Pillar-based Object Detection
for Autonomous Driving

Yue Wang!'2, Alireza Fathi?, Abhijit Kundu?, David A. Ross?,
Caroline Pantofaru?, Tom Funkhouser?, and Justin Solomon'

! MIT
{yuewangx, jsolomon}@mit.edu
2 Google
{alirezafathi,abhijitkundu,dross,cpantofaru,tfunkhouser}@google.com

Abstract. We present a simple and flexible object detection framework
optimized for autonomous driving. Building on the observation that point
clouds in this application are extremely sparse, we propose a practical
pillar-based approach to fix the imbalance issue caused by anchors. In
particular, our algorithm incorporates a cylindrical projection into multi-
view feature learning, predicts bounding box parameters per pillar rather
than per point or per anchor, and includes an aligned pillar-to-point pro-
jection module to improve the final prediction. Our anchor-free approach
avoids hyperparameter search associated with past methods, simplifying
3D object detection while significantly improving upon state-of-the-art.

1 Introduction

3D object detection is a central component of perception systems for autonomous
driving, used to identify pedestrians, vehicles, obstacles, and other key features of
the environment around a car. Ongoing development of object detection methods
for vision, graphics, and other domain areas has led to steady improvement in
the performance and reliability of these systems as they transition from research
to production.

Most 3D object detection algorithms project points to a single prescribed
view for feature learning. These views—e.g., the “bird’s eye” view of the envi-
ronment around the car—are not necessarily optimal for distinguishing objects
of interest. After computing features, these methods typically make anchor-based
predictions of the locations and poses of objects in the scene. Anchors provide
useful position and pose priors, but they lead to learning algorithms with many
hyperparameters and potentially unstable training.

Two popular architectures typifying this approach are PointPillars [16] and
multi-view fusion (MVF) [51], which achieve top efficiency and performance
on recent 3D object detection benchmarks. These methods use learning repre-
sentations built from birds-eye view pillars above the ground plane. MVF also
benefits from complementary information provided by a spherical view. These
methods, however, predict parameters of a bounding box per anchor. Hyperpa-
rameters of anchors need to be tuned case-by-case for different tasks/datasets,

2 Wang et al.

reducing practicality. Moreover, anchors are sparsely distributed in the scene,
leading to a significant class imbalance. An anchor is assigned as positive when
its intersection-over-union (IoU) with a ground-truth box reaches above pre-
scribed threshold; the number of positive anchors is less than 0.1% of all anchors
in a typical point cloud.

As an alternative, we introduce a fully pillar-based (anchor-free) object de-
tection model for autonomous driving. In principle, our method is an intuitive
extension of PointPillars [16] and MVF [51] that uses pillar representations in
multi-view feature learning and in pose estimation. In contrast to past works, we
find that predicting box parameters per anchor is neither necessary nor effective
for 3D object detection in autonomous driving. A critical new component of our
model is a per-pillar prediction network, removing the necessity of anchor as-
signment. For each birds-eye view pillar, the model directly predicts the position
and pose of the best possible box. This component improves performance and is
significantly simpler than current state-of-the-art 3D object detection pipelines.

In addition to introducing this pillar-based object detection approach, we also
propose ways to address other problems with previous methods. For example,
we find the spherical projection in MVF [51] causes unnecessary distortion of
scenes and can actually degrade detection performance. So, we complement the
conventional birds-eye view with a new cylindrical view, which does not suffer
from perspective distortions. We also observe that current methods for pillar-
to-point projection suffer from spatial aliasing, which we improve with bilinear
interpolation.

To investigate the performance of our method, we train and test the model
on the Waymo Open Dataset [39]. Compared to the top performers on this
dataset [27,51, 16], we show significant improvements by 6.87 3D mAP and 6.71
2D mAP for vehicle detection. We provide ablation studies to analyze the con-
tribution of each proposed module in §4 and show that each outperforms its
counterpart by a large margin.

Contributions. We summarize our key contributions as follows:

— We present a fully pillar-based model for high-quality 3D object detec-
tion. The model achieves state-of-the-art results on the most challenging
autonomous driving dataset.

— We design an pillar-based box prediction paradigm for object detection,
which is much simpler and stronger than its anchor-based and/or point-
based counterpart.

— We analyze the multi-view feature learning module and find a cylindrical
view is the best complementary view to a birds-eye view.

— We use bilinear interpolation in pillar-to-point projection to avoid quantiza-
tion errors.

— We release our code to facilitate reproducibility and future research:
https://github.com/WangYueFt/pillar-od.

Pillar-based Object Detection for Autonomous Driving 3

2 Related Work

Methods for object detection are highly successful in 2D visual recognition [8, 7,
34,11,21,33]. They generally involve two aspects: backbone networks and detec-
tion heads. The input image is passed through a backbone network to learn latent
features, while the detection heads make predictions of bounding boxes based on
the features. In 3D, due to the sparsity of the data, many special considerations
are taken to improve both efficiency and performance. Below, we discuss related
works on general object detection, as well as more general methods relevant to
learning on point clouds.

2D object detection. RCNN [8] pioneers the modern two-stage approach to
object detection; more recent models often follow a similar template. RCNN
uses a simple selective search to find regions of interest (region proposals) and
subsequently applies a convolutional neural network (CNN) to bottom-up region
proposals to regress bounding box parameters.

RCNN can be inefficient because it applies a CNN to each region proposal,
or image patch. Fast RCNN [7] addresses this problem by sharing features for
region proposals from the same image: it passes the image in a one-shot fashion
through the CNN, and then region features are cropped and resized from the
shared feature map. Faster RCNN [34] further improves speed and performance
by replacing the selective search with region proposal networks (RPN), whose
features can be shared.

Mask RCNN [11] is built on top of Faster RCNN. In addition to box predic-
tion, it adds another pathway for mask prediction, enabling enables object detec-
tion, semantic segmentation, and instance segmentation using a single pipeline.
Rather than using ROIPool [7] to resize feature patch to a fixed size grid, Mask
RCNN proposes using bilinear interpolation (ROIAlign) to avoid quantization
error. Beyond significant structural changes in the general two-stage object de-
tection models, extensions using machinery from image processing and shape reg-
istration include: exploiting multi-scale information using feature pyramids [19],
iterative refinement of box prediction [2], and using deformable convolutions [6]
to get an adaptive receptive field. Recent works [53,41,50] also show anchor-
free methods achieve comparable results to existing two-stage object detection
models in 2D.

In addition to two-stage object detection, many works aim to design real-time
object detection models via one-stage algorithms. These methods densely place
anchors that define position priors and size priors in the image and then asso-
ciate each anchor with the ground-truth using an intersection-over-union (IoU)
threshold. The networks classify each anchor and regress parameters of anchors;
non-maximum suppression (NMS) removes redundant predictions. SSD [21] and
YOLO [32,33] are representative examples of this approach. RetinaNet [20] is
built on the observation that the extreme foreground-background class imbal-
ance encountered during training causes one-stage detectors trailed the accuracy
of two-stage detectors. It proposes a focal loss to amplify a sparse set of hard
examples and to prevent easy negatives from overwhelming the detector dur-
ing training. Similar to image object detection, we also find the imbalance issue

4 Wang et al.

causes instability in 3D object detection. In contrast to RetinaNet, however, we
replace anchors with pillar-centric predictions to alleviate imbalance.

Learning on point clouds. Point clouds provide a natural representation of
3D shapes [3] and scenes. Due to irregularity and symmetry under reordering,
however, defining convolution-like operations on point clouds is difficult.

PointNet [30] exemplifies a broad class of deep learning architectures that
operate on raw point clouds. It uses a shared multi-layer perceptron (MLP) to
lift points to high-demensional space and then aggregates features of points us-
ing symmetric set function. PointNet++ [31] exploits local context by building
hierarchical abstraction of point clouds. DGCNN [44] uses graph neural net-
works (GCN) on the k-nearest neighbor graphs to learn geometric features. KP-
Conv [40] defines a set of kernel points to perform deformable convolutions,
providing more flexibility than fixed grid convolutions. PCNN [1] defines ex-
tension and restriction operations, mapping point cloud functions to volumetric
functions and vice versa. SPLATNet [38] renders point clouds to lattice grid and
perform lattice convolutions.

FlowNet3D [22] and MeteorNet [23] adopt these methods and learn point-
wise flows on dynamical point clouds. In addition to high-level point cloud
recognition, recent works [42, 43,9, 35] tackle low-level registration problems us-
ing point cloud networks and show significant improvements over traditional
optimization-based methods. These point-based approaches, however, are con-
strained by the number of points in the point clouds and cannot scale to large-
scale settings such as autonomous driving. To that end, sparse 3D convolu-
tions [10] have been proposed to apply 3D convolutions sparsely only on areas
where points reside. Minkowski ConvNet [5] generalizes the definition of high-
dimensional sparse convolution and improves 3D temporal perception.

3D object detection. The community has seen rising interest in 3D object de-
tection thanks to the popularity of autonomous driving. VoxelNet [52] proposes
a generic one-stage model for 3D object detection. It voxelizes the whole point
cloud and uses dense 3D convolutions to perform feature learning. To address
the efficiency issue, PIXOR [49] and PointPillars [16] both organize in vertical
columns (pillars); a PointNet is used to transform features from points to pillars.
MVF [51] learns to utilize the complementary information from both birds-eye
view pillars and perspective view pillars. Complex-YOLO [37] extends YOLO
to 3D scenarios and achieves real-time 3D perception; PointRCNN [36], on the
other hand, adopts a RCNN-style detection pipeline. Rather than working in 3D,
LaserNet [25] performs convolutions in raw range scans. Beyond point clouds
only, recent works [15,4, 46] combine point clouds with camera images to utilize
additional information. Frustum-PointNet [29] leverages 2D object detectors to
form a frustum crop of points and then uses a PointNet to aggregate features
from points in frustum. [18] designs an end-to-end learnable architecture that
exploits continuous convolutions to have better fused feature maps in every level.
In addition to visual inputs, [48] shows that High-Definition (HD) maps provide
strong priors that can boost the performance of 3D object detectors. [17] ar-
gues multi-tasking training can help the network to learn better representations

Pillar-based Object Detection for Autonomous Driving 5

than single-tasking. Beyond supervised learning, [45] investigates how to learn a
perception model for unknown classes.

3 Method

In this section, we detail our approach to object pillar-based detection. We es-
tablish preliminaries about the pillar-point projection, PointPillars, and MVF
in §3.1 and summarize our model in §3.2. Next, we discuss three critical new
components of our model: cylindrical view projection (§3.3), a pillar-based pre-
diction paradigm (§3.4), and a pillar-to-point projection module with bilinear
interpolation (§3.5). Finally, we introduce the loss function in §3.6. For ease of
comparison to previous work, we use the same notation as MVF [51].

3.1 Preliminaries

We consider a three-dimensional point cloud with N points P = {pl}f\i _01 CR3
with K-dimensional features F = {f;}¥ ' C RX. We define two functions
Fy (p;) and Fp(v;), where Fy (p;) returns the index j of p;’s corresponding pillar
vj and Fp(v;) gives the set of points in v;. When projecting features from points
to pillars, multiple points can potentially fall into the same pillar. To aggregate
features from points in a pillar, a PointNet [30] (denoted as PN) is used to
aggregate features from points to get pillar-wise features, where

FPU = PN({filVpi € Fp(v))}). (1)

Then, pillar-wise features are further transformed through an additional con-
volutional neural network (CNN), notated ¢Pillar = @(frillar) where @ denotes
the CNN. To retrieve point-wise features from pillars, the pillar-to-point feature
projection is given by

fipoint _ f;)illar and (ZS?Oint _ d)?illar’ where] _ FV (pz) (2)

While PointPillars only considers birds-eye view pillars and makes predictions
based on the birds-eye feature map, MVF also incorporates spherical pillars.
Given a point p; = (;, yi, 2;), its spherical coordinates (y;, 0;, d;) are defined via

; = arctan % 0; = arccos % di = /22 +y? + 22 (3)

? 7

We can denote the established point-pillar transformations as (F2*V (p;), F5¥ (v;))
and (FyPV (p;), Fp¥ (v;)) for the birds-eye view and the spherical view, respec-
tively. In MVF, pillar-wise features are learned independently in two views; then
the point-wise features are gathered from those views using Eq. 2. Next, the
fused point-wise features are projected to birds-eye view again and embedded
through a CNN as in PointPillars.

6 Wang et al.

Fig. 1. Overall architecture of the proposed model: a point cloud is projected to BEV
and CYV respectively; then, view-specific feature learning is done in each view; third,
features from multiple views are aggregated; next, point-wise features are projected
to BEV again for further embedding; finally, in BEV, a classification network and a
regression network make predictions per pillar. BEV: birds-eye view; CYV: cylindrical
view; cls: per pillar classification target; reg: per pillar regression target.

The final detection head for both PointPillars and MVF is an anchor-based
module. Anchors, parameterized by (2%, y%, 2%,1%, w®, h*,0%), are densely placed
in each cell of the final feature map. During pre-processing, an anchor is marked
as “positive” if its intersection-over-union (IoU) with a ground-truth box is above
a prescribed positive threshold, and “negative” if its IoU is below a negative
threshold; otherwise, the anchor is excluded in the final loss computation.

3.2 Overall architecture

An overview of our proposed model is shown in Figure 1. The input point cloud
is passed through the birds-eye view network and the cylindrical view network
individually. Then, features from different views are aggregated in the same
way with MVF. Next, features are projected back to birds-eye view and passed
through additional convolutional layers. Finally, a classification network and a
regression network make the final predictions per birds-eye view pillar. We do
not use anchors in any stage. We describe each module in detail below.

3.3 Cylindrical view

In this section, we formulate the cylindrical view projection. The cylindrical
coordinates (p;, @i, z;) of a point p; is given by the following:

pi = m (p; = arctan % Zi = Z;- (4)
Z;

Cylindrical pillars are generated by grouping points that have the same ¢ and z
coordinates. Although it is closely related to the spherical view, the cylindrical
view does not introduce distortion in the Z-axis. We show an example in Figure 2,
where cars are clearly visible in the cylindrical view but not distinguishable in
the spherical view. In addition, objects in spherical view are no longer in their
physical scales—e.g., distant cars become small.

Pillar-based Object Detection for Autonomous Driving 7

(b) Spherical View

Fig. 2. Comparison of (a) cylindrical view projection and (b) spherical view projection.
We label two example cars in these views. Objects in spherical view are distorted (in
Z-axis) and no longer in physical scale.

3.4 Pillar-based prediction

The pillar-based prediction module consists of two networks: a classification
network and a regression network. They both take the final pillar features ¢Pilar
from birds-eye view. The prediction targets are given by

P = fas("M) and (Ag, Ay, As, A Ay, Ay, 07) = frog(0P1), (5)

where p denotes the probability of whether a pillar is a positive match to a
ground-truth box and (A, Ay, A, Ar, Ay, A, 07) are the regression targets for
position, size, and heading angle of the bounding box.

The differences between anchor-based method and pillar-based method are
explained in Figure 3. Rather than associating a pillar with an anchor and pre-
dicting the targets with reference to the anchor, the model (on the right) directly
makes a prediction per pillar.

3.5 Bilinear interpolation

The pillar-to-point projection used in PointPillars [16] and MVF [51] can be
thought of as a version of nearest neighbor interpolation, however, which often
introduces quantization errors. Rather than performing nearest neighbor inter-
polation, we propose using bilinear interpolation to learn spatially-consistent
features. We describe the formulation of nearest neighbor interpolation and bi-
linear interpolation in the context of pillar-to-point projection below.

As shown in Figure 4 (a), we denote the center of a pillar v; as ¢; where ¢; is
defined by its 2D or 3D coordinates. Then, the point-to-pillar mapping function
is given by

Fy(pi) = j, where [|pi — ¢;|| <lpi —cxll VK (6)

8 Wang et al.

cls reg

=S

(a) Prediction per anchor (b) Prediction per pillar

Fig. 3. Differences between prediction per anchor and prediction per pillar. (a) Multiple
anchors with different sizes and rotations are densely placed in each cell. Anchor-
based models predict parameters of bounding box for the positive anchor. For ease
of visualization, we only show three anchors. Grid (in orange): birds-eye view pillar;
dashed box (in red): a positive match; dashed box (in black): a negative match; dashed
box (in green): invalid anchors because their IoUs are above negative threshold and
below positive threshold. (b) For each pillar (center), we predict whether it is within a
box and the box parameters. Dots (in red): pillar center.

Point-to-pill jecti Pillar-to-point projecti Point-to-pillar projection Pillar-to-point projection
L] L] L} [] L []
— / > °
. L] [4 L]
° L]
) Nearest neighbor interpolation (b) Bilinear interpolation

Fig. 4. Comparison between nearest neighbor interpolation and bilinear interpolation
in pillar-to-point projection. Rectangles (in orange): birds-eye view pillars; dots (in
blue): points in 3D Cartesian coordinates; dots (in green): points projected to pillar
frame; dots (in red): centers of pillars.

and ||-|| denotes the L5 norm. When querying the features for a point p; from a
collection pillars, we determine the corresponding pillar v; by checking Fy and
copy the features of v; to p;,—that is ¢pomt ¢plllar

This operation, though straightforward, leads to undesired spatial misalign-
ment: if two points p; and p; with different spatial locations reside in the same
pillar; their pillar-to-point features are the same. To address this issue, we pro-
pose using bilinear interpolation for the pillar-to-point projection. As shown in
Figure 4 (b), the bilinear interpolation provides consistent spatial mapping be-
tween points and pillars.

3.6 Loss function

We use the same loss function as in SECOND [47], PointPillars [16], and MVF [51].
The loss function consists of two terms: a pillar classification loss and a pillar

Pillar-based Object Detection for Autonomous Driving 9

regression loss. The ground-truth bounding box is parametrized as (z9,y9, 29,
19, w9, h9,609); the center of pillar is (2P, yP, 2P); and the prediction targets for the
bounding box are (A, Ay, A;, Ay, Ay, Ap, 6P) as in §3.4. Then, the regression
loss is:

Lyeg = SmoothL1(6” — 69) + > SmoothL1(r” — r¥ — A,)

re{z,y,z}

+) SmoothLl(log(r?) — A,)
re{l,w,h}

where

0.5-d?-0% if |d <5

|d| — 5%z, otherwise.

SmoothL1(d) = {

We take o = 3.0. For pillar classification, we adopt the focal loss [20]:
Los = —a(l —p)7 logp. (9)

We use a = 0.25 and 7 = 2, as recommended by [20].

4 Experiments

Our experiments are divided into four parts. First, we demonstrate perfor-
mance of our model for vehicle and pedestrian detection on the Waymo Open
Dataset [39] in §4.1. Then, we compare anchor-, point-, and pillar-based detec-
tion heads in §4.2. We compare different combinations of views in §4.3. Finally,
we test the effects of bilinear interpolation in §4.4.

Dataset. The Waymo Open Dataset [39] is the largest publicly-available 3D
object detection dataset for autonomous driving. The dataset provides 1000 se-
quences total; each sequence contains roughly 200 frames. The training set con-
sists of 798 sequences with 158,361 frames, containing 4.81M vehicle and 2.22M
pedestrian boxes. The validation set consists of 202 sequences with 40,077 frames,
containing 1.25M vehicle and 539K pedestrian boxes. The detection range is set
to [—75.2,75.2] meters (m) horizontally and [—3, 3] m vertically.

Metrics. For our experiments, we adopt the official evaluation protocols from
the Waymo Open Dataset. In particular, we employ the 3D and BEV mean av-
erage precision (mAP) metrics. The orientation-aware IoU threshold is 0.7 for
vehicles and 0.5 for pedestrians. We also break down the metrics according to
the distances between the origin and ground-truth boxes: 0m-30m, 30m-50m,
and 50m—infinity (Inf). The dataset is split based on the number of points in
each box: LEVEL_1 denotes boxes that have more than 5 points while LEVEL_2
denotes boxes that have 1-5 points. Following StarNet [27], MVF [51], and Point-
Pillars [16] as reimplemented in [39], we evaluate our models on LEVEL_1 boxes.

10 Wang et al.

Implementation details. Our model consists of three parts: a multi-view fea-
ture learning network; a birds-eye view PointPillar [16] backbone; and a per-
pillar prediction network. In the multi-view feature learning network, we project
point features to both birds-eye view pillars and cylindrical pillars. For each
view, we apply three ResNet [12] layers with strides [1,2,2], which gradually
downsamples the input feature to 1/1, 1/2, and 1/4 of the original feature map.
Then, we project the pillar-wise features to points using bilinear interpolation
and concatenate features from both views and from a parallel PointNet with one
fully-connected layer. Then, we transform the per-point features to birds-eye pil-
lars and use a PointPillars [16] backbone with three blocks to further improve the
representations. The three blocks have [4, 6, 6] convolutional layers, with dimen-
sions [128,128,256]. Finally, for each pillar, the model predicts the categorical
label using a classification head and 7 DoF parameters of its closest box using
a regression head. The classification head and regression head both have four
convolutional layers with 128 hidden dimensions. We use BatchNorm [13] and
ReLU [26] after every convolutional layer.

Training. We use the Adam [14] optimizer to train the model. The learning
rate is initially 3 x 10~ and then linearly increased to 3 x 1072 in the first 5
epochs. Finally, the learning rate is decreased to 3 x 1076 using cosine schedul-
ing [24]. We train the model for 75 epochs in 64 TPU cores.

Inference. The input point clouds pass through the whole model once to
get the initial predictions. Then, we use non-maximum suppression (NMS) [7]
to remove redundant bounding boxes. The oriented IoU threshold of NMS is
0.7 for vehicle and 0.2 for pedestrian. We keep the top 200 boxes for metric
computation. The size of our model is on a par with MVF; the model runs at
15 frames per second (FPS) on a Tesla V100.

4.1 Results compared to state-of-the-art

We compare the proposed method to top-performing methods on the Waymo
Open Dataset. StarNet [27] is a purely point-based method with a small receptive
field, which performs well for small objects such as pedestrians but poorly for
large objects such as vehicles. LaserNet [25] operates on range images, which
is similar to our cylindrical view feature learning. Although PointPillars [16]
does not evaluate on this dataset, MVF [51] and the Waymo Open Dataset [39]
both re-implement the PointPillars. So we adopt the results from MVF [51]
and [39]. The re-implementation from [39] uses larger feature map resolution in
the first PointPillars block; therefore, it outperforms the re-implementation from
MVF [51].

MVF [51] extends PointPillars [16] with the same backbone networks and
multi-view feature learning. We use the same backbone networks with PointPil-
lars [16] and MVF [51].

As shown in Table 1 and Table 2, we achieve significantly better results
for both pedestrians and vehicles. Especially for distant vehicles (30m—Inf), the
improvements are more significant.This is inline with our hypothesis: in distant
areas, anchors are less possible to match to a ground-truth box; therefore, the

Pillar-based Object Detection for Autonomous Driving 11

Method BEV mAP (IoU=0.7) 3D mAP (IoU=0.7)
Overall|0 - 30m|30 - 50m |50m - Inf|Overall|0 - 30m|30 - 50m|50m - Inf
StarNet [27] - - - - 53.7 - - -
LaserNet [25] 71.57 | 92.94 | 74.92 48.87 55.1 84.9 53.11 23.92
PointPillarsq [16]| 80.4 92.0 77.6 62.7 62.2 81.8 55.7 31.2
PointPillarsi [16]| 70.59 | 86.63 | 69.34 49.3 54.25 | 76.31 | 48.08 24.21
PointPillarst [16]| 75.57 | 92.1 74.06 55.47 | 56.62 | 81.01 51.75 27.94
MVF [51] 80.4 | 93.59 | 79.21 63.09 | 62.93 | 86.3 60.2 36.02
Ours 87.11 | 95.78 | 84.74 72.12 69.8 | 88.53 66.5 42.93
Improvements |+6.71|4+2.19| +5.53 | +9.03 |+6.87|+2.23| +6.3 | +6.91

Table 1. Results on vehicle. §: re-implemented by [39], the feature map in the first
PointPillars block is two times as big as in others; {: our re-implementation; f: re-
implemented by [51].

Method BEV mAP (IoU=0.5) 3D mAP (IoU=0.5)
Overall|0 - 30m|30 - 50m |50m - Inf|Overall|0 - 30m|30 - 50m|50m - Inf
StarNet [27] - - - - 66.8 - - -
LaserNet [25] 70.01 | 78.24 | 69.47 52.68 63.4 | 73.47 | 61.55 42.69
PointPillarsq [16]| 68.7 75.0 66.6 58.7 60.0 68.9 57.6 46.0
PointPillarst [16]| 68.57 | 75.02 | 67.11 53.86 | 59.25 | 67.99 | 57.01 41.29
MVF [51] 74.38 | 80.01 | 72.98 62.51 65.33 | 72.51 | 63.35 50.62
Ours 78.53 | 83.56 | 78.7 65.86 | 72.51 | 79.34 | 72.14 | 56.77
Improvements |+4.15|+43.55| +5.72 | +3.35 |+5.71| +6.83 | +8.77 | +6.15

Table 2. Results on pedestrian. §: re-implemented by [39]. {: re-implemented by [51].

imbalance problem is more serious. Also, to verify the improvements are not
due to differences in training protocol, we re-implement PointPillars; using our
training protocol, it achieves 54.25 3D mAP and 70.59 2d mAP, which are worse
than the re-implementations in [51] and [39] . Therefore, we can conclude the

improvements are due to the three new components added by our proposed
model.

4.2 Comparing anchor-based, point-based, and pillar-based
prediction

In this experiment, we compare to alternative means of making predictions:
predicting box parameters per anchor or per point. For these three detection
head choices, we use the same overall architecture with experiments in §4.1. We
conduct this ablation study on vehicle detection.

Anchor-based model. We use the parameters and matching strategy from
PointPillars [51] and MVF [51]. Each class anchor is described by a width,
length, height, and center position and is applied at two orientations: 0° and
90°. Anchors are matched to ground-truth boxes using the 2D IoU with the fol-

12 Wang et al.

BEV mAP (IoU=0.7) 3D mAP (IoU=0.7)
Overall|0 - 30m|30 - 50m|50m - Inf|Overall|0 - 30m|30 - 50m[50m - Inf
Anchor-based| 78.84 | 91.91 74.99 59.59 59.78 | 82.69 | 53.38 31.02

Point-based | 79.77 | 92.35 | 76.58 60.00 60.6 | 83.66 | 55.48 30.95
Pillar-based | 87.11 | 95.78 | 84.74 | 72.12 | 69.8 | 88.53 | 66.5 42.93

Method

Table 3. Comparison of making prediction per anchor, per point, or per pillar.

lowing rules: a positive match is either the highest with a ground truth box, or
above the positive match threshold (0.6); while a negative match is below the
negative threshold (0.45). All other anchors are ignored in the box parameter
prediction. The model is to predict whether a anchor is positive or negative, and
width, length, height, heading angle, and center position of the bounding box.

Point-based model. The per-pillar features are projected to points using bi-
linear interpolation. Then, we assign each point to its surrounding box with
the following rules: if a point is inside a bounding box, we assign it as a fore-
ground point; otherwise it is a background point. The model is asked to predict
the binary label whether a point is a foreground point or a background point.
For positive points, the model also predicts the width, length, height, head-
ing angle, and center offsets (with reference to point positions) of their associ-
ated bounding boxes. Conceptually, this point-based model is an instantiation
of VoteNet [28] applied to this autonomous driving scenario. The key difference
is: the VoteNet [28] uses a PointNet++ [31] backbone while we use a PointPil-
lars [51] backbone.

Pillar-based model. Since we use the same architecture, we take the results
from §4.1. As Table 3 shows, anchor-based prediction performs the worst while
point-based prediction is slightly better. Our pillar-based prediction is top per-
forming among these three choices. The pillar-based prediction model achieves
the best balance between coarse prediction (per anchor) and fine-grained pre-
diction (per point).

4.3 View combinations

In this section, we test different view projections in multi-view feature learning;:
birds-eye view (BEV), spherical view (SPV), XZ view, cylindrical view (CYV),
and their combinations. First, we define the vehicle frame: the X-axis is positive
forwards, the Y-axis is positive to the left, and the Z-axis is positive upwards.
Then, we can write the coordinates of a point p = (z,y, z) in different views;
the range of each view is given in Table 4. The pillars in the corresponding
view are generated by projecting points from 3D to 2D using the coordinate
transformation. One exception is in XZ view, in which we use separate pillars
for positive part and negative part for Y-axis to avoid undesired occlusions.
We show results of different view projections and their combinations in Ta-
ble 5 for vehicle detection. When using a single view, the cylindrical view achieves

Pillar-based Object Detection for Autonomous Driving 13

View Coordinates Range
3D Cartesian (%, 2) (-75.2, 75.2)m, (-75.2, 75.2)m, (-3, 3)m
BEV (x,, 2) (-75.2, 75.2)m, (-75.2, 75.2)m, (-3, 3)m
SPV (arctan(¥), arccos(\/ﬁ), Vo2 +y2 +22)| (0, 27), (0.485m, 0.557), (0, 107)m,
X7Z view (x,y, 2) (-75.2, 75.2)m , (-75.2, 75.2)m, (-3, 3)m
CcYV (V22 + 2, arctan(¥), z) (0, 107)m, (0, 27), (-3, 3)m

Table 4. View projection

BEV mAP (IoU=0.7) 3D mAP (IoU=0.7)
Overall|0 - 30m|30 - 50m|50m - Inf|Overall|0 - 30m|30 - 50m|50m - Inf
BEV 81.58 | 92.69 78.64 63.52 61.86 | 83.61 56.91 33.53
SPV 81.58 | 93.7 78.43 63.2 62.08 | 83.31 | 56.59 34.05
X7 81.49 | 94.03 78.04 62.32 61.67 | 84.64 55.01 32.06
CYV 83.43 | 95.21 81.49 66.77 64.77 | 87.09 60.91 37.99
BEV + SPV| 85.09 | 95.19 82.01 69.13 66.31 | 86.56 61.15 39.36
BEV + XZ | 82.45 | 94.1 79.19 63.91 | 62.76 | 85.08 56.8 33.36
BEV + CYV| 87.11 | 95.78 | 84.74 72.12 69.8 | 88.53 66.5 42.93

Method

Table 5. Ablation on view combinations.

significantly better results than the alternatives, especially in the long-range de-
tection case (50m—Inf). When combining with the birds-eye view, the cylindrical
view still outperforms others in all metrics. The spherical view, albeit similar to
cylindrical view, introduces distortion in Z-axis, degrading performance relative
to the cylindrical view. On the other hand, the XZ view does not distort the
Z-axis, but occlusions in Y-axis prevent it from achieving as strong results as
the cylindrical view. We also test with additional view combinations (such as
using birds-eye view, spherical view, and cylindrical view) and do not observe
any improvements over combining just the birds-eye view and the cylindrical
view.

4.4 Bilinear interpolation or nearest neighbor interpolation?

In this section, we compare bilinear interpolation to nearest neighbor interpola-
tion in pillar-to-point projection (for vechile detection). The architectures remain
the same for both alternatives except the way we project multi-view features
from pillars to points: In nearest neighbor interpolation, for each query point,
we sample its closest pillar center and copy the pillar features to it, while in
bilinear interpolation, we sample its four pillar neighbors and take a weighted
average of the corresponding pillar features. Table 6 shows bilinear interpola-
tion systematically outperforms its counterpart in all metrics. This observation
is consistent with the comparison of ROIAlign [11] and ROIPool [34] in 2D.

14 Wang et al.

Method BEV mAP (IoU=0.7) 3D mAP (IoU=0.7)
Overall|0 - 30m|30 - 50m|50m - Inf|Overall|0 - 30m |30 - 50m|50m - Inf
Nearest neighbor| 84.67 | 94.42 79.2 65.77 | 64.76 | 85.55 | 59.21 35.63
Bilinear 87.11 | 95.78 | 84.74 72.12 69.8 | 88.53 66.5 42.93

Table 6. Comparing bilinear interpolation and nearest neighbor projection.

5 Discussion

We present a pillar-based object detection pipeline for autonomous driving. Our
model achieves state-of-the-art results on the largest publicly-available 3D object
detection dataset. The success of our model suggests many designs from 2D
object detection/visual recognition are not directly applicable to 3D scenarios.
In addition, we find that learning features in correct views is import to the
performance of the model.

Our experiments also suggest several avenues for future work. For exam-
ple, rather than hand-designing a view projection as we do in §3.3, learning
an optimal view transformation from data may provide further performance
improvements. Learning features using 3D sparse convolutions rather than 2D
convolutions could improve performance as well. Also, following two-stage object
detection models designed for images, adding a refinement step might increase
the performance for small objects.

Finally, we hope to find more applications of the proposed model beyond ob-
ject detection. For example, we could incorporate instance segmentation, which
may help with fine-grained 3D recognition and robotic manipulation.

6 Acknowledgements

Yue Wag, Justin Solomon, and the MIT Geometric Data Processing group ac-
knowledge the generous support of Army Research Office grants W911NF1710068
and W911NF2010168, of Air Force Office of Scientific Research award FA9550-
19-1-031, of National Science Foundation grant IIS-1838071, from the MIT-IBM
Watson Al Laboratory, from the Toyota—CSAIL Joint Research Center, from
gifts from Google and Adobe Systems, and from the Skoltech—-MIT Next Gen-
eration Program. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect
the views of these organizations.

Pillar-based Object Detection for Autonomous Driving 15

References

10.

11.

12.

13.

14.

15.

16.

17.

Atzmon, M., Maron, H., Lipman, Y.: Point convolutional neural networks by ex-
tension operators. ACM Transaction on Graphics (TOG) (2018)

Cal, Z., Vasconcelos, N.: Cascade R-CNN: Delving into high quality object de-
tection. In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2018)

Chang, A.X., Funkhouser, T.A., Guibas, L.J., Hanrahan, P., Huang, Q.X., Li, Z.,
Savarese, S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L., Yu, F.: ShapeNet: An
information-rich 3d model repository. CoRR (2015)

Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3d object detection network
for autonomous driving. In: The Conference on Computer Vision and Pattern
Recognition (CVPR) (2016)

Choy, C., Gwak, J., Savarese, S.: 4d spatio-temporal ConvNets: Minkowski con-
volutional neural networks. In: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2019)

Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.: Deformable convo-
lutional networks. In: The International Conference on Computer Vision (ICCV)
(2017)

Girshick, R.: Fast R-CNN. In: The International Conference on Computer Vision
(ICCV) (2015)

Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for ac-
curate object detection and semantic segmentation. In: The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2014)

Goforth, H., Aoki, Y., Srivatsan, R.A., Lucey, S.: PointNetLK: Robust & efficient
point cloud registration using PointNet. In: The Conference on Computer Vision
and Pattern Recognition (CVPR) (2019)

Graham, B., Engelcke, M., van der Maaten, L.: 3d semantic segmentation with
submanifold sparse convolutional networks. In: The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2018)

He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: The International
Conference on Computer Vision (ICCV) (2017)

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
The IEEE Conference on Computer Vision and Pattern Recognition Recognition
(CVPR) (2016)

Toffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In: The International Conference on Machine
Learning (ICML) (2015)

Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: The Inter-
national Conference on Learning Representations (ICLR) (2014)

Ku, J., Mozifian, M., Lee, J., Harakeh, A., Waslander, S.: Joint 3d proposal genera-
tion and object detection from view aggregation. In: The International Conference
on Intelligent Robots and Systems (IROS) (2018)

Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: Pointpillars:
Fast encoders for object detection from point clouds. In: The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (June 2019)

Liang, M., Yang, B., Chen, Y., Hu, R., Urtasun, R.: Multi-task multi-sensor fu-
sion for 3d object detection. In: The Conference on Computer Vision and Pattern
Recognition (CVPR) (2019)

16

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Wang et al.

Liang, M., Yang, B., Wang, S., Urtasun, R.: Deep continuous fusion for multi-sensor
3d object detection. In: The European Conference on Computer Vision (ECCV)
(2018)

Lin, T.Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature
pyramid networks for object detection. In: The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (2017)

Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal Loss for Dense Object
Detection. In: The International Conference on Computer Vision (ICCV) (2017)
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.:
SSD: Single shot multibox detector. In: The European Conference on Computer
Vision (ECCV) (2016)

Liu, X., Qi, C.R., Guibas, L.J.: FlowNet3D: Learning scene flow in 3d point clouds.
In: The Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Liu, X., Yan, M., Bohg, J.: MeteorNet: Deep learning on dynamic 3d point cloud
sequences. In: The International Conference on Computer Vision (ICCV) (2019)
Loshchilov, 1., Hutter, F.: Sgdr: Stochastic gradient descent with warm restarts.
In: The International Conference on Learning Representations (ICLR) (2017)
Meyer, G.P., Laddha, A., Kee, E., Vallespi-Gonzalez, C., Wellington, C.K.: Laser-
Net: An efficient probabilistic 3d object detector for autonomous driving. In: The
Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann ma-
chines. In: The International Conference on Machine Learning (ICML) (2010)
Ngiam, J., Caine, B., Han, W., Yang, B., Chai, Y., Sun, P., Zhou, Y., Yi, X.,
Alsharif, O., Nguyen, P., Chen, Z., Shlens, J., Vasudevan, V.: StarNet: Targeted
computation for object detection in point clouds. arXiv (2019)

Qi, C.R., Litany, O., He, K., Guibas, L.J.: Deep Hough voting for 3d object detec-
tion in point clouds. In: The International Conference on Computer Vision (2019)
Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum PointNets for 3d object
detection from RGB-D data. In: The Conference on Computer Vision and Pattern
Recognition (CVPR) (2018)

Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: Deep learning on point sets for
3d classification and segmentation. In: The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2017)

Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: Deep hierarchical feature learn-
ing on point sets in a metric space. In: Neural Information Processing Systems
(NeurIPS) (2017)

Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified,
real-time object detection. In: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2016)

Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: The IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR) (2017)

Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object de-
tection with region proposal networks. In: Neural Information Processing Systems
(NeurIPS) (2015)

Sarode, V., Li, X., Goforth, H., Aoki, Y., Dhagat, A., Srivatsan, R.A., Lucey, S.,
Choset, H.: One framework to register them all: PointNet encoding for point cloud
alignment. arXiv (2019)

Shi, S., Wang, X., Li, H.: Pointrcnn: 3d object proposal generation and detection
from point cloud. In: The Conference on Computer Vision and Pattern Recognition
(CVPR) (2019)

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.
51.

52.

53.

Pillar-based Object Detection for Autonomous Driving 17

Simon, M., Milz, S., Amende, K., Grof}, H.M.: Complex-YOLO: Real-time 3d ob-
ject detection on point clouds. In: The Conference on Computer Vision and Pattern
Recognition (CVPR) (2018)

Su, H., Jampani, V., Sun, D., Maji, S., Kalogerakis, E., Yang, M.H., Kautz, J.:
Splatnet: Sparse lattice networks for point cloud processing. In: The Conference
on Computer Vision and Pattern Recognition (CVPR). pp. 2530-2539 (2018)
Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tak-wing Tsui,
P., Guo, J.C.Y., Zhou, Y., Chai, Y., Caine, B., Vasudevan, V., Han, W., Ngiam,
J., Zhao, H., Timofeev, A., Ettinger, S., Krivokon, M., Gao, A., Joshi, A., Zhang,
Y., Shlens, J., Chen, Z.F., Anguelov, D.: Scalability in perception for autonomous
driving: Waymo open dataset. arXiv (2019)

Thomas, H., Qi, C., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.:
Kpconv: Flexible and deformable convolution for point clouds. In: The Interna-
tional Conference on Computer Vision (ICCV) (2019)

Tian, Z., Shen, C., Chen, H., He, T.: Fcos: Fully convolutional one-stage object
detection. In: The International Conference on Computer Vision (ICCV) (2019)
Wang, Y., Solomon, J.: Deep closest point: Learning representations for point cloud
registration. In: The International Conference on Computer Vision (ICCV) (2019)
Wang, Y., Solomon, J.: PRNet: Self-supervised learning for partial-to-partial reg-
istration. In: Neural Information Processing Systems (NeurIPS) (2019)

Wang, Y., Sun, Y., Ziwei Liu, S.E.S., Bronstein, M.M., Solomon, J.M.: Dynamic
graph CNN for learning on point clouds. ACM Transactions on Graphics (TOG)
38, 146 (2019)

Wong, K., Wang, S., Ren, M., Liang, M., Urtasun, R.: Identifying unknown in-
stances for autonomous driving. In: The Conference on Robot Learning (CORL)
(2019)

Xu, D., Anguelov, D., Jain, A.: PointFusion: Deep sensor fusion for 3d bounding
box estimation. In: The Conference on Computer Vision and Pattern Recognition
(CVPR) (2018)

Yan, Y., Mao, Y., Li, B.: Second: Sparsely embedded convolutional detection. In:
Sensors (2018)

Yang, B., Liang, M., Urtasun, R.: HDNET: Exploiting hd maps for 3d object
detection. In: The Conference on Robot Learning (CORL) (2018)

Yang, B., Luo, W., Urtasun, R.: Pixor: Real-time 3d object detection from point
clouds. The Conference on Computer Vision and Pattern Recognition (CVPR)
(2018)

Zhou, X., Wang, D., Krahenbiihl, P.: Objects as points. arXiv (2019)

Zhou, Y., Sun, P., Zhang, Y., Anguelov, D., Gao, J., Ouyang, T., Guo, J., Ngiam,
J., Vasudevan, V.: End-to-end multi-view fusion for 3d object detection in LiDAR
point clouds. In: The Conference on Robot Learning (CoRL) (2019)

Zhou, Y., Tuzel, O.: Voxelnet: End-to-end learning for point cloud based 3d object
detection. In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2018)

Zhu, C., He, Y., Savvides, M.: Feature selective anchor-free module for single-shot
object detection. In: The Conference on Computer Vision and Pattern Recognition
(CVPR) (2019)

18 Wang et al.
A Supplementary Material

In this section, we provide details on the parameters of the model. The model
consists of three parts: a multi-view feature learning network; a birds-eye view
pillar backbone network; and a detection head. We show the pipeline in Figure 5
and the additional parameter specification in Table 7.

Vehicle Model Pedestrian Model

Kernel Output Size Kernel Output Size

3x3, 128, stride 1 [512x512x128| 3x3, 128, stride 1 |512x512x128
Multi-view Feature Learning| 3x3, 128, stride 2 |256x256x128| 3x3, 128, stride 2 |256x256x128
3x3, 128, stride 2 |128x128x128| 3x3, 128, stride 2 |128x128x128
3x3, 128, stride 2 [256x256x128| 3x3, 128, stride 1 |512x512x128
{3x3, 128, stride 1}x3|256x256x128({3x3, 128, stride 1}x3[512x512x128
3x3, 128, stride 1 |256x256x128| 3x3, 128, stride 2 |256x256x128
{3x3, 128, stride 1}x5|256x256x128|{3x3, 128, stride 1}x5[256x256x128
3x3, 256, stride 2 |128x128x256| 3x3, 256, stride 2 |128x128x256
{3x3, 256, stride 1}x5|128x128x256({3x3, 256, stride 1}x5[128x128x256
Detection Head {3x3, 256, stride 1}x4|256x256x256|{3x3, 256, stride 1}x4(512x512x256

Stage

Pillar Backbone Block1

Pillar Backbone Block2

Pillar Backbone Block3

Table 7. Parameters of convolutional kernels and feature map sizes.

Reslayer! 512x512x128 Reslayer2 256x256x128 Reslayer3 128x128x128 Up 512x512x128

512x512x128
Up .
— —_—
512x512x128
- .

(a) Multi-view Feature Learning

Pilar Block] ~ H1xWix128 PilarBlock2 ~ H2xW2x128 Pillar Blockd H3xW3x256. Up HIXW1x128 Classification Network

ol e
. ° \ H1xW1X123/ . cls
Hixwixize

HIW1x128

Regresslon Network

HIWixi28

. . '.. —

(b) Pillar Backbone (c) Detection Head

Fig. 5. Details of the proposed model: (a) the multi-view feature learning module, we
show the network for one view; (b) Pillar backbone network; (c) the detection head,
we show both the classification network and the regression network. For details on the
parameters and the feature map sizes, refer to Table 7.

