!.

8 CONCLUSION

This paper introduces AffordIt!, a set of techniques that author object
components behaviors in Virtual Reality. Despite the limitations
and observations found, usability results show that the interface
and interaction techniques were well received by participants, as
seen in the high usability scores for SUS, and had a low workload
for the tasks, as shown in the low scores for TLX. Participants
comments showed that they enjoyed the experience. Furthermore,
the affordance techniques scored higher than the mesh cutters which
can be improved, as discussed in our future work section.

There is work to be done in refining AffordIt!, but we have shown
that even our initial iteration allows 3D scene authors to intuitively
segment and assign affordances to an object either for scene author-
ing or in the development of 3D assets for a variety of use cases.

ACKNOWLEDGMENTS

This work is supported in part by NSF Award IIS-1638060 and Army
RDECOM Award W911QX13C0052. We also thank the anonymous
reviewers for their insightful feedback. We are further grateful to
the Interactive Systems and User Experience lab at UCF for their
support.

REFERENCES

[1] S. AR. Worklink create your own smart instructions,

https://www.scopear.com/products/worklink/, 2019.

[2] C. Baber. Designing smart objects to support affording situations: Ex-

ploiting affordance through an understanding of forms of engagement.

Frontiers in psychology, 9:292, 2018.
[3] A. Brito. Blender Quick Start Guide: 3D Modeling, Animation, and

Render with Eevee in Blender 2.8. Packt Publishing Ltd, 2018.

[4] J. Brooke et al. Sus-a quick and dirty usability scale. Usability evalua-

tion in industry, 189(194):4–7, 1996.
[5] S. Cass. Tiltbrush: The killer app for vr. IEEE Spectrum, 2016.

[6] J. W. Cervantes-Solis and C. Baber. Modelling user interactions in the

internet of things.

[7] F. D. Davis. Perceived usefulness, perceived ease of use, and user

acceptance of information technology. MIS quarterly, pp. 319–340,
1989.

[8] M. F. Deering. Holosketch: a virtual reality sketching/animation

tool. ACM Transactions on Computer-Human Interaction (TOCHI),

2(3):220–238, 1995.

[9] B. Ens, F. Anderson, T. Grossman, M. Annett, P. Irani, and G. Fitz-

maurice. Ivy: Exploring spatially situated visual programming for

authoring and understanding intelligent environments. In Proceedings

of the 43rd Graphics Interface Conference, pp. 156–162. Canadian

Human-Computer Communications Society, 2017.

[10] D. George, X. Xie, and G. K. Tam. 3d mesh segmentation via multi-

branch 1d convolutional neural networks. Graphical Models, 96:1–10,
2018.

[11] J. J. Gibson. The theory of affordances. Hilldale, USA, 1(2), 1977.

[12] A. N. V. González, K. Kapalo, S. Koh, R. Sottilare, P. Garrity, and

J. J. Laviola. A comparison of desktop and augmented reality scenario

based training authoring tools. In 2019 IEEE Conference on Virtual

Reality and 3D User Interfaces (VR), pp. 1199–1200. IEEE, 2019.

[13] S. Hart, P. Dinh, and K. Hambuchen. The affordance template ros

package for robot task programming. In 2015 IEEE international

conference on robotics and automation (ICRA), pp. 6227–6234. IEEE,
2015.

[14] S. G. Hart. Nasa-task load index (nasa-tlx); 20 years later. Proceed-

ings of the Human Factors and Ergonomics Society Annual Meeting,
50(9):904–908, 2006. doi: 10.1177/154193120605000909

[15] S. G. Hart and L. E. Staveland. Development of nasa-tlx (task load

index): Results of empirical and theoretical research. In Advances in

psychology, vol. 52, pp. 139–183. Elsevier, 1988.

[16] D. Hayatpur, S. Heo, H. Xia, W. Stuerzlinger, and D. Wigdor. Plane,

ray, and point: Enabling precise spatial manipulations with shape

constraints. In Proceedings of the 32nd Annual ACM Symposium on

User Interface Software and Technology, pp. 1185–1195. ACM, 2019.

[17] C. E. Hughes, C. B. Stapleton, D. E. Hughes, and E. M. Smith. Mixed

reality in education, entertainment, and training. IEEE computer graph-

ics and applications, 25(6):24–30, 2005.

[18] L. Jamone, E. Ugur, A. Cangelosi, L. Fadiga, A. Bernardino, J. Piater,

and J. Santos-Victor. Affordances in psychology, neuroscience, and

robotics: A survey. IEEE Transactions on Cognitive and Developmen-

tal Systems, 10(1):4–25, 2016.

[19] L. Jamone, E. Ugur, A. Cangelosi, L. Fadiga, A. Bernardino, J. Piater,

and J. Santos-Victor. Affordances in psychology, neuroscience, and

robotics: A survey. IEEE Transactions on Cognitive and Developmen-

tal Systems, 10(1):4–25, 2018.

[20] E. Kaas. The ngrain technology difference explained a whitepaper

for technical evaluators of visualization and simulation technologies.

NGRAIN Corporation. Vancouver, Canada.
[21] M. Kapadia, J. Falk, F. Zü nd, M. Marti, R. W. Sumner, and M. Gross.

Computer-assisted authoring of interactive narratives. In Proceedings

of the 19th Symposium on Interactive 3D Graphics and Games, pp.
85–92. ACM, 2015.

[22] T. Le, G. Bui, and Y. Duan. A multi-view recurrent neural network for

3d mesh segmentation. Computers & Graphics, 66:103–112, 2017.

[23] G. A. Lee, C. Nelles, M. Billinghurst, and G. J. Kim. Immersive

authoring of tangible augmented reality applications. In Proceedings of

the 3rd IEEE/ACM international Symposium on Mixed and Augmented

Reality, pp. 172–181. IEEE Computer Society, 2004.

[24] M. Lucrecia, S. Cecilia, P. Patricia, and B. Sandra. Authorar: Authoring

tool for building educational activities based on augmented reality. In

Collaboration Technologies and Systems (CTS), 2013 International

Conference on, pp. 503–507. IEEE, 2013.

[25] B. MacIntyre, M. Gandy, S. Dow, and J. D. Bolter. Dart: a toolkit

for rapid design exploration of augmented reality experiences. In

Proceedings of the 17th annual ACM symposium on User interface

software and technology, pp. 197–206. ACM, 2004.

[26] P. Marion, M. Fallon, R. Deits, A. Valenzuela, C. Pérez D’Arpino,

G. Izatt, L. Manuelli, M. Antone, H. Dai, T. Koolen, et al. Director:

A user interface designed for robot operation with shared autonomy.

Journal of Field Robotics, 34(2):262–280, 2017.
[27] S. Masnadi, J. J. LaViola Jr, J. Pavlasek, X. Zhu, K. Desingh, and O. C.

Jenkins. A sketch-based system for human-guided constrained object

manipulation, 2019.

[28] S. Masnadi, J. J. LaViola Jr, J. Pavlasek, X. Zhu, K. Desingh, and

O. C. Jenkins. Sketching affordances for human-in-the-loop robotic

manipulation tasks. 2nd Robot Teammates Operating in Dynamic,

Unstructured Environments (RT-DUNE), 2019.

[29] A. Matassa and R. Simeoni. Eliciting affordances for smart objects in

iot era. In International Internet of Things Summit, pp. 77–81. Springer,
2014.

[30] A. McEwen and H. Cassimally. Designing the internet of things. John

Wiley & Sons, 2013.

[31] Microsoft. Dynamics 365 guides, https://dynamics.microsoft.com/en-

us/mixed-reality/guides/, 2019.

[32] R. Mur-Artal and J. D. Tardó s. Orb-slam2: An open-source slam

system for monocular, stereo, and rgb-d cameras. IEEE Transactions

on Robotics, 33(5):1255–1262, 2017.
[33] K. Murdock. Autodesk Maya 2019 Basics Guide. SDC Publications,

2018.

[34] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J.

Davison, P. Kohli, J. Shotton, S. Hodges, and A. W. Fitzgibbon. Kinect-

fusion: Real-time dense surface mapping and tracking. In ISMAR,

vol. 11, pp. 127–136, 2011.

[35] G. Ng, J. G. Shin, A. Plopski, C. Sandor, and D. Saakes. Situated

game level editing in augmented reality. In Proceedings of the Twelfth

International Conference on Tangible, Embedded, and Embodied Inter-

action, pp. 409–418. ACM, 2018.

[36] D. T. Nguyen, B.-S. Hua, L.-F. Yu, and S.-K. Yeung. A robust 3d-2d

interactive tool for scene segmentation and annotation. IEEE trans-

actions on visualization and computer graphics, 24(12):3005–3018,
2017.

[37] J.-Y. Oh and W. Stuerzlinger. Moving objects with 2d input devices

in cad systems and desktop virtual environments. In Proceedings of

Graphics Interface 2005, pp. 195–202. Canadian Human-Computer

http://www.scopear.com/products/worklink/
http://www.scopear.com/products/worklink/

Communications Society, 2005.

[38] H. Seichter, J. Looser, and M. Billinghurst. Composar: An intuitive

tool for authoring ar applications. In Proceedings of the 7th IEEE/ACM

international symposium on mixed and augmented reality, pp. 177–178.

IEEE Computer Society, 2008.

[39] A. Shamir. A survey on mesh segmentation techniques. In Computer

graphics forum, vol. 27, pp. 1539–1556. Wiley Online Library, 2008.

[40] T. Shao, W. Li, K. Zhou, W. Xu, B. Guo, and N. J. Mitra. Interpreting

concept sketches. ACM Transactions on Graphics (TOG), 32(4):56,
2013.

[41] O. Sidi, O. van Kaick, Y. Kleiman, H. Zhang, and D. Cohen-Or. Un-

supervised co-segmentation of a set of shapes via descriptor-space

spectral clustering. In Proceedings of the 2011 SIGGRAPH Asia Con-

ference, pp. 1–10, 2011.
[42] G. Sketch. Gravity sketch vr. Gravity Sketch,[Online]. Available:

https://www.gravitysketch.com/.[Accessed 23 November 2019], 2019.

[43] G. Smith and W. Stü rzlinger. Integration of constraints into a vr en-

vironment. In VRIC’01: Proc. of the Virtual Reality Int’l Conf, pp.
103–110, 2001.

[44] T. Taketomi, H. Uchiyama, and S. Ikeda. Visual slam algorithms: a

survey from 2010 to 2016. IPSJ Transactions on Computer Vision and

Applications, 9(1):16, 2017.

[45] The CGAL Project. CGAL User and Reference Manual. CGAL

Editorial Board, 5.0 ed., 2019.
[46] A. Uthor. 3d scene manipulation with 2d devices and constraints. In

Proceedings of graphics interface, pp. 135–142. Citeseer, 2001.

[47] J. Valentin, V. Vineet, M.-M. Cheng, D. Kim, J. Shotton, P. Kohli,

M. Nießner, A. Criminisi, S. Izadi, and P. Torr. Semanticpaint: Interac-

tive 3d labeling and learning at your fingertips. ACM Transactions on

Graphics (TOG), 34(5):154, 2015.
[48] Y. Wang, S. Asafi, O. Van Kaick, H. Zhang, D. Cohen-Or, and B. Chen.

Active co-analysis of a set of shapes. ACM Transactions on Graphics

(TOG), 31(6):1–10, 2012.

[49] T. Whelan, M. Kaess, H. Johannsson, M. Fallon, J. J. Leonard, and

J. McDonald. Real-time large-scale dense rgb-d slam with volumetric

fusion. The International Journal of Robotics Research, 34(4-5):598–
626, 2015.

[50] R. Zeleznik, K. Herndon, and J. Hughes. Sketch: An interface for

sketching 3d scenes. In Computer graphics proceedings, annual con-

ference series, pp. 163–170. Association for Computing Machinery

SIGGRAPH, 1996.

A APPENDIX

Algorithm 1 The mesh cutter algorithm

1: triangles ← getOb jectT riangles()
2: selector ← getSelectorSha pe()
3: in, out ← List()
4: procedure MESHCUTTER(triangles, selector, in, out)
5: for all triangle ∈ triangles do
6: if selector.isF ullInside(triangle) then
7: in.Add(triangle)
8: else if selector.isF ullOutside(triangle) then
9: out.Add(triangle)

10: else
11: CutT riangle(triangle, selector, in, out)

return in, out

12: procedure CUTTRIANGLE(triangle, selector, in, out)

13: vertsin, vertsout ← array[2]
14: inCount, outCount ← 0
15: for i = 0 to 3 do
16: if selector.isInside(triangle.vertices[i]) then
17: vertsin[inCount] ← triangle.vertices[i]
18: inCount ← inCount + 1
19: else
20: vertsout[outCount] ← triangle.vertices[i]
21: outCount ← outCount + 1
22: tm pT ← T riangle()
23: if inCount == 1 then
24: tm pT ← T riangle(vertsin[0], vertsout[0], vertsout[1])
25: else
26: tm pT ← T riangle(vertsout [0], vertsin[0], vertsin[1])

27: v1, v2, v3 ← tm pT.getVertices()
1> /*getIntersectionPoint returns a point on line connecting the
first two parameters where selector intersects the line*/

28: Pt1 ← getIntersectionPoint(v1, v2, selector)
29: Pt2 ← getIntersectionPoint(v1, v3, selector)

1> /*Pt1 and Pt2 are the points where selector cut the edges of
the triangles*/

30: if inCount == 1 then
31: in.Add(T riangle(vertsin[0], Pt1, Pt2))
32: out.Add(T riangle(vertsout[0], Pt1, Pt2))
33: out.Add(T riangle(vertsout[0], vertsout[1], Pt2))
34: else
35: out.Add(T riangle(vertsout[0], Pt1, Pt2))
36: in.Add(T riangle(vertsin[0], Pt1, Pt2))
37: in.Add(T riangle(vertsin[0], vertsin[1], Pt2))

return in, out

http://www.gravitysketch.com/
http://www.gravitysketch.com/
http://www.gravitysketch.com/

