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Abstract
Adversarially robust classification seeks a classifier that is insensitive to adversarial perturbations
of test patterns. This problem is often formulated via a minimax objective, where the target loss
is the worst-case value of the 0-1 loss subject to a bound on the size of perturbation. Recent work
has proposed convex surrogates for the adversarial 0-1 loss, in an effort to make optimization more
tractable. In this work, we consider the question of which surrogate losses are calibrated with
respect to the adversarial 0-1 loss, meaning that minimization of the former implies minimization
of the latter. We show that no convex surrogate loss is calibrated with respect to the adversarial 0-1
loss when restricted to the class of linear models. We further introduce a class of nonconvex losses
and offer necessary and sufficient conditions for losses in this class to be calibrated.
Keywords: surrogate loss, classification calibration, adversarial robustness

1. Introduction

In conventional machine learning, training and testing instances are assumed to follow the same
probability distribution. In adversarially robust machine learning, test instances may be perturbed
by an adversary before being presented to the predictor. Recent work has shown that seemingly
insignificant adversarial perturbations can lead to significant performance degradations of otherwise
highly accurate classifiers (Goodfellow et al., 2015). This has led to the development of a number
of methods for learning predictors with decreased sensitivity to adversarial perturbations (Xu et al.,
2009; Xu and Mannor, 2012; Goodfellow et al., 2015; Cisse et al., 2017; Wong and Kolter, 2018;
Raghunathan et al., 2018a; Tsuzuku et al., 2018).

Adversarially robust classification is typically formulated as empirical risk minimization with an
adversarial 0-1 loss, which is the maximum of the usual 0-1 loss over a set of possible perturbations
of the test instance. This minimax optimization problem is nonconvex, and recent work, reviewed
in Section 4, has proposed several convex surrogate losses. However, it is still unknown whether
minimizing these convex surrogates leads to minimization of the adversarial 0-1 loss.

In this work, we examine the question of which surrogate losses are calibrated with respect to
(wrt) the adversarial 0-1 loss. A surrogate loss is said to be calibrated wrt a target loss if minimiza-
∗ This work was performed while the first author was a visitor at University of Michigan.
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(a) Ramp loss (β = 0.5)
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(b) Hinge loss (β = 0.5)

Figure 1: The best linear classifier under each loss. The shift parameter β for a surrogate loss is defined in Section 8. The
`2-balls associated to each instance indicate adversarial perturbations with radii 0.1. The yellow balls indicate instances
vulnerable to perturbations, in that they are within 0.1 of the decision boundary. In this example, 1.2% of instances are
vulnerable under the ramp loss, while 24.8% of instances are vulnerable under the hinge loss.

tion of the excess surrogate risk (over a specified class of decision functions) implies minimization
of the excess target risk. Employing the calibration function perspective of Steinwart (2007), we
show that no convex surrogate loss is calibrated wrt the adversarial 0-1 loss when restricted to the
class of linear models (Section 6). Intuitively, this is because convex losses prefer predictions close
to the decision boundary on average when P(Y = +1|X) ≈ 1

2 , while predictions that are too close
to the decision boundary should be penalized in adversarially robust classification. We also provide
necessary and sufficient conditions for a certain class of nonconvex losses to be calibrated wrt the
adversarial 0-1 loss (Section 7), and provide excess risk bounds that quantify the relationship be-
tween the excess surrogate and target risks. These calibrated losses attain robustness by penalizing
predictions that are too close to the decision boundary. To our knowledge, this is the first work
to formally analyze the adversarial 0-1 loss by calibration analysis. Our analysis depends on the
fact that the adversarially robust 0-1 loss equals the horizontally shifted (non-robust) 0-1 loss when
restricted to linear models (Proposition 1). In summary, we argue against the use of convex losses
in adversarially robust classification (with linear models), and calibrated nonconvex losses serve as
good alternatives.

Our results demonstrate that adversarial robustness requires different surrogates than other no-
tions of robustness. For example, symmetric losses such as the sigmoid and ramp losses are robust
to label noise (Ghosh et al., 2015), but not calibrated wrt the adversarial 0-1 loss. Figure 1 illustrates
the results of learning a linear classifier with respect a shifted ramp loss, which is calibrated wrt the
adversarial 0-1 loss, and a shifted hinge loss, which is not (these losses are discussed in detail later).
While the hinge loss yields a classifier with smaller misclassification rate wrt the conventional 0-1
loss, this classifier is quite sensitive to small perturbations of the test instances. The classifier learned
by the ramp loss, on the other hand, makes fewer errors when subjected to adversarial perturbations.

The rest of this paper is organized as follows. Section 3 formalizes notation and the problem.
Related work on robust learning and calibration analysis is reviewed in Section 4. Technical details
of calibration analysis are reviewed in Section 5. Section 6 describes the nonexistence of convex
calibrated surrogate losses, while Section 7 presents general calibration conditions for a certain
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class of nonconvex losses. Section 8 applies our theory to several convex and nonconvex losses,
and presents excess risk bounds for the calibrated nonconvex losses. Section 9 shows simulation
results to verify that calibrated losses achieve target excess risk close to zero under the robust 0-1
loss. Conclusions are stated in Section 10.

2. Notation

Let ‖x‖p for a vector x ∈ Rd be the `p-norm, namely, ‖x‖p = p

√∑d
i=1 |xi|p. Let Bd

p(r)
def
= {v ∈

Rd | ‖v‖p ≤ r} be the d-dimensional `p-ball with radius r. The set {1, . . . , n} is denoted by [n].
The indicator function corresponding to an eventA is denoted by 1{A}. We define the infimum over
the empty set as +∞. Denote h ≡ c for a function h : S → R and c ∈ R if h(x) = c for all x ∈
dom(h), where dom(h) denotes the domain of a function h, and h 6≡ c otherwise. For a function
h : S → R, we write h∗∗ : S → R for the Fenchel-Legendre biconjugate of h, characterized by
epi(h∗∗) = co epi(h), where coS is the closure of the convex hull of the set S, and epi(h) is the
epigraph of the function h: epi(h)

def
= {(x, t) | x ∈ S, h(x) ≤ t}. A function h : S → R is said to

be quasiconcave if for all x1, x2 ∈ S and λ ∈ [0, 1], h(λx1 + (1− λ)x2) ≥ min{h(x1), h(x2)}.
Let X def

= Bd
2(1) be the feature space, Y def

= {±1} be the binary label space, and F ⊆ RX be
a function class. We consider symmetric F , that is, −f ∈ F for all f ∈ F . We write Fall ⊆ RX
for the space of all measurable functions. Let ` : Y × X × F → R≥0 be a loss function. Then, we
write R`(f)

def
= E(X,Y )[`(Y,X, f)] for the `-risk of f ∈ F . If ` can be represented by `(y, x, f) =

φ(yf(x)) with some φ : R → R≥0 for any y ∈ Y , x ∈ X , and f ∈ F , φ is called a margin-based
loss function. We define the φ-risk of f ∈ F for a margin-based loss φ by

Rφ(f)
def
= E(X,Y )[φ(Y f(X))] = EXEY |X [φ(Y f(X))], (1)

where EX and EY |X mean the expectation over P(X) and P(Y |X), respectively. We can rewrite

(1) as Rφ(f) = EX [Cφ(f(X),P(Y = +1|X))] with Cφ(α, η)
def
= ηφ(α) + (1− η)φ(−α). We call

Cφ(α, η) the class-conditional φ-risk (φ-CCR). The minimal φ-riskR∗φ,F
def
= inff∈F Rφ(f) is called

the Bayes (φ, F )-risk, and the minimal φ-CCR on F is denoted by C∗φ,F (η)
def
= infα∈AF Cφ(α, η),

where AF def
= {α = f(x) | f ∈ F , x ∈ X}. We refer to Rφ(f) −R∗φ,F as the (φ,F)-excess risk.

We occasionally use the abbreviation ∆Cφ,F (α, η)
def
= Cφ(α, η)− C∗φ,F (η).

3. Surrogate Losses for Adversarial Robust Classification

In supervised binary classification, a learner is asked to output a predictor f : X → R that minimizes
the classification error P{Y f(X) ≤ 0}, where P is the unknown underlying distribution. This can
be equivalently interpreted as the minimization of the risk E(X,Y )[`01(Y,X, f)] wrt f , where

`01(y, x, f)
def
=

{
1 if yf(x) ≤ 0,

0 otherwise

is the 0-1 loss. Letting φ01(α)
def
= 1{α≤0}, then `01(y, x, f) = φ01(yf(x)). On the other hand, an

adversarially robust learner is asked to output a predictor f that minimizes the 0-1 loss while being
tolerant to small perturbations to input data points. Following existing literature (Xu et al., 2009;
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Tsuzuku et al., 2018; Bubeck et al., 2019), we consider `2-ball perturbations and define the goal as
the minimization of P{∃∆x ∈ Bd

2(γ) s.t. X + ∆x ∈ X and Y f(X + ∆x) ≤ 0}, where ∆x is a
perturbation vector and γ ∈ (0, 1) is a pre-defined perturbation budget. Equivalently, the goal of
adversarially robust classification is to minimize E(X,Y )[`γ(Y,X, f)] wrt f , where

`γ(y, x, f)
def
=

{
1 if ∃∆x ∈ Bd

2(γ) s.t. x+ ∆x ∈ X and yf(x+ ∆x) ≤ 0,

0 otherwise.

We call this loss function `γ the adversarially robust 0-1 loss, or the robust 0-1 loss for short.
The robust 0-1 loss is also a margin-based loss when restricted to the class of linear models

Flin
def
= {x 7→ θ>x | θ ∈ Rd, ‖θ‖2 = 1} ⊆ RX . Note that Flin is symmetric.

Proposition 1 For any x ∈ X , y ∈ Y , and f ∈ Flin, we have `γ(y, x, f) = 1{yf(x)≤γ}.

We include the proof in Appendix B for completeness though it is mentioned as a fact by Di-
akonikolas et al. (2019). Subsequently, when considering Flin, we work with the loss function
φγ(α)

def
= 1{α≤γ} and call φγ the γ-robust 0-1 loss. We will study calibrated surrogates wrt φγ

instead of `γ , and both are equivalent under the restricted function class Flin. We can view φγ as a
shifted version of φ01.

In many machine learning problems, there are often dichotomies between optimization (learn-
ing) and evaluation. For instance, binary classification is evaluated by the 0-1 loss, while common
learning methods such as SVM and logistic regression minimize surrogates to the 0-1 loss. This
dichotomy arises because minimizing the 0-1 loss directly is known to be NP-hard (Feldman et al.,
2012). Much research has investigated surrogates φ satisfying

Rφ(fi)−R∗φ,F → 0 =⇒ R`(fi)−R∗`,F → 0, (2)

for all probability distributions and sequence of {fi}i∈N ⊆ F .
Our learning goal is to minimize the expected γ-robust 0-1 loss on a given function class F :

min
f∈F
R`γ (f). (3)

In order to solve (3), we aim to characterize surrogate losses φ satisfying (2) with ` = `γ and
F = Flin. By Proposition 1, we haveR`γ (f) = Rφγ (f) when F = Flin.

4. Related Work

From the viewpoint of robust optimization (Ben-Tal et al., 2009; Bertsimas et al., 2011), adversari-
ally robust binary classification can be formulated as

min
f∈F

E(X,Y )

[
max

X̃∈U(X)
`(Y, X̃, f)

]
, (4)

where ` is a loss function and U(x) is a user-specified uncertainty set. Our formulation of adversar-
ially robust classification (3) can be regarded as the special case ` = `01 and U(x) = x+Bd

2(γ).
Since the minimax problem (4) is generally nonconvex, it is traditionally tackled by minimizing

a convex upper bound. Lanckriet et al. (2002) and Shivaswamy et al. (2006) pick U(x) = {x ∼
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(x̄,Σx)} as an uncertainty set, where x ∼ (x̄,Σx) means that x is drawn from a distribution that
has prespecified mean x̄, covariance Σx, and arbitrary higher moments. Lanckriet et al. (2002) and
Shivaswamy et al. (2006) convexified (4) and obtained a second-order cone program. Xu et al.
(2009) studied the relationship between robustness and regularization, and showed that (4) with the
hinge loss and U(x) = x+Bd

2(γ) is equivalent to `2-regularized SVM. Recently, Wong and Kolter
(2018), Madry et al. (2018), Raghunathan et al. (2018a), Raghunathan et al. (2018b), and Khim and
Loh (2019) examined (4) with the softmax cross entropy loss and U(x) = x+Bd

∞(γ) when F is a
set of deep nets, and provided convex upper bounds of the worst-case loss in (4). However, no work
except Cranko et al. (2019) studied whether the surrogate objectives minimize the robust 0-1 excess
risk. Cranko et al. (2019) showed that no canonical proper loss (Reid and Williamson, 2010) can
minimize the robust 0-1 loss. Since canonical proper losses are convex, this result aligns with ours.
We show more general results via calibration analysis for U(x) = x+Bd

2(γ).
There are several other approaches to the robust classification such as minimizing the Taylor

approximation of the worst-case loss in (4) (Goodfellow et al., 2015; Gu and Rigazio, 2015; Sha-
ham et al., 2018), regularization on the Lipschitz norm of models (Cisse et al., 2017; Hein and
Andriushchenko, 2017; Tsuzuku et al., 2018), and injection of random noises to model parame-
ters (Lecuyer et al., 2019; Cohen et al., 2019; Pinot et al., 2019; Salman et al., 2019). It is not
known whether these methods imply the minimization of the robust 0-1 excess risk.

Other forms of robustness have also been considered in the literature. A number of exist-
ing works considered the worst-case test distribution. This line includes divergence-based meth-
ods (Namkoong and Duchi, 2016, 2017; Hu et al., 2018; Sinha et al., 2018), domain adapta-
tion (Mansour et al., 2009; Ben-David et al., 2010; Germain et al., 2013; Kuroki et al., 2019; Zhang
et al., 2019b), and methods based on constraints on feature moments (Farnia and Tse, 2016; Fathony
et al., 2016).

In addition to adversarial robustness, it is worthwhile to mention outlier and label-noise ro-
bustness. It is known that convex losses are vulnerable to outliers, thus truncation making losses
nonconvex is useful (Huber, 2011). In the machine learning context, Masnadi-Shirazi and Vascon-
celos (2009) and Holland (2019) designed nonconvex losses robust to outliers. On the other hand,
label-noise robustness, especially the random classification noise model, has been studied exten-
sively (Angluin and Laird, 1988), where training labels are flipped with a fixed probability. Long
and Servedio (2010) showed that there is no convex loss that is robust to label noises. Later, Ghosh
et al. (2015), van Rooyen et al. (2015), and Charoenphakdee et al. (2019) discovered a certain class
of nonconvex losses is a good alternative for label-noise robustness. In both outlier and label-noise
robustness, nonconvex loss functions play an important role as we see in adversarial robustness.

Calibration analysis has been formalized in Lin (2004), Zhang et al. (2004), Bartlett et al. (2006),
and Steinwart (2007), and employed to analyze not only binary classification, but also complicated
problems such as multi-class classification (Zhang, 2004; Tewari and Bartlett, 2007; Long and
Servedio, 2013; Ávila Pires and Szepesvári, 2016; Ramaswamy and Agarwal, 2016), multi-label
classification (Gao and Zhou, 2011; Dembczynski et al., 2012), cost-sensitive learning (Scott, 2011,
2012; Ávila Pires et al., 2013), ranking (Duchi et al., 2010; Ravikumar et al., 2011; Ramaswamy
et al., 2013), structured prediction (Hazan et al., 2010; Ramaswamy and Agarwal, 2012; Osokin
et al., 2017; Blondel, 2019), AUC optimization (Gao and Zhou, 2015), and optimization of non-
decomposable metrics (Bao and Sugiyama, 2020). Zhang et al. (2004), Ravikumar et al. (2011),
and Gao and Zhou (2015) figured out ad hoc derivations of excess risk bounds, while Bartlett et al.
(2006), Steinwart (2007), Scott (2012), Ávila Pires et al. (2013), Ávila Pires and Szepesvári (2016),
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Osokin et al. (2017), and Blondel (2019) used more systematic approaches. As for adversarially
robust classification, Zhang et al. (2019a, Theorem 3.1) applied the classical result of calibration
analysis on convex losses to upper bound the robust classification risk, resulting in a term requiring
numerical approximation in practice.

5. Calibration Analysis

Calibration analysis is a tool to study the relationship between surrogate losses and target losses.
This section is devoted to explaining the calibration function introduced in Steinwart (2007) and
specializing it to the current paper.1

Definition 2 For a loss ψ : R → R≥0 and a function class F , we say a loss φ : R → R≥0 is
calibrated wrt (ψ,F ), or (ψ,F )-calibrated, if for any ε > 0, there exists δ > 0 such that for all
η ∈ [0, 1] and α ∈ AF , we have

Cφ(α, η) < C∗φ,F (η) + δ =⇒ Cψ(α, η) < C∗ψ,F (η) + ε. (5)

If φ is (ψ,F )-calibrated, the condition (2) holds for any probability distribution onX ×Y (Stein-
wart, 2007, Theorem 2.8). Thus, consistency of a learner wrt the φ-risk implies consistency wrt the
ψ-risk.

Next, we introduce the calibration function (Steinwart, 2007, Lemma 2.16).

Definition 3 For a margin-based loss ψ and φ, and a function class F , the calibration function of
φ wrt (ψ,F ), or simply calibration function if the context is clear, is defined as

δ(ε) = inf
η∈[0,1]

inf
α∈AF

Cφ(α, η)− C∗φ,F (η) s.t. Cψ(α, η)− C∗ψ,F (η) ≥ ε. (6)

Note that δ(ε) is nondecreasing for ε > 0. The calibration function δ(ε) is the maximal δ satisfying
the CCR condition (5). Steinwart (2007) established the following two important results.

Proposition 4 (Lemma 2.9 in Steinwart (2007)) A surrogate loss φ is (ψ,F )-calibrated if and
only if its calibration function δ satisfies δ(ε) > 0 for all ε > 0.

Proposition 5 (Theorem 2.13 in Steinwart (2007)) Let δ : R≥0 → R≥0 be the calibration func-
tion of φ wrt (ψ, F ). Define δ̌ : R≥0 → R≥0 as δ̌(ε) = δ(ε) if ε > 0 and δ̌(0) = 0. Then, for all
f ∈ F , we have

δ̌∗∗
(
Rψ(f)−R∗ψ,F

)
≤ Rφ(f)−R∗φ,F , (7)

where δ̌∗∗ denotes the Fenchel-Legendre biconjugate of δ̌.

The relationship in (7) is called an excess risk transform. The excess risk transform is invertible iff
φ is (ψ,F )-calibrated (Steinwart, 2007, Remark 2.14). In this case, we obtain the excess risk bound
Rψ(f)−R∗ψ,F ≤ (δ̌∗∗)−1(Rφ(f)−R∗φ,F ). In the end, the calibration function can be used in two

1. We import toolsets from Steinwart (2007) because of two reasons: (i) Steinwart (2007) formalized calibration analy-
sis that is dependent on user-specified function classes, which is useful for our analysis on Flin. (ii) Steinwart (2007)
gave a general form of the calibration function (6), while most of literature focuses on specific target losses.
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ways: Proposition 4 enables us to check if a surrogate loss is calibrated, and Proposition 5 gives
us a quantitative relationship between the surrogate excess risk and the target excess risk. Such an
analysis has been carried out in a number of learning problems as we mention in Section 4.

Next, we review an important result regarding convex surrogates for the non-robust 0-1 loss φ01.

Proposition 6 (Theorem 6 in Bartlett et al. (2006)) Let φ be a convex surrogate loss. Then, φ is
calibrated wrt (φ01,Fall) if and only if it is differentiable at 0 and φ′(0) < 0.

As a result of Proposition 6, we know that many surrogate losses used in practice such as the hinge
loss, logistic loss, and squared loss are calibrated wrt (φ01,Fall).

Finally, we characterize the calibration function of an arbitrary surrogate loss φwrt φγ . Its proof
is deferred in Appendix B.

Lemma 7 Let F ⊆ RX be a function class such that AF ⊇ [−1, 1]. For a surrogate loss φ, the
(φγ ,F )-calibration function is δ(ε) = infη∈[0,1] δ̄(ε, η), where

δ̄(ε, η) =


∞ if ε > max{η, 1− η},
inf
|α|≤γ

∆Cφ,F (α, η) if |2η − 1| < ε ≤ max{η, 1− η},

inf
α∈AF :(2η−1)α≤0 or |α|≤γ

∆Cφ,F (α, η) if ε ≤ |2η − 1|.
(8)

Lemma 7 is used in the proofs and examples below. Note that AFlin
= [−1, 1] and AFall

= R.

6. Convex Surrogates are Not (φγ , Fall)-calibrated

Our first result concerns calibration of convex surrogate losses wrt the γ-robust 0-1 loss.

Theorem 8 For any margin-based surrogate loss φ : R → R≥0 and function class F ⊆ RX such
that AF ⊇ [−1, 1], if φ is convex, then φ is not calibrated wrt (φγ ,F ).

Corollary 9 For any margin-based surrogate loss φ : R → R≥0, if φ is convex, then φ is not
calibrated wrt (φγ ,Flin), nor is it calibrated wrt (φγ ,Fall).

Proof (Sketch) Here we focus on function class Fall. In the non-robust setup, Bartlett et al. (2006)
showed that a surrogate loss is calibrated wrt (φ01,Fall) iff inf(2η−1)α≤0 Cφ(α, η) (the minimum
φ-risk over ‘wrong’ predictions) is larger than infα∈R Cφ(α, η) (the minimum φ-risk over all pre-
dictions) for η 6= 1

2 . This means wrong predictions must be penalized more. In our robust setup, we
must penalize not only wrong predictions but also predictions that fall in the γ-margin, i.e.,

inf
|α|≤γ

Cφ(α, η) > inf
α∈R
Cφ(α, η), (9)

which is an immediate corollary of Proposition 4 and Lemma 7 and stated in part 3 of Lemma 12 in
Appendix B. Condition (9) becomes harder to satisfy as a data point gets more uncertain (η → 1

2 ).
In the limit, we have inf |α|≤γ φ(α) + φ(−α) > infα∈R φ(α) + φ(−α), meaning that the even part
of φ “should take larger values in |α| ≤ γ than in the rest of α.” However, φ(α)+φ(−α) attains the
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α

φ(α) + φ(−α)

2

γ−γ−1 1

Figure 2: Illustration of φ(α)+φ(−α) = 2Cφ
(
α, 1

2

)
,

where φ is the hinge loss and γ = 0.5. φ(α) +φ(−α)
has the same minimizers in both |α| ≤ γ and |α| ≤ 1.

α

φ(α) + φ(−α)

1

1 + 2β

γ−γ

Figure 3: Illustration of φ(α)+φ(−α) = 2Cφ
(
α, 1

2

)
,

where φ is the ramp loss with β = 0.3 and γ = 0.5.
The condition φ(γ) + φ(−γ) > φ(1) + φ(−1) = 1
reflects the idea that predictions fall into the shaded
area (|α| ≤ γ) must be penalized more than the others.

infimum at α = 0 because φ(α) + φ(−α) is convex and even as long as φ is convex. Therefore, the
condition (9) would never be satisfied by convex surrogate φ. This idea is illustrated in Figure 2.

Hence, many popular surrogate losses such as the hinge, logistic, and squared losses are not
calibrated wrt (φγ ,Fall). We defer all proofs to Appendix B.

Note that convex losses can be calibrated wrt (φγ ,Fall) under restricted distributions while
we are primarily interested in calibrated losses under all distributions (see Definition 2). Indeed,
Cφ(α, η) would not be minimized in |α| ≤ γ unless η is close enough to 1

2 . In other words, convex
losses may be calibrated wrt (φγ ,Fall) under low-noise conditions (Mammen and Tsybakov, 1999).

7. Calibration Conditions for Nonconvex Surrogates

As seen in Section 6, convex surrogate losses that are calibrated wrt (φγ ,Fall) do not exist. This mo-
tivates a search for nonconvex surrogate losses. Nonconvex surrogates are used for outlier robust-
ness (Collobert et al., 2006; Masnadi-Shirazi and Vasconcelos, 2009; Holland, 2019) or label-noise
robustness (Ghosh et al., 2015; van Rooyen et al., 2015; Charoenphakdee et al., 2019). Bounded
monotone surrogates such as the ramp loss and the sigmoid loss are simple and common choices for
those purposes. In this section, we also look for good surrogates from bounded monotone losses.

First, we introduce an important notion that constrains our search space of loss functions.

Definition 10 We say a margin-based loss function φ : R → R≥0 is quasiconcave even if φ(α) +
φ(−α) is quasiconcave. Such φ is called a quasiconcave even loss.

The name comes from the fact that any function h(x) may be uniquely expressed as the sum of its
even part h(x)+h(−x)

2 and odd part h(x)−h(−x)
2 . This fact is also utilized to study the relationship

between loss functions and sufficiency (Patrini et al., 2016).
Next, we state our main positive result. Its proof is included in Appendix B.

Theorem 11 Let φ : R→ R≥0 be a surrogate loss. Assume that φ is bounded, nonincreasing, and
quasiconcave even. Let B def

= φ(1) +φ(−1) and assume φ(−1) > φ(1). Let F ⊆ RX be a function
class such that AF ⊇ [−1, 1]. Then,

1. φ is (φ01,F )-calibrated.
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Figure 4: Surrogate losses. They are different from the traditional ones by horizontal translation of +β (β = 0.2 here).

2. φ is (φγ ,F )-calibrated if and only if φ(γ) + φ(−γ) > B.

Proof (Sketch of 2) As in the proof sketch of Theorem 8, (9) is needed for (φγ ,F )-calibration,
and φ(α) + φ(−α) “should take larger values in |α| ≤ γ than in the rest of α.” Quasiconcavity
of φ(α) + φ(−α) naturally implies this property with a non-strict inequality, and the condition
φ(γ) + φ(−γ) > B ensures the strict inequality. Figure 3 illustrates it with the ramp loss.

To the best our knowledge, this is the first characterization of losses calibrated to φγ . This result
is especially interesting when F = Flin, ensuring that a quasiconcave even surrogate φ such that
φ(γ) + φ(−γ) > B is (φγ ,Flin)-calibrated.

We remark that φ(γ) + φ(−γ) ≥ B always holds when φ is bounded, nonincreasing, and
quasiconcave even (see part 4 of Lemma 13 in Appendix B). The strict inequality φ(γ)+φ(−γ) > B
is necessary and sufficient for (φγ ,Flin)-calibration.

We additionally remark that the ramp loss and the sigmoid loss are (φ01,Fall)-calibrated (Bartlett
et al., 2006; Charoenphakdee et al., 2019). Note that these two losses are bounded, nonincreasing,
and quasiconcave even, hence (φ01,Flin)-calibrated.

8. Examples

Several examples of loss functions are shown in Figure 4. For each base surrogate φ, we con-
sider the shifted surrogate φβ(α)

def
= φ(α − β) with the horizontal shift parameter β. The ramp,

sigmoid, modified squared losses are examples of nonconvex and quasiconcave even losses when
β ≥ 0, while the hinge, logistic, and squared losses are examples of convex losses. We show
(φγ ,Flin)-calibration functions in this subsection.2 As a result, we will see that the ramp, sigmoid,
and modified squared losses are calibrated with appropriate shift parameters. Detailed derivations
of the calibration functions and the proofs of quasiconcavity are deferred to Appendix C.

8.1. Ramp Loss

The ramp loss is φ(α) = min
{

1,max
{

0, 1−α2
}}

. We consider the shifted ramp loss: φβ(α) =

φ(α − β) = min
{

1,max
{

0, 1−α+β2

}}
. The (φγ ,Flin)-calibration function and its Fenchel-

Legendre biconjugate of the ramp loss are plotted in Figure 5. We can see that the ramp loss

2. We only rely on the fact that Flin ⊇ [−1, 1]. The results can be extrapolated to F such that F ⊇ [−1, 1].

9



ADVERSARIALLY ROBUST CLASSIFICATION CALIBRATION

ε

δ

1β
2−β

1
2

1−γ+ β
2

2

β
2

(a) 0 ≤ β < 1− γ

ε

δ

11−γ
2(2−β)

1
2

1−γ
2

1−γ
4

(b) 1− γ ≤ β < 1 + γ

ε

δ

1

1− β
2

(c) 1 + γ ≤ β < 2

ε

δ

1

(d) 2 ≤ β

Figure 5: The calibration function of the ramp loss. The dashed line is δ̌∗∗.
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Figure 6: The calibration function of the sigmoid loss. A0
def
= φβ(γ)− φβ(−γ)− φβ(1) + φβ(−1), A1

def
= (φβ(γ) +

φβ(−γ)− φβ(1)− φβ(−1))/2, and η0
def
= (φβ(−1)− φβ(−γ))/A0. The dashed line is δ̌∗∗.

is calibrated wrt (φγ ,Flin) when 0 < β < 2. Since the ramp loss is quasi-concave even when
β ≥ 0, we also observe that the ramp loss is not calibrated when β = 0 because it is symmetric
loss (Charoenphakdee et al., 2019), that is, φ0(α) + φ0(−α) = 1 for all α ∈ R, which does not
satisfy the condition φ0(γ) + φ0(−γ) > B = 1 in Theorem 2.

8.2. Sigmoid Loss

The sigmoid loss is φ(α) = 1
1+eα . We consider the shifted sigmoid loss: φβ(α) = 1

1+eα−β for
β > 0. The (φγ ,Flin)-calibration function is plotted in Figure 6. Thus, the sigmoid loss is (φγ ,Flin)-
calibrated when A1 > 0, which is equivalent to β > 0. Again, we observe that the sigmoid loss
with β = 0 is not calibrated in the same way as the ramp loss because it is symmetric.

8.3. Modified Squared Loss

We make a bounded monotone surrogate φ(α) = clip[0,1](max{0, 1 − α}2) by modifying the
squared loss, where clip[a,b](·) clips values outside the interval [a, b], and consider the shifted ver-

sion φβ(α)
def
= φ(α − β). The (φγ ,Flin)-calibration function and its Fenchel-Legendre biconjugate

are plotted in Figure 7. We can deduce that the modified squared loss is calibrated wrt (φγ ,Flin) for
all 0 ≤ β < 1. In contrast to the proceeding examples, the modified squared loss is not symmetric.

Moreover, the modified squared loss is (φγ ,Flin)-calibrated even if φβ for β < 0 is not a quasi-
concave even loss. We plot two examples in Figure 8. As seen in the proof sketch of Theorem 11,
it is crucial that φβ(α) + φβ(−α) takes higher values in |α| ≤ γ than in |α| > γ. The modified
squared loss with −1 + 1√

2
< β < 0 satisfies this property (see Figure 9).
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Figure 7: The calibration function of the modified squared loss. The dashed line is δ̌∗∗. ε0
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= (1−γ)(1−γ+2β)
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Figure 8: The calibration function of the modified squared loss when
β < 0. ε0

def
= β2 + 2β + 1

2
and η1

def
= (2 + 2β + γ)/4(1 + γ).

α

φβ(α) + φβ(−α)

−1 − β −ββ 1 + β

Figure 9: Illustration of φβ(α)+φβ(−α) for
the modified squared loss when −1 + 1√

2
<

β < 0. Here, β = −0.2 and γ = 0.4.

8.4. Hinge Loss and Squared Loss

Here we consider the shifted hinge loss φβ(α) = max{0, 1− α + β}, and the shifted squared loss
φβ(α) = (1 − α + β)2 as examples of convex losses. Their (φγ ,Flin)-calibration functions are
plotted in Figures 10 and 11, respectively, which tell us that the hinge and squared losses are not
(φγ ,Flin)-calibrated. This result aligns with Theorem 8.

9. Simulation

Learning Curve on Synthetic Data. We generate positive and negative data from N ([2 2]>, I2)
andN (−[2 2]>, I2), respectively, and normalize with the maximum `2-norm among all data points.
This ensures that data points lie in the `2 unit ball. We generate 800 training and 200 test points.

Linear models f(x) = θ>x+θ0 are used, where θ and θ0 are learnable parameters. As surrogate
losses, we use the ramp, sigmoid, logistic, and hinge losses, with shift parameter β = 0.2. Batch
gradient descent with the fixed step size 0.1 is used in optimization, and 1,000 steps are run for each
trial. After every parameter update, the parameters are normalized to ensure ‖[θ θ0]>‖2 = 1.

The robust 0-1 loss with γ = 0.2 is used as the target loss. To compute the excess risk, the
Bayes risk for each surrogate loss and the robust 0-1 loss is numerically computed. The detail of
numerical approximation of the Bayes risks is explained in Appendix D. The surrogate and target
excess risks are shown in Figure 12. 20 trials are run for each data realization.

As you can see from Figure 12, optimization trajectories of calibrated surrogates (ramp and
sigmoid) have target excess risks close to zero, while those of convex surrogates (logistic and hinge)
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Figure 11: The calibration function of the squared loss. η0
def
= (1 + γ + β)/2(1 + β),

η2
def
= (2 + β)/2(1 + β), and η1

def
= (η0 + η2)/2.

Table 1: The simulation results of the γ-adversarially
robust 0-1 loss with γ = 0.1 and β = 0.5. 50 trials are
conducted for each pair of a method and dataset. Stan-
dard errors (multiplied by 104) are shown in parenthe-
ses. Bold-faces indicate outperforming methods, cho-
sen by one-sided t-test with the significant level 5%.

Ramp Sigmoid Hinge Logistic

0 vs 1 0.034 (3) 0.017 (2) 0.087 (12) 0.321 (19)
0 vs 2 0.111 (7) 0.133 (10) 0.109 (8) 0.281 (19)
0 vs 3 0.107 (7) 0.126 (8) 0.120 (9) 0.307 (18)
0 vs 4 0.069 (6) 0.093 (12) 0.072 (7) 0.269 (21)
0 vs 5 0.233 (21) 0.340 (25) 0.233 (21) 0.269 (16)
0 vs 6 0.129 (8) 0.167 (13) 0.127 (8) 0.287 (22)
0 vs 7 0.067 (6) 0.073 (6) 0.090 (9) 0.302 (18)
0 vs 8 0.096 (7) 0.123 (12) 0.100 (9) 0.263 (20)
0 vs 9 0.082 (6) 0.101 (8) 0.092 (8) 0.279 (22)

10
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Figure 12: 20 trials of optimization trajectories are
shown with standard errors. The horizontal (vertical,
resp.) axis shows surrogate excess risk (excess risk of
the robust 0-1 loss, resp.) on test data.

fail. This observation supports our theoretical findings in Theorems 8 and 11. Different values of β
were tried for the hinge and logistic losses, but the conclusions are not affected.

Benchmark Data. We compare the ramp, sigmoid, hinge, and logistic losses on MNIST. The re-
sults are shown in Table 1, where we see that nonconvex losses, especially the ramp loss, outperform
convex losses in terms of the robust 0-1 loss. Details and full results appear in Appendix D.

10. Conclusion

Calibration analysis was leveraged to analyze the adversarially robust 0-1 loss. We found that
no convex surrogate loss is calibrated wrt the adversarially robust 0-1 loss. We also established
necessary and sufficient conditions for a certain class of nonconvex surrogate losses to be calibrated
wrt the adversarially robust 0-1 loss, which includes shifted versions of the ramp and sigmoid losses.
An important open problem is to extend our calibration results to nonlinear classifier models.
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Appendix A. Convex and Quasiconvex Analysis

This section summarizes basic tools for convex and quasiconvex analysis.
Quasiconvex function: A function h : S → R on a (finite-dimensional) vector space S is said to
be quasiconvex if for all x, y ∈ S and λ ∈ [0, 1], h(λx+(1−λ)y) ≤ max{h(x), h(y)}. A function
h is said quasiconcave if −h is quasiconvex: For all x, y ∈ S and λ ∈ [0, 1], h(λx + (1 − λ)y) ≥
min{h(x), h(y)}. Intuitively, quasiconvexity relaxes convexity in that a function still preserves
‘unimodality’ though it loses definite curvature. There is an equivalent definition (here we only
show for quasiconcavity): h is quasiconcave if every superlevel set {x | h(x) ≥ t} for t ∈ R is a
convex set (Boyd and Vandenberghe, 2004).
Subderivative: In order to analyze convexity and quasiconvexity, subderivative is a useful tool. We
adopt the Clarke definition of subderivative (Clarke, 1990; Aussel et al., 1994). Let S∗ be the dual
space of S and 〈·, ·〉 be the dual pairing.3 The (Clarke) subderivative of a lower semicontinuous
function h is the operator ∂h : S → S∗ defined for each x ∈ S such that

∂h(x)
def
= {x∗ ∈ S∗ | 〈x∗, x〉 ≤ h◦(x; v) ∀v ∈ S},

where h◦(x; v) is the Rockafellar directional derivative (see Clarke (1990) and Aussel et al. (1994)
for the formal definition). When h is locally Lipschitz at x ∈ S, Clarke (1990) states that this is
equivalent to ∂h(x) = co{lim∇f(xi) | xi → x, xi 6∈ Υ ∪ Ωh}, where co is the convex hull, Υ
is any set of measure zero, and Ωh is the set of points where h is non-differentiable. In the case
S = R, this simply reduces to ∂h(x) = [∂+h(x), ∂−h(x)], where ∂+h and ∂−h are the right-/left-
derivatives of h, respectively.
Properties of subderivative: Several basic properties of subderivatives are shown in Clarke (1990,
Section 2.3) such as ∂(th)(x) = t∂h(x)

def
= {tx∗ | x∗ ∈ ∂h(x)} (scalar multiples), ∂ (

∑
hi) (x) ⊆∑

∂hi(x)
def
= {∑xi,∗ | xi,∗ ∈ ∂hi(x)} (finite sums), and 0 3 ∂h(x) if h attains a local extrema at

x. When h is locally Lipschitz, it clearly holds that ∂h(x) = {h′(x)} if h is differentiable at x.
Operator monotonicity: Convex smooth functions have monotonically nondecreasing derivatives.
This can be extended to non-smooth functions via subderivatives. Let h : S → R be a lower semi-
continuous function. Then h is convex if and only if ∂h : S → S∗ is a monotone operator (Aussel
et al., 1994), that is, 〈y∗ − x∗, y − x〉 ≥ 0 for all x, y ∈ dom(h) and x∗ ∈ ∂h(x), y∗ ∈ ∂h(y). In
addition, h is quasiconvex if and only if ∂h is a quasimonotone operator (Aussel et al., 1994), that
is, 〈x∗, y − x〉 > 0 =⇒ 〈y∗, y − x〉 ≥ 0 for all x, y ∈ dom(h) and x∗ ∈ ∂h(x), y∗ ∈ ∂h(y).

3. For two vector spaces U and V over the same field F and a bilinear map 〈·, ·, 〉 : U × V → F , we say a triple
(U, V, 〈·, ·, 〉) is a dual pair if there exists v ∈ V such that 〈u, v〉 6= 0 for all u ∈ U and there exists u ∈ U such that
〈u, v〉 6= 0 for all v ∈ V . Here, V is called a dual space of V , and 〈·, ·〉 is called a dual pairing.
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Appendix B. Deferred Proofs

B.1. Proof of Proposition 1

Proof Fix (x, y) ∈ X × Y and f ∈ Flin associated with parameter θ ∈ Rd.
When y = +1, we divide into three cases depending on the value of yf(x) = θ>x. If θ>x ≤ 0,

then ∆x = 0 simply gives θ>(x + ∆x) ≤ 0. If 0 < θ>x ≤ γ, fix ∆x = −γθ ∈ Bd
2(γ). Then,

θ>(x + ∆x) = θ>x − γ ≤ 0. If θ>x > γ, we observe θ>∆x is minimized by ∆x = − γ
‖θ‖2 θ ∈

Bd
2(γ). Then, θ>(x+ ∆x) > γ + θ>∆x ≥ γ − γ = 0. In all cases, `γ(+1, x, f) = 1{f(x)≤γ}.

When y = −1, we divide the cases as well. If θ>x > 0, then ∆x = 0 simply gives θ>(x +
∆x) > 0. If −γ ≤ θ>x ≤ 0, fix ∆x = γθ ∈ Bd

2(γ). Then, θ>(x + ∆x) = θ>x + γ ≥ 0. If
θ>x < −γ, we observe θ>∆x is maximized by ∆x = γ

‖θ‖2 θ ∈ Bd
2(γ). Then, θ>(x + ∆x) <

−γ + θ>∆x ≤ −γ + γ = 0. In all cases, `γ(−1, x, f) = 1{f(x)≥−γ} = 1{−f(x)≤γ}.

B.2. Proof of Lemma 7

Proof We first simplify the constraint in the calibration function (6). The φγ-CCR for α ∈ AF is

Cφγ (α, η) = η1{α≤γ} + (1− η)1{α≥−γ} =


1 if |α| ≤ γ,
1− η if γ < α,

η if α < −γ,

and the minimal (φγ ,F )-CCR is C∗φγ ,F (η) = min{η, 1 − η}. If γ < |α|, a well-known algebra in
the binary classification case shows that Cφγ (α, η)− C∗φγ ,F (η) = |2η − 1| · 1{(2η−1)α≤0} (see, e.g.,
Bartlett et al. (2006, Proof of Theorem 3)). If |α| ≤ γ, it follows that Cφγ (α, η) − C∗φγ ,F (η) =

1−min{η, 1− η} = max{η, 1− η}. Hence,

∆Cφγ ,F (α, η) =

{
max{η, 1− η} if |α| ≤ γ,
|2η − 1| · 1{(2η−1)α≤0} if γ < |α|.

Next, we simplify the inner infimum on α, infα∈R{∆Cφ,F (α, η) | ∆Cφγ ,F (α, η) ≥ ε} = δ̄(ε, η)
in (6), for a fixed η ∈ [0, 1]. If ε > max{η, 1−η}, no α ∈ AF achieves ∆Cφγ ,F (α, η) ≥ ε, meaning
that δ̄(ε, η) =∞. If |2η − 1| < ε ≤ max{η, 1− η}, ∆Cφγ ,F (α, η) ≥ ε is achieved when |α| ≤ γ.
Hence, δ̄(ε, η) = infα{∆Cφ,F (α, η) | |α| ≤ γ}. Note that |2η − 1| ≤ max{η, 1 − η} = 1+|2η−1|

2
for all η ∈ [0, 1]. If ε ≤ |2η − 1|, ∆Cφ,F (α, η) ≥ ε is achieved if either |α| ≤ γ or (2η − 1)α ≤ 0
holds. Hence, δ̄(ε, η) = infα{∆Cφ,F (α, η) | |α| ≤ γ or (2η−1)α ≤ 0}. These verify the statement
of this lemma.

B.3. Useful Lemmas

The following lemmas are useful in the remaining proofs. Their proofs appear in Sections B.6 and
B.7.

Lemma 12 Let φ : R → R≥0 be a margin-based loss function and F ⊆ RX be a symmetric
function class such that AF ⊇ [−1, 1].
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1. For all α ∈ R, Cφ(α, η) and ∆Cφ,F (α, η) are symmetric about η = 1
2 , i.e., Cφ(α, η) =

Cφ(−α, 1− η) and ∆Cφ,F (α, η) = ∆Cφ,F (−α, 1− η) for all η ∈ [0, 1].

2. When η = 1
2 , we have

inf
|α|≤γ

∆Cφ,F
(
α,

1

2

)
= inf

0≤α≤γ
∆Cφ,F

(
α,

1

2

)
= inf

0≤α≤γ
Cφ
(
α,

1

2

)
− inf
α∈AF :α≥0

Cφ
(
α,

1

2

)
.

3. A surrogate loss φ is calibrated wrt (φγ ,F ) if and only if

inf
|α|≤γ

Cφ
(
α,

1

2

)
> inf

α∈AF
Cφ
(
α,

1

2

)
, and

inf
α∈AF :α≤γ

Cφ(α, η) > inf
α∈AF

Cφ(α, η),

for all η ∈
(
1
2 , 1
]
.

4. A surrogate loss φ is calibrated wrt (φ01,F ) if and only if

inf
α∈AF :α≤0

Cφ(α, η) > inf
α∈AF

Cφ(α, η),

for all η ∈
(
1
2 , 1
]
.

Note that part 4 of Lemma 12 can be regarded as a generalization of classification calibra-
tion (Bartlett et al., 2006, Definition 1) when F 6= Fall.

Lemma 13 Let φ : R → R≥0 be a margin-based loss function. If φ is nonincreasing, bounded,
φ 6≡ 0, and quasiconcave even, then

1. the class-conditional φ-risk Cφ(α, η) is quasiconcave in α ∈ R for all η ∈ [0, 1].

2. for all η ∈
(
1
2 , 1
]
, Cφ(α, η) is nonincreasing in α when α ≥ 0.

3. for all η ∈
(
1
2 , 1
]
, Cφ(−1, η) > Cφ(1, η).

4. φ(α) + φ(−α) is nonincreasing in α when α ≥ 0.

5. for l, u ∈ [−1, 1] (l ≤ u), infα∈[l,u] Cφ(α, η) = min{Cφ(l, η), Cφ(u, η)} for all η ∈ [0, 1].

B.4. Proof of Theorem 8

Proof Part 3 of Lemma 12 states that φ is calibrated wrt (φγ ,F ) if and only if

inf
0≤α≤γ

Cφ
(
α,

1

2

)
> inf

α∈AF :α≥0
Cφ
(
α,

1

2

)
and

inf
α∈AF :α≤γ

Cφ(α, η) > inf
α∈AF :α≥0

Cφ(α, η) for any η ∈
(

1

2
, 1

]
.
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In order to show φ is not calibrated wrt (φγ ,F ), it is sufficient to show that

inf
0≤α≤γ

Cφ
(
α,

1

2

)
= inf

α∈AF :α≥0
Cφ
(
α,

1

2

)
,

which is equivalent to

inf
0≤α≤γ

φ(α) + φ(−α) = inf
α∈AF :α≥0

φ(α) + φ(−α).

Since φ̄(α)
def
= φ(α) + φ(−α) is a convex even function, we have φ̄(0) ≤ φ̄(α) for all α ∈ AF .

Too see this, assume that there exists α∗ ∈ AF such that α∗ 6= 0 and φ̄(0) > φ̄(α∗). Then, we
also have φ̄(−α∗) < φ̄(0) since φ̄ is even. It follows that 1

2{φ̄(−α∗) + φ̄(α∗)} < φ̄(0). However,
we have 1

2{φ̄(−α∗) + φ̄(α∗)} ≥ φ̄
(−α∗+α∗

2

)
= φ̄(0) because of convexity of φ̄. Hence, we see

φ̄(0) ≤ φ̄(α) for all α ∈ AF . This means that inf0≤α≤γ φ̄(α) = infα∈AF :0≤α φ̄(α) = φ̄(0).

B.5. Proof of Theorem 11

Proof of part 1 By part 4 of Lemma 12, (φ01,F )-calibration is equivalent to

inf
−1≤α≤0

Cφ(α, η) > inf
α∈[−1,1]

Cφ(α, η) for all η ∈
(

1

2
, 1

]
. (10)

First, we observe

2φ(0) = φ(0) + φ(0) ≥ inf
0≤α≤1

φ(α) + φ(−α)

= φ(1) + φ(−1) (quasiconcavity of φ(α) + φ(−α))

= B.

Next, fix η such that 1
2 < η ≤ 1. We observe with part 5 of Lemma 13 that

inf
−1≤α≤0

Cφ(α, η) = min{Cφ(−1, η), Cφ(0, η)} (part 5 of Lemma 13)

= min{ηB + (1− η)B, φ(0)},
and

inf
−1≤α≤1

Cφ(α, η) = min{Cφ(−1, η), Cφ(1, η)} (part 5 of Lemma 13)

= Cφ(1, η) (part 3 of Lemma 13)

= ηB + (1− η)B,

where B def
= φ(1) and B = φ(−1). Here,

Cφ(−1, η)− Cφ(1, η) = (B −B)(2η − 1) > 0,

Cφ(0, η)− Cφ(1, η) = φ(0)−B + η(B −B)

≥ B +B

2
−B + η(B −B) (2φ(0) ≥ B)

>
B +B

2
−B +

B −B
2

(φ(−1) > φ(1) and η > 1
2 )

= 0.
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Then, we have for all η ∈
(
1
2 , 1
]
,

inf
1≤α≤0

Cφ(α, η)− inf
−1≤α≤1

Cφ(α, η) = min{Cφ(−1, η)− Cφ(1, η), Cφ(0, η)− Cφ(1, η)}

> 0.

This verifies the condition (10).

Proof of part 2 φ is calibrated wrt (φγ ,F ) if and only if

(i) inf
|α|≤γ

Cφ
(
α,

1

2

)
> inf
−1≤α≤1

Cφ
(
α,

1

2

)
, and

(ii) inf
−1≤α≤γ

Cφ(α, η) > inf
−1≤α≤1

Cφ(α, η) for all η ∈
(

1

2
, 1

] (11)

by part 3 of Lemma 12. Now we show φ(γ) + φ(−γ) > B assuming (i) and (ii).

φ(γ) + φ(−γ) = inf
0≤α≤γ

φ(α) + φ(−α) (part 4 of Lemma 13)

> inf
−1≤α≤1

φ(α) + φ(−α) ((i) is used)

= inf
0≤α≤1

φ(α) + φ(−α) (φ(α) + φ(−α) is even)

= φ(1) + φ(−1) (part 4 of Lemma 13)

= B.

Conversely, assume φ(γ) +φ(−γ) > B. We will show (i) and (ii) in (11). Since φ(α) +φ(−α)
is nonincreasing in α ≥ 0 (part 4 of Lemma 13), we have

inf
|α|≤γ

φ(α) + φ(−α) = inf
0≤α≤γ

φ(α) + φ(−α) (φ(α) + φ(−α) is even)

= φ(γ) + φ(−γ) (part 4 of Lemma 13)

> B

= φ(1) + φ(−1)

= inf
0≤α≤1

φ(α) + φ(−α), (part 4 of Lemma 13)

= inf
−1≤α≤1

φ(α) + φ(−α), (φ(α) + φ(−α) is even)

which is equivalent to (i). For (ii), fix η such that 1
2 < η ≤ 1. We first observe with parts 3 and 5 of

Lemma 13 that

inf
−1≤α≤γ

Cφ(α, η) = min {Cφ(−1, η), Cφ(γ, η)} ,

inf
−1≤α≤1

Cφ(α, η) = min {Cφ(−1, η), Cφ(1, η)} = Cφ(1, η).

Here, we have

Cφ(1, η) = (B −B)η +B,

Cφ(γ, η) = (φ(γ)− φ(−γ))η + φ(−γ),
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where B def
= φ(1) and B def

= φ(−1). Observing that

B −B + φ(γ)− φ(−γ) ≥ B −B + φ(1)− φ(−1) = 0, (φ is nonincreasing)

we have for all η ∈
(
1
2 , 1
]
,

Cφ(γ, η)− Cφ(1, η) = (φ(γ)− φ(−γ) +B −B)η + (φ(−γ)−B)

≥ (φ(γ)− φ(−γ) +B −B)
1

2
+ φ(−γ)−B

=
φ(γ) + φ(−γ)−B

2
> 0,

where the first inequality holds since (φ(γ) − φ(−γ) + B − B) > 0 and η > 1
2 , and the second

inequality holds because of the assumption φ(γ) + φ(−γ) > B. In addition, we have Cφ(−1, η) >
Cφ(1, η) for η > 1

2 by part 3 of Lemma 13. Therefore,

inf
−1≤α≤γ

Cφ(α, η)− inf
−1≤α≤1

Cφ(α, η) = min{Cφ(−1, η)− Cφ(1, η), Cφ(γ, η)− Cφ(1, η)}

> 0

holds for all η such that 1
2 < η ≤ 1, and this verifies (ii).

B.6. Proof of Lemma 12

Proof Parts 1 and 2 are obvious from the definition of the class-conditional φ-risk.
Part 3: Let δ : R≥0 → R≥0 be the (φγ ,F )-calibration function of φ, and δ̄ : R≥0 × [0, 1] → R≥0
be the inner infimum of δ in (8):

δ̄(ε, η) =


inf
|α|≤γ

∆Cφ,F (α, η) if |2η − 1| < ε ≤ max{η, 1− η},

inf
α∈AF :|α|≤γ or (2η−1)α≤0

∆Cφ,F (α, η) if ε ≤ |2η − 1|,

and δ(ε) = infη∈[0,1] δ̄(ε, η). Then, by Proposition 4, φ is (φγ ,F )-calibrated if and only if δ(ε) > 0
for all ε > 0. If δ̄(ε, η) is lower semicontinuous in η, this is equivalent to δ̄(ε, η) > 0 for all ε > 0
and η ∈ [0, 1]. Using part 1 of Lemma 12 and symmetry of F , since we have for η ≤ 1

2 ,

inf
α∈AF :|α|≤γ or (2η−1)α≤0

Cφ(α, η) = inf
α∈AF :α≥−γ

Cφ(α, η)

= inf
α∈AF :α≥−γ

Cφ(−α, 1− η) (part 1 of Lemma 12)

= inf
α∈AF :α≤γ

Cφ(α, 1− η), (replace −α with α)

and for η ≥ 1
2 ,

inf
α∈AF :|α|≤γ or (2η−1)α≤0

Cφ(α, η) = inf
α∈AF :α≤γ

Cφ(α, η),
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infα∈AF :α≤γ ∆Cφ,F (α, η) > 0 for all η ≥ 1
2 implies infα∈AF :|α|≤γ or (2η−1)α≤0 ∆Cφ,F (α, η) > 0

for all η ∈ [0, 1]. Hence,

inf
α∈AF :|α|≤γ or (2η−1)α≤0

∆Cφ,F (α, η) > 0

for ε > 0 and η ∈ [0, 1] such that ε ≤ |2η − 1| if and only if

inf
α∈AF :α≤γ

∆Cφ,F (α, η) > 0

for ε > 0 and η ∈ [12 , 1] such that ε ≤ 2η − 1.
Therefore, δ̄(ε, η) > 0 for all ε > 0 and η ∈ [0, 1] if and only if inf

|α|≤γ
Cφ(α, η) > inf

α∈AF
Cφ(α, η) for all η ≥ 1

2 such that 2η − 1 < ε ≤ η,

inf
α∈AF :α≤γ

Cφ(α, η) > inf
α∈AF

Cφ(α, η) for all η ≥ 1
2 such that ε ≤ 2η − 1,

for all ε > 0, which is equivalent to inf
|α|≤γ

Cφ(α, η) > inf
α∈AF

Cφ(α, η) for all η ≥ 1
2 such that ε ≤ η < 1+ε

2 ,

inf
α∈AF :α≤γ

Cφ(α, η) > inf
α∈AF

Cφ(α, η) for all η ≥ 1
2 such that 1+ε

2 ≤ η ≤ 1,

for all ε > 0.
We immediately observe that{

η ≥ 1

2

∣∣∣∣ε ≤ η < 1 + ε

2
, ε > 0

}
=

{
1

2
≤ η ≤ 1

}
, and{

η ≥ 1

2

∣∣∣∣1 + ε

2
≤ η ≤ 1, ε > 0

}
=

{
1

2
< η ≤ 1

}
.

Therefore, we reduce the above conditions as inf
|α|≤γ

Cφ(α, η) > inf
α∈AF

Cφ(α, η) if 1
2 ≤ η ≤ 1,

inf
α∈AF :α≤γ

Cφ(α, η) > inf
α∈AF

Cφ(α, η) if 1
2 < η ≤ 1.

Note that inf |α|≤γ Cφ(α, η) ≥ infα∈AF :α≤γ Cφ(α, η) for all η. Since the first case is included in the
second case except when η = 1

2 , this is equivalent to

inf
|α|≤γ

Cφ
(
α, 12

)
> inf

α∈AF
Cφ
(
α, 12

)
, and inf

α∈AF :α≤γ
Cφ(α, η) > inf

α∈AF
Cφ(α, η) for η ∈

(
1
2 , 1
]
.

Finally, we check lower semicontinuity of δ̄(ε, η) in η. Fix a fixed α, Cφ(α, η) is lower semi-
continuous in η since Cφ(α, η) is linear in η. Because pointwise infimum preserves lower semi-
continuity, infα∈AF Cφ(α, η), inf |α|≤γ Cφ(α, η), and infα∈AF :|α|≤γ or (2η−1)α≤0 Cφ(α, η) are lower
semicontinuous in η. Hence, δ̄(ε, η) is lower semicontinuous in η. This concludes the proof of
part 3.
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Part 4: We follow the same direction as part 3. If we take γ → 0,

δ̄(ε, η) = inf
α∈AF :(2η−1)α≤0

∆Cφ,F (α, η) such that ε ≤ |2η − 1|.

Hence, by Proposition 4 and lower semicontinuity of δ̄(ε, η) in η (proven in part 3), φ is (φ01,F )-
calibrated if and only if

inf
α∈AF :(2η−1)α≤0

∆Cφ,F (α, η) > 0

for all ε > 0 and η ∈ [0, 1] such that ε ≤ |2η − 1|. In the same way as part 3 of Lemma 12, this is
equivalent to

inf
α∈AF :α≤0

Cφ(α, η) > inf
α∈AF

Cφ(α, η) for all η ≥ 1

2
such that

1 + ε

2
≤ η ≤ 1,

for all ε > 0, by using part 1 of Lemma 12 and symmetry of F . In the same way as part 3 of
Lemma 12, simple observations on ranges ε and η reduce the above joint conditions on ε and η to η
alone:

inf
α∈AF :α≤0

Cφ(α, η) > inf
α∈AF

Cφ(α, η) for all η such that
1

2
< η ≤ 1.

This is the lemma statement.

B.7. Proof of Lemma 13

Denote φ̄(α)
def
= φ(α) + φ(−α). φ̄ is quasiconcave and even. To prove part 1, we use the following

lemmas.

Lemma 14 A function h : R → R is quasiconcave if and only if min{x1,∗(x1 − x2), x2,∗(x2 −
x1)} ≤ 0 for all x1, x2 ∈ dom(h), and x1,∗ ∈ ∂h(x1) and x2,∗ ∈ ∂h(x2).

Proof If h is quasimonotone, Theorem 4.1 in Aussel et al. (1994) implies that−∂h is a quasimono-
tone operator, i.e.,

x1,∗(x2 − x1) < 0 =⇒ x2,∗(x2 − x1) ≤ 0

for all x1, x2 ∈ dom(h) and x1,∗ ∈ ∂h(x1) and x2,∗ ∈ ∂h(x2).

This is clearly equivalent to min{x1,∗(x1 − x2), x2,∗(x2 − x1)} ≤ 0.

Lemma 15 Any element in ∂φ̄(α0) can be represented by α+
∗ − α−∗ for some a+∗ ∈ ∂φ(α0) and

a−∗ ∈ ∂φ(−α0). For any η ∈
[
1
2 , 1
]
, α+
∗ ∈ ∂φ(α0), and α−∗ ∈ ∂φ(−α0), if α+

∗ − α−∗ ∈ ∂φ̄(α0),
then ηα+

∗ − (1− η)α−∗ ∈ ∂Cφ(α0, η).
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Proof By calculus of subderivative, we have ∂φ̄(α0) ⊆ ∂φ(α0) − ∂φ(−α0). The first statement
follows from this fact. In order to prove the second statement, note that left-/right-derivatives of φ
exists because φ is nonincreasing. We first observe that

(i) ∂−φ(α0) ≤ α+
∗ ≤ ∂+φ(α0),

(ii) ∂−φ(−α0) ≤ α−∗ ≤ ∂+φ(−α0), and

(iii) ∂−φ(α0)− ∂−φ(−α0) ≤ α+
∗ − α−∗ ≤ ∂+φ(α0)− ∂+φ(−α0).

We have (iii) because

α+
∗ − α−∗ ∈ ∂φ̄(α0) = [∂−φ̄(α0), ∂+φ̄(α0)]

= [∂−φ(α0)− ∂−φ(−α0), ∂+φ(α0)− ∂+φ(−α0)].

Then, for η ∈
[
1
2 , 1
]
, (η − 1

2)× (i) + (η − 1
2)× (ii) + 1

2 × (iii) gives

η∂−φ(α0)− (1− η)∂−φ(−α0) ≤ ηα+
∗ − (1− η)α−∗ ≤ η∂+φ(α0)− (1− η)∂+φ(−α0),

which is equivalent to

ηα+
∗ − (1− η)α−∗ ∈ [η∂−φ(α0)− (1− η)∂−φ(−α0), η∂+φ(α0)− (1− η)∂+φ(−α0)]

= [∂−Cφ(α0, η), ∂+Cφ(α0, η)]

= ∂Cφ(α0, η).

Now we proceed with the proof of Lemma 13.
Proof (of Lemma 13)
Part 1: Fix η ∈

[
1
2 , 1
]
. Since φ̄ is quasiconcave, by Lemma 14, min{α1,∗(α1 − α2), α2,∗(α2 −

α1)} ≤ 0 for any α1, α2 ∈ [−1, 1] and α1,∗ ∈ ∂φ̄(α1) and α2,∗ ∈ ∂φ̄(α2). Let us fix α1, α2 ∈ R
such that α1 ≥ α2, which can be assumed without loss of generality. Since ∂Cφ(α, η) ⊆ η∂φ(α)−
(1− η)∂φ(−α) (the subdifferentiation is taken on α) and ∂φ̄(α) ⊆ ∂φ(α)− ∂φ(−α), we can pick
α+
1,∗ ∈ ∂φ(α1) and α−1,∗ ∈ ∂φ(−α1) such that α+

1,∗ − α−1,∗ ∈ ∂φ̄(α1) and ηα+
1,∗ − (1 − η)α−1,∗ ∈

∂Cφ(α1, η) by Lemma 15; in the same way, we can pick α+
2,∗ ∈ ∂φ(α2) and α−2,∗ ∈ ∂φ(−α2) such

that α+
2,∗ − α−2,∗ ∈ ∂φ̄(α2) and ηα+

2,∗ − (1− η)α−2,∗ ∈ ∂Cφ(α2, η).
Here, let us divide min{(α+

1,∗ − α−1,∗)(α1 − α2), (α
+
2,∗ − α−2,∗)(α2 − α1)} ≤ 0, the necessary

condition of quasiconcavity of φ̄, into two cases. Consider the case (α+
1,∗ − α−1,∗)(α1 − α2) ≤ 0

first. In this case,

{ηα+
1,∗ − (1− η)α−1,∗}(α1 − α2) = ηα+

1,∗(α1 − α2)− (1− η)α−1,∗(α1 − α2)

≤ ηα+
1,∗(α1 − α2)− (1− η)α+

1,∗(α1 − α2)

= (2η − 1)(α1 − α2)︸ ︷︷ ︸
≥0

α+
1,∗

≤ 0,

where the last inequality holds because φ is nonincreasing (hence α+
1,∗ ≤ 0). Note again that

ηα+
1,∗ − (1− η)α−1,∗ ∈ ∂Cφ(α1, η).
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In another case (α+
2,∗−α−2,∗)(α2−α1) ≤ 0, we can show {ηα+

2,∗−(1−η)α−2,∗}(α2−α1) ≤ 0 in
the same way, and note that ηα+

2,∗− (1− η)α−2,∗ ∈ ∂Cφ(α2, η). Since we take α1 and α2 arbitrarily,
now we have min{αη1,∗(α1 − α2), α

η
2,∗(α2 − α1)} ≤ 0 for all αη1,∗ ∈ ∂Cφ(α1, η) and αη2,∗ ∈

∂Cφ(α2, η). This is the sufficient condition of quasiconcavity of Cφ(α, η) in α ∈ R by Lemma 14.
Therefore, we confirm quasiconcavity of Cφ(α, η) in α when η ≥ 1

2 given quasiconcavity of φ̄.
Finally, if η ∈

[
0, 12
)
, we know by part 1 of Lemma 12 that Cφ(α, η) = Cφ(−α, 1 − η) for

α ∈ R. Then, quasiconcavity of Cφ(α, η) in α ∈ R follows since Cφ(−α, 1− η) is quasiconcave in
−α ∈ R.
Part 2: Fix a η ∈

(
1
2 , 1
]

and α1, α2 ≥ 0 such that α1 < α2. By the fact that φ is nonincreasing, we
have

φ(α1)− φ(−α1)− φ(α2) + φ(−α2) = (φ(α1)− φ(α2)) + (φ(−α2)− φ(−α1))

≥ 0.

Then,

Cφ(α1, η)− Cφ(α2, η) = (φ(α1)− φ(−α1)− φ(α2) + φ(−α2))η + φ(−α1)− φ(−α2)

≥ (φ(α1)− φ(−α1)− φ(α2) + φ(−α2))
1

2
+ φ(−α1)− φ(−α2)

=
φ(α1) + φ(−α1)− φ(α2)− φ(−α2)

2
≥ 0,

where the last inequality holds because φ(α) + φ(−α) is nonincreasing when α ≥ 0 by part 4.
Therefore, Cφ(α, η) is nonincreasing in α ≥ 0.
Part 3: Fix a η ∈ (12 , 1]. Then,

Cφ(−1, η)− Cφ(1, η) = (2η − 1)(φ(−1)− φ(1))

> 0,

where the inequality holds due to η > 1
2 and φ 6≡ 0 and φ is non-increasing.

Part 4: φ̄ is an even function, so it is symmetric in α = 0. Since φ is quasiconcave even, i.e., φ̄ is
quasiconcave. Every quasiconcave function is nondecreasing, or nonincreasing, or there is global
maxima in its domain (Boyd and Vandenberghe, 2004). If φ̄ is either nondecreasing or nonincreasing
in α ∈ [−1, 1], it is a constant function in α ∈ [−1, 1] and clearly nonincreasing in α ≥ 0. If φ̄
has global maxima, i.e., there is a point α∗ ∈ [−1, 1] such that φ̄ is nondecreasing for α ≤ α∗ and
nonincreasing for α ≥ α∗, it is still nonincreasing in α ≥ 0. This is clear when α∗ ≤ 0. When
α∗ > 0, φ̄ may only be a constant function in α ∈ [0, α∗] otherwise we have a point α̃ ∈ [0, α∗)
such that φ̄(α̃) < φ̄(α∗); hence φ̄(α∗) = φ̄(−α∗) (write this value as φ̄∗) by the symmetry and
φ̄0

def
= φ̄(α̃) < φ̄∗, which means there is no convex superlevel sets for φ̄ within the range (φ̄0, φ̄∗).

For example, pick t ∈ (φ̄0, φ̄∗) and consider t-superlevel set of φ̄. If t-superlevel set is convex, it
must contain every point in [−α∗, α∗] since t < φ̄∗ = φ̄(−α∗) = φ̄(α∗). However, t-superlevel set
would not contain α̃ ∈ [−α∗, α∗] since t > φ̄0 = φ̄(α̃). This contradicts with quasiconcavity of φ̄.
In either case, φ̄ is nonincreasing in α ≥ 0.
Part 5: Fix η ∈ [0, 1]. This is an immediate consequence of quasiconcavity of Cφ(α, η) (part 1).
Boyd and Vandenberghe (2004) states that there are three cases for a quasiconcave function. If
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α

Cφβ
(α, η)

• •
•

|α| ≤ γ

−1− β −1 + β 1− β 1 + β

(a) 0 ≤ β < 1− γ
α

Cφβ
(α, η)

• •
•

−1 − β −1 + β 1 − β 1 + β

(b) 1− γ ≤ β < 1 + γ

α

Cφβ
(α, η)

• • •

−1 − β −1 + β1 − β 1 + β

(c) 1 + γ ≤ β < 2

α

Cφβ
(α, η)

• • •

−1 + β1 − β

(d) 2 ≤ β

Figure 13: The class-conditional risk for the ramp loss.

Cφ(α, η) is nondecreasing or nonincreasing, the statement is clear. If there is a point α∗ ∈ [l, u]
such that Cφ(α, η) is nondecreasing for α ≤ α∗ and nonincreasing for α ≥ α∗, the statement is
clear again. In all cases, we have infα∈[l,u] Cφ(α, η) = min{Cφ(l, η), Cφ(u, η)}.

Appendix C. Derivation of Calibration Functions

C.1. Ramp Loss

The ramp loss is φ(α) = min
{

1,max
{

0, 1−α2
}}

. We consider the shifted ramp loss: φβ(α) =
φ(α− β):

φβ(α) =


1 if α ≤ −1 + β,
1−α+β

2 if −1 + β < α ≤ 1 + β,

0 if 1 + β < α.

C.1.1. CALIBRATION FUNCTION

We analyze φβ-CCR Cφβ (α, η) = ηφβ(α) + (1 − η)φβ(−α), and restrict η > 1
2 by virtue of the

symmetry of Cφβ (part 1 in Lemma 12). Cφβ (α, η) is plotted in Figure 13. By part 5 of Lemma 13,
it is easy to see

C∗φβ ,Flin
(η) = min{Cφβ (−1, η), Cφβ (1, η)} = Cφβ (1, η).

Subsequently, we divide into cases depending on the relationship among Cφβ (−1, η), Cφβ (γ, η), and
Cφβ (−γ, η).
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(A) When 0 ≤ β < 1− γ:

Cφβ (1, η) =
β

2
η + (1− η),

Cφβ (−1, η) = η +
β

2
(1− η),

Cφβ (γ, η) =
1− γ + β

2
η +

1 + γ + β

2
(1− η),

Cφβ (−γ, η) =
1 + γ + β

2
η +

1− γ + β

2
(1− η),

from which it follows that Cφβ (−γ, η)−Cφβ (γ, η) = γ
2 (2η−1) > 0, that is, Cφβ (−γ, η) > Cφβ (γ, η)

for all η > 1
2 . In addition, since

Cφβ (γ, η)− Cφβ (−1, η) = −
(

1 + γ − β

2

)
(η − η0) where η0

def
=

1 + γ

2
(

1 + γ − β
2

) ,
we have Cφβ (γ, η) > Cφβ (−1, η) if η < η0 and Cφβ (γ, η) ≤ Cφβ (−1, η) if η ≥ η0.

• If 1
2 < η < η0: By part 5 in Lemma 13, it follows that

inf
|α|≤γ

Cφβ (α, η) = Cφβ (γ, η) and inf
|α|≤1:|α|≤γ or (2η−1)α≤0

Cφβ (α, η) = Cφβ (−1, η).

Thus, by Lemma 7,

δ̄(ε, η) =


∞ if η < ε,

Cφβ (γ, η)− C∗φβ ,Flin
(η) =

(
1− γ − β

2

) (
η − 1

2

)
+ β

2 if ε ≤ η < 1+ε
2 ,

Cφβ (−1, η)− C∗φβ ,Flin
(η) = (2− β)

(
η − 1

2

)
if 1+ε

2 ≤ η.
Hence we obtain

inf
η∈( 1

2
,η0]

δ̄(ε, η) =


(

1− β
2

)
ε if 0 < ε ≤ β

2−β ,
β
2 if β

2−β < ε ≤ 1
2 ,(

1− γ − β
2

) (
ε− 1

2

)
+ β

2 if 1
2 < ε.

Note that 0 ≤ β
2−β ≤

1−γ
2 < 1

2 .

• If η0 ≤ η ≤ 1: By part 5 in Lemma 13, it follows that

inf
|α|≤γ

Cφβ (α, η) = inf
|α|≤1:|α|≤γ or (2η−1)α≤0

Cφβ (α, η) = Cφβ (γ, η).

Thus, by Lemma 7,

δ̄(ε, η) =

{
∞ if η < ε,

Cφβ (γ, η)− C∗φβ ,Flin
(η) =

(
1− γ − β

2

) (
η − 1

2

)
+ β

2 if ε ≤ η.

Hence we obtain

inf
η∈(η0,1]

δ̄(ε, η) =

{
β
2 if 0 < ε ≤ 1

2 ,(
1− γ − β

2

) (
ε− 1

2

)
+ β

2 if 1
2 < ε.
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Combining the above, we obtain the φγ-calibration function from Lemma 7:

δ(ε) =


(

1− β
2

)
ε if 0 < ε ≤ β

2−β ,
β
2 if β

2−β < ε ≤ 1
2 ,(

1− γ − β
2

) (
ε− 1

2

)
+ β

2 if 1
2 < ε.

(B) When 1− γ ≤ β < 1 + γ:

Cφβ (1, η) =
β

2
η + (1− η),

Cφβ (−1, η) = η +
β

2
(1− η),

Cφβ (γ, η) =
1− γ + β

2
η + (1− η),

Cφβ (−γ, η) = η +
1− γ + β

2
(1− η),

from which it follows that Cφβ (−γ, η) − Cφβ (γ, η) = 1+γ−β
2 (2η − 1) > 0, that is, Cφβ (−γ, η) >

Cφβ (γ, η) for all η > 1
2 . In addition, since

Cφβ (γ, η)− Cφβ (−1, η) = −3 + γ − 2β

2
(η − η0),

(
η0

def
=

2

3 + γ − 2β

)
we have Cφβ (γ, η) > Cφβ (−1, η) if η < η0 and Cφβ (γ, η) ≤ Cφβ (−1, η) if η ≥ η0.

• If 1
2 < η < η0: By part 5 in Lemma 13, it follows that

inf
|α|≤γ

Cφβ (α, η) = Cφβ (γ, η) and inf
|α|≤1:|α|≤γ or (2η−1)α≤0

Cφβ (α, η) = Cφβ (−1, η).

Thus, by Lemma 7,

δ̄(ε, η) =


∞ if η < ε,

Cφβ (γ, η)− C∗φβ ,Flin
(η) = 1−γ

2 η if ε ≤ η < 1+ε
2 ,

Cφβ (−1, η)− C∗φβ ,Flin
(η) = (2− β)

(
η − 1

2

)
if 1+ε

2 ≤ η.

Hence we obtain

inf
η∈( 1

2
,η0]

δ̄(ε, η) =


(

1− β
2

)
ε if 0 < ε ≤ 1−γ

2(2−β) ,
1−γ
4 if 1−γ

2(2−β) < ε ≤ 1
2 ,

1−γ
2 ε if 1

2 < ε,

• If η0 ≤ η ≤ 1
2 : By part 5 in Lemma 13, it follows that

inf
|α|≤γ

Cφβ (α, η) = inf
|α|≤1:|α|≤γ or (2η−1)α≤0

Cφβ (α, η) = Cφβ (γ, η).
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Thus, by Lemma 7,

δ̄(ε, η) =

{
∞ if η < ε,

Cφβ (γ, η)− C∗φβ ,Flin
(η) = 1−γ

2 η if ε ≤ η.

Hence we obtain

inf
η∈(η0,1]

δ̄(ε, η) =

{
ε′0 if 0 < ε ≤ ε′0,
1−γ
2 ε if ε′0 < ε,

where ε′0
def
= 1−γ

2 η0(≥ 1−γ
4 ).

Combining the above, we obtain the φγ-calibration function from Lemma 7:

δ(ε) =


(

1− β
2

)
ε if 0 < ε ≤ 1−γ

2(2−β) ,
1−γ
4 if 1−γ

2(2−β) < ε ≤ 1
2 ,

1−γ
2 ε if 1

2 < ε.

Note that 1−γ
2(2−β) ≤

1−γ
2(1+γ) <

1
2 when 1 − γ ≤ β < 1 + γ. This means the second case would not

degenerate.
(C) When 1 + γ ≤ β < 2: It is easy to see

inf
|α|≤γ

Cφβ (α, η) = 1,

inf
|α|≤1:|α|≤γ or (2η−1)α≤0

Cφβ (α, η) = Cφβ (−1, η) = η +
β

2
(1− η),

C∗φβ ,Flin
(η) = Cφβ (1, η) =

β

2
η + (1− η).

Hence, by part 5 in Lemma 13, it follows that

δ̄(ε, η) =


∞ if η < ε,

1− Cφβ (1, η) =
(

1− β
2

)
η if ε ≤ η < 1+ε

2 ,

Cφβ (−1, η)− Cφβ (1, η) = (2− β)
(
η − 1

2

)
if 1+ε

2 ≤ η.

Thus, by Lemma 7, δ(ε) = infη∈( 1
2
,1] δ̄(ε, η) =

(
1− β

2

)
ε.

(D) When 2 ≤ β: In this case, Cφβ (α, η) = 1 for all η ∈ [0, 1] and α ∈ [−1, 1]. Hence,
∆Cφβ ,Flin

(α, η) = 0 and δ(ε) = 0.
To sum up, the (φγ ,Flin)-calibration function and its Fenchel-Legendre biconjugate of the ramp

loss is as follows:

• If 0 ≤ β < 1− γ,

δ(ε) =


(

1− β
2

)
ε if 0 < ε ≤ β

2−β ,
β
2 if β

2−β < ε ≤ 1
2 ,(

1− γ − β
2

) (
ε− 1

2

)
+ β

2 if 1
2 < ε,
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α

φβ(α) + φβ(−α)

−1 − β −1 + β 1 − β 1 + β

(a) 0 ≤ β < 1

α

φβ(α) + φβ(−α)

−1 − β −1 + β1 − β 1 + β

(b) 1 ≤ β

Figure 14: The even part of the ramp loss.

and

δ∗∗(ε) =

{
βε if 0 < ε ≤ 1

2 ,(
1− γ − β

2

) (
ε− 1

2

)
+ β

2 if 1
2 < ε.

• If 1− γ ≤ β < 1 + γ,

δ(ε) =


(

1− β
2

)
ε if 0 < ε ≤ 1−γ

2(2−β) ,
1−γ
4 if 1−γ

2(2−β) < ε ≤ 1
2 ,

1−γ
2 ε if 1

2 < ε,

and δ∗∗(ε) =
(

1− γ

2

)
ε.

• If 1 + γ ≤ β < 2, δ(ε) = δ∗∗(ε) =
(

1− β
2

)
ε.

• If 2 ≤ β, δ(ε) = δ∗∗(ε) = 0.

We can see that the ramp loss is calibrated wrt (φγ ,Flin) when 0 < β < 2.

C.1.2. QUASICONCAVITY OF EVEN PART

We confirm that φβ(α) + φβ(−α) is quasiconcave when β ≥ 0. In each case, φβ(α) + φβ(−α) is
plotted in Figure 14.
(A) When 0 ≤ β < 1:

φβ(α) + φβ(−α) =



1 α ≤ −1− β,
3+α+β

2 −1− β ≤ α < −1 + β,

1 + β −1 + β ≤ α < 1− β,
3−α+β

2 1− β ≤ α < 1 + β,

1 1 + β ≤ α.

The t-superlevel set of φβ(α) + φβ(−α) (denote St) is as follows.

• If t < 1, St = R.

• If 1 ≤ t ≤ 1 + β, St = {α | |α| ≤ 3 + β − 2t}.

• If 1 + β < t, St = ∅.
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In all cases, St is convex.
(B) When 1 ≤ β:

φβ(α) + φβ(−α) =



1 α ≤ −1− β,
3+α+β

2 −1− β ≤ α < 1− β,
2 1− β ≤ α < −1 + β,
3−α+β

2 −1 + β ≤ α < 1 + β,

1 1 + β ≤ α.
The t-superlevel set of φβ(α) + φβ(−α) (denote St) is as follows.

• If t < 1, St = R.

• If 1 ≤ t ≤ 2, St = {α | |α| ≤ 3 + β − 2t}.
• If 2 < t, St = ∅.

In all cases, St is convex.

C.2. Sigmoid Loss

The sigmoid loss is φ(α) = 1
1+eα . We consider the shifted sigmoid loss: φβ(α) = 1

1+eα−β for
β ≥ 0. φβ-CCR is

Cφβ (α, η) =
η

1 + eα−β
+

1− η
1 + e−α−β

.

Cφβ is plotted in Figure 15.

C.2.1. CALIBRATION FUNCTION

We focus on the case η > 1
2 due to the symmetry of Cφβ . By part 5 of Lemma 13, it is easy to check

C∗φβ ,Flin
(η) = min{Cφβ (−1, η), Cφβ (1, η)} = Cφβ (1, η) =

η

1 + e1−β
+

1− η
1 + e−1−β

.

Since

Cφβ (−γ, η)− Cφβ (γ, η) =

(
η

1 + e−γ−β
+

1− η
1 + eγ−β

)
−
(

η

1 + eγ−β
+

1− η
1 + e−γ−β

)
= (2η − 1)

(
1

1 + e−γ−β
− 1

1 + eγ−β

)
> 0, (since −γ − β < γ − β)

we have Cφβ (γ, η) < Cφβ (−γ, η) for all η > 1
2 . On the other hand, since

Cφβ (−1, η)− Cφβ (γ, η)

=

(
1

1 + e−1−β
− 1

1 + e1−β
− 1

1 + eγ−β
+

1

1 + e−γ−β

)
η +

(
1

1 + e1−β
− 1

1 + e−γ−β

)
>

1

2

(
1

1 + e−1−β
+

1

1 + e1−β
+

1

1 + eγ−β
+

1

1 + e−γ−β

)
> 0,
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α

Cφβ
(α, η)

• • •

−γ γ

Figure 15: The class-conditional risk
of the sigmoid loss.

α

φβ(α) + φβ(−α)

1

2(1 + e−β)−1

Figure 16: The even part of the sig-
moid loss.

α

φ̄′

O

Figure 17: The derivative of the even
part of the sigmoid loss.

we have Cφβ (γ, η) < Cφβ (−1, η) for all η ∈ [0, 1]. By part 5 in Lemma 13, it follows that

inf
|α|≤1:|α|≤γ or (2η−1)α≤0

Cφβ (α, η) = inf
|α|≤γ

Cφβ (α, η) = Cφβ (γ, η).

Thus, by Lemma 7, δ̄(ε, η) = A0(η − η0) if ε ≤ η, where

A0
def
= φβ(γ)− φβ(−γ)− φβ(1) + φβ(−1), η0

def
=
φβ(−1)− φβ(−γ)

A0
,

and δ̄(ε, η) =∞ if ε > η. Note that A0 > 0, η0 ≤ 1
2 , and η0 = 1

2 ⇔ β = 0. Hence we obtain

δ(ε) = inf
η∈[ 12 ,1]

δ̄(ε, η) =

{
A1 if 0 < ε ≤ 1

2 ,

A0(ε− η0) if 1
2 < ε,

where A1
def
= A0

(
1
2 − η0

)
= (φβ(γ) + φβ(−γ)− φβ(1)− φβ(−1))/2.

Thus, the sigmoid loss is calibrated wrt (φγ ,Flin) when A1 > 0, which is equivalent to β > 0.
Let δ̌ : [0, 1] → R≥0 be a function such that δ̌(0) = δ(0) and δ̌(ε) = δ(ε) for all ε > 0. Then,

the Fenchel-Legendre biconjugate of δ̌ is

δ̌∗∗(ε) =

{
2A1ε if 0 ≤ ε ≤ 1

2 ,

A0(ε− η0) if 1
2 < ε.

C.2.2. QUASICONCAVITY OF EVEN PART

We confirm that φβ(α) + φβ(−α) is quasiconcave when β ≥ 0. φβ(α) + φβ(−α) is plotted in
Figure 16, and

φβ(α) + φβ(−α) =
1

1 + eα−β
+

1

1 + e−α−β
(
def
= φ̄(α)).

Here, we use quasimonotonicity of−φ̄′ to show its quasiconcavity (see Appendix A). The derivative
of φ̄ is

φ̄′(α) = 4 cosh−2
(
α+ β

2

)
− 4 cosh−2

(
α− β

2

)
,

which is plotted in Figure 17. Take α1, α2 ∈ R such that α1 < α2 without loss of generality.
Assume that (−φ̄′(α1))(α2 − α1) > 0, which implies φ̄′(α1) < 0 ⇔ α1 > 0. Hence, α2 > 0 and
φ̄′(α2) < 0. We obtain (−φ̄′(α2))(α2−α1) > 0 straightforwardly, which implies quasimonotonic-
ity of −φ̄′. Therefore, φ̄ is quasiconcave.
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C.3. Modified Squared Loss

We design a bounded and nonincreasing surrogate loss by modifying the squared loss, which we
call modified squared loss here:

φ(α) =


1 if α ≤ 0,

(1− α)2 if 0 < α ≤ 1,

0 if 1 < α,

and consider the shifted version φβ(α)
def
= φ(α− β):

φβ(α) =


1 if α ≤ β,
(1− α+ β)2 if β < α ≤ 1 + β,

0 if 1 + β < α.

C.3.1. CALIBRATION FUNCTION

Now we consider φβ-CCR Cφβ (α, η) = ηφ(α) + (1 − η)φ(−α) and focus on the case η > 1
2 due

to the symmetry of Cφβ . Cφβ is plotted in Figure 18. By part 5 of Lemma 13, it is easy to see
C∗φβ ,Flin

(η) = min{Cφβ (−1, η), Cφβ (1, η)} = Cφβ (1, η). We divide into three cases depending on
the relationship among Cφβ (−1, η), Cφβ (−γ, η), and Cφβ (γ, η),
(A) When 0 ≤ β < γ: Since

Cφβ (−γ, η)− Cφβ (γ, η) =
{
η · 1 + (1− η)(1− γ + β)2

}
−
{
η(1− γ + β)2 + (1− η) · 1

}
= (2η − 1)(γ − β) {2− (γ − β)}
≥ 0,

we have Cφβ (γ, η) < Cφβ (−γ, η) for all η > 1
2 . On the other hand, since

Cφβ (γ, η)− Cφβ (−1, η) = −{(2− γ + β)(γ − β) + (1− β)2} (η − η0)

where η0
def
=

1− β2
(2− γ + β)(γ − β) + (1− β2) ,

and 1
2 < η0 ≤ 1, we have Cφβ (γ, η) ≥ Cφβ (−1, η) if 1

2 < η ≤ η0 and Cφβ (γ, η) < Cφβ (−1, η) if
η > η0.

• If 1
2 < η ≤ η0: By part 5 in Lemma 13,

inf
|α|≤1:|α|≤γ or (2η−1)α≤0

Cφβ (α, η) = Cφβ (−1, η) and inf
|α|≤γ

Cφβ (α, η) = Cφβ (γ, η).

Thus, by Lemma 7,

δ̄(ε, η) =


∞ if η < ε,

Cφβ (γ, η)− C∗φβ ,Flin
(η) = (1− γ)(1− γ + 2β)η if ε ≤ η < 1+ε

2 ,

Cφβ (−1, η)− C∗φβ ,Flin
(η) = (1− β2)(2η − 1) if 1+ε

2 ≤ η.
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Hence we obtain

inf
η∈( 1

2
,η0]

δ̄(ε, η) =


(1− β2)ε if 0 < ε ≤ ε0,
(1−γ+2β)(1−γ)

2 if ε0 < ε ≤ 1
2 ,

(1− γ)(1− γ + 2β)ε if 1
2 < ε,

where ε0
def
= (1−γ)(1−γ+2β)

2(1−β2)
.

• If η0 < η ≤ 1: By part 5 in Lemma 13, it follows that

inf
|α|≤1:|α|≤γ or (2η−1)α≤0

Cφβ (α, η) = inf
|α|≤γ

Cφβ (α, η) = Cφβ (γ, η).

Thus, by Lemma 7, δ̄(ε, η) = Cφβ (γ, η)− C∗φβ ,Flin
(η) = (1− γ)(1− γ + 2β)η if ε ≤ η and

δ̄(ε, η) =∞ if η < ε. Hence we obtain

inf
η∈(η0,1]

δ̄(ε, η) =

{
(1−γ)(1−γ+2β)

2 if 0 < ε ≤ 1
2 ,

(1− γ)(1− γ + 2β)ε if 1
2 < ε.

Combining the above, we obtain the φγ-calibration function from Lemma 7:

δ(ε) =


(1− β2)ε if 0 < ε ≤ ε0,
(1−γ+2β)(1−γ)

2 if ε0 < ε ≤ 1
2 ,

(1− γ)(1− γ + 2β)ε if 1
2 < ε.

Note that ε0 ≤ 1
2 , which means the second case is not vacuous.

(B) When γ ≤ β < 1: It is easy to see

inf
|α|≤γ

Cφβ (α, η) = 1,

inf
|α|≤1:|α|≤γ or (2η−1)α≤0

Cφβ (α, η) = Cφβ (−1, η).

Hence, by part 5 in Lemma 13, it follows that

δ̄(ε, η) =


∞ if η < ε,

1− Cφβ (1, η) = (1− β2)η if ε ≤ η < 1+ε
2 ,

Cφβ (−1, η)− Cφβ (1, η) = (1− β2)(2η − 1) if 1+ε
2 ≤ η.

Thus, by Lemma 7, δ(ε) = infη∈( 1
2
,1] δ̄(ε, η) = (1− β2)ε.

(C) When 1 ≤ β: In this case, Cφβ (α, η) = 1 for all α ∈ [−1, 1]. Hence, ∆Cφβ ,Flin
(α, η) = 0 and

δ(ε) = 0.
To sum up, the (φγ ,Flin)-calibration function and its Fenchel-Legendre biconjugate of the mod-

ified squared loss are as follows:
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α

Cφβ
(α, η)

•
• •

|α| ≤ γ

−1− β −β β 1 + β

(a) 0 ≤ β < γ

α

Cφβ
(α, η)

•
• •

−1 − β −β β 1 + β

(b) γ ≤ β < 1

α

Cφβ
(α, η)

• • •

−β −γ γ β

(c) 1 ≤ β

Figure 18: The class-conditional risk of the modified squared loss.

• If 0 ≤ β < γ,

δ(ε) =


(1− β2)ε if 0 < ε ≤ ε0,
(1−γ+2β)(1−γ)

2 if ε0 < ε ≤ 1
2 ,

(1− γ)(1− γ + 2β)ε if 1
2 < ε,

and δ∗∗(ε) = (1− γ)(1− γ + 2β)ε,

where ε0
def
= (1−γ)(1−γ+2β)

2(1−β2)
.

• If γ ≤ β < 1, δ(ε) = δ∗∗(ε) = (1− β2)ε.

• If 1 ≤ β, δ(ε) = δ∗∗(ε) = 0.

We deduce that the modified squared loss is calibrated wrt (φγ ,Flin) if 0 ≤ β < 1.

C.3.2. QUASICONCAVITY OF EVEN PART

We confirm that φβ(α) + φβ(−α) is quasiconcave when β ≥ 0.

φβ(α) + φβ(−α) =



1 α < −1− β,
(1 + α+ β)2 + 1 −1− β ≤ α < −β,
2 −β ≤ α < β,

(1− α+ β)2 + 1 β ≤ α < 1 + β,

1 1 + β ≤ α.

Its t-superlevel set St is as follows.

• If t < 1, St = R.

• If 1 ≤ t ≤ 2, St = {α | |α| ≤ 1 + β −
√
t− 1}.

• If 2 < t, St = ∅.

In all cases, St is convex. Thus, φβ(α) + φβ(−α) is quasiconcave.
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α

Cφβ
(α, η)

•
•
•
•

−1 − β −ββ 1 + β

(a) η = 0.7

α

Cφβ
(α, η)

•
• • •

−1 − β −ββ 1 + β

(b) η = 0.5

Figure 19: The class-conditional risk of the modified squared loss when γ < 1
4

and −1 + 1√
2
< β < 0.

C.3.3. WHEN β < 0

In this case, the modified squared loss is no longer quasiconcave even (see Figure 19 (b)). However,
φβ is still (φγ ,Flin)-calibrated under some γ and β < 0. Here, we show an example.

Assume that γ < 1
4 and −1 + 1√

2
< β < 0. We focus on η > 1

2 due to the symmetry of Cφβ . In

these β and γ, we still have η0 > 1
2 , because

η0 =
1− β2

(2− γ + β)(γ − β) + (1− β2) >
1

2

⇐⇒ 2(1− β2) > (2− γ + β)(γ − β) + (1− β2)
⇐⇒ γ2 − 2(1 + β)γ + (2β + 1) > 0

⇐⇒ γ < 1 + 2β, 1 < γ︸ ︷︷ ︸
always false

⇐⇒ γ < 1 + 2β,

and 1 + 2β >
√

2
(

1− 1√
2

)
> 1

4 > γ always holds when γ < 1
4 . Then, we can confirm in the

same way as the case (A) that

• Cφβ (−γ, η) > Cφβ (γ, η) for all η > 1
2 .

• Cφβ (γ, η) ≥ Cφβ (−1, η) if 1
2 < η ≤ η0, and Cφβ (γ, η) < Cφβ (−1, η) if η0 < η.

38



ADVERSARIALLY ROBUST CLASSIFICATION CALIBRATION

In addition, we see that

Cφβ (−1, η)− Cφβ (0, η) = η − (1 + β)2,

Cφβ (0, η)− Cφβ (1, η) = (1 + β)2 − (1− η) >
1

2
− (1− η) > 0,

Cφβ (γ, η)− Cφβ (1, η) = (1− 4γ(1 + β))︸ ︷︷ ︸
>1−4γ>0

η + (1 + γ + β)2 − 1

>

(
1

2
− 2γ(1 + β)

)
+ (1 + γ + β)2 − 1

= γ2 + β2 + 2β +
1

2︸ ︷︷ ︸
=(β+1)2− 1

2
>0

> 0,

Cφβ (0, η)− Cφβ (γ, η) = 4γ(β + 1) (η − η1) ,

where η1
def
= 2+2β+γ

4(1+β) ∈
(
1
2 , 1
]
. Then, we have

• Cφβ (−1, η) > Cφβ (0, η) for η > (1+β)2, and Cφβ (−1, η) ≤ Cφβ (0, η) for 1
2 < η ≤ (1+β)2.

• Cφβ (0, η) > Cφβ (1, η) for all η > 1
2 .

• Cφβ (γ, η) > Cφβ (1, η) for all η > 1
2 .

• Cφβ (γ, η) ≥ Cφβ (0, η) if 1
2 < η ≤ η1, and Cφβ (γ, η) < Cφβ (0, η) if η1 < η.

Figure 19 and the above comparisons give us

C∗φβ ,Flin
(η) = inf

α∈[−1,1]
Cφβ (α, η) = Cφβ (1, η),

inf
|α|≤γ

Cφβ (α, η) = min{Cφβ (0, η), Cφβ (γ, η)},

inf
α∈[−1,γ]

Cφβ (α, η) = min{Cφβ (−1, η), Cφβ (0, η), Cφβ (γ, η)}.

By Lemma 7, when ε ≤ η < 1+ε
2 ,

δ̄(ε, η) = inf
|α|≤γ

Cφβ (α, η)− C∗φβ ,Flin
(η)

= min
{
Cφβ (0, η)− Cφβ (1, η), Cφβ (γ, η)− Cφβ (1, η)

}
= min

{
η + (β2 + 2β), (1− 4γ(1 + β))η + (1 + γ + β)2 − 1

}
,
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and

inf
η∈[ε, 1+ε2 ]∩( 1

2
,1]
δ̄(ε, η) = min


(i)︷ ︸︸ ︷[

ε− 1

2

]
+

+
1

2
+ (β2 + 2β),

(1− 4γ(1 + β))

([
ε− 1

2

]
+

+
1

2

)
+ (1 + γ + β)2 − 1︸ ︷︷ ︸

(ii)

 .

When 1+ε
2 ≤ η,

δ̄(ε, η) = inf
α∈[−1,γ]

Cφβ (α, η)− C∗φβ ,Flin
(η)

= min
{
Cφβ (−1, η)− Cφβ (1, η), Cφβ (0, η)− Cφβ (1, η), Cφβ (γ, η)− Cφβ (1, η)

}
= min

{
2η − 1, η + (β2 + 2β), (1− 4γ(1 + β))η + (1 + γ + β)2 − 1

}
,

and

inf
η∈[ 1+ε2 ,1]∩( 1

2
,1]
δ̄(ε, η)

= min

 ε︸︷︷︸
(iii)

,
1 + ε

2
+ (β2 + 2β)︸ ︷︷ ︸

(iv)

, (1− 4γ(1 + β))
1 + ε

2
+ (1 + γ + β)2 − 1︸ ︷︷ ︸

(v)

 .

Note that for any γ ∈
(
0, 14
)
, −1 + 1√

2
< β < 0, and ε > 0, we have (iv) ≥ (i) and (v) ≥ (ii),

which means that (φγ ,Flin)-calibration function of φβ is

δ(ε) = min

{
inf

η∈[ε, 1+ε2 ]∩( 1
2
,1]
δ̄(ε, η), inf

η∈[ 1+ε2 ,1]∩( 1
2
,1]
δ̄(ε, η)

}
= min{(i), (ii), (iii)}

=


ε if 0 < ε ≤ ε0,
ε0 if ε0 < ε ≤ 1

2 ,

ε+ β2 + 2β if 1
2 < ε ≤ η1,

(1− 4γ(1 + β))ε+ (1 + γ + β)2 − 1 if η1 < ε ≤ 1,

where ε0
def
= β2 + 2β + 1

2 . From this result, we see that the modified squared loss is still (φγ ,Flin)-
calibrated when 0 < γ < 1

4 and −1 + 1√
2
< β < 0, and it is no longer calibrated once β becomes

−1 + 1√
2

(since ε0 = 0 at β = −1 + 1√
2
).
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α

Cφβ
(α, η)

−1− β 1 + β

|α| ≤ γ

Figure 20: The class-conditional risk of the hinge loss.

α

Cφβ
(α, η)

(1 + β)(2η − 1)

|α| ≤ γ

Figure 21: The class-conditional risk of the squared loss.

C.4. Hinge Loss

The φβ-CCR is

Cφβ (α, η) =


−ηα+ η(1 + β) if α < −(1 + β),

(1− 2η)α+ (1 + β) if −(1 + β) ≤ α < 1 + β,

(1− η)α+ (1− η)(1 + β) if 1 + β < α.

We restrict the range of η to η > 1
2 by virtue of part 1 of Lemma 12. Then, C∗φβ ,Flin

(η) =

Cφβ (1, η) = −2η + (2 + β). Cφβ (α, η) is plotted in Figure 20 in case of η > 1
2 . Then, it fol-

lows that

inf
|α|≤1:|α|≤γ or
(2η−1)α≤0

Cφβ (α, η) = inf
|α|≤γ

Cφβ (α, η) = Cφβ (γ, η) = (1− 2η)γ + (1 + β).

Hence, by Lemma 7,

δ̄(ε, η) =

{
∞ if ε < η,

Cφβ (γ, η)− C∗φβ ,Flin
(η) = (1− γ)(2η − 1) if η ≤ ε,

and

δ(ε) =

{
0 if 0 < ε ≤ 1

2 ,

(1− γ)(2ε− 1) if 1
2 < ε.

C.5. Squared Loss

The φβ-CCR is

Cφβ (α, η) = η(1− α+ β)2 + (1− η)(1 + α+ β)2

= {α− (1 + β)(2η − 1)}2 + 4(1 + β)2η(1− η).

We restrict the range of η to η > 1
2 by virtue of part 1 of Lemma 12. Cφβ (α, η) is plotted in Figure 21

in case of η > 1
2 . By comparing α∗

def
= (1 + β)(2η − 1) and 1, we have

C∗φβ ,Flin
(η) =

{
Cφβ (1, η) if α∗ < 1,

Cφβ (α∗, η) if α∗ ≥ 1.
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Then, it follows that

inf
|α|≤1:|α|≤γ or
(2η−1)α≤0

Cφβ (α, η) = inf
|α|≤γ

Cφβ (α, η) =

{
0 if γ > α∗,

Cφβ (γ, η) if γ ≤ α∗.

Hence, by Lemma 7,

δ̄(ε, η) =


∞ if η < ε,

Cφβ (α∗, η)− Cφβ (α∗, η) if ε ≤ η and α∗ ≤ γ,
Cφβ (γ, η)− Cφβ (α∗, η) if ε ≤ η and γ < α∗ ≤ 1,

Cφβ (γ, η)− Cφβ (1, η) if ε ≤ η and 1 < α∗,

=


∞ if η < ε,

0 if ε ≤ η and α∗ ≤ γ,
4(1 + β)2(η − η0)2 if ε ≤ η and γ < α∗ ≤ 1,

4(1− γ)(1 + β)(η − η1) if ε ≤ η and 1 < α∗,

=


∞ if η < ε,

0 if ε ≤ η and 1
2 < η ≤ η0,

4(1 + β)2(η − η0)2 if ε ≤ η and η0 < η ≤ η2,
4(1− γ)(1 + β)(η − η1) if ε ≤ η and η2 < η ≤ 1,

where η0
def
= 1+γ+β

2(1+β) , η1
def
= 3+γ+2β

4(1+β) , and η2
def
= 2+β

2(1+β) . Hence,

δ(ε) =


0 if 0 < ε < η0,

4(1 + β)2(ε− η0)2 if η0 ≤ ε < η2,

4(1− γ)(1 + β)(ε− η1) if η2 ≤ ε.

Appendix D. Simulation Results

D.1. Detail of Numerical Approximation of Bayes Risks

Consider to compute the Bayes (φ,Flin)-risk for a loss φ.

inf
f∈Flin

Rφ(f) = EX
[

inf
α∈AFlin

Cφ(α,P(Y = +1|X))

]
= EX

[
C∗φ,Flin

(P(Y = +1|X))
]
. (12)

We can utilize (12) to numerically approximate the Bayes risk. Let q+ and q− be probability density
functions of N ([2 2]>, I2) and N ([−2 − 2], I2), respectively. Then,

P(Y = +1|X)=
P(Y = +1)P(X|Y = +1)

P(Y = +1)P(X|Y = +1) + P(Y = −1)P(X|Y = −1)
=

1
2q+(X)

1
2q+(X) + 1

2q−(X)
.

For the concrete forms of C∗φ,Flin
, we obtain in Appendix C except the logistic loss as follows.
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• Robust 0-1 loss: C∗φ,Flin
(η) = min{η, 1− η}

• Ramp loss: C∗φ,Flin
(η) = min

{
β
2 η + (1− η), η + β

2 η
}

• Sigmoid loss: C∗φ,Flin
(η) = min

{
η

1+e1−β + 1−η
1+e−1−β ,

η
1+e−1−β + 1−η

1+e1−β

}
• Hinge loss: C∗φ,Flin

(η) = 2 min{η, 1− η}+ β

For the logistic loss, it is not difficult to see

C∗φ,Flin
(η) =

{
η log(1 + e−α

∗+β) + (1− η) log(1 + eα
∗+β) if η > 1

2 ,
η log(1 + eα

∗+β) + (1− η) log(1 + e−α
∗+β) if η ≤ 1

2 ,

where α∗ = clip[−1,1]
(

log
(

η
1−η

))
. By plugging these expressions into (12) and performing nu-

merical integration, we can approximate the Bayes risks. In the simulation results, we performed
numerical integration for the range [−10, 10] × [−10, 10] split by 200 × 200 segments. The parti-
tioning quadrature method was used. The approximated Bayes risks are as follows.

• Robust 0-1 loss: 0.0023474

• Ramp loss: 0.10211

• Sigmoid loss: 0.31110

• Hinge loss: 0.20469

• Logistic loss: 0.37356

D.2. Full Simulation Results of Benchmark Dataset

We show the full simulation results of MNIST in Tables 2 and 3. Simulation details are as follows.

• Dataset: MNIST extracted with two digits (7,000 instances for each digit).

• Preprocessing: Reduced to 2-dimension with the principal component analysis.

• Train-test split: 14,000 instances are randomly split into training and test data with the ratio
4 to 1.

• Model: Linear models f(x) = θ>x+ θ0 (θ and θ0 are learnable parameters)

• Surrogate loss: The ramp, sigmoid, hinge, and logistic losses with shift β = +0.5.

• Target loss: the γ-adversarially robust 0-1 loss with γ = 0.1.

• Optimization: Batch gradient descent with 1,000 iterations.
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Table 2: The simulation results of the γ-adversarially robust 0-1 loss with γ = 0.1 and β = 0.5. 50 trials are conducted
for each pair of a method and dataset. Standard errors (multiplied by 104) are shown in parentheses. Bold-faces indicate
outperforming methods, chosen by one-sided t-test with the significant level 5%.

Ramp Sigmoid Hinge Logistic

0 vs 1 0.034 (3) 0.017 (2) 0.087 (12) 0.321 (19)
0 vs 2 0.111 (7) 0.133 (10) 0.109 (8) 0.281 (19)
0 vs 3 0.107 (7) 0.126 (8) 0.120 (9) 0.307 (18)
0 vs 4 0.069 (6) 0.093 (12) 0.072 (7) 0.269 (21)
0 vs 5 0.233 (21) 0.340 (25) 0.233 (21) 0.269 (16)
0 vs 6 0.129 (8) 0.167 (13) 0.127 (8) 0.287 (22)
0 vs 7 0.067 (6) 0.073 (6) 0.090 (9) 0.302 (18)
0 vs 8 0.096 (7) 0.123 (12) 0.100 (9) 0.263 (20)
0 vs 9 0.082 (6) 0.101 (8) 0.092 (8) 0.279 (22)

Table 3: The simulation results of the 0-1 loss with β = 0.5. 50 trials are conducted for each pair of a method and
dataset. Standard errors (multiplied by 104) are shown in parentheses. Bold-faces indicate outperforming methods,
chosen by one-sided t-test with the significant level 5%.

Ramp Sigmoid Hinge Logistic

0 vs 1 0.012 (2) 0.005 (1) 0.038 (7) 0.228 (18)
0 vs 2 0.050 (5) 0.059 (7) 0.058 (7) 0.206 (18)
0 vs 3 0.047 (4) 0.054 (6) 0.064 (8) 0.229 (15)
0 vs 4 0.028 (4) 0.029 (4) 0.032 (6) 0.184 (18)
0 vs 5 0.117 (11) 0.185 (20) 0.117 (11) 0.193 (15)
0 vs 6 0.060 (5) 0.080 (8) 0.063 (6) 0.206 (18)
0 vs 7 0.027 (3) 0.027 (4) 0.045 (6) 0.214 (18)
0 vs 8 0.050 (6) 0.054 (6) 0.054 (7) 0.186 (18)
0 vs 9 0.040 (4) 0.044 (5) 0.046 (6) 0.192 (20)
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