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Abstract
We propose a method to fuse posterior distribu-
tions learned from heterogeneous datasets. Our
algorithm relies on a mean field assumption for
both the fused model and the individual dataset
posteriors and proceeds using a simple assign-and-
average approach. The components of the dataset
posteriors are assigned to the proposed global
model components by solving a regularized vari-
ant of the assignment problem. The global com-
ponents are then updated based on these assign-
ments by their mean under a KL divergence. For
exponential family variational distributions, our
formulation leads to an efficient non-parametric
algorithm for computing the fused model. Our
algorithm is easy to describe and implement, ef-
ficient, and competitive with state-of-the-art on
motion capture analysis, topic modeling, and fed-
erated learning of Bayesian neural networks.1

1. Introduction
In this paper, we study model fusion, the problem of learn-
ing a unified global model from a collection of pre-trained
local models. Model fusion provides a straightforward and
efficient approach to federated learning (FL), in which a
model is learned from siloed data without direct access.

As a motivating example, any one hospital may be able
to use its patient data to train a model aiding diagnosis or
treatment, but due to limited data and skew the resulting
model may not be effective. To overcome this issue, a
group of hospitals could in principle collaborate to produce
a stronger model by pooling their data, but it is typically not
permissible to share individual patient information between
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(a) Bayesian neural network trained on biased data

(b) Fused Bayesian neural network

Figure 1. Bayesian neural networks can estimate how certain they
are of each prediction they make. To illustrate this, we train a
network on a subset of the MNIST dataset that mostly contains the
digit 2 and ask the network to predict on all digits; confidence is
predictably low on digits other than 2. However, if we are given
several pre-trained networks that each exhibit certain biases, but
which in aggregate have seen examples of all 10 digits, can we
merge them together into a network that has high accuracy and is
confident on all of MNIST? We propose a model fusion approach
to solve this and other related problems. To illustrate our approach,
we train Bayesian neural networks on subsets of MNIST that are
skewed toward a few digits and fuse the trained networks. To
show that the fused network is confident on all 10 digits, we order
samples by the entropy of the network’s prediction for the fused
model (b), and compare to a local model trained on mostly 2s
(a). These images sort examples about which the networks are
most confident (left) to least confident (right). The fused network
is still unconfident on out-of-sample data not used to train any
of the fused networks—in this case, digits from fonts rather than
handwriting—while the biased Bayesian network is unconfident
on digits different than those seen in its training set.

institutions. Federated learning—including model fusion—
provides a means of generating a stronger or more widely-
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applicable model than what can be obtained from any one
hospital’s data, while only sharing aggregate information
in the form of model parameters. As a second example,
when learning from edge devices (e.g., next word prediction
on smart phones), users often do not want their personal
data to leave the device. Federated learning algorithms
only require parties (i.e., data owners) to share only local
model parameters, rather than providing direct access to
user-specific local data. Some key aspects that distinguish
federated learning from classical distributed learning are
(1) constraints on the frequency of communication and (2)
heterogeneity of the local datasets.

To overcome these challenges, we fuse heterogeneous mod-
els in a single communication round that aggregates locally-
trained models into a global model. This “one-shot” ap-
proach, which distinguishes model fusion from other FL
methods, is crucial for certain applications yet is largely
overlooked with the exception of Yurochkin et al. (2019a;b).
In particular, the one shot approach allows parties to erase
data in favor of storing only their local models.

Many common examples motivating FL require well-
calibrated uncertainty measurements for the fused model;
our examples of medical decision-making and word pre-
diction on smart phones provide applications in which un-
certainty quantification can be used to avoid making an
inaccurate and potentially unsafe intervention. This context
motivates a Bayesian approach to model fusion and FL more
broadly. The Bayesian nature of our fusion algorithm bol-
sters trust in systems that use this machinery in applications
that encounter out-of-distribution samples when deployed in
practice. We demonstrate the value of a Bayesian approach
to model fusion through applications from topic models to
neural networks.

Contributions. We present a Bayesian approach to model
fusion, in which local models trained on individual datasets
are combined to learn a single global model. Our approach
fuses models represented using the mean field approxima-
tion, common for lightweight and robust local estimation.
It is nonparametric in the sense that it does not require the
dimensionality of the fused mean field model to be fixed a
priori. Specific contributions include:

• a non-parametric method to determine the posterior dis-
tribution of the fused global model;

• an easily-implemented assign-then-average fusion pro-
cedure that scales to large numbers of local posterior
distributions and fused model components;

• a model for fusion that is flexible enough to handle poste-
rior distributions in any exponential family; and

• comprehensive validation demonstrating effectiveness
for applications including motion capture analysis, topic
modeling, and Bayesian neural networks.

2. Related Work
This paper develops model fusion techniques for approx-
imate Bayesian inference, combining parametric approxi-
mations to an intractable posterior distribution. While we
primarily focus on mean-field variational inference (VI),
owing to its popularity, our methods are equally applicable
to Laplace approximations (Bishop, 2006), assumed density
filtering (Opper, 1998), and expectation propagation (Minka,
2001) methods that learn a parametric approximation to the
posterior. Variational inference seeks to approximate the
true posterior distribution by a tractable approximate dis-
tribution by minimizing the KL divergence between the
variational approximation and the true posterior. In con-
trast with Markov chain Monte Carlo methods, VI relies on
optimization and is thus able to exploit advances in stochas-
tic gradient methods allowing for VI based inference al-
gorithms to scale to large data and models with a large
number of parameters, such as Bayesian Neural Networks
(BNNs) (Neal, 1995) considered in this work.

Distributed posterior inference has been actively studied
in the literature (Hasenclever et al., 2017; Broderick et al.,
2013; Bui et al., 2018; Srivastava et al., 2015; Bardenet
et al., 2017). As with distributed optimization, however, the
goal is typically to achieve computational speedups, leading
to approaches ill suited for model fusion due to high num-
ber of communication rounds required for convergence and
assumption on the homogeneity of the datasets. Moreover,
the inherent permutation invariance structure of many high-
utility models (e.g., topic models, mixture models, HMMs,
and BNNs) is ignored by prior distributed Bayesian learning
methods as it is of minor importance when many communi-
cation rounds are permissible. On the contrary, our model
fusion formulation requires careful consideration of the per-
mutation structure as we show in the subsequent section.
Aggregation of Bayesian posteriors respecting permutation
structure was considered in Campbell & How (2014), but
their method is limited to homogeneous data and requires
combinatorial optimization except few special cases. Subse-
quent work relaxes the homogeneity constraint and propose
a greedy streaming approach for Dirichlet process mixture
models (Campbell et al., 2015).

Yurochkin et al. (2019a;b) studied fusion of parameters of
permutation invariant models learned from heterogeneous
data, however their approach is not suitable when a global
posterior, rather than a point estimate, is desired. This limi-
tation makes their methods ill-suited for fusion of Bayesian
neural networks where posterior is required to assess pre-
diction uncertainty—the key utility of BNNs. Their method
also precludes using full information provided by the local
posteriors, e.g. covariances, that may be necessary to effi-
ciently identify global model with fusion as we demonstrate
in the experimental studies.
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3. Homogeneous Fusion
Before introducing our non-parametric model for heteroge-
neous fusion, we consider the simpler homogeneous fusion
problem. The purpose of this section is to define notation
and to introduce the building blocks for the algorithm of §4.

Assume we haveD datasets on which we run some inference
procedure to recover a mean-field approximation to the
posterior distribution. For dataset j, we are thus given

pj(z1, . . . , zL) =
L∏
l=1

q(zl|θjl )

where q(zl|θjl ) is the approximate posterior of component
zl parameterized by θjl . An example to keep in mind is topic
modeling, where the zl’s represent topics and the θl’s are the
posterior variational Dirichlet parameters for topic l. Our
goal is to recover a single global distribution over the zl’s
without returning to the data to learn this global distribution.
Hence, all we can use for inference are the parameters θjl
extracted from each dataset j.

We can pose the problem of recovering a global posterior
as that of minimizing a divergence D(· ‖ ·) to the local pos-
teriors, but the ordering of posterior parameters is different
from dataset to dataset. This phenomenon is called label
switching, and is caused by the permutation invariance of
the posterior (Monteiller et al., 2019).

Because we are in the homogeneous case, we can assume
that the components of each local posterior can be put into
correspondence across datasets. This allows us to assume
that the global model admits the same product factorization:

p̄(z1, . . . , zL) =
L∏
g=1

q(zg|θ̄g).

Our goal is to find an effective choice of the θ̄g’s, but we
must be careful in how we define the objective. In partic-
ular, the ordering of components for each dataset can be
arbitrary as the posteriors are invariant to permutations in
the parameters, and our objective function must account for
this permutation invariance.

To this end, we introduce auxiliary optimization variables
P j for each dataset posterior. The P j’s are permutation
matrices that allow for parameter reorderings across local
models. The problem we wish to solve is then:

min
{θ̄g},{P j}

D∑
j=1

D

(
L∏
l=1

q

(
zg

∣∣∣∣∣
L∑
g=1

P jlg θ̄g

)∥∥∥∥∥
L∏
l=1

q(zl|θjl )

)

subject to
L∑
l=1

P jlg = 1,
L∑
g=1

P jlg = 1, P jlg ∈ {0, 1}.

(1)

The notation for indices here and later follows the con-
vention that g indexes global parameters, l indexes local
parameters, and j indexes datasets; D is a divergence. To
read this equation, notice that the inner sum

∑L
g=1 P

j
lg θ̄g

selects the global parameter that best explains the zl. Thus,
we can think of (1) as asking for the choice of global pa-
rameters θ̄g as well as a permutation for each dataset telling
how to put the θ̄g and θjl in correspondence such that the
total divergence over all datasets is minimized.

The tractability of this problem depends on the divergence
D(· ‖ ·). One choice that greatly simplifies the problem is
the Kullback–Leibler (KL) divergence, which decomposes
over product distributions and allows us to write (1) as

min
{θ̄g},{P j}

D∑
j=1

L∑
l=1

KL

(
q

(
zg

∣∣∣∣∣
L∑
g=1

P jlg θ̄g

) ∥∥∥∥∥ q(zl|θjl )
)

subject to
L∑
l=1

P jlg = 1,

L∑
g=1

P jlg = 1, P jlg ∈ {0, 1}.

(2)

To further simplify, we can exploit the binary constraints in
our problems. The P j’s are binary matrices with a single
1 in each row and column. Because all other entries of
P j·g are 0, we can move the sum outside the KL term, as
P jlg ·KL(· ‖ ·) will not contribute to the objective function
if P jlg = 0. The final form of our objective becomes

min
{θ̄g},{P j}

D∑
j=1

L∑
l,g=1

P jlgKL
(
q(zg|θ̄g)

∥∥∥ q(zl|θjl ))

subject to
L∑
l=1

P jlg = 1,

L∑
g=1

P jlg = 1, P jlg ∈ {0, 1}.

(3)

Problem (3) is easier to solve than what we started with in
(1). With fixed {P j}, the problem is a barycenter or clus-
tering problem under the KL divergence, which is known
in closed form for exponential family distributions (§3.1),
while with fixed {θ̄g} it reduces to a stable marriage as-
signment that can be solved efficiently using the Hungarian
algorithm (Kuhn, 1955); this step has worst-case Õ(L3)
complexity. Since the local parameters θjl are independent
across datasets, the P j’s can be computed independently.

3.1. Averaging parametric distributions

For posterior distributions that are in the same exponential
family, computing their barycenter under the KL divergence
amounts to averaging their natural parameters (Banerjee
et al., 2005). In particular, given distributions qi in the same
exponential family Q with natural parameters ηi as well as
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a set of weights λi ≥ 0 with
∑
i λi = 1, the solution to

min
q∈Q

n∑
i=1

λiKL(q ‖ qi)

is a distribution q∗ ∈ Q with natural parameter η∗ =∑n
i=1 λiηi. In our case, given a assignments {P j}, we

can solve for θ̄g by minimizing

min
qg∈Q

D∑
j=1

L∑
l=1

P jlgKL
(
qg

∥∥∥ q(zl|θjl )) (4)

and converting from natural parameters to θ̄g .

4. Heterogeneous Fusion
The homogeneous approach requires two assumptions that
often do not hold: (1) that the local posterior distributions
contain the same number of components and (2) that these
components can be matched to one another.

As an extreme example, if we run an inference procedure on
data gathered from multiple hospitals, each specializing in
a particular set of diseases, we ideally expect the combined
model to incorporate information about all diseases treated
across all hospitals. If we run the procedure on the data
from each hospital individually, however, then each hospi-
tal’s model only contains information about the diseases it
treats; the mismatch between maladies at different hospitals
prevents us from matching their parameters bijectively.

Motivated by this example, we observe that in practical set-
tings the global fused model likely needs more components
than the local models to capture the fact that local data can
be skewed or missing. We call this setting the heterogeneous
case. In the heterogeneous model, the inference procedure
on each dataset may find a different number of components.
Some components present in one dataset may not be present
in another, and the total number of components is unknown—
demanding a nonparametric solution.

4.1. Heterogeneous Model

To describe our model for heterogeneous fusion, we make a
few notational changes. Let G be an estimate of the number
of global components (we will see how G can be inferred in
§4.2), and Lj be the number of components in dataset j. In-
stead of permutation matrices, the P j are singly-stochastic,
since there may be unmatched global components. We can

modify (1) to take these changes into account:

min
{θ̄g},{P j}

D∑
j=1

D

 Lj∏
l=1

q

(
zg

∣∣∣∣∣
G∑
g=1

P jlg θ̄g

)∥∥∥∥∥∥
Lj∏
l=1

q(zl|θjl )


subject to

Lj∑
l=1

P jlg ≤ 1,
G∑
g=1

P jlg = 1, P jlg ∈ {0, 1}.

(5)

If we think of P j as an Lj ×G matrix, the inequality con-
straint in (5) forces columns of P j to zero if global com-
ponent g is not used. The same simplifications we used to
derive (3) in §3 apply here, leading to the following formu-
lation of the heterogeneous problem when G is known:

min
{θ̄g},{P j}

D∑
j=1

Lj∑
l=1

G∑
g=1

P jlgKL
(
q(zg|θ̄g)

∥∥∥ q(zl|θjl ))

subject to
Lj∑
l=1

P jlg ≤ 1,

G∑
g=1

P jlg = 1, P jlg ∈ {0, 1}.

(6)

This model can cope with mismatched components among
the local models (e.g., different diseases appearing at differ-
ent hospitals), but it does not tell how to choose the number
of global components G—a challenge we address next.

4.2. Estimating the number of global components

A key issue with (6) is that we do not know the true number
of global components G. If we naı̈vely overestimate this
parameter, there is neither a term in the objective nor a con-
straint in (6) that would reduce the number of components
that are used; in the extreme case, the fused model would
simply concatenate all the components of the local models
without clustering any of them together.

To motivate our approach to choosing G, we first consider
the simpler problem of matching a single local model to the
global model. The optimization variables in this case are the
θ̄g’s as before, as well as a single L×G matching matrix P .
We believe that the local model can be approximated best
by a small number of components, and we wish to encode
this explicitly in the objective.

Recall that a component of the global model that goes un-
used corresponds to a 0 column of P . For a binary matrix
P with G > L, 0 columns occur for exactly G− L of the
columns when optimizing (6) with L = 1. But, if we re-
lax the binary constraint, this may no longer be the case.
Inspired by the approach of Carli et al. (2013) to cluster-
ing using optimal transport, to promote 0 columns in P
for the relaxed problem where Plg ∈ [0, 1], we regularize
our problem using the L2,1 matrix norm. This approach
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can be understood as optimizing the L1 norm of the vec-
tor of L2 column norms of P , promoting sparsity in the
vector of norms and hence existence of 0 columns in P .
In mathematical notation, our relaxed objective with the
sparsity-promoting regularizer is

∑
l,g

PlgKL
(
q(zg|θ̄g)

∥∥ q(zl|θl))+ λ
G∑
g=1

(
L∑
l=1

P 2
lg

)1/2

.

(7)

The mixed-norm regularizer is needed instead of a simpler
L1 regularizer, since the constraints of (6) effectively pre-
scribe the L1 norm of P to a fixed constant.

A naı̈ve extension to multiple local models might sum (7)
over all datasets, but this approach only promotes sparsity
within the individual global-to-local assignments. This can
lead to a scenario wherein every global component is as-
signed to some local component at least once, again satu-
rating the total number G of available global components.
Instead, following the intuition above, we can view the set
{P j}Dj=1 as a tensor and minimize an L2,2,1 tensor norm:

G∑
g=1

 D∑
j=1

 Lj∑
l=1

(P jlg)
2

1/2

. (8)

This quantity is the L2,1 norm of the G×D matrix whose
element at position (g, j) is the norm of column g in P j .

4.3. The heterogeneous matching problem

Combining (5)–(8) yields the following problem:

min
{θ̄g},{P j}

D∑
j=1

Lj∑
l=1

G∑
g=1

P jlgKL
(
q(zg|θ̄g)

∥∥∥ q(zl|θjl ))+

λ

G∑
g=1

 D∑
j=1

 Lj∑
l=1

(P jlg)
2

1/2

subject to
Lj∑
l=1

P jlg ≤ 1,
G∑
g=1

P jlg = 1, P jlg ∈ {0, 1}.

(9)

Choosing λ. To choose a regularization parameter λ, we
ensure that the two terms in the objective have the same
scale. Since the P j’s are positive matrices with entries less
than 1, the scale of the problem is given by the KL(· ‖ ·)
terms. An empirically effective choice is to scale the diver-
gences by their standard deviation and set λ = 0.1.

Alternation algorithm. Optimizing (9) is not straightfor-
ward. In the homogeneous case, we exploited the fact that

P j was a permutation to relax the binary constraints and
recover a binary matrix; thanks to the inequality in (6), how-
ever, we are no longer guaranteed to find a binary P j if
we relax the P jlg ∈ {0, 1} constraint. Relaxing the binary
constraints, however, turns (9) into a convex problem in the
{P j} and {θ̄g} individually. Our alternation approach from
§3 can be modified to suit our new problem. Because we
are no longer guaranteed that the P j’s are permutations, we
take a weighted average when updating the θ̄g’s using (4).

5. Experimental Results
5.1. Simulated experiments

We begin by verifying KL-fusion in a synthetic setting. We
consider the problem of fusing Gaussian mixture models
with arbitrary means and covariances. Our goal is to esti-
mate true data-generating mixture components by fusing
local posterior approximations.

To quantify estimation quality we compute Hausdorff dis-
tances between the polytopes spanned by true and estimated
mixture component means, as suggested by Nguyen (2013;
2015). We also evaluate error in the fused model size G
relative to the true value. Typical Gaussian mixtures as-
sume a Gaussian–Wishart prior for means and covariances
of the components (Bishop, 2006); in this case, the poste-
rior can be estimated efficiently using mean-field variational
inference with Gaussian–Wishart variational distributions
(Attias, 2000). To simulate instances of the heterogeneous
fusion problem, when generating local dataset, we sample a
random subset of the global mixture components and add
Gaussian noise to add heterogeneity in model size and pa-
rameters. We describe the generating process precisely in
the supplemental document.

We consider three baselines:

• “Oracle” variational inference (VI) trained on a pooled
dataset given the true number of global components (this
reference baseline that is infeasible in model fusion);

• Dirichlet process (DP) based clustering of the mean com-
ponents of the local posteriors (Ferguson, 1973; Blei &
Jordan, 2006); and
• the SPAHM fusion method (Yurochkin et al., 2019a).

The fusion method of Campbell & How (2014) is too in-
efficient for this problem, since it requires combinatorial
search; see §5.3 for a comparison to their method.

Our first experiment demonstrates failure of prior methods
when the means of the data-generating mixture components
are poorly-separated; in this case, we need covariances to
disambiguate the components. KL-fusion utilizes full poste-
rior, while SPAHM and DP are limited to only using point
estimates of the local posterior means. In Figure 2, we
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Figure 2. Fusion of Gaussian mixture posteriors under varying degree of separation between data generation mixture components.
KL-fusion can identify true mean parameters under the low separation regime utilizing the covariance information.
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Figure 3. Fusion of Gaussian mixture posteriors under varying heterogeneity in local datasets enforced via noise standard deviation added
to global means when simulating local means. KL-fusion outperforms baselines and degrades gracefully.

vary scale of the variance used to generate means of the
true mixture components (higher x-axis value implies bet-
ter separation): KL-fusion is the only fusion method capa-
ble of accurate estimation on par with the VI oracle in the
low-separation regime. SPAHM performs well only when
mixture means are well-separated.

In our second experiment, we fix the separation scale (at
0.5) and study the effect of noise on the generating process
for local components. As before, to generate local compo-
nents we sample from a random subset of the global mixture
components and add Gaussian noise to introduce local het-
erogeneity. We vary this noise in Figure 3 and report results
on estimating the true number of components as well as
the Hausdorff distance between estimated and true global
models (in the previous experiment we fixed the noise at
0.5). Intuitively, the problem becomes harder as this noise
increases, eventually producing datasets that do not relate to
the global structure in a meaningful way. In general, our re-
sults with KL-fusion and oracle VI support the intuition that
performance degrades gracefully as local models vary more
from the underlying global model. Fusion-based inference
can even outperform pooled inference: local datasets have
less structure and are potentially more amenable to mean-

field inference, yielding high-quality approximate posteriors
for the subsets of the global model that are easily aggregated
using KL-fusion. SPAHM model size estimation error de-
creases as a function of the noise variance that we add to
simulate heterogeneity; this might be caused by the addi-
tional separation introduced with this noise.

5.2. Analyzing motion sequences through fused hidden
Markov models

We consider the problem of discovering common structures
among related time series. As a motivating application,
we study data from motion capture sensors on joints of
people performing exercise routines, collected from the
CMU MoCap database.2 Each sequence in this database
consists of 64 measurements of human subjects performing
various exercises over time. Following (Fox et al., 2014),
we select 12 informative measurements for capturing gross
motor behavior: body torso position, neck angle, two waist
angles, and a symmetric pair of right and left angles at each
subjects shoulders, wrists, knees, and feet. Each sequence
thus is a 12-dimensional time series. We use a curated subset

2http://mocap.cs.cmu.edu

http://mocap.cs.cmu.edu
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Table 1. MoCap labeling quality comparison

Rand index AMI

KL-fusion 0.286 0.458
SPAHM 0.254 0.445

collected by Fox et al. (2014) of two subjects each providing
three sequences. In addition to having several exercises in
common, this subset comes with human-annotated labels,
facilitating quantitative comparisons between models.

We use mean-field inference with Gaussian–Wishart varia-
tional distributions to obtain the approximate posterior of
a “sticky” HDP-HMM (Fox et al., 2008), similar to the
analogous experiment by Yurochkin et al. (2019a). KL-
fusion matches activities inferred from each subject. We
use the Rand index (Rand, 1971) and Adjusted Mutual In-
formation (AMI) (Vinh et al., 2010) to quantify quality of
the fused model according the human-annotated labels. Ta-
ble 5.2 compares performance of KL-fusion to SPAHM,
demonstrating improved quality of the activity labelings
corresponding to the fused models. This experiment gives a
practical example where covariances in a Gaussian–Wishart
mean-field approximation improve fusion, enabled by KL-
fusion’s ability to process exponential family distributions.

5.3. Fusion of topic models

Following Campbell & How (2014), we run decentralized
variational inference on the latent Dirichlet allocation topic
model (Blei et al., 2003). We verify our method against Ap-
proximate Merging of Posteriors with Symmetry (AMPS)
algorithm from Campbell & How (2014) on the 20 news-
groups dataset, consisting of 18,689 documents with 1,000
held out for testing and a vocabulary of 12,497 words after
stemming and stop word removal.

The full description of the model setup is given in the supple-
mental document. Briefly, the posterior Dirichlet variational
parameters learned on the local datasets are fused using KL-
fusion and AMPS, and the resulting models are evaluated by
computing the predictive log likelihood of 10% of the words
in each test document given the remaining 90%. Results
are given in Figure 4 for 10 trials; we measure the test log
likelihood and amount of time required to compute the fused
model. The parametric model in (3) and the objective for
AMPS are similar, and thus we expect similar performance
from the two methods; our non-parametric version can infer
richer models and performs better, but comes at an increased
computational cost.

5.4. Fusion of Bayesian neural networks

In this experiment we demonstrate utility of KL-fusion ap-
plied to one-shot federated learning of Bayesian neural net-

10 20 30 40 50 60
Time (s)

7.34

7.32

7.30

7.28

7.26

P
re

di
ct

iv
e 

lo
gl

 i
ke

li
h
oo

d

KL-fusion (parametric)

KL-fusion (non-parametric)

AMPS

Figure 4. Scatter plot of test log likelihood and time for the ex-
periment described in §5.3. Higher log likelihood is better. The
parametric model minimizes a very similar objective to AMPS
and we observe similar performance between the two. The richer
expressiveness of the non-parametric model allows it to perform
better, but comes with larger computational requirements.

works. Federated learning systems deployed in practice will
inevitably face examples outside of the train data distribu-
tion leading to mistakes that might be costly for a business or
diminish satisfaction of a user with an edge device. Bayesian
neural networks are valued for their ability to quantify pre-
diction uncertainty and raise an alarm when facing an out
of distribution (OOD) example, but in a federated learning
setting data of any individual client might be insufficient to
obtain a good quality BNN.

We measure the effectiveness of our procedure for fusing
BNNs locally trained on MNIST digits. For this experi-
ment, we split the MNIST training data into five partitions
at random. We simulate a heterogeneous partitioning of the
data by sampling the proportion pk of each class k from
a five-dimensional symmetric Dirichlet distribution with a
concentration parameter of 0.8, and allocating a pk,j propor-
tion of the instances of class k to partition j. This process
results in a non-uniform distribution of classes in each par-
tition. For each dataset we train a single 150-node hidden
layer BNN with a horseshoe prior (Ghosh et al., 2019; 2018).
Horseshoe is a shrinkage prior allowing BNNs to automati-
cally select the appropriate number of hidden units. We use
Gaussian variational distribution with diagonal covariance
for the weights of the neurons. Details are presented in the
supplement.

We use KL-fusion to obtain a global BNN with 281 units,
far smaller than a concatenation of all the local BNNs. Ta-
ble 2 illustrates that the fused model significantly improves
upon the predictive performance of the local models both
in terms of accuracy and held-out test log likelihoods. We
also examine the predictive uncertainties produced by the
fused BNN. Figure 1 qualitatively compares the predictive
entropy produced by the fused BNN against one of the local
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Figure 5. Entropy of local BNNs and KL-fused BNN across 10 digits of MNIST and Fonts centered at the corresponding mean MNIST
entropies. Centered entropy above 0 indicates higher uncertainty comparative to that of the MNIST digits for a given BNN. Fused BNN
has increased uncertainty over the Fonts digits, while local BNNs do not show such a trend.

Table 2. Comparison of local and fused BNNs

Accuracy, % Test ll Entropy

KL-fusion 95.8 -0.32 0.79
BNN 0 90.1 -1.42 2.12
BNN 1 91.6 -1.44 2.13
BNN 2 82.7 -1.56 2.17
BNN 3 87.8 -1.37 2.08
BNN 4 91.9 -1.18 2.00

BNNs on a set of test images comprising of the standard
MNIST test set as well as an out of distribution sample made
up of computer generated digits in various fonts (Smirnov
et al., 2020). We observe that while the local network’s low
entropy samples are heavily influenced by the local training
data, the fused model is able to borrow statistical strength
from all the local models and exhibits low entropy across all
MNIST digits, reserving high entropy predictions for those
digits from the OOD set whose fonts look very different
from the hand drawn MNIST digits.

In Figure 5 we plot average entropies of the local BNNs
and the KL-fused BNN across digits and datasets centering
at the corresponding mean entropy on all MNIST digits.
The Dirichlet based split of the train data resulted in dataset
0 receiving 2s (78% of all MNIST images of 2) and 7s
(69%), dataset 4 received 62% of all 0s and 68% of 3s (other
datasets are also skewed but to a lesser extent). As a result,
we observe a lower entropy for 2s and 7s, in both MNIST
and Fonts, displayed by BNN 0, and similar for BNN 4 on
0s and 3s. This observation suggests (as well as Figure 1)
that these BNNs have learned to distinguish their dominant
digits from the rest of the digits, rather than the desired
BNN classifying all 10 digits and being uncertain on OOD
examples. Our KL fusion method is able to produce a BNN
with the desired properties from these biased local BNNs as
entropy increases significantly on the OOD Fonts digits.

6. Conclusion
Federated learning techniques vary in complexity and com-
munication overhead. On one extreme, some approaches
hand information back and forth between different entities

as they reach a consensus on the global model. On the other
extreme, model fusion extracts a global model in a single
shot: Local models are combined into the global model by
solving a single optimization problem, and then the learning
procedure is complete. Our technique and experiments show
that model fusion can be effective despite its simplicity: In
a single step, we extract a global model capturing relevant
information from multiple local models.

The design of an effective fusion algorithm combines several
key ideas. Working specifically with mean field approxima-
tions and exponential family distributions leads to a feasible
algorithm while staying applicable to a wide array of prac-
tical scenarios, as illustrated by the examples in §5. This
setup also allows our method to use information about the
full local distributions, rather than point estimates as in pre-
vious work (Yurochkin et al., 2019a). Moreover, mixed
norm regularization dynamically adjusts the dimensional-
ity of our fused model. More broadly, model fusion in the
Bayesian setting accompanies the fused model with uncer-
tainty estimates, valuable for detecting out-of-distribution
samples that are not captured by any of the individual local
models as in Figure 1.

The success of KL-fusion suggests several avenues for fu-
ture work. We likely can extend our algorithm to Bregman
divergences other than KL using a similar formulation and
algorithm; farther afield, optimal transport distances could
improve the quality of our inference procedure but would
likely require adjustment to the simplifications outlined in
§3. We also could extend our method to handle iterative
refinement, communicating the global model back to the
local models as a means of improving the analysis of each
component dataset.

KL-fusion seeks to find a global model to best approximate
all of the local posteriors. In the distributed posterior infer-
ence literature the goal is often to approximate the posterior
distribution of a pooled dataset assuming homogeneous data
partition, e.g. Srivastava et al. (2015). Understating the
connection between fused model and pooled data posterior
is an interesting theoretical problem demanding new proof
techniques to account for permutation invariance and data
heterogeneity considered in our KL-fusion algorithm.
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