
1

AdaPipe: A Recommender System for Adaptive Computation Pipelines in
Cyber-Manufacturing Computation Services

Xiaoyu Chen and Ran Jin�

Grado Department of Industrial and Systems Engineering, Virginia Tech, USA

Abstract—The industrial cyber-physical systems (ICPS)
will accelerate the transformation of of�ine data-driven
modeling to fast computation services, such as computation
pipelines for prediction, monitoring, prognosis, diagnosis,
and control in factories. However, it is computationally
intensive to adapt computation pipelines to heterogeneous
contexts in ICPS in manufacturing. In this paper, we
propose to rank and select the best computation pipelines
to match contexts and formulate the problem as a recom-
mendation problem. The proposed method Adaptive com-
putation Pipelines (AdaPipe) considers similarities of com-
putation pipelines from word embedding, and features of
contexts. Thus, without exploring all computation pipelines
extensively in a trial-and-error manner, AdaPipe ef�ciently
identi�es top-ranked computation pipelines. We validated
the proposed method with 60 bootstrapped data sets
from three real manufacturing processes: thermal spray
coating, printed electronics, and additive manufacturing.
The results indicate that the proposed recommendation
method outperforms traditional matrix completion, tensor
regression methods, and a state-of-the-art personalized
recommendation model.

Index Terms—Computation pipeline, computing in
cyber-physical systems, recommender system, smart fac-
tories.

I. INTRODUCTION

An industrial cyber-physical system (ICPS) intercon-
nects sensors, actuators, and many manufacturing equip-
ment into a network, and integrates ubiquitous com-
putation resources, such as Fog and Cloud to support
data-driven decision-making [1]. The objective of ICPS
in manufacturing is to improve efficiency and quality,
control the cost, while enabling the flexibility to meet
highly personalized manufacturing product and service
needs. In order to provide effective data-driven decision-
making supports, traditional offline data-driven modeling
and statistical learning methods should be transformed to
fast computation services for various objectives, such as
fast quality modeling and prediction [2], monitoring [3],
prognosis [4] and diagnosis [5] in ICPS.

Computation service is a concept originated from
large-scale computation, such as cloud computing [6]
and distributed computing [7]. The objective of compu-
tation services is to provide computation capability and
algorithms as services to support data storage and analyt-
ics needs in various fields, such as cloud manufacturing
[8], pervasive healthcare [9], large-scale deep learning

[10], etc. Most of the mainstream computation services
such as Apache Flink [11], its extension Alibaba Blink
[12], and LARS [13] focus on providing the framework
to support real-time computing.

In ICPS, the computation services must be accurate,
reliable, responsive, and interoperable to be adaptive
to heterogeneous manufacturing contexts. In this re-
search, we define contexts as the contextualized data
sets, frequently changed manufacturing settings (e.g.,
replacement of manufacturing equipment, changed man-
ufacturing recipe), and customized manufacturing and
computation specifications [1]. These frequently changed
manufacturing contexts may cause sub-optimal compu-
tation algorithms due to the violation of assumptions.
These algorithms directly lead to inaccurate predictions,
which may result in out-of-control systems and cause
major manufacturing failures and irreparable loss.

For example, a violation of i.i.d. assumption for
modeling and prediction leads to high prediction error;
and a violated assumption of underline distribution for
a control chart in process monitoring may lead to high
false alarm and mis-detection rate. Consequently, exist-
ing models and control charts can no longer be reliable.
As another example, a selective laser melting (SLM) pro-
cess requires high speed modeling algorithms to provide
layer-to-layer quality prediction, which allows limited
time to extensively explore all computation algorithms
for prediction purpose. The time latency requirements
may not be satisfied by a centralized algorithm [14].

For the same type of computation services in manu-
facturing, there are abundant choices of data analytical
method options, such as data filtering and compression
[15], dimension reduction [16], feature extraction [17],
modeling methods [18] etc. Researches have been re-
ported towards the objective of developing mathematical
models based on sensor data to improve the quality and
reliability of manufacturing processes since 1970s [19].
However, a typical paradigm for developing an effective
data analytical method option is based on engineering
knowledge for a specific manufacturing process and/or
one’s data-driven modeling experience, which requires
large amount of trials. As a result, the inefficient trial-
and-error studies prevent data analytics from being au-
tonomous and responsive to be deployed in ICPS.

As a systematic way to explore existing data analytics

2

method options, a computation pipeline (pipeline for
brief) is proposed as a sequence of method options from
multiple steps [20] (see Figure 1). In this pipeline, the
output from method option in Step-i is directly used as
the input for method option in Step-(i + 1). Here Step
is a collection of existing method options with the same
functionality (e.g., feature extraction step as a collection
of method options). By executing all candidate pipelines,
the best pipeline associated with the lowest normalized
root mean squared error (NRMSE) can be identified (i.e.,
highlighted in bold blue lines). However, exploring all
pipelines leads to huge computation workload, while
arbitrarily executing a few pipelines may not provide op-
timal performance. Thus, an efficient pipeline selection
method is needed to minimize the optimal gap between
the selected pipeline and the underline best pipeline.

Fig. 1: Computation pipelines for modeling and predic-
tion with three steps and three method options in each
step [20]. The best pipeline is highlighted in bold blue.

In literature, automated machine learning (AutoML)
methods have been investigated aiming at automatically
building machine learning applications without extensive
knowledge of statistics and machine learning in the last
decade [21]. AutoML methods tackled the selection of
machine learning methods (i.e., neural networks) in the
format of computation pipelines or computation graphs
from different perspectives. Most of AutoML methods
focus on automatic hyperparameter optimization to au-
tomatically select best hyperparameters for neural net-
works [22], and neural architecture search to automate
the design of architecture [23]. These methods promoted
several commercial tools, such as Auto-WEKA [24],
Auto-Sklearn [25], etc. However, the aforementioned
methods adopt either greedy or random searching meth-
ods, hence requiring hours or even days to find a
satisfactory computation pipeline.

Recently, collaborative filtering methods have been
adopted to speedup the selection of computation
pipelines for new data sets. Taking OBOE as an example
[26], it defined a matrix of cross-validated errors of
supervised learning models and data sets, and proposed
to complete the missing results for a new data set

by using a time-constrained matrix completion model.
OBOE is designed to start from test runs on several
initial models on new data set to convert a cold-start
matrix completion problem to warm-start by filling in
some entries for the empty row. It then sequentially
executes models on the new data set based on design
of experiment and update the completed matrix. How-
ever, directly providing a good computation model by
predicting exact cross-validated errors may be biased
by potential violation of the low-rank assumption for
error matrix (e.g., the existence of outliers). Instead
of sequentially predicting cross-validated errors, ranking
the method options by pairwise comparisons can be more
informative for users.

Therefore, in this research, we formulate the se-
lection of pipeline as a recommendation problem to
rank and suggest the pipelines based on performance.
The objective is to efficiently rank and recommend the
best pipeline associated with the best performance (i.e.,
lowest prediction error) to be adaptive to frequently
changing manufacturing contexts. Therefore, we propose
AdaPipe, which is a recommender system for Adaptive
computation Pipelines in ICPS computation services.
AdaPipe defines a sparse response matrix, where each
row and each column correspond to a data set and a
pipeline (i.e., one path in Figure 1 from data sourcing to
models), respectively. And the (i, j)-th entry is defined as
the statistical performance (e.g., prediction errors, time
latency, etc.) of analyzing the i-th data set by using the
j-th pipeline. This matrix is sparse in two scenarios,
namely, (S1) arbitrarily missing entries: not all pipelines
have been tested on one existing data set given limited
time for trial-and-error modeling; and (S2) missing entire
rows: a data set which is new to the recommender system
has not been analyzed on any pipelines. Here S1 is
a typical assumption of matrix completion (MC) and
matrix factorization [27]. S2 is the well-known cold-start
problem [28]. Different from traditional MC methods
[27], AdaPipe makes recommendation by quantifying
not only the implicit similarity among entries in the
sparse response matrix, but also the explicit similarity
from covariates (i.e., dense representation of method
options and meta data). Thus, AdaPipe is expected to
support computation services in an ICPS by efficiently
providing accurate data analytics.

Different from MC in collaborative filtering [27],
AdaPipe makes recommendation by quantifying not
only the implicit similarity among entries in the sparse
response matrix, but also the explicit similarity from
covariates (i.e., dense representation of pipelines and
meta data). Therefore, it contributes to current recom-
mender systems in the following aspects: (1) AdaPipe
uses unstructured descriptions to improve recommenda-
tion accuracy; (2) it does not assume unknown entries

3

to be arbitrarily missed; (3) it does not require large
samples size (i.e., number of entries in sparse response
matrix), due to the existence of covariates and the l-
1 penalization; and (4) it is scalable when considering
higher mode tensor covariates. On the other hand, it
contributes to computation services in ICPS by (1)
adapting computation pipelines to ICPS contexts by
efficiently suggesting the best computation pipelines; and
(2) enabling the flexibility in customized performance
metrics (e.g., prediction error, time latency, weighted
combination, etc.) according to computation needs. Thus,
the proposed AdaPipe system is expected to support
computation services in ICPS by providing accurate and
responsive data analytics. AdaPipe differs from PRIME
model [29] in two aspects: (1) AdaPipe adopt pairwise
loss function for better ranking performance in computa-
tion pipeline recommendation problem; and (2) AdaPipe
generalizes PRIME by adopting covariates tensor, which
contains more information than covariates that are in
vector format since it introduces interaction between data
sets and computation pipelines via outer product.

The rest of this paper is organized as follows. In
Section II, the proposed AdaPipe system is introduced.
A case study in thermal spray coating (TSC), Aerosol
jet printing (AJP), and fused deposition modeling (FDM)
processes to validate AdaPipe is discussed in Section III,
followed by results and discussion in Section IV. And
conclusions are drawn in Section V.

II. THE PROPOSED ADAPIPE SYSTEM

AdaPipe System consists of a tensor regression-based
extended matrix completion (TEMC) model and two
covariates generation machines. As presented in Fig-
ure 2, the TEMC model takes the covariates tensor
and the sparse response matrix as input to complete
the response matrix and further providing the ranking
and recommendation of pipelines for both existing and
new data sets. AdaPipe system assumes that: the text
descriptions for a method option and the comparison
results with benchmarks are available; pipelines share the
same steps for a certain type of computation services;
and the sparse response matrix to be completed has a
linear relationship with a low-rank matrix and covariates.

A. TEMC Model

We firstly define and summarize the notations in
Table I. Here, meta data di is defined as a vector of sum-
mary statistics extracting from Di, where i = 1, 2, ...,m;
Embedded vector ej,k is extracted via word2vec [30]
for the method option in the j-th pipeline at the k-
th step, where j = 1, 2, ..., n, k = 1, 2, ...,K, and
dimension q is 50 in this research. Therefore, the j-th
pipeline Pj can be represented as a informative dense

TABLE I: Summary of notations

Notations Definitions
Di i-th raw data set
di i-th meta data Rp
m,n,K m data sets, n pipelines, K steps
p Dimension of summary statistics
Pj j-th pipeline
ej,k (j, k)-th embedded vector Rq
q Dimension of embedded vector
ej j-th embedded pipeline
X Covariates tensor Rp×qK×m×n

Y Sparse response matrix Rm×n

R Low-rank matrix Rm×n

B Regression Coef. Rp×qk
E Error matrix Rm×n

PΩ(·) Selector of non-empty entries
vec(·) Vectorization operator
〈·, ·〉 Inner product in real space
⊗ Outer product di ⊗ ej = die

T
j

λ1, λ2, s, t Tuning parameters
|| · ||∗, || · ||1 Nuclear norm and l-1 norm
Sτ (·) Sigular value soft-thresholding
Tτ (·) Wavelet thresholding

vector ej in real space, by concatenating the method
option vector in a pre-defined order of steps: ej =
concate(ej,1, ej,2, ..., ej,K). Based on these settings, the
interaction (i.e., covariates) between the i-th data sets
and the j-th pipelines is defined as the outer product of
the i-th meta data vector di and the j-th pipeline vector
ej : X:,:,i,j = di
 ej . Note that the covariates tensor X
is not limited to four modes, other information related to
the data set or pipeline can be incorporated as vectors in
real space, which results in larger number of modes for
X . To formulate TEMC model, we define the (i, j)-th
entry yi,j as the statistical performance for modeling the
i-th data set by using the j-th pipeline. Hence, TEMC
model is proposed as Equation (II.1):

Y = R+ hB,Xi+E, (II.1)

where low-rank matrix R represents the similarity
among the statistical performances in Y ; hB,Xi = C 2

Rm,n, where ci,j =
p∑
k=1

qK∑
l=1

Bk,lXk,l,i,j . In this way,

the sparse response matrix Y is completed as Ŷ by
estimating R̂ and B̂. The key idea of this model is to
explain the similarities among the data sets and pipelines
by decomposing Y into a low-rank matrix R to quantify
the implicit similarity, and a tensor regression (TR) term
hB,Xi to quantify the explicit similarity.

B. Proposed Estimator with Pairwise Loss

TEMC model is estimated by Problem (II.2):

minL(Ŷ ,Y), s.t.jjRjj� � s, jjBjj1 � t, (II.2)

where L(Ŷ ,Y) is a loss function, such as least square
loss, pairwise loss [31], etc.; nuclear norm jj � jj� is

4

Fig. 2: An overview of AdaPipe system, which takes the vectorized pipelines and meta data as input to generate
covariates in a tensor format. TEMC then predicts missing entries based on both the sparse response matrix and
the covariates. In the end, the pipelines are ranked and suggested according to the completed matrix.

computed as jjRjj� =
∑min(m,n)
i=1 σi(R), here σi(R) is

the i-th singular value of R after performing singular
value decomposition, to enforce low-rank structure ofR;
l-1 norm jj�jj1 is computed as jjBjj1 =

∑p
i=1

∑qK
j=1 jBi,j j

to control the sparsity of model coefficients B; s � 0
and t � 0 are tuning parameters to control the amount
of shrinkage, which can be selected by using cross
validation. Specifically, if s becomes larger, implicit
similarity will be smaller; and if t becomes larger, more
covariates will be selected as significant factors.

We further investigate the form of the loss func-
tion L(Ŷ ,Y) in consideration of accurately ranking
pipelines fPig for each data set. Pairwise loss function
was reported to be used for learning-to-rank problem
in information retrieval communities [31]. Therefore,
we adopted pairwise loss (see Function (II.3)) in the
proposed estimator to both consider pairwise comparison
for higher ranking accuracy, which will be compared
with least square loss in Section III.

min
B̂,R̂

m∑
i=1

1

jΩij
∑
u2Ωi

∑
v2Ωi

[(yi,u − yi,v)− (ŷi,u − ŷi,v)]2,

(II.3)
where Ωi is the index set of non-empty entries in the
i-th row of sparse response matrix Y to standardize the
pairwise loss for the i-th data set; and j�j is the cardinality
of a set. Adopting pairwise loss provides the users with
more informative recommendation results by ranking
computation pipelines, especially when comparing with
collaborative filtering methods that aimed at predicting
exact cross-validated errors for methods.

C. ADMM Algorithm

To derive an efficient algorithm, We firstly show that
such a pairwise loss function is equivalent to a quadratic
matrix form in Proposition II.1. Therefore, close form
solutions can be derived for the sub-problems detailed
in Section III.C.

Proposition II.1. Function (II.3) is equiv-
alent to a quadratic matrix form, which
is convex: [vec(Y − Ŷ)]TL[vec(Y − Ŷ)],

given L =

1
jΩ1jL . . . 0

...
. . .

...
0 . . . 1

jΩmjL

, Lu,v =

{
jΩ1j − 1, if u = v

−1, otherwise
. See proof in Appendix A.

Motivated by alternating direction method of multipli-
ers (ADMM) [32], the augmented Lagrangian function
is given by: L(R,B,C,D,U ,V) = µ1

2 jjR − Cjj
2
F +

µ2

2 jjB−Djj
2
F+[vec(PΩ(Y)−PΩ(Ŷ))]TL[vec(PΩ(Y)−

PΩ(Ŷ))]+λ1jjCjj�+λ2jjDjj1+hU ,R−Ci+hV,B−Di,
where C = R and D = B are two linear constraints as-
sociated with two dual variables U and V , respectively;
λ1 � 0 and λ2 � 0 are the tuning parameters for jjCjj�
and jjDjj1, respectively; µ1 > 0 and µ2 > 0 are two
parameters which influence the convergence speed; and
the term µ1

2 jjR−Cjj
2
F and term µ2

2 jjB −Djj
2
F penalize

violations of the aforementioned linear constraints. The
ADMM method [32] is investigated to decouple the non-
differentiable terms by alternating among the minimiza-
tion sub-problems as shown in Problem (II.4):

Rk+1 := min
R
L+ hUk,R−Cki+

µ1

2
jjR−Ckjj2F,

Bk+1 := min
B
L+ hVk,B −Dki+

µ2

2
jjB − Dkjj2F,

Ck+1 := min
C
λ1jjCjj� + hUk,Rk+1 −Ci+

µ1

2
jjRk+1 −Cjj2F,

Dk+1 := min
D
λ2jjDjj1 + hVk,Bk+1 −Di+

µ2

2
jjBk+1 −Djj2F,

Uk+1 = Uk + µ1(Rk+1 −Ck+1),

Vk+1 = Vk + µ2(Bk+1 −Dk+1),
(II.4)

5

where L = [vec(PΩ(Y)−PΩ(Ŷ))]TL[vec(PΩ(Y)−
PΩ(Ŷ))], and k is the index of iteration.

Denote x = vec(X), y = vec(Y), r = vec(R),
b = vec(B), v = vec(V), and the subscript (�)Ω as
the selector to only contain the element according to
the index of the non-empty entries in Y . Denote Sτ (�)
as the singular value soft-thresholding operator intro-
duced by [33]. Denote a singular value decomposition
(SVD) of matrix C 2 Rm�n as C = AΣB�, where
Σ = diag(fσig1�i�r). Then Sτ (C) = diag(f(σi −
τ)+g1�i�r), where (σi − τ)+ = max(0, σi − τ). As
another soft-thresholding operator in Algorithm 1, Tτ (�)
was introduced by [34] as wavelet thresholding. It can
be defined as Tλ(w) = [tλ(w1), tλ(w2), ...]T, where
tλ(wi) = sgn(wi)f(wi − λ)+g.

Algorithm 1 Solver for TEMC

Initialize R0, B0, C0, D0, U0, and V0.
repeat
rk+1 = (2L + µ1I)−1(µ1c

k − uk + 2Ly −
2Lvec(hB̂k,Xi)), then reshape to Rk+1,
βk+1 = (xT

ΩLΩxΩ + µ2

2 IΩ)−1[1
2 (µ2d

k − vk) +

xT
ΩLΩ(yΩ − rk+1

Ω)], then reshape to Bk+1,
Ck+1 = Sλ1

µ1

(Rk+1 + Uk

µ1
),

dk+1 = Tλ2
µ2

(βk+1 + vk

µ2
), then reshape to Dk+1,

Uk+1 = Uk + µ1(Rk+1 −Ck+1),
Vk+1 = Vk + µ2(Bk+1 −Dk+1),

until
Convergence: jL

k+1−Lkj
jLkj � tol.

The pseudo code for the proposed algorithm is sum-
marized in Algorithm 1. This algorithm is guaranteed to
converge based on Theorem II.1 with a unique solution.

Theorem II.1. Suppose at least one optimal solution for
Algorithm 1 exists and is defined as (R�, B�, C�, D�,
U�, and V�). Under the conditions that λ1 � 0, λ2 � 0,
µ1 > 0, µ2 > 0, the following convergence prop-
erty holds: lim

k!1
L(Y , Ŷ

k
) + λ1jjRkjj� + λ2jjBkjj1 =

L(Y , Ŷ
�
) + λ1jjR�jj� + λ2jjB�jj1, solution is unique.

D. Covariates Generation Machine

As shown in Figure 2, the covariates generation ma-
chine consists embedding machine for pipeline embed-
ding, and the meta data extraction machine to generate
meta data vectors from existing and new data sets. The
generated covariates will be used for model estimation
by using Algorithm 1.

1) Embedding Machine: The embedding machine in-
cludes a web crawler and a word2vec embedding neural
network provided by Gensim [35] coded in Python
program language. The web crawler collects and parses

websites and documents as a corpus of text documents,
which includes detailed descriptions of and comparisons
among different method options in computation pipelines
(see structure of the corpus in Figure 3(a), and examples
of extracted documents in Figure 3(b). Afterwards, this
corpus will serve as the input to a word2vec neural
network to embed the method options as dense vectors in
real space with a certain length (i.e., 16 in this research).
The embedded vectors should be informative to quantify
the similarity and dissimilarity among method options
within one step in pipelines. Thus, the vector represen-
tation of a pipeline ej can be generated by concatenating
the vectors of corresponding method options in the same
order as they form the pipeline (i.e., a 16 � 3 = 48-
dimensional vector). A visualization of cosine similarity
among the embedded vector representations of all 27
computation pipelines is presentation in Figure 3(right).

Fig. 3: An illustration of prepared descriptions for
method options, where (a) presents the structure of
scraped corpus as input for embedding machine, in-
cluding descriptions (i.e., text documents parsed from
scraped HTML and PDF files, e.g., see examples in (b)-
top) of each method option in computation pipelines, and
comparison studies among method options in the same
step. (b)-bottom visualize the embedded pipeline vectors
for three pipelines. (c) visualizes the cosine similarities
among embedded pipelines for 27 computation pipelines.

2) Meta Data Extraction Machine: The meta data ex-
traction machine generates a vector of summary statistics
from a data set according to predefined summary statistic
operator lists. In this research, without loss of generality,
we categorize a data set in an ICPS into three subset of
variables: (1) process setting variables, (2) in situ process
variables, and (3) response variables. Three summary
statistic operator lists for three variable categories are
reported in Table II. Therefore, the meta data vector di
for a data set can be generated by concatenating three
vectors extracted from three variable categories.

An outer product will then be used to generate the
informative interactions between data sets and pipelines
(i.e., covariates) as X:,:,i,j = di
 ej 2 Rp�qK�m�n,
for i = 1, 2, ...,m, and j = 1, 2, ..., n. Note that the
information for covariates is not limited to the pipeline
embeddings and the meta data from data sets, other

6

TABLE II: Summary statistic operator lists

Process Setting Vars. in situ Process Vars. Response Vars.
Number of rows Number of rows Mean value
Number of columns Number of columns Std. value
Mean of mean values Mean of mean values Range
Std. of mean values Std. of mean values Kurtosis
Mean of Kurtosis Mean of Kurtosis Skewness
Mean of Skewness Mean of Skewness

related information can also be vectorized in real space
and serve as new modes for the covariates tensor X .

III. A REAL CASE STUDY

Six initial data sets were extracted from TSC, AJP, and
FDM processes as summarized in Table III, where map
sets identify the variable relationships among process
setting variables and in situ process variables. The map
sets are necessary for several data fusion-based method
options included in the pipelines [20]. Here, a process
setting variable is defined as a scalar value which sets a
condition for a process (e.g., temperature setting for fur-
nace); and an in situ process variable is collected during
the process by sensor system in a time series format.
Two types of changing manufacturing contexts can be
identified in Table III: (1) Data Sets 1 � 4 represent the
changing of quality management plans with the same
process variables but different response variables; and (2)
Data Sets 1, 5, and 6 represent the changing of processes
with totally different process and response variables,
which identify the differences among six manufacturing
data sets. To stress the proposed AdaPipe system, we
applied bootstrapping [36] by re-sampling to increase
the number of data sets. As a result, ten new data sets
are bootstrapped with 90% observations from each data
set in Table III. Thus, in total 60 data sets are generated.
Meta data di 2 R17, where i = 1, . . . , 60 are extracted
from these 60 data sets via the 17 summary statistic
operators in Table II.

In this study, the pipelines (see Figure 1) are adopted
from [20] to model the aforementioned 60 data sets,
where data fusion model 1 (DFM1), and DFM2 were
recently proposed in [20]. Figure 1 presents in total 27
(i.e., 3� 3� 3) candidate pipelines. Based on 60 boot-
strapped data sets and 27 pipelines, the sparse response
matrix Y 2 R60�27 can be extracted in two sets of cases,
i.e., warm-start and cold-start, to compare the statistical
performance of the AdaPipe with three benchmark mod-
els: MC, TR and PRIME models. PRIME model and
estimator [29] are introduced in Model (III.1)

Model: Y = R+A(Xβ) +E,

Estimator: minimize
R,β

jjY �R�A(Xβ)jj2F

subject to jjRjj� � s, jjβjj1 � t,
(III.1)

where a least square loss function was applied for
point estimation with a nuclear norm and a l-1 norm
penalization. Since this model takes covariates matrix X
as input instead of the covariates tensor X , we redefined
the covariates as Xh,: = concat(di, ej) 2 Rp+qK ,
where h = m(i� 1) + j and h 2 f1, 2, ...,mng.

In warm-start cases, Y is extracted under the assump-
tion of arbitrarily missing entries with five levels of
missing rates ρf 2 f0.1, 0.3, 0.5, 0.7, 0.9g, f = 1, ..., 5,
by setting arbitrarily selected ρf � mn entries in Y
to be 0. For cold-start cases, Y is extracted under the
assumption of missing an entire row (i.e., a new data
set has not been modeled by any pipeline) by setting
a row of entries to be 0 in Y . Therefore, in total five
warm-start cases and a cold-start case are extracted.

Since the objective of AdaPipe system is to rank and
recommend the pipelines for data sets, we propose to use
the minimal number of top-ranked pipelines to reach the
best statistical accuracy (i.e., NRMSE in this research)
for the i-th data set with a tolerance level T in percentage
(AMi(T)) as the performance metric. Assuming yi,j∗ to
be the optimal NRMSE for pipelines on the i-th data set,
AMi(T) can be shown as AMi(T) = min

j2f1,...,27g
j(1 +

TABLE III: Summary of six manufacturing data sets [20]
Data
Sets

Process Vars. (Types) Resp. Vars.
(Obs.)

Map
Sets

1

1) Stand-off distance (Setting)

Porosity(40)
2) Surface speed (Setting)
3) Current of the torch (Setting)
4) Primary gas flow rate (Setting)
5) Secondary gas flow rate (Setting) 1-13

2

6) Carrier gas flow rate (Setting)

Roughness(40)

1-14
7) Traverse rate (Setting) 1-15
8) Particle velocity (in situ) 2-21
9) Particle temperature (in situ) 3-11
10) Correlation (in situ) 3-12

3

11) Head temperature (in situ)

Curvature(40)

3-16
12) Plume temperature (in situ) 3-20
13) Total intensity (in situ) 3-21
14) Peak intensity (in situ) 4-19
15) Half width (in situ) 5-19

4

16) Substrate temperature (in situ)

Depo-rate(40)

6-19
17) Laser displacement (in situ)
18) Arc current (in situ)
19) Gas flow rate 1&2 (in situ)
20) Arc voltage (in situ)
21) Surface temperature (in situ)

5

1) Process speed (Setting)

Resistance(90)

1-5
2) Atomizer gas flow rate (Setting) 1-6
3) Shealth gas flow rate (Setting) 2-5
4) Atomizer power voltage (Setting) 3-5
5) Current (in situ) 4-5
6) Nozzle location – x, y (in situ)

6

1) Nozzle travel speed (Setting)

Surf-Rough.(48)

2) Nozzle temperature (Setting) 1-3
3) Vibration signals (on the nozzle)
– x, y, z (in situ)

1-4

4) Vibration signals (on the bed) –
x, y, z (in situ)

2-5

5) Nozzle temperature (in situ) 2-6
6) Bed temperature (three sensors
on the bed) (in situ)

7

T)yi,j∗ � yi,j j. For example, AM1(0%) = 5 indicates
that executing the top-5 ranked pipelines is adequate to
reach the lowest NRMSE; and AM1(10%) = 3 indicates
that executing the top-3 ranked pipelines is adequate to
achieve a satisfactory NRMSE which is 10% greater than
the lowest possible NRMSE.

The proposed TEMC model is simultaneously esti-
mated and used for prediction since it is an unsupervised
learning method. Two 10-fold cross-validation (CV) was
implemented to select the tuning parameters λ1 and λ2

for the proposed model. For model evaluation, different
training-testing splitting strategies were used for warm-
start and cold-start scenarios. Namely, for warm-start
scenarios, (1� ρf)mn training samples were arbitrarily
selected from the entries in sparse response matrix
Y , and the remaining entries are treated as testing
samples. Besides, ten replicates were conducted with
different testing samples for each missing rate ρf 2
f0.1, 0.3, 0.5, 0.7, 0.9g . For cold-start scenarios, 60-
fold leave-one-data-set-out cross-validation was adopted
to select the training and testing samples. Specifically,
entries in 59 out of 60 rows in Y were selected as
training samples, and the entries in the remaining one
row were selected as testing samples. This procedure
was repeated for 60 times to ensure that every row in Y
can be selected as testing samples in one cross-validation
fold. The recommendation results are compared with
three benchmark models in the same sets of cases.

IV. RESULTS AND DISCUSSION

The average values and standard errors of the per-
formance metric AMi(T) over CV folds is summa-
rized in Table IV, where the best performance (i.e.,
the lowest mean values and the lowest standard errors)
are highlighted in bold. It can be concluded that the
propose AdaPipe system outperforms three benchmark
models by executing the lowest number of pipelines to
achieve the underline best performance. For tolerance
level T = 0% under the worst cases (i.e., warm-
start case when missing rate ρ = 0.9, and cold-start
case), the AdaPipe system saves 1 � 8.733

27 = 67.66%
and 1 � 8.983

27 = 66.73% computation workloads. And
the AdaPipe system saves 1 � 4.917

27 = 81.79% and
1� 4.533

27 = 83.21% computation workloads for tolerance
level T = 10%. It can be observed that the ranking
performances of AdaPipe in warm-start scenarios with
ρ 2 f0.1, 0.3, 0.5, 0.7g outperform those in cold-start
scenarios. The reason is that relatively lower sparsity in
Y can support better estimation of the low-rank struc-
ture, which directly leads to higher ranking accuracy.
However, the ranking performances of AdaPipe in warm-
start scenarios when ρ = 0.9 are worse than those in
cold-start scenarios, since only the execution results for,
on average, (1� 0.9)� 27 = 2.7 computation pipelines

are available in each data set. As a result, the low-rank
structure in Y is hard to be accurately estimated when
compared with the estimation in cold-start scenarios.

Fig. 4: An example of ranked pipelines under cold-
start case for the 22-th data set, where the blue circles
identify the lowest NRMSE among Top-N recommended
pipelines; the red line is the global lowest NRMSE
among all 27 pipelines; the red squares show the NRM-
SEs for Top-N recommended pipelines; and the vertical
blue line shows the performance metric AM22(0%).

An example of ranked computation pipelines for the
22-th data set is presented in Figure 4. It can be observed
from Figure 4 that (1) the Top-1 recommended computa-
tion pipeline by AdaPipe has the closest NRMSE to the
global best NRMSE; (2) the AdaPipe yields the lowest
AM22(0%) among four models; and (3) the AdaPipe
presents the best ranking performance by investigating
the trends and distribution of the red dots.

When comparing performance among benchmark
models, the matrix completion does not perform well
under both warm-start and cold-start cases due to lim-
ited sample size, which results in full rank Y . Tensor
regression significantly outperforms matrix completion
method since it does not require large sample size,
and it quantifies the information contained in the co-
variates. However, better ranking and recommendation
performance of PRIME model indicates that the implicit
similarity existed in the low-rank matrix R decomposed
from Y can significantly improve the ranking and rec-
ommendation performance. Therefore, the best ranking
and recommendation performance provided by AdaPipe
may be attributed to the following reasons: (1) pairwise
loss function provides the capability to rank the computa-
tion pipelines by comparing statistical prediction errors
in pairs, but ignoring the alignment between predicted
responses and true responses; (2) low-rank matrix R

8

TABLE IV: Average values and standard errors (within parenthesis) of AdaPipe system and three benchmark
models evaluated on 60 bootstrapped data sets and 27 computation pipelines. The significantly best performance is
highlighted in bold.

Tol. T Methods Warm-start Cold-start
ρ = 0.9 ρ = 0.7 ρ = 0.5 ρ = 0.3 ρ = 0.1

0%

Matrix Completion 12.367 11.017 10.767 12.800 11.467 12.400
(1.363) (1.481) (1.536) (1.415) (1.587) (1.311)

Tensor Regression 12.017 11.300 10.100 8.317 8.467 10.033
(1.488) (1.348) (1.466) (1.282) (1.240) (1.398)

PRIME 9.833 8.583 8.267 6.283 6.233 8.150
(1.217) (1.204) (1.021) (0.856) (0.948) (1.198)

AdaPipe 8.733 8.367 7.917 5.483 2.900 8.983
(1.333) (1.364) (1.295) (1.180) (0.765) (1.327)

10%

Matrix Completion 7.033 6.267 6.450 8.083 6.867 8.800
(1.050) (1.224) (1.292) (1.182) (1.266) (1.258)

Tensor Regression 5.650 6.800 6.983 5.617 5.700 7.183
(0.938) (1.035) (1.176) (0.912) (0.880) (1.110)

PRIME 5.000 5.600 5.233 3.667 3.017 4.683
(0.963) (1.009) (0.888) (0.582) (0.737) (0.860)

AdaPipe 4.917 3.867 3.833 2.183 1.650 4.533
(0.890) (0.935) (0.866) (0.633) (0.368) (0.861)

Fig. 5: Computation pipelines ranked for 60 data sets,
where (a) shows the best computation pipelines asso-
ciated with the lowest prediction NRMSEs in black
blocks; (b) presents the ranking results, where darker
block represents higher rank; (c) reports the NRMSEs
and darker block identifies lower prediction error.

and covariates X effectively quantify the implicit and
explicit similarities, which jointly contributes to accurate
ranking and recommendation performance; and (3) the
embedded dense vector representations are informative
to identify the similarity and difference among compu-
tation pipelines.

To interpret the effectiveness of low-rank regulariza-
tion in TEMC model, Figure 5(a) presents the visualiza-
tion of the best computation pipelines associated with
lowest prediction NRMSEs. The NRMSEs and heatmaps
of ranking results are presented in Figure 5(a) and (b),
respectively. It can be observed from two heatmaps
that linear dependencies exist among columns and rows.
Note that the distribution of bootstrapped data sets are

not identical, which generates similar-but-non-identical
covariates by meta data extraction machine. Therefore,
the NRMSEs between two bootstrapped data sets (i.e.,
two adjacent rows in Figure 5(a)) may not be identical.
The aforementioned linear dependencies represent the
low-rank structure of response matrix Y, which can be
decomposed into low-rank matrix R and can be captured
by nuclear norm regularization. Assuming Y itself to
be low-rank can be ambiguous since the underline best
computation pipelines for 60 data sets shows no low-
rank structures. Therefore, pure matrix completion model
does not perform as well as TEMC model.

V. CONCLUSIONS

To match the contexts and computation pipelines is
critical for providing effective computation services in
ICPS in manufacturing. However, exploring all candidate
pipelines is inefficient for fast computation services.
Therefore, we propose an AdaPipe system that inte-
grates a covariates generation machine and a newly pro-
posed TEMC model to accurately rank and recommend
pipelines for different contexts. A case study in real
TSC, AJP, and FDM processes showed that AdaPipe
outperforms MC, TR, and PRIME in both warm-start and
cold-start cases in supporting accurate and responsive
computation services. The proposed AdaPipe can be
applied in other areas as a recommender system to make
accurate recommendations in extreme cases.

In the future, AdaPipe can be generalized for other
types of computation services in ICPS, such as process
monitoring, prognosis, diagnosis, and control. Besides,
a distributed recommender system will be investigated
for similar-but-non-identical manufacturing processes in

9

ICPS. And it will help understand the boundaries and
application scope of existing pipelines.

VI. ACKNOWLEDGEMENT

This research is partially supported by NSF CMMI-
1634867.

APPENDIX

A. Proof of Proposition II.1

Proof. For the pairwise loss function L(Y , Ŷ), let
εi,u = yi,u � ŷi,u, it can be rewritten as

L(Y , Ŷ) =
m∑
i=1

1

2jΩij
∑
u2Ωi

∑
v2Ωi

(εi,u � εi,v)2

=
m∑
i=1

1

jΩij
(jΩij

∑
u2Ωi

ε2i,u �
∑
u2Ωi

∑
v2Ωi

εi,uεi,v).

Denoting Lu,v =

{
jΩ1j � 1, if u = v

�1, otherwise
, and L =

1
jΩ1jL . . . 0

...
. . .

...
0 . . . 1

jΩmjL

, The pairwise loss function can

be rewritten as:

PL(Y , Ŷ) =

m∑
i=1

1

jΩij
εT
i Lεi,

= [vec(Y � Ŷ)]TL[vec(Y � Ŷ)].

Therefore, this pairwise loss function has a equivalent
form of [vec(Y � Ŷ)]TL[vec(Y � Ŷ)], which is con-
vex.

REFERENCES

[1] X. Chen, L. Wang, C. Wang, and R. Jin, “Pre-
dictive offloading in mobile-fog-cloud enabled cyber-
manufacturing systems,” in 2018 IEEE Industrial Cyber-
Physical Systems (ICPS). IEEE, 2018, pp. 167–172.

[2] D. Wang, J. Liu, and R. Srinivasan, “Data-driven soft
sensor approach for quality prediction in a refining
process,” IEEE Transactions on Industrial Informatics,
vol. 6, no. 1, pp. 11–17, 2009.

[3] Z. Ge and J. Chen, “Plant-wide industrial process moni-
toring: A distributed modeling framework,” IEEE Trans-
actions on Industrial Informatics, vol. 12, no. 1, pp. 310–
321, 2015.

[4] H. Liao, E. A. Elsayed, and L.-Y. Chan, “Maintenance
of continuously monitored degrading systems,” European
Journal of Operational Research, vol. 175, no. 2, pp.
821–835, 2006.

[5] J.-H. Zhou, C. K. Pang, F. L. Lewis, and Z.-W. Zhong,
“Intelligent diagnosis and prognosis of tool wear using
dominant feature identification,” IEEE transactions on
Industrial Informatics, vol. 5, no. 4, pp. 454–464, 2009.

[6] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan,
T. Fahringer, and D. Epema, “A performance analysis of
ec2 cloud computing services for scientific computing,” in
International Conference on Cloud Computing. Springer,
2009, pp. 115–131.

[7] C. Shi, K. Habak, P. Pandurangan, M. Ammar, M. Naik,
and E. Zegura, “Cosmos: computation offloading as a ser-
vice for mobile devices,” in Proceedings of the 15th ACM
international symposium on Mobile ad hoc networking
and computing. ACM, 2014, pp. 287–296.

[8] F. Tao, Y. Cheng, L. Da Xu, L. Zhang, and B. H. Li,
“Cciot-cmfg: cloud computing and internet of things-
based cloud manufacturing service system,” IEEE Trans-
actions on Industrial Informatics, vol. 10, no. 2, pp.
1435–1442, 2014.

[9] B. Xu, L. Da Xu, H. Cai, C. Xie, J. Hu, and F. Bu,
“Ubiquitous data accessing method in iot-based infor-
mation system for emergency medical services,” IEEE
Transactions on Industrial informatics, vol. 10, no. 2, pp.
1578–1586, 2014.

[10] L. Li, K. Ota, and M. Dong, “Deep learning for smart in-
dustry: Efficient manufacture inspection system with fog
computing,” IEEE Transactions on Industrial Informatics,
vol. 14, no. 10, pp. 4665–4673, 2018.

[11] P. Mika, “Flink: Semantic web technology for the extrac-
tion and analysis of social networks,” Web Semantics:
Science, Services and Agents on the World Wide Web,
vol. 3, no. 2-3, pp. 211–223, 2005.

[12] X. Jiang, “A year of blink at alibaba: Apache
flink in large scale production,” May 2017, https:
//www.dataversity.net/year-blink-alibaba/. Last accessed
27 January 2019. [Online]. Available: https://www.
dataversity.net/year-blink-alibaba/

[13] H. Beck, M. Dao-Tran, and T. Eiter, “Lars: A logic-based
framework for analytic reasoning over streams,” Artificial
Intelligence, vol. 261, pp. 16–70, 2018.

[14] Y. Zhang, L. Wang, X. Chen, and R. Jin, “Fog computing
for distributed family learning in cyber-manufacturing
modeling,” in 2019 IEEE Industrial Cyber-Physical Sys-
tems (ICPS). IEEE, 2019.

[15] Q. Hu, D. Yu, and Z. Xie, “Information-preserving hybrid
data reduction based on fuzzy-rough techniques,” Pattern
recognition letters, vol. 27, no. 5, pp. 414–423, 2006.

[16] I. K. Fodor, “A survey of dimension reduction tech-
niques,” Center for Applied Scientific Computing,
Lawrence Livermore National Laboratory, vol. 9, pp. 1–
18, 2002.

[17] S. Abe, “Feature selection and extraction,” in Support
Vector Machines for Pattern Classification. Springer,
2010, pp. 331–341.

[18] A. Jayal, F. Badurdeen, O. Dillon Jr, and I. Jawahir,
“Sustainable manufacturing: Modeling and optimization
challenges at the product, process and system levels,”
CIRP Journal of Manufacturing Science and Technology,
vol. 2, no. 3, pp. 144–152, 2010.

[19] S. Wu, “Dynamic data system: a new modeling ap-
proach,” Journal of Engineering for Industry, vol. 99,
no. 3, pp. 708–714, 1977.

[20] X. Chen and R. Jin, “Data fusion pipelines for au-
tonomous smart manufacturing,” in 2018 IEEE 14th
International Conference on Automation Science and
Engineering (CASE). IEEE, 2018, pp. 1203–1208.

[21] F. Hutter, L. Kotthoff, and J. Vanschoren, Automated
Machine Learning. Springer, 2019.

10

[22] J. Bergstra and Y. Bengio, “Random search for hyper-
parameter optimization,” Journal of machine learning
research, vol. 13, no. Feb, pp. 281–305, 2012.

[23] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architec-
ture search: A survey,” arXiv preprint arXiv:1808.05377,
2018.

[24] L. Kotthoff, C. Thornton, H. H. Hoos, F. Hutter, and
K. Leyton-Brown, “Auto-weka 2.0: Automatic model
selection and hyperparameter optimization in weka,” The
Journal of Machine Learning Research, vol. 18, no. 1,
pp. 826–830, 2017.

[25] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg,
M. Blum, and F. Hutter, “Efficient and robust automated
machine learning,” in Advances in neural information
processing systems, 2015, pp. 2962–2970.

[26] C. Yang, Y. Akimoto, D. W. Kim, and M. Udell, “Oboe:
Collaborative filtering for automl model selection,” in
Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
2019, pp. 1173–1183.

[27] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization
techniques for recommender systems,” Computer, no. 8,
pp. 30–37, 2009.

[28] A. I. Schein, A. Popescul, L. H. Ungar, and D. M.
Pennock, “Methods and metrics for cold-start recommen-
dations,” in Proceedings of the 25th annual international
ACM SIGIR conference on Research and development in
information retrieval. ACM, 2002, pp. 253–260.

[29] X. Chen, N. Lau, and R. Jin, “Prime: A personalized rec-
ommendation for information visualization methods via
extended matrix completion,” ACM Transactions on In-
teractive Intelligent Systems, 2019, (Under second round
review).

[30] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient
estimation of word representations in vector space,” arXiv
preprint arXiv:1301.3781, 2013.

[31] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li, “Learning
to rank: from pairwise approach to listwise approach,”
in Proceedings of the 24th international conference on
Machine learning. ACM, 2007, pp. 129–136.

[32] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al.,
“Distributed optimization and statistical learning via the
alternating direction method of multipliers,” Foundations
and Trends® in Machine learning, vol. 3, no. 1, pp. 1–
122, 2011.

[33] J.-F. Cai, E. J. Candès, and Z. Shen, “A singular value
thresholding algorithm for matrix completion,” SIAM
Journal on Optimization, vol. 20, no. 4, pp. 1956–1982,
2010.

[34] D. L. Donoho and J. M. Johnstone, “Ideal spatial adap-
tation by wavelet shrinkage,” Biometrika, vol. 81, no. 3,
pp. 425–455, 1994.

[35] R. Řehůřek and P. Sojka, “Software Framework for
Topic Modelling with Large Corpora,” in Proceedings of
the LREC 2010 Workshop on New Challenges for NLP
Frameworks. Valletta, Malta: ELRA, May 2010, pp.
45–50, http://is.muni.cz/publication/884893/en.

[36] C. Z. Mooney, R. D. Duval, and R. Duvall, Bootstrap-
ping: A nonparametric approach to statistical inference.
Sage, 1993, no. 94-95.

Xiaoyu Chen is a Ph.D. candidate in the
Grado Department of Industrial and Systems
Engineering at Virginia Tech. He received a
B.E. degree from School of Optoelectronics
at Beijing Institute of Technology, China in
2015. He previously worked as Research as-
sistant and Grado teaching assistant at Vir-
ginia Tech. His research focused on human-
AI collaboration and Fog-Cloud computing in
smart manufacturing systems. Mr. Chen is a
member of Institute for Operations Research

and the Management Sciences (INFORMS), Institute of Industrial and
Systems Engineering (IISE), and IEEE. His awards and honors include
Doctoral Student of the Year in the Grado Department of Industrial and
Systems Engineering at Virginia Tech, 2019.

Ran Jin is an Associate Professor and the
Director of Laboratory of Data Science and
Visualization at the Grado Department of
Industrial and Systems Engineering at Vir-
ginia Tech. He received his Ph.D. degree in
Industrial Engineering from Georgia Tech,
Atlanta, his Master’s degrees in Industrial
Engineering, and in Statistics, both from the
University of Michigan, Ann Arbor, and his
bachelor’s degree in Electronic Engineering
from Tsinghua University, Beijing. His re-

search focuses on machine learning in manufacturing, manufacturing
computation services, and cognitive-based interactive visualization. He
is currently serving as an Associate Editor for IISE Transactions and
an Associate Editor for ASME Transactions, Journal of Manufacturing
Science and Engineering. He has been working with many leading
manufacturing companies in aerospace, semiconductor, personal care,
optical fiber industries. He is a member of IEEE. For more information
about Dr. Jin, please visit his faculty website at Virginia Tech:
https://ise.vt.edu/ran-jin.

