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A cyber-additive manufacturing network (CAMNet) integrates connected additive manufacturing 

processes with advanced data analytics as computation services to support personalized product 

realization. However, highly personalized product designs (e.g., geometries) in CAMNet limit the 

sample size for each design, which may lead to unsatisfactory accuracy for computation services, e.g., 

a low prediction accuracy for quality modeling. Motivated by the modeling challenge, we proposed a 

data-driven model called family learning to jointly model similar-but-non-identical products as family 

members by quantifying the shared information among these products in the CAMNet. Specifically, the 

amount of shared information for each product is estimated by optimizing a similarity generation model 

based on design factors, which directly improve the prediction accuracy for the family learning model. 

The advantages of the proposed method are illustrated by both simulations and a real case study of the 

selective laser melting process. This family learning method can be broadly applied to data-driven 

modeling in a network with similar-but-non-identical connected systems. 
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1. Introduction 

A cyber-manufacturing system (CMS) associates interconnected manufacturing facilities with 

computation resources (e.g., fog computing and cloud computing units) to support efficient quality 

modeling, monitoring, diagnosis, control and decision-making (e.g., variation modeling and cost 

optimization) in smart manufacturing (Lee, et al. 2016, Yang, et al. 2019, Hu 2013). By embracing the 

CMS with similar-but-non-identical additive manufacturing (AM) processes, a cyber-additive 

manufacturing network (CAMNet) is proposed to efficiently realize the personalized products via 

advanced computation services in the CMS which can help to assign the task to the most eligible 

machines, modeling and controlling AM processes, and etc. (Chen, et al. 2018).  
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Taking a selective laser melting (SLM) process as an example in a CAMNet, Figure 1 shows a 

schematic of a SLM process, which is a metal powder bed fusion technique and has been widely used 

in automotive manufacturing, aerospace manufacturing, and medical manufacturing (Zhang, et al. 2019, 

Seabra, et al. 2016, Wei, et al. 2015). By adapting the product and process design according to a 

customer’s demand, a SLM process can build one or multiple highly personalized products in complex 

shapes with unprecedented materials during one building process (Gibson, et al. 2010) to meet the 

specifications. Although the SLM process in a CAMNet is efficient to satisfy personalized needs, it has 

not been widely deployed in manufacturing industries. A major reason is that both the product integrity 

and quality defects, such as the geometric deviation, lack of fusion, or voids, have not been effectively 

controlled during the process (Frazier 2014).  

Figure 1.  A schematic for a SLM process (Redrawn from (Wang et al. 2017) with authors’ permission). 

There are many existing data-driven methods to model the SLM processes (Strano, et al. 2013, 

Spears and Gold 2016). However, highly personalized products in the CAMNet pose significant 

challenges for modeling (Chen 2018). Specifically, the prediction performance of existing data-driven 

modeling methods may be poor with limited samples in personalized manufacturing. For example, 

aggregating data from similar-but-non-identical products without considering the heterogeneities 

among products may lead to unsatisfactory modeling performance, due to the unexplained variance 

introduced by these heterogeneities. Moreover, if we model the individual product as one model for 

each, even with the advanced variable selection method, such as Lasso regression (Tibshirani, 1996), if 

the sample size is too small, then there will not be enough degrees of freedom to support model 

estimation with an accurate result. Therefore, how to quantitatively measure the similarity among these 

similar-but-non-identical products, and further utilize the similarity measurement to improve the model 

performance with a limited sample size remains an open question.  
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In this paper, the objective is to model the quality defects (i.e., geometric deviation) caused by 

the fluctuations in laser during the process based on the limited samples per product. Specifically, a 

new model called family learning is proposed to model the relationship among process setting variables, 

in situ process variables, and quality variables for quality prediction. Process setting variables are the 

system control variables which determine the recipe of products during the fabrication process, such as 

laser power (online adjustable variable), scanning speed (online adjustable variable), and hatch distance 

(offline setting variables) in a SLM process (Olakanmi, et al. 2015). Specifically, in this study, we 

considered these setting variables are offline setting variables. The in situ process variables are collected 

during the fabrication process via the sensing system, such as the laser intensity and thermal 

distributions. The quality variables are quality measurements for the product after the fabrication 

process, such as the geometric deviation. The proposed family learning method focuses on providing 

layer-to-layer quality modeling and prediction for similar-but-non-identical products in SLM processes 

before post-processing (e.g., stress-relieving, product removal, etc.). In order to improve the model 

accuracy for these similar-but-non-identical products with limited sample size, the process setting 

variables, and the scanning path from each product are used to quantify the similarity among products. 

Moreover, by effectively quantify the similarity among multiple products, we can transfer information 

among products with the intuition that similar products should result in similar model coefficients. In 

the proposed family learning method, we employ probability mass function (pmf) to represent the 

similarity between these products. For example, traditional data-driven modeling methods usually fix 

the distribution of the model coefficients among products, such as multi-task learning (MTL) (Evgeniou 

and Pontil 2004) which considers a discrete uniform distribution among model coefficients. Instead of 

providing a fixed distribution or prior information, the proposed method initially estimates the pmf of 

model coefficients based on the product and process design information among products, and further 

updated the pmf according to the training dataset. In this way, the pmf (i.e., similarity measurements) 

can indeed reflect the real nonlinear similarity structure among model coefficients and further improve 

the model accuracy. In addition, according to the similarity measurement, for a brand-new product, we 

can use the model coefficients from the historical product which has the most similar product and 

process design to implement modeling efforts with acceptable performance.  
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To evaluate the performance of the proposed method, a hybrid CAMNet testbed is constructed 

with one SLM machine, five fused deposition machines, and 114 virtual machines which are generated 

from a group of linear quality-process models (Chen, et al. 2016, Wang, et al. 2018) to simulate the 

similar-but-non-identical processes based on the physical experiment data (Chen 2018). A simulation 

study is proposed to generate similar-but-non-identical products and processes based on the data from 

the CAMNet testbed. These similar-but-non-identical products are used to validate and compare the 

prediction accuracy of the proposed method and benchmark methods in a CAMNet with multiple 

processes. A real case study based on a fractional factorial design of experiments in a SLM process 

with two different product designs and multiple treatments is implemented to validate the proposed 

family learning. Both prediction performance and variable selection results outperform three 

benchmark methods, i.e., Lasso regression (Tibshirani 1996), data shared Lasso (Gross and Tibshirani 

2016) and MTL (Evgeniou and Pontil 2004).  

The rest part of the paper is organized as follows. The state-of-the-art modeling methods in a 

CMS, and data-driven models for AM processes are reviewed in Section 2. Section 3 introduces the 

proposed family learning method in detail. The simulation study to validate the proposed method is 

discussed in Section 4. A case study for a SLM process is presented in Section 5.  Conclusions are 

drawn and future work is discussed in Section 6. 

2. State-of-the-art 

2.1.   Modeling in a CMS 

In literature, various modeling methods have been proposed for quality modeling (Wang, et al. 2010), 

monitoring (Jin and Liu 2013), diagnosis (Seshadrinath, et al. 2013), and process control (Huang, et al. 

2014). However, in a CMS, the data from each individual product is not sufficient to support these 

methods in achieving satisfactory performance since the products are highly personalized. Therefore, 

modeling individual processes and transferring the knowledge among these processes in a CMS is an 

important yet challenging problem (Lee, Bagheri and Jin 2016, Zwolenski and Weatherill 2014). In 

literature, efforts have been made to model the heterogeneous products and processes in a CMS. For 

example, MTL quantifies the relationships among tasks (i.e., different designs and processes) and can 

lead to better performance for each task (Evgeniou and Pontil 2004). It jointly estimates the models for 
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all tasks simultaneously to exploit commonalities and differences among all tasks. The hierarchical 

Gaussian process MTL was proposed for non-parametric function learning (Li and Chen 2017). 

However, they do not quantitatively identify the similarity among products. On the other hand, transfer 

learning can help to transfer the knowledge from one domain to another domain, where domains may 

have different data distributions. However, adequate samples from source and target domains are 

required to yield an accurate model for the target domain (Pan and Yang 2010). Data shared Lasso can 

also borrow the information from different tasks, and isolate shared information and individual 

differences by using extra groups of model coefficients (Gross and Tibshirani 2016). However, data 

shared Lasso does not consider the interaction among these groups, and the computation is intensive 

compared with other methods due to the high dimensionality of the reorganized covariate matrix.  

2.2.   Data-driven models in the AM 

For models in AM processes, several data-driven models have been proposed to identify the 

anomaly and control the process. Rao et al. presented an advanced Bayesian nonparametric analysis 

method for in situ sensing data (Rao, et al. 2015). It identified failures and the types of failures in a 

fused filament fabrication (FFF) process. This failure detection system was able to identify real-time 

failures. Khanzadeh et al. proposed a statistical process control strategy to detect process change via 

thermal images through multilinear principal component analysis (Khanzadeh, et al. 2018). Icten et al. 

presented a surrogate model based on polynomial chaos expansion to relate the important process 

parameters with product morphology. A control strategy was proposed based on the model to mitigate 

product variation  (Icten, et al. 2015). Xing et al. presented a closed-loop control system to predict the 

product quality for metal powder laser forming via an industrial CCD camera and infrared photodetector 

(Xing, et al. 2006). The input energy on the powder bed can be predicted based on the size of the melting 

pool, and it can be controlled according to the prediction results during the process. Krauss et al. 

presented a layer-to-layer sensing system to identify the temperature distribution on the build plate. It 

can detect the defect areas and powder ejection during the process through temperature diffusivity 

analysis (Krauss, et al. 2015). However, these existed methods failed to consider similarity information 

among different products. Therefore, their performance may not be satisfied to model similar-but-non-

identical products, especially for highly personalized products with limited sample size. 
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Besides, research has been reported for variation analysis and quality prediction in AM 

processes. For example, Sun et al. proposed a functional quantitative and qualitative model to predict 

two types of quality responses via offline setting variables and in situ process variables (Sun, et al. 

2017). Shevchik et al. introduced a convolutional neural network classification model to predict the 

final product quality via acoustic emission signals (Shevchik, et al. 2018). Yadroitsev et al. illustrated 

an online optical system for the SLM process via a CCD camera (Yadroitsev, et al. 2014). The 

correlation between melting pool features and the microstructure of the product is identified to predict 

the final quality of the product. Moreover, a series of deep learning models have been investigated to 

predict product deviations (Huang, et al. 2020, Jin, et al. 2020, Ferreira, et al. 2019). Based on the 

prediction of deviation for specific CAD design, the optimal compensation plan can be implemented to 

improve the product geometry accuracy in AM. However, the aforementioned methods typically focus 

on run-to-run quality-process modeling which requires sufficient samples to estimate the model 

coefficients. Thus, they may not satisfy the needs of personalization in a CAMNet. On the other hand, 

Sabbaghi et al. proposed a series of transfer learning based models to efficient predict the geometric 

deviation for a new product design based on limited deviation profiles from other products (Sabbaghi 

and Huang 2018, Francis, et al. 2020, Sabbaghi, et al. 2018). Cheng et al. developed a statistical 

parametric transfer learning framework to predict the deviation profile among different designs (Cheng, 

et al. 2017, Cheng, et al. 2020). However, instead of learning the quality-process relationship via in situ 

process variables, they transferred the knowledge of deviation profile for each product across different 

process settings (e.g., size of production, material types, etc.). Besides, the transfer learning might lead 

to the negative transfer of knowledge when commonalities among products cannot be captured by the 

lurking variables (Kontar, et al. 2020). 

2.3.   Physics-based in the AM 

On the other hand, physics-based AM models, such as finite element analysis (FEA), have been 

widely adopted in AM fields. For example, the purely physics-based FEA model is proposed to predict 

the mechanical property (i.e., elastic response) of the product (Bhandari and Lopez-Anido 2018), and 

also the residual distortion and stress distribution from an AM process (Chen, et al. 2019). On the other 

hand, in order to improve the accuracy of the FEA, hybrid models which combine the data-driven model 
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with the FEA have been proposed. For example, Olleak and Xi presented a modeling framework to 

integrate the FEA simulation with the data-driven model to improve the accuracy and efficiency of the 

simulation based on the limited experiment data (Olleak and Xi 2020). Li et al. proposed a FEA 

simulation framework with a non-parametric surrogate model to jointly estimate the thermal 

distribution of the AM process (Li, et al. 2018). Wang et al. proposed a meta-modeling framework to 

predict the high-fidelity FEA simulation results based on the corresponding low-fidelity simulation 

results in AM (Wang, et al. 2020). However, most of the physics-based methods mainly focused on the 

off-line run-to-run study for product and process designs. Due to the computation intensity, the 

aforementioned FEA based methods are restricted to be deployed in real fabrication stage to predict the 

quality measurements in real-time. 

3. Methodology 

3.1.   Family learning for layer-to-layer modeling in the CAMNet 

Without loss of generality, in this research, the geometric deviation of Product 𝑖 from Layer 𝑙 is treated 

as the quality variable in modeling, denoted as 𝑦𝑖,𝑙. Moreover, to reduce the data registration complexity 

and computational intensity of model estimation (i.e., as described in Wang, et al. (2020)), the overall 

geometric deviation on each layer of a product is used to comprehensively measure the geometric 

difference between the design and the real product. For example, for cylinder products, the deviation is 

defined as the radius difference between the designed Stereolithographic (STL) file and the final 

products. Other quality variables can also be modeled using the same modeling method. The 

assumptions for the proposed family learning model include (1) the manufacturability of product which 

studied in this research has been validated; (2) the process similarity can be partially reflected by the 

designs, process settings and process characteristics (i.e., scanning patterns of products in a SLM 

process); (3) underlying models for similar manufacturing processes and products will have similar 

model structures and coefficients; in addition, there is a clustering pattern on features of product designs 

and manufacturing process settings, such that one can borrow information of the products from the 

same cluster with sufficient sample size; and (4) a linear regression model is adequate to model the 

quality-process relationship, which will be validated by the case study. The linear regression model for 

the geometric deviation 𝑦𝑖,𝑙 for Layer 𝑙 of Product 𝑖 is formulated as: 
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𝑦𝑖,𝑙 = 𝒘𝑖,𝑙
T 𝜷𝑖 + 𝜖𝑖,𝑗, (1) 

where 𝒘𝑖,𝑙
T ∈ ℝ𝑝 is a vector of signal features extracted from the photodiode sensor for Product 𝑖 at 

Layer 𝑙; 𝑝 is the total number of predictors; 𝑩 ∈ ℝ𝑁×𝑝 is the model coefficients for 𝑁 products;  𝜷𝑖 ∈

ℝ𝑝 represents the 𝑖-th column of 𝑩 for Product 𝑖; and 𝜖𝑖,𝑗 is independently and identically distributed 

and follows a normal distribution with zero as the mean value and constant variance. In order to estimate 

the model coefficients, the penalized least-square estimator can be formulated as:  

𝜷̂𝑖 = argmin
𝑩,𝜸

{∑ ∑ (𝑦𝑖,𝑙 − 𝒘𝑖,𝑙
T 𝜷𝑖)

𝐿𝑖
𝑙=1

2𝑁
𝑖=1 + 𝜌1‖𝑩‖1 + 𝜌2 ∑ ‖𝜷𝑖 − ∑ 𝜎(𝜸T𝒎𝑖𝑗)𝜷𝑗

𝑁
𝑗=1 ‖

2

2𝑁
𝑖=1 },  (2) 

where the first term ∑ ∑ (𝑦𝑖,𝑙 − 𝒘𝑖,𝑙
T 𝜷𝑖)

𝐿𝑖
𝑙=1

2𝑁
𝑖=1  represents a least-squares loss for model estimation; 𝜌1 

is the tuning parameter which controls the sparsity of the model; the first penalty ‖𝑩‖1 = ∑ |𝜷𝑖|𝑖  is a 

LASSO regularization (Tibshirani 1996) term which forces the coefficients of insignificant variables to 

be zeros; 𝜌2 is the tuning parameter that determines the importance of information borrowed from other 

products; in the second penalty ∑ ‖𝜷𝑖 − ∑ 𝜎(𝜸T𝒎𝑖𝑗)𝜷𝑗
𝑁
𝑗=1 ‖

2

2𝑁
𝑖=1 , the difference of model coefficients 

between Product 𝑖 and the weighted average of coefficients for all 𝑁 products is minimized in order to 

gain more information shared from the models of the rest products; 𝑠𝑖𝑗 = 𝜎(𝜸T𝒎𝑖𝑗) is the similarity 

coefficient between Product 𝑖  and 𝑗 , where  𝜎(𝜸T𝒎𝑖𝑗) =
exp(𝜸T𝒎𝑖𝑗)

∑ exp (𝜸T𝒎𝑖𝑗)𝑁
𝑖=1

 is the Softmax function 

(Bishop 2006); 𝜸 is a vector of weights; 𝒎𝑖𝑗 is the process and product design feature vector, which 

will be discussed later.  

The proposed model is expected to provide satisfactory modeling accuracy given limited 

samples, since it shares information among similar-but-non-identical products under the assumption 

that their model coefficients should be also similar to each other (i.e., validated in Section 5.2). 

Specifically, after the transformation via the Softmax function, the range of similarity coefficient is also 

transferred from 0 to 1, with the summation of the coefficient is 1. Benefit from these statistical 

characteristics for 𝑠𝑖𝑗 (i.e., 𝑠𝑖𝑗  ϵ (0,1), ∑ 𝑠𝑖𝑗𝑗 = 1), the process to estimate the similarity coefficient 𝑠𝑖𝑗 

can be further considered as learning the probability mass function (pmf) for each system from the data 
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with model coefficients 𝜷𝑗 as random variables. This idea can also adopt to the traditional data-driven 

modeling, such as MTL (Evgeniou and Pontil 2004) which considers a discrete uniform distribution for 

𝑠𝑖𝑗 since it fixes the similarity measurement among different system. Therefore, instead of providing a 

fixed distribution or prior information, the proposed method initially estimates the pmf of model 

coefficients based on the product and process design information among products, and further updating 

the pmf according to the training dataset. In this way, the pmf (i.e., similarity measurements) can indeed 

reflect the real nonlinear similarity structure among model coefficients and further improve the model 

accuracy. To estimate the similarity measurement, we firstly denote 𝒎𝑖 ∈ ℝ𝑣1+𝑣2 as the manufacturing 

feature vector, which consists of the process setting variables and summary statistics of the scanning 

path for product 𝑖. Then, the interaction between Product 𝑖 and 𝑗 is defined as 𝒎𝑖𝑗 = [𝒎𝑖
T, 𝒎𝑗

T, |𝒎𝑖 −

𝒎𝑗|
T

]. 𝒎𝑖𝑗 is combined by manufacturing feature vectors from product 𝑖, product  𝑗, and the absolute 

value of the difference between these two vectors. 𝒎𝑖𝑗 is used to estimate the similarity coefficient 

𝑠𝑖𝑗  between product 𝑖 and 𝑗 as 𝑠𝑖𝑗 = 𝜎(𝜸T𝒎𝑖𝑗).  The scanning path is extracted from the laser trajectory 

for each product, which quantifies the product design information. 𝑣1 is the number of features getting 

from the process setting variables, and 𝑣2  is the number of summary statistics getting from the 

functional laser trajectory on the build plate according to the Cartesian coordinate system. The summary 

statistics including the length, mean value, standard deviation, count of change in direction, mean value 

and standard deviation of the first derivative for both 2-D directions in the Cartesian coordinate system. 

These summaries of statistics can directly or indirectly describe the pattern of laser trajectory for each 

product. For example, the mean value can roughly reflect the centroid location of the product on the 

build area. The standard deviation and count of change in direction can represent the complexity of the 

laser trajectory (i.e., zig-zag trajectory). The first derivative can generally reflect the rate of change of 

the laser trajectory, which can reflect the turning angle and smoothness of the trajectory. 

In order to efficiently estimate the model coefficient in Eq. (2), motivated by block relaxation 

algorithm (De Leeuw 1994, Lange 2010), a block updating algorithm is developed to break down the 

proposed optimization problem into two simpler optimization problems (see Algorithm 1). By defining 

𝑩 and 𝜸 as two variable blocks, an alternately updating strategy is employed to find the solution of the 
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proposed model as shown in Algorithm 1.  

Algorithm 1 Block updating algorithm for minimizing Eq. (2). 

Initialize: 𝑩(0) ∈ ℝ𝑁×𝑝 and 𝜸(0) ∈ ℝ(𝑣1+𝑣2)×1 

repeat 

do 

     𝜸(𝑡+1) = argmin
𝜸

{𝜌2 ∑ ‖𝜷𝑖
(𝑡)

− ∑ 𝜎(𝜸T𝒎𝑖𝑗)𝜷𝑗
(𝑡)𝑁

𝑗=1 ‖
2

2
𝑁
𝑖=1 }, 

     𝑩(𝑡+1) = argmin
𝑩

{∑ ∑ (𝒚𝑖,𝑙 − 𝒘𝑖,𝑙
T 𝜷𝑖)

𝐿𝑖
𝑙=1

2𝑁
𝑖=1 + 𝜌1‖𝑩‖1 + 𝜌2 ∑ ‖𝜷𝑖 −𝑁

𝑖=1

          ∑ 𝜎(𝜸(𝑡+1)T
𝒎𝑖𝑗)𝜷𝑖

𝑁
𝑗=1 ‖

2

2

}, 

until |√
∑ ∑ (𝑦𝑖,𝑙−𝒘𝑖,𝑙

T 𝜷𝑖
(𝑡)

)
𝐿𝑖
𝑙=1

2
𝑁
𝑖=1

∑ 𝐿𝑖
𝑁
𝑖=1

− √
∑ ∑ (𝑦𝑖,𝑙−𝒘𝑖,𝑙

T 𝜷𝑖
(𝑡+1)

)
𝐿𝑖
𝑙=1

2
𝑁
𝑖=1

∑ 𝐿𝑖
𝑁
𝑖=1

| / |√
∑ ∑ (𝑦𝑖,𝑙−𝒘𝑖,𝑙

T 𝜷𝑖
(𝑡)

)
𝐿𝑖
𝑙=1

2
𝑁
𝑖=1

∑ 𝐿𝑖
𝑁
𝑖=1

|  < 𝑡𝑜𝑙 

For 𝜸(𝒕), the optimization problem can be efficiently solved by interior-point method (Forsgren, 

et al. 2002, Mehrotra 1992). Interior-point method is an efficient optimization method for both linear 

and nonlinear problems. The optimization problem for 𝑩 is a convex problem (Zhou, et al. 2011), and 

can be efficiently solved via accelerated gradient descent (Chen, et al. 2009, Nesterov 2008). By adding 

the Nesterov’s momentum term, the accelerated gradient descent can balance the gradient updates and 

proper extrapolation for optimization with nearly the same cost of ordinary gradient descent. To select 

the optimal tuning parameters 𝜌1  and 𝜌2 , the 5-fold cross-validation is employed. In 5-fold cross-

validation, firstly, the whole training dataset is randomly separated into five subsets with the almost 

equal number of samples. Then, four out of five subsets will be used for training, and the remaining one 

will be used for validation of the model. The cross-validation process is then repeated five times, with 

each of the five subsets used exactly once as the validation set. Based on the performance of the model 

under different tuning parameters, the best combination of tuning parameters can be selected (Tibshirani, 

et al. 2005). The root-mean-squared errors (RMSEs) from the cross-validation is used to select two 

tuning parameters.  
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4. Simulation 

4.1.   Simulation setup 

Because the physical experiment to physically quantify the quality performance of a SLM product is 

usually time-consuming and economic expensive, a simulation study is employed (Montgomery 2017). 

The objective of this simulation study is to evaluate the statistical performance of the proposed model 

comparing with other benchmark models under the assumptions introduced in the Methodology section. 

Therefore, in the simulation study, suppose the underlying quality-process model is 𝑦𝑖,𝑙 = 𝒘𝑖,𝑙
T 𝜷𝑖,𝑙 +

𝑘 ∙ 𝜀, where 𝑘 =
𝑉𝑎𝑟(𝒘𝑖,𝑙

T 𝜷𝑖,𝑙)

𝑟𝑉𝑎𝑟(𝜀)
 , 𝑟 is the signal-to-noise ratio, 𝜀 is the error term and follows a standard 

normal distribution 𝑁(0,1), and other parameters follow the same definitions in Eq.(1). 

Table 1. Simulation Settings. 

Simulation Cases Case 1 Case 2 Case 3 Case 4 

No. of Products 10 10 100 100 

No. of Layers 20 50 20 50 

No. of Clusters 3 10 3 10 

Signal-to-noise Ratio 10 20 10 20 

In the simulation, there are four cases which are shown in Table 1. The number of products 

represents how many products are fabricated in each case. The number of layers is the average number 

of layers of these products. From the definition of the similarity coefficient in Methodology, it can be 

known that if some of the products have similar product designs and process settings (i.e., clustering 

pattern), these products, which are in the same cluster, can share more information among each other 

and tend to have similar model coefficients. Therefore, the number of clusters in Table 1 represents 

how many clusters are existed in each simulation case. For the products in the same cluster, their 

manufacturing feature vectors also tend to be similar to each other compared with products that are not 

in the cluster. The signal-to-noise ratio indicates the numerical value of 𝑟 in the simulation, which will 

be introduced later in details. 

For each simulation case, first, the number of layers for each simulated product is generated. 

Assume that the total layer number for product 𝑛 is 𝐿𝑛, which follows a discrete uniform distribution 
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𝑈{(𝐴𝑣𝑔 − 5), (𝐴𝑣𝑔 + 5)}, where 𝐴𝑣𝑔 is the “No. of Layers” shown in Table 1. In each simulation 

case, the products are randomly assigned into different clusters with random permutation following a 

uniform distribution. The clusters determine the manufacturing feature vectors 𝒎, which represent the 

information of designs and settings. Therefore, for product 𝑖, the manufacturing feature vector 𝒎𝑖 can 

be generated from a normal distribution: 𝒎𝑖~𝑁(𝑐𝑖 , 0.01), where 𝒎𝑖  is the manufacturing feature 

vector for Product 𝑖; 𝑐𝑖 is the mean value of the distribution, which is determined by the numerical order 

of cluster for product 𝑖. For example, in simulation Case 1, if product 1, product 2 and product 3 are 

from different clusters, then 𝒎1, 𝒎2, 𝒎3 are generated from 𝑁(1, 0.01), 𝑁(2, 0.01), and 𝑁(3, 0.01), 

respectively. Then, 𝒎𝑖 is used to generate 𝒎𝑖𝑗. 

Next, the model coefficients for each product are generated based on the model assumption 

(i.e., underlying models for similar manufacturing processes and products will have similar model 

structures and coefficients). In the beginning, 𝐶  orthogonal vectors 𝜼1, … , 𝜼𝑐 , … , 𝜼𝐶  are generated 

based on a normal distribution 𝑁(0, 1) as the basis of model coefficients to create 𝐶 clusters in the 

simulation. Moreover, the products from the same cluster share the same orthogonal basis of the model 

coefficients. For example, for Product 𝑖, the model coefficient vector 𝜷0,𝑖  is initially generated as: 

𝜷0,𝑖 = 𝜼𝑐 + 𝒅 , where 0 stands for initialization, 𝒅  is the disturbance vector whose elements are 

generated from a normal distribution: 𝑑𝑖~𝑁(0,0.1). Next, in order to make sure the products in the 

same cluster have more similar model coefficients, The coefficient matrix is iteratively updated 

as:[𝜷𝑛𝑒𝑤,1, … , 𝜷𝑛𝑒𝑤,𝑛] = [∑ s1𝑗𝜷𝑜𝑙𝑑,𝑗
𝑛
𝑗=𝑖 , … , ∑ s𝑛𝑗𝜷𝑜𝑙𝑑,𝑗]𝑛

𝑗=𝑖  till convergence is reached, where 𝑠𝑖𝑗 is 

the similarity coefficient between Product 𝑖 and Product 𝑗 in Eq. (2). Once the Frobenius norm of 

[𝜷𝑖,𝑛𝑒𝑤 , … , 𝜷𝑛,𝑛𝑒𝑤] − [𝜷𝑖,𝑜𝑙𝑑 , … , 𝜷𝑛,𝑜𝑙𝑑] is smaller than a threshold (say, 0.1 in this research), the 

iterative update will stop, and the converged [𝜷𝑛𝑒𝑤,1, … , 𝜷𝑛𝑒𝑤,𝑛] will be used as the underlying model 

coefficient matrix. In this simulation, the number of features is set to be 951, which is the same as the 

number of features detailed in Section 3.  

Finally, the predictors 𝒘𝑖,𝑙
T  in Eq. (1) is generated. In order to simulate the signal feature under 

different manufacturing feature vector, the energy of photodiode signals under different design and 

setting combinations were collected from physical experiments. Moreover, the manufacturing feature 
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vector is further used to generate 𝒘𝑖,𝑙
T  as 𝒘𝑖,𝑙

T = 𝑀(𝒎𝑖) + 𝐻(𝒎𝑖), according to 𝒎𝑖 in the simulation. 

𝑀(∙) is the mean value of 𝒘𝑖,𝑙
T  under specific settings, and 𝐻(∙) is the normal distributed random error 

term of 𝒘𝑖,𝑙
T  estimated from the historical data. The RMSEs of simulated data is calculated and 

compared with the historical data with the same manufacturing feature vector 𝒎𝑖 . The average 

normalized RMSE is 0.101. After generating 𝜷𝑖,𝑙 and 𝒘𝑖,𝑙
T , the underlying model 𝑦𝑖,𝑙 = 𝒘𝑖,𝑙

T 𝜷𝑖,𝑙 + 𝑘 ∙ 𝜀 

is used to generate responses 𝑦𝑖,𝑙.  

For each simulation case, 100 replications of the datasets are generated. The family learning is 

compared with three benchmark models to evaluate its prediction performance: (1) the Lasso regression 

(Tibshirani 1996), which should have similar performance with the proposed method when the sample 

size is large enough; (2) the data-shared Lasso (Gross and Tibshirani 2016), which should have better 

performance comparing to Lasso regression when the sample size is limited, and (3) the MTL model 

(Evgeniou and Pontil 2004), which is an effective information shared modeling method.  

4.2. Results and discussion 

The average prediction RMSEs, 𝑅2 scores, and standard errors (in parenthesis) of simulation studies 

are shown in Table 2 and Table 3. The values shown in bold are the smallest prediction errors and 

largest 𝑅2 scores obtained from different models in each simulation case. From the results, the proposed 

family learning, which considers the similarity between different products, performs the best in quality 

prediction with both small and large sample size (Case 1, Case 2, Case 3 and Case 4). Even though in 

simulation Case 2 (No. of the product equals No. of the cluster), where the products are one-of-a-kind, 
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the proposed method still yields the best performance compared with the benchmark methods. Because 

it can reasonably qualify the difference of model coefficients and estimate the similarity measurements 

among the products.  

On the other hand, the MTL and data shared Lasso cannot explain the specific relationship among the 

products via manufacturing processes and reflect the relationship in model estimation. The Lasso has 

the worst performance when the sample size is limited (Cases 1 and 2) since it does not consider the 

similarity among products and manufacturing processes. As the sample size increases (Cases 3 and 4), 

the performance of the Lasso is competitive with data shared Lasso. In order to identify the prediction 

Table 2. Prediction errors and average standard errors (in parenthesis) over 100 replications. 

Cases Case 1 Case 2 Case 3 Case 4 

Lasso 

w/o 𝑚𝑖 

3.56 

(0.052) 

3.41 

(0.050) 

3.05 

(0.17) 

2.98 

(0.17) 

Lasso 

w/ 𝑚𝑖 

3.56 

(0.052) 

3.41 

(0.050) 

3.05 

(0.17) 

2.98 

(0.17) 

DSL* 

w/o 𝑚𝑖 

3.24 

(0.035) 

3.15 

(0.038) 

2.88 

(0.13) 

2.91 

(0.13) 

DSL* 

w/ 𝑚𝑖 

3.24 

(0.035) 

3.15 

(0.038) 

2.88 

(0.13) 

2.91 

(0.13) 

MTL 

w/o 𝑚𝑖 

3.25 

(0.039) 

3.06 

(0.039) 

3.81 

(0.18) 

3.75 

(0.17) 

MTL 

w/ 𝑚𝑖 

3.25 

(0.039) 

3.06 

(0.039) 

3.81 

(0.18) 

3.75 

(0.17) 

FL** 

w/o 𝒎𝒊 

2.51 

(0.022) 

2.66 

(0.022) 

2.31 

(0.11) 

2.17 

(0.11) 

FL** 

w/ 𝒎𝒊 

2.51 

(0.022) 

2.66 

(0.022) 

2.31 

(0.11) 

2.17 

(0.11) 

* DSL is short for data-shared Lasso. ** FL is short for family learning. 

Table 3. Average and standard errors (in parenthesis) of 𝑅2 score over 100 replications. The 

largest scores are highlighted in bold. 

Cases Case 1 Case 2 Case 3 Case 4 

Lasso 

w/o 𝑚𝑖 

81.3% 

(0.005) 

81.1% 

(0.004) 

83.9% 

(0.021) 

84.2% 

(0.023) 

DSL 

w/o 𝑚𝑖 

83.9% 

(0.003) 

84.4% 

(0.003) 

86.5% 

(0.013) 

86.1% 

(0.014) 

MTL 

w/o 𝑚𝑖 

84.6% 

(0.003) 

84.2% 

(0.003) 

85.9% 

(0.101) 

87.0% 

(0.101) 

FL 

w/o 𝒎𝒊 

90.7% 

(0.001) 

91.3% 

(0.001) 

94.7% 

(0.041) 

96.9% 

(0.042) 
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performance with 𝒎𝑖 as additional predictors, the authors also added this vector as additional predictors 

in the model estimation. The improvement of predictions is less than 1% after adding the vector as the 

predictors. In addition, from the variable selection results, the manufacturing feature vectors are not 

selected in all cases. Therefore, the advantage of the proposed method comes from the appropriate 

model structure instead of the benefits of including the information about manufacturing feature vectors. 

Table 4. Average and standard errors (in parenthesis) of parameter estimation error over 100 

replications. The smallest errors are highlighted in bold. 

Cases Case 1 Case 2 Case 3 Case 4 

Lasso 

w/o 𝑚𝑖 

96% 

(0.01) 

95% 

(0.01) 

90% 

(0.68) 

91% 

(0.80) 

DSL 

w/o 𝑚𝑖 

96% 

(0.01) 

93% 

(0.01) 

40% 

(0.09) 

43% 

(0.09) 

MTL 

w/o 𝑚𝑖 

98% 

(0.02) 

97% 

(0.02) 

42% 

(0.10) 

45% 

(0.10) 

FL 

w/o 𝒎𝒊 

85% 

(0.008) 

79% 

(0.01) 

15% 

(0.02) 

17% 

(0.04) 

The parameter estimation errors (PE) is defined as: 𝑃𝐸 =
∑ ∑ |𝛽̂𝑖,𝑘−𝛽𝑖,𝑘|

𝑝
𝑘=1

𝑛
𝑖=1

∑ ∑ |𝛽𝑖,𝑘|
𝑝
𝑘=1

𝑛
𝑖=1

× 100% where 𝑝 

is the total number of model parameters; 𝛽̂𝑖,𝑘 is the 𝑘th estimated coefficient for Product 𝑖; and  𝛽𝑖,𝑘 is 

the 𝑘th true coefficient for Product 𝑖. PEs of the four models are summarized in Table 4. Because the 

manufacturing feature vectors are considered as latent variables, the authors did not compare the 𝑃𝐸 

for the models with 𝒎𝑖  (shown as "w/ 𝒎𝑖 " in Table 2). From the results, it can be found that the 

proposed family learning also gives the best parameter estimation accuracy in all cases. In the 

simulation Case 1, the variable selection results are not stable, and the average error of parameter 

estimation is over 90% (in Table 4). This is mainly because the sample size is much smaller than the 

number of predictors, and the predictors have strong correlations in Case 1 (and Case 2). It can lead to 

unstable variable selection results with Lasso regularization terms (Zou and Hastie 2005). For the 

proposed method, since it considers both the sparsity of the model and similarity of model coefficients 

among products, it can have a better performance compared with the benchmark methods. Similar to 

the variable selection results in Case 3 (and Case 4), the sample size is more than Case 1 but still smaller 

than the number of predictors. There is more information that can be shared among the products in the 
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model estimation and the variable selection results are much better comparing with the benchmark 

methods. 

Moreover, as shown in Figure 2, the recovered pmf (i.e., similarity measurement) are compared 

with the ground truth values (due to the space limitation, only simulation Case 4 is presented). It can be 

observed that even though the clustering pattern among products in Case 4 is the most complicated, the 

proposed family learning method can still accurately estimate the similarity based on the training dataset.  

 

Figure 2. Recovered similarity coefficients (left) and underlying similarity coefficients (right). 

5. A Real Case Study 

5.1.   Experiments setup 

In this section, the authors apply the proposed family learning method to a real SLM process in 

the CAMNet and predict geometric deviations by quantifying the similarity among similar-but-non-

identical products and processes. The architecture of the proposed CAMNet testbed is presented in 

Figure 3 with 𝑀 connected machines. Assume that in situ data of each machine can be collected in real-

time. All machines are connected to the data acquisition system via the network. The data acquisition 

system serves as a middleware to extract the raw data from the machines and communicates with the 

computation cloud in real-time. Different from the highly intensive algorithms, such as finite element 

analysis, the in situ data-driven prediction model is time-efficient. After the offline training efforts, the 

online prediction will only take less one second for computation. Therefore, the real-time decisions 

based on the prediction results can be communicated with the specific machines via MTConnect 

communication protocol (Vijayaraghavan, et al. 2008). In order to identify the product quality in a 

CAMNet, modeling multiple similar-but-non-identical AM process is an important step to provide 

prediction and support the control strategy. 
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Figure 3.  The architecture of the CAMNet testbed.  

 

Figure 4.  A snapshot of the thermal video (top) and raw photodiode signals (bottom). 

The SLM machines in the CAMNet are fully instrumented with sensors and connected to the 

cloud. Specifically, the data collected from the SLM machine are shown in Figure 4, from Layer (𝑙 − 1) 

to Layer 𝑙 of a SLM process, the sensor system can collect in situ photodiode signals and the in situ 

melting video during the melting steps. Both the photodiode system and the thermal camera are mounted 

on the roof of the chamber. The photodiode system has a wide field of view which covers the entire 

build area with calibrated distortion. The acquisition frequency of photodiode is 0.1 MHz (signal 

captured via a NI-GPIO card), that records the laser intensity on the melting pool during the fabrication 

process. Since the thermal camera is too big to perpendicularly point on the build area, an angle (around 
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45°) exists between the camera lens and the build area. A camera calibration effort was implemented 

before we collect the data from the camera (Zhang 2000).  The resolution of the thermal image is 382 

x 288 pixels with 30Hz framerate. The pixel size of the thermal camera image is around 0.8 

millimeters.The sealing performance of the chamber is checked to avoid the oxygen intrusion after the 

installation of sensors. 

The signal features and quality measures are generated to serve as the predictors and responses 

in the quality-process model. The signals from the photodiode that recorded the laser power are treated 

as the in situ process variables in time-series format. In order to reduce the dimension of raw data, the 

fast Fourier transformation (FFT) analysis (Welch 1967) is employed to transform the in situ signals 

into the frequency domain. Moreover, the authors chose a frequency band to contain at least 95% of the 

total energy based on the primary study. Signals in other bands were considered as the noise. As a result, 

the dimension of predictors was reduced. In total, 951 features are used for model estimation. The 

scanning path is obtained from the in situ thermal videos by calculating the relative x-y positions of the 

melting pool on the build plate. 

After fabricating the products, the layer-to-layer geometries (i.e., contours for each layer) of 

products are measured via a laser CMM (Coordinate Measuring Machine). A 3D point cloud is 

generated for each product after obtaining the measurement. The resolution of the CMM machine is 10 

microns. As discussed in Methodology, the geometric deviation of the product in each layer is defined 

as the quality response of the proposed model. As shown in Figure 5, To obtain the geometric deviation 

for each product in the case study, a 2D point cloud of the product contour in each layer is collected by 

the laser CMM. It is compared with the corresponding design STL file geometry layer-by-layer 

according to the layer-wise thickness of the product (Habermann and Kindermann 2007).  As shown in 

Figure 5, in general, the geometric deviation can be defined in the polar coordinates system (Wang, et 

al. 2018). By mapping the centroids of original CAD design from the STL file and the corresponding 

product contour in the same polar coordinate, the geometric deviation is defined as the summation of 

the absolute difference between two radii 𝑟𝑖 and 𝑟𝑖
′ on specific angle 𝛼𝑖. 
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Figure 5.  The way to extract geometric deviations as quality measures. 

In the proposed CAMNet, the product design, laser power, scanning speed, and hatch distance 

are selected as factors in the design of experiments. As shown in Figure 6, two different product designs 

(i.e., square design and cylinder design) are investigated in experiments due to a limited budget, such 

that sufficient samples for each cluster can be obtained. A fractional factorial design (Montgomery 2017) 

with three levels of settings and two kinds of designs is conducted to test the modeling performance. 

The levels of setting variables in the experiment are shown in Table 5. In total, there are 18 different 

combinations of setting variables and designs with two replications in the experiment. Limited by the 

size of the powder bed, these 36 products are manufactured in three builds. The products were fabricated 

using Inconel 718 powder in an EOS M290 commercial SLM machine. For the square design, the side 

length is 2 centimeters, the radius of the curvature is 0.5 centimeters. For the cylinder design, the radius 

of the cylinder is 1 centimeter, the radius of the cone is 0.75 centimeters, and the slant height of the 

cone is 1.5 centimeters.. The products were randomly assigned to pre-defined locations on the powder 

bed.  

 

Figure 6. Examples for a square design (left) and a cylinder design (right). 
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Table 5. The experiment design parameters. 

Parameters Units Level 1 Level 2 Level 3 

Laser Power W 170 195 220 

Scan Speed mm/s 983 1083 1183 

Hatch Distance mm 0.07 0.09 0.11 

To better demonstrate the implementation procedures for the proposed method in a CAMNet, 

we provide a flowchart in Figure 7. Before deploying the fabrication task into specific systems in the 

CAMNet, the design features and setting variables for the process will be collected, and the initial 

manufacturing feature vector will be obtained for each product. Moreover, the scanning path and three 

setting variables are used to generate the manufacturing feature vector for each product in the 

experiment. Before deploying the fabrication task into specific systems in the CAMNet, the design 

features and setting variables for all process (i.e., both historical and new processes) will be collected 

to generate manufacturing feature vector (remark: it consists of the process setting variables and 

summary statistics of the scanning path for each product). After standardization to ensure ∑
1

𝑠𝑖𝑗
𝑗 =

1, (𝑖 ≠ 𝑗) , the Euclidean distance (Danielsson 1980) between two manufacturing feature vectors 

(𝒎𝑖, 𝒎𝑗) is denoted as the initial similarity coefficient: 𝑠𝑖𝑗
′ = 𝐸(𝒎𝑖, 𝒎𝑗). The model coefficients of the 

historical product, which has the most similar manufacturing features (i.e., smallest Euclidean distance) 

as the new product, will be treated as the initial model coefficients for the new product to enhance 

quality prediction at the beginning of the process. During the fabrication, the family learning model will 

be estimated, and the layer-to-layer quality prediction will be implemented. The prediction results can 

provide the necessary information for the online layer-to-layer control (Wang, Jin and Henkel 2018). 

Furthermore, the model will be iteratively updated based on the new observations from the CAMNet. 

After the fabrication, the quality variables, in situ variables, model coefficients, and manufacturing 

feature vectors will be recorded and used to estimate the family learning model for a brand-new 

personalized product. 
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Figure 7. Family learning for layer-to-layer quality prediction in a CAMNet. 

5.2.   Results and discussion 

The RMSE is used to evaluate the accuracy of the model since it generally represents the magnitude of 

error between the predicted overall product geometric deviation and the real deviation which is 

measured by the laser CMM. The family learning model is compared with three benchmark models as 

described in the simulation study. There are two testing scenarios: (1) layer-to-layer modeling and (2) 

leave-one-product-out. In the layer-to-layer modeling scenario, data from all previous layers are used 

to estimate the family learning model, and the data from the next layer are used to test the accuracy of 

the prediction. Note that the scanning path and process settings are known before the modeling, which 

will be used to generate the manufacturing feature vectors. To improve the model estimation, the model 

coefficients are re-estimated per every six layers. For this layer-to-layer modeling scenario, there are 

54 layers obtained from the case study. On the other hand,  in the leave-one-product-out scenario, eleven 

products in one build are used as the training dataset, and the remaining one product is treated as the 

testing dataset in sequence. In particular, for the proposed method, data shared lasso and MTL, the 

model coefficient for the testing product is selected from the training product which has the most similar 

design and setting (i.e., the Euclidean distance between their manufacturing feature vectors) with the 

testing product. For Lasso regression, since it has the same model coefficient for every product, we do 
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not need to specify the model coefficient we use for the testing product. The leave-one-product-out 

scenario can be considered as a brand-new product from the CAMNet. We want to check whether the 

historical data from other products can provide an accepted model to implement quality prediction 

without the sample from the new product. 

 

Figure 8. Testing RMSEs of the proposed model and benchmark models. 

Table 6. 𝑅2 score for the proposed model and benchmark models. 

Model Name FL Lasso DSL MTL 

𝑅2 score  

(12 Layers) 
90% 73% 81% 84% 

𝑅2 score  

(44 Layers) 
92% 93% 92% 86% 

RMSEs of the testing dataset in layer-to-layer modeling are summarized in Figure 8. The 

𝑅2 scores for two scenarios (i.e., sample size is limited (12 Layers), and sample size is adequate (44 

Layers) are also shown in Table 6. The results of the layer-to-layer modeling scenario indicate that the 

proposed method has better prediction performance compared with three benchmarks. It can be 

observed that the testing RMSEs have a decreasing trend for all four models when the number of layers 

is increased. Lasso regression has the worst prediction performance when the sample size is limited 

since it requires relatively larger sample sizes and does not share information with other products. The 

data shared Lasso has better performance but worse than the proposed method when the sample size is 

limited. In addition, the data shared Lasso presents the competitive results with Lasso when the number 

of printed layers is becoming larger. The prediction errors of MTL are consistently larger than the 

proposed method since it does not consider similarity among the products. By estimating the similarity 

measurements among products and further using the similarity measurement to penalize their model 
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coefficients, the proposed method yields the best prediction performance when the sample size is 

limited and remains the best model with the lowest prediction errors. The results showed the capabilities 

of the proposed method to model similar-but-non-identical connected systems. 

 

Figure 9. Leave-one-product-out testing RMSEs. 

The results of the leave-one-product-out scenario are shown in Figure 9. The proposed model 

results in the lowest testing RMSEs on average compared with the benchmark results. The data shared 

Lasso outperforms the Lasso since it partially considers the information from other products. Because 

the leave-one-product-out scenario includes the data from 54 layers, the Lasso regression has adequate 

samples to estimate an acceptable model. Therefore, the average error of Lasso is smaller than MTL. 

For each product, MTL and data shared Lasso consistently have greater testing errors than the proposed 

model since the proposed model forces similar products to have similar model coefficients. These leave-

one-product-out results show the potential of the proposed method in modeling personalized products. 

Even though the data for a specific product is unavailable, the CAMNet still can use the model 

coefficients from the historical product which has the most similar design and setting with the new 

product to implement modeling efforts with acceptable performance. Therefore, based on the 

manufacturing feature vector extracted from the new product and the corresponding similarity 

coefficient (i.e., 𝑠𝑖𝑗
′ = 𝐸(𝒎𝑖 , 𝒎𝑗)), family learning method can quantitatively identify the amount of 

information that can be borrowed from other products and improve the model accuracy for the new 

product when the sample size is limited. In general, there is no specific boundary condition for the 

similarity in the proposed model. However, there are also existed limitations of the proposed model. If 

a product has a very different product and process design compared with other products, the proposed 

method might not be efficient to accurately predict the quality variable with limited sample size for this 
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product. It is because in such a case, very limited information (sample size) is available to support the 

modeling for this product, and there is also limited information that can be shared from other product 

due to the differences in product and process design. It is worth mentioning that the family learning 

method will result in a similar quality prediction accuracy compared with the Lasso regression, which 

only utilizes the information from the individual product. 

 

Figure 10. Variable selection results from the layer-to-layer modeling scenario. 

Assumptions of the proposed model are validated in variable selection results. To compare the 

variable selection results among products in the layer-to-layer modeling scenario, differences of 

variable selection between product 3 (cylinder design with laser power 170W, scan speed 983mm/s and 

hatch distance 0.07mm)  and product 9 (square design with laser power 220W, scan speed 1183mm/s 

and hatch distance 0.11mm), which are shared the least similarity; and between product 7 (square design 

with laser power 195W, scan speed 1083mm/s and hatch distance 0.07mm) and product 11 (square 

design with laser power 195W, scan speed 1083mm/s and hatch distance 0.09mm), which are shared 

the most similarity are shown in Figure 10. Each row represents the importance of a specific variable, 

and each column represents the model sequence in the layer-to-layer scenario. The lighter (yellow) 

color represents the difference between the significant variables of model coefficients for two products. 

As shown in Figure 9(a), when the two products and corresponding manufacturing process settings are 

different, their models have different significant variables. On the other hand, the significant variables 

of the models for two similar products are consistent as shown in Figure 9 (b). This variable selection 

result validates the Assumptions (1) and (2) in Section 3, i.e., the process similarity can be partially 

reflected by the designs and process settings, which reflect similarity on the underlying model structure 

and coefficients. Therefore, when modeling a new product in a SLM process, the samples from other 
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similar products can be also introduced to potentially improve the accuracy of the model for the new 

product. This approach can significantly reduce the sample size requirements for modeling a brand-new 

product and process designs in a CAMNet. Furthermore, Furthermore, the Assumptions (3), i.e., the 

linear model assumption is also checked via residual plots. For example, the residual plots of product 3 

are shown in Figure 11. Residuals from other models are also validated for the linear model assumption. 

From Figure 11, it can be concluded that the residuals roughly follow the normal distribution; the 

average of the residuals is close to zero; the residuals have a constant variance; and the residuals are 

roughly independent. In summary, the prediction for the family learning with laser related in in situ 

variables is adequate as the can explain the highest proportion of the variance of geometric deviations 

with limited information left in unexplained variance.  

6. Conclusion 

The CAMNet connects AM facilities as a network with computation resources integrated to 

provide responsive computation services for manufacturing process modeling, diagnosis, prognosis, 

and control. However, the increasing demands of personalized design and unique processes can 

significantly reduce the performances of most traditional data-driven modeling methods due to the 

limited sample size. Therefore, we proposed a family learning method to quantify the amount of shared 

 

Figure 11. Linear Model Assumption Check for the Proposed Model ((a) Histogram of Residual; 

(b) Q-Q plot; (c) Residual vs. Fitting Value; (d)  𝜀𝑡̂ vs. 𝜀𝑡̂−1). 
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information by jointly learning the multitask model coefficients for each product and the similarity 

measurements. The proposed method was validated in a simulation and a case study in SLM processes. 

The results showed that the proposed family learning model outperforms Lasso regression (Tibshirani 

1996), data shared Lasso (Gross and Tibshirani 2016), and MTL (Evgeniou and Pontil 2004), especially 

when the sample size is limited. Further analysis of variable selection results demonstrated the 

effectiveness of the proposed information sharing method and reveals the underlying manufacturing 

similarity via the variable selection results. The proposed family learning showed the potential to apply 

to other industrial applications for system quality prediction  (Sun, et al. 2016), prognosis health 

management (Song and Liu 2018, Fang, et al. 2017), and etc. 

This paper leads to several future research questions. First, the experiments in this paper focus 

on one SLM machine with combinations of product designs and process settings. We will extend the 

proposed method to similar-but-non-identical SLM machines, with different types of materials, multiple 

in situ variables (e.g., gas flow speed, recoating speed) and performance variables (e.g., porosity, 

mechanical properties) in a CAMNet. Moreover, the modeling for local region quality will also 

investigate. Second, by considering the benefit from the online adjustable capability for the AM process 

that can control the process during the fabrication via the hardware protocol such as MTconnect 

(Vijayaraghavan, et al. 2008), an extension of the family learning method will be investigated to process 

monitoring (Jin and Liu 2013), diagnosis (Seshadrinath, Singh and Panigrahi 2013), and control (Huang, 

Liu, Chalivendra, Ceglarek and Kong 2014) in a CMS. Finally, the proposed linear model structure can 

be improved to quantify more complex variable relationships. Examples can be found in a functional 

graphical model (Sun, et al. 2017), a nonlinear model (Shumway and Stoffer 2011), or quantitative and 

qualitative model (Deng and Jin 2015).  
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