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Abstract

A manufacturing system collects big and heterogeneous data for tasks such as prod-

uct quality modeling and data-driven decision-making. However, as the size of data

grows, timely and effective data utilization becomes challenging. We propose an unsu-

pervised data filtering method to reduce manufacturing big data sets into informative

small data sets. Furthermore, to determine the appropriate proportion of data to be

filtered, we propose a filtering information criterion (FIC) to balance the trade-off

between the filtered data size and the information preserved. The case study of a

babycare manufacturing and a simulation study have shown the effectiveness of the

proposed method.

Keywords: Big Data, Data Filtering, Data Quality, Hub Clustering, Smart Manufacturing.

1 Introduction

With the advancement of sensor and communication technologies, Industrial internet-based

sensing systems can collect data over a long period of time from various manufacturing

environments and machine settings. While such a sensing system is capable of collecting a

large amount of data, there may contain redundant information, which significantly limits

the quality and efficiency of data analysis (Kenett and Shmueli 2014). For example, a

manufacturing process may generate a lot of sensor data from conformance manufacturing

status, where the readings of the sensors have small variation through process modeling or

control analysis, and little information can be extracted. As a result, selecting a meaningful

or representative subset to reduce the overall size of the data while ensuring the quality of

the subset is important to improve the efficiency of data analysis. Here the data quality is

strongly related to the information richness, which can be measured by entropy (Gray 2011)

and the performance of the data analysis. It is expected that a small but information-rich

subset filtered from the massive raw data sets can effectively support various data analyses

and reduce the time latency in computation without significantly sacrificing the performance

of the analysis.
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The objective of this work is to reduce the sample size of manufacturing big data while

maintaining the amount of useful information for efficient data analysis. This work is mo-

tivated by a continuous babycare manufacturing system, where the data were continuously

collected as multi-dimensional time-series data. The cloud-storage is typically expensive for

data from such a process as there will be more than three million data points collected from

a single production line over one month. Under this motivation, we focus on proposing a

method to reduce the information loss (i.e., entropy loss) when data is filtered/sampled for

storage. After preliminary investigation, we found out that within a time window (e.g., sev-

eral hours or days), the manufacturing process produces conforming products and the data

collected may contain redundant information, e.g., constant values with little information for

manufacturing analysis. Big data with redundancy pose challenges to efficient data storage

and timely data analysis in a continuous manufacturing process. We believe that a prop-

erly filtered data set can preserve the majority of the original data set’s useful information

leading to computational saving and improved data analysis performance.

Reducing the size of data while preserving the information was a major focus for data

reduction under a data-rich environment (Liu et al. 2015; Xian et al. 2018). In this work,

we study sampling methods that do not explicitly incorporate any data distribution as-

sumption (Mak et al. 2018) or downstream task, such as regression modeling (Wang et al.

2019), into algorithm derivation. Along this direction, the most widely adopted approaches

are probability-based filtering, which means that the probability of preserving each obser-

vation is pre-determined for filtering. Popular probability-based filtering methods include

random sampling (Clarkson and Shor 1989; Liu et al. 2004) and stratified sampling (Trost

1986; Liberty et al. 2016). However, the probability-based data filtering methods often over-

look inherent group structures or clustering patterns among data, and may easily preserve

excessive data from large clusters, while ignoring small clusters.

In manufacturing, similar processes and equipment can produce clusters of data having

similar information in terms of statistical moments (Yamaoka et al. 1978). Filtering guided

by such clustering patterns can effectively reduce the information redundancy by removing a

large number of observations with similar information. A natural outcome is to utilize data
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clustering patterns for sampling. One recent work along this direction is Singh and Masuku

(2014), which first clusters the raw data, then select a number of large data clusters to be

fully preserved, while ignoring the smaller ones. However, one improvement opportunity

in this work is that the clustering algorithm performed on the full data set may be over-

complex, as the size of data can easily become too large to cluster. Furthermore, as the size

of data is reduced through filtering, the information preserved will inevitably degrade and

the resulting data analysis performance becomes worse. There is a pressing need to propose

a method to optimize the selection of the filtering ratio, which is the proportion of data to

be preserved after filtering, by considering the information loss.

We propose an unsupervised data filtering method along with a filtering information cri-

terion (FIC) to automatically determine the proportion of data preserved in filtering. The

proposed method aims to select representative subsets from raw data. Specifically, the unsu-

pervised data filtering method includes two steps. The first step is to use certain index tags,

such as time index tags, to segment the raw data into different segments (denoted as hubs)

whenever there is a large gap between index tag values for two adjacent data observations.

We assume that each hub has different characteristics compared with other hubs, as large

index gaps usually indicate manufacturing events that impact the characteristics of in situ

variables. An example of a large index gap can be caused by equipment shutdown, and the

manufacturing process may run under different conditions after the equipment is restarted.

The second step is to partition each hub into clusters, extract the centroid of each cluster,

and perform cluster-wise random sampling. The proposed two-step method can recover the

clustering pattern from raw data and help to better preserve the information by retaining the

data from each cluster with the determined filtering ratio. Furthermore, the computational

speed will be significantly accelerated by performing clustering within-hubs, instead of using

the full data set.

To determine the best filtering ratio, we propose a filtering information criterion (FIC)

to balance a trade-off between the information preserved and the size of the filtered data

set. It is worth mentioning that the proposed sampling method does not rely on any data

distribution assumption while deriving the analytical form of FIC relies upon data normality
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assumption. Furthermore, although we are not considering filtering for categorical or discrete

variables, we suggest using dummy variable transformation on them before applying the

proposed method. A babycare manufacturing case study is used to evaluate the filtering

performance based on the optimal filtering ratio selected by FIC. We further conducted

simulation studies to systematically evaluate the filtering method at multiple levels of filtering

ratios. The numerical results from studies show the promising performance of the proposed

filtering method, compared with the benchmark methods, such as random sampling and

stratified sampling.

The remainder of the paper is organized as follows. In Section 2, we introduce the pro-

posed data filtering method and the FIC. In Section 3, we perform a case study in babycare

manufacturing to test the proposed filtering method with FIC. In Section 4, we perform a

simulation study inspired by the manufacturing data set for comparing the proposed data

filtering method with other benchmark methods. In Section 5, we summarize the paper and

discuss future work.

2 The Proposed Data Filtering Method

Denote the full manufacturing data set as X =
{
x1, ...,xn

}′
, which contains n observations

xi = (xi1, ..., xip)
′, i = 1, ..., n. Here we assume that there are p continuous variables of

interest (e.g., signals from p sensors). Each observation xi is often associated with its

index tag, denoted as ti. For example, the index tag can be the operation timestamp (a

quantitative variable) or the current machine operational status (a categorical variable).

Note that although the size of data, n, is usually very large, the corresponding manufacturing

process conforms to the specifications for the majority of the time. X̂ contains the raw

data points or summary statistics (e.g., centroids of clusters for clustered data) from X, to

preserve the information in a smaller size. Here the data filtering can be formulated as,

min
X̂

l(X̂,X)

s.t.
|X̂|
n
≤ r,

(2.1)
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where l(X̂,X) is a loss function, such as negative log-likelihood or entropy loss (Gray 2011),

to quantify the information loss between the filtered data and the full data. The | · | is the

cardinality or the sample size of a data set. Here 0 ≤ r ≤ 1 is a tunable filtering ratio.

To filter the raw data considering the data clustering patterns, we propose to incorporate

clustering into the loss function in (2.1). For example, assume that X can be partitioned

into k clusters, where X = C1

⋃
· · ·
⋃
Ck. The data in different clusters are heterogeneous

in terms of means, variances, etc. A representative subset of such a data set after the data

filtering, denoted as X̂ = Ĉ1

⋃
· · ·
⋃
Ĉk, where Ĉi contains either the raw data or the

summary statistic of Ci. Therefore, we incorporate the clustering into (2.1) and propose

cluster-based data filtering as

min
X̂,µi,Ci,Ĉi

l(X̂,X) + λ
k∑
i=1

∑
xj∈Ci

||xj − µi||22

s.t.

∑k
i=1 |Ĉi|∑k
i=1 |Ci|

≤ r,

(2.2)

where µi is the centroid of each data cluster, ‖·‖2 is the Euclidean norm, and λ is the coeffi-

cient for the clustering term, which minimizes the within-cluster distances. Here, we assume

that the size of data extracted from each cluster is proportional to the sample size of each

cluster. Although the loss function in (2.2) is well-defined, there are two major computational

challenges when using it in filtering. The first one is that the optimization problem involves

finding the optimal data partitioning and sub-sampling, which is NP-hard (Burdakov et al.

2015). Furthermore, solving the multi-objective problem presented in loss function in (2.2)

requires the selection of λ, which can significantly increase computational cost if iterative

parameter tuning procedures are adopted (e.g., 5-fold cross-validation (Ojelund et al. 2002)).

To address these challenges, we propose a heuristic data filtering approach by combining

the index-based data partition and the cluster-based data sampling. The method will divide

the data into hubs and clusters and extract subsets of data from clusters. In the first step,

we adopt the index-based data partition, which is computationally fast, to partition the

full data into hubs and pave an efficient way to enable cluster-wise data filtering. In the

second step, within each hub, we perform clustering and randomly sample each cluster of

data proportionally. The proposed filtering method does not rely on any assumption about
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data distribution, such as normality assumption.

2.1 Cluster-based Data Filtering Method

The index-based data partition consecutively partitions the full data along the index tags

into q data hubs as X = H1

⋃
· · ·
⋃
Hq. Here, Hj, where j = 1, . . . , q, are consecutive and

non-overlapping data subsets of X over time. When index tags are categorical variables,

it is straight-forward to hub partition, as each unique value of a categorical variable will

form one data hub. However, for continuous variables, it is not intuitive, and we propose a

quantile-based method for hub partition. The data partition (segmentation) for continous

variables has many variants, such as using a likelihood criterion (Guralnik and Srivastava

1999), minimum message length approximation (Fitzgibbon et al. 2002), and landmark iden-

tification (Ibragimov et al. 2014). Note that for manufacturing processes with index tags, it

is not easy to assume certain probabilistic distribution properties for the index tag variable.

Thus, segmentation based on likelihood and message length approximation is not applica-

ble to our problem. Alternatively, we adopt the idea of finding landmarks (Perng et al.

2000) or perceptually important points (PIPs) (Zhang et al. 2007) based on index tags for

segmentation.

Note that the index tags in the manufacturing data often reflect the dynamics of a man-

ufacturing system. A large gap between two consecutive index tags often reflects a change

in the manufacturing system. For example, when the operation times are used as the index

tags, a gap for several hours between two consecutive observations may indicate that there

is a product change-over. The aforementioned manufacturing events can significantly vary

the in situ conditions of manufacturing processes, and generate data in hubs. Partitioning

the data into hubs will reduce the complexity of clustering, compared with the clustering

in the full data set. Although practitioners can always use domain knowledge to choose

significant gaps among data hubs, such as identifying the process change-over, maintenance

events, product receipt changes etc. However, we would like to propose a data-driven rule to

identify significant gaps among data hubs when there is no such domain knowledge existed.

Specifically, to incorporate the information on the gaps of index tags in the proposed method,
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we consider to use the second-order tag gap at ti, defined as δi = (ti+1 − ti) − (ti − ti−1).

When time tags of data collection are adopted as the index tags, the second-order tag gap

can identify the large index tag gaps, either in the time domain (the first-order information)

or the frequency domain (the second-order information) among index tags. We consider to

form the segments by partitioning the raw data X at the following locations

{j : δj ≥ q1−α(δ1, . . . , δn)}, (2.3)

where q1−α(δ1, . . . , δn) is the (1−α) percentile of all δ1, . . . , δn. It means that the gap values

at these locations are larger than the (1− α) percentile of all δj’s.

For each identified hub, we cluster it into kj clusters for hubHj asHj = C
(j)
1

⋃
· · ·
⋃
C

(j)
kj

.

Here we adopt the k-means clustering method (MacQueen et al. 1967) to form clusters

C
(j)
1 , . . . ,C

(j)
kj

for each hub. Specifically, the k-means clustering method minimizes the total

within-cluster sum of squares for the clusters in a hub as

min

kj∑
s=1

∑
xi∈C

(j)
s

∥∥xi − µ(j)
s

∥∥2
2
, (2.4)

where µ
(j)
s is the centroid of the cluster s from the hub Hj. The number of clusters kj for

each hub is selected to maximize the average Silhouette distance of all data points in the hub

(Rousseeuw 1987). Given any data point xi, the Silhouette distance calculates the difference

between the average distance of xi to the other data points in the same cluster and the

average distance of xi to the other data points in different clusters. The Silhouette distance

is adopted because it is a state-of-the-art method at measuring how well that data points are

matched to their respective clusters, hence evaluates the overall clustering performance at

any given kj (Tomasev et al. 2013). Finally, we generate samples Ĉ
(j)

s from each cluster C(j)
s

to form the filtered data set X̂ =
⋃q
j=1

⋃kj
s=1 Ĉ

(j)

s , where Ĉ
(j)

s consist of 100r% data points

randomly sampled from cluster C(j)
s plus the cluster centroid µ

(j)
s . Here, the centroids are

important summary statistics of clusters, and adding them to the filtered dataset is crucial

for the proposed method to preserve representative information of clusters.
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2.2 Selection of the filtering ratio r

The filtering ratio r determines the degradation of data quality. For example, the entropy

loss quantitatively measures the information loss between the raw and filtered data sets,

which is defined as EL = trace(Σ−1Σ̂) − log(det(Σ−1Σ̂)) − p, where trace(·) is the trace

operator, det(·) is the determinant operator, Σ is the sample covariance matrix of the raw

data set, Σ̂ is the sample covariance matrix of the filtered data set, and p is the number of

variables in the data set.

Determining the filtering ratio r is not trivial. For example, in P&G babycare manu-

facturing data with a size of n = 24915 observations and p = 32 variables, the increase of

loss due to the decrease of data size preserved is non-linear. In Figure 1, we compared the

entropy loss acquired by random sampling under different filtering ratios. From Figure 1 we

can see that the entropy loss remains stable when the filtering ratio is larger than r = 0.2,

but increased dramatically when the filtering ratio was smaller than r = 0.2. As a result,

r = 0.2 may be considered as a good choice of the filtering ratio, since it has a balanced

small filtering ratio with a relatively small entropy loss. We will make use of this observation

to test if our proposal can identify the optimal filtering ratio.

In practice, the exact trade-off relationship between the filtering ratio and the entropy

loss among data sets may vary significantly. The filtering ratio r can be determined by users

based on their experience. However, there is a lack of statistical justification behind the

ad hoc selection of the filtering ratio for achieving a good balance between the information

preserved and the size of the filtered data X̂.

Here we propose a statistical framework on the selection of optimal value of r. Specifically,

we propose FIC, as the criterion to find the optimal value of r. The FIC is motivated

and modified from Akaike information criterion (AIC), a statistical model selection method

(Akaike et al. 1998). Assuming that the data set X has n observations and follows the

independent and identically distributed normal distribution N(µ,Σ), with µ as the mean
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and Σ as the covariance matrix, then the log-likelihood of the full data can be written as

l(X|µ,Σ) = −n1

2
log|Σ| − 1

2

n∑
i=1

(xi − µ)
′
Σ−1(xi − µ)

= −n1

2
log|Σ| − n1

2
trace(Σ−1S), (2.5)

up to some constant and where

S =
1

n

n∑
i=1

(xi − µ)(xi − µ)
′
.

The original AIC is to consider the balance between the fitness of the model to the data and

the model complexity, which can be expressed as

AIC(µ,Σ) = −2l + 2k, (2.6)

where l is the log likelihood function and k is the number of estimated parameters in the

model.

We propose to use an AIC-like measure to find the optimal ratio r. To do this, we

estimate the mean and covariance matrix from the filtered data, which are conducted by

using the weighted sample mean and sample covariance matrix from the full data

µ̂ =
1

m

∑
xi∈X̂

xi =
1

m

n∑
i=1

wixi,

Σ̂ =
1

m

∑
xi∈X̂

(xi − µ̂)(xi − µ̂)
′
=

1

m

n∑
i=1

wi(xi − µ̂)(xi − µ̂)
′
,

where wi ∈ {0, 1},
∑n

i=1wi = m, the total number of preserved data points, µ̂ and Σ̂ are

the mean and covariance generated from the filtered data set, then a modified AIC, denoted

as filtering information criterion (FIC), for evaluating the quality of the filtered data can be

written as

FIC(µ̂, Σ̂) = −2l(X|µ̂, Σ̂) + 2|X̂|

= n log|Σ̂|+
n∑
i=1

(xi − µ̂)
′
Σ̂
−1

(xi − µ̂) + 2|X̂|

= n

[
log|Σ̂|+ trace(Σ̂

−1
S∗) + 2

|X̂|
n

]
, (2.7)
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where S∗ = 1
n

∑n
i=1(xi − µ̂)(xi − µ̂)

′
.

Given a pre-defined set r = {r1, . . . , rm}, the optimal filtering ratio r∗ is chosen to have

the smallest corresponding FIC value resulted from the filtering. In the case study and

simulation that follows, we will evaluate the performance of the proposed filtering method

and the FIC.

A pseudo-code for the proposed filtering method is summarized as follows.

Algorithm 1 Pseudo code for the proposed filtering method
Step 1: Split raw data into hubs Hj , where j = 1, ..., q satisfying (2.3).

Step 2: Identify kj clusters C
(j)
s , where s = 1, ..., kj , within each hubHj using k-means clustering

and Silhouette distance.

Step 3: Randomly sample from each cluster C
(j)
s based on the filtering ratio r:

for each hub Hj , where j = 1, ..., q, do

for each cluster C
(j)
s , where s = 1, ..., kj , do

Randomly sample 100r% data points and the cluster centroid µ
(j)
s from cluster C

(j)
s .

Denote these observations for each cluster as Ĉ
(j)
s .

Step 4: Combine all cluster Ĉ
(j)
s and form the filtered data X̂ =

⋃q
j=1

⋃kj
s=1 Ĉ

(j)
s .

We would remark that although the derivation of FIC starts with the normal assumption,

one can use FIC for data from the exponential family distribution with proper mean and

covariance matrix. Note that the formulation in (2.7) can be viewed as an information

discrepancy between Σ̂ and S∗. Following this observation, it is possible to use FIC as a

general guideline to select the optimal filtering ratio for data with proper mean and covariance

matrix. The analysis of the case study provides further evidence on the use of FIC.

3 Case Study

In collaboration with the P&G babycare manufacturing sector, we evaluate the performance

of the proposed method. A data collected from the P&G production line has a size of
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n = 24915 observations and p = 32 variables including the time tag. Although the physical

meanings of variables are not disclosed here due to the data non-disclosure agreement, we

summarized the summary statistics and the histogram of each centralized variable in the

supplementary materials. Typically, a manufacturing big data system can have millions

of observations for analysis. This selected data set is to provide a representative perfor-

mance evaluation in a big data environment for two reasons. The first reason is that some

engineering-driven partition can divide a big data set into sub-data with smaller sample

sizes for filtering. The second reason is that production engineers often avoid waiting un-

til the collected data for analysis becomes big sizes, which can cause a significant delay in

decision-making.

The objective of this case study is two-fold. First, we demonstrate that an effective

filtering ratio can be selected by FIC to achieve a good balance between the size of data

preserved and the data quality. Second, we evaluate the performance of the proposed filtering

method in comparison with several benchmark methods.

We used the entropy loss (Gray 2011) to evaluate the entropy loss of the filtered data sets

compared with the raw data efficiently. Two benchmark methods, denoted as BM1 and BM2

were included for comparison. The BM1 is random sampling (Liu et al. 2004) which extracts

observations randomly from the full data set, and the BM2 is stratified sampling (Liberty

et al. 2016) which extracts one observation within every equally spaced and non-overlapping

time window. For example, given a filtering ratio r and n data points, we stratified the raw

data into approximately nr consecutive and equally sized data segments and preserved the

first observation of each segment. The threshold for forming hubs by segmentation in (2.3)

set α = 0.01. To illustrate the impact of different α on gap identification, we compare the

gaps above the (1− α) percentile with α = 0.02, 0.01, 0.001 versus on the gaps identified in

the natural log space in the appendix. To evaluate the performance of the proposed filtering

method, 50 replications with 90% of randomly extracted data were performed on varying

and fixed filtering ratios to ensure reproducibility. Here the time order of the randomly

extracted data is preserved in each replication.

In Figure 2, we summarized the average entropy loss for each filtering method with vary-
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ing (Figure 2(a)) and fixed (Figure 2(b)) filtering ratios. The mean value and the standard

error of the optimal filtering ratios selected by FIC over 50 replications are symbolized as

solid and dashed vertical lines respectively in Figure 2(a). In Figure 2(a), the entropy loss

appears not to improve significantly when the filtering ratio is larger than 0.4 and increased

dramatically as the filtering ratio is smaller than 0.1. As a result, the desirable filtering ratio

should be between 0.1 and 0.4. In Figure 2(a), the average optimal filtering ratio was 0.235,

which is within the desirable range (0.1-0.4) with very small standard errors. Furthermore,

we observed that the cluster-based filtering method (the solid curve in Figure 2(a)) showed

superior performance compared with the benchmark methods at the selected filtering ratio.

We further use the same optimal filtering ratio determined by FIC for the proposed filtering

method to the two benchmark methods to compare the entropy loss over 50 replications.

As a summary, the boxplots in Figure 2(b) show that the cluster-based filtering method

provides a significantly smaller entropy loss than the benchmark methods.

We also summarize the filtering performance for different methods when the filtering

ratios are determined by FIC over 50 replications. Specifically, we used FIC to select the

optimal filtering ratios, which yielded the lowest FIC scores for the three filtering methods,

e.g., random sampling, stratified sampling, the proposed method, in each replication. The

optimal filtering ratios and the corresponding entropy loss from the optimal filtering ratios are

summarized in the boxplots shown in Figure 3. Figure 3(a) shows the boxplot of the selected

filtering ratios over 50 replications. Figure 3(b) shows the boxplot of the entropy loss obtained

under the selected filtering ratios over 50 replications. We can see that the proposed filtering

method favored higher filtering ratios, which were between 0.2-0.5, while the benchmark

filtering methods favored much smaller filtering ratios (0.01-0.05). As FIC jointly leverages

the likelihood and the size of data preserved, it is straightforward to see that FIC favors

preserving more data points for the proposed filtering method. As a result, we conclude

that the proposed filtering method can efficiently preserve the likelihood with higher filtering

ratios to yield the lowest FIC. On the other hand, a much smaller filtering ratio is preferred by

FIC for the benchmark filtering methods as they are less effective at preserving the likelihood

where only decreasing the filtering ratio will lead to a lower FIC score. Furthermore, although
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the cluster-based filtering method had a relatively higher filtering ratio, it offered much

smaller entropy loss. We summarize that: (1) the filtering information criterion (FIC) can

successfully help to identify the optimal filtering ratio, balancing the trade-off between the

entropy loss and the size of data preserved; (2) the cluster-based filtering method can more

efficiently preserve the data likelihood compared to the benchmark filtering methods; and

(3) the FIC will favor saving more data when the underlying filtering methods can better

preserve the likelihood.

Furthermore, to show that the proposed method can be easily applied to dataset with

much larger size, we performed hub identification using α = 0.01 on a dataset with n =

24, 915 (the case study data) and a dataset with n = 1, 003, 708 data points from the P&G

babycare manufacturing process. The result is that hub identification generated data hubs

in a comparably average size of 199.902 and 196.1811 from two datasets. Such similar hub

sizes indicate that the scale-up of the proposed method to new data sets to the same process

can be straight-forward since hub identification partitions raw data in significantly different

sizes into similar-sized hubs for further processing.

4 The Simulation Study

We further evaluated the filtering performance in a simulation study. In particular, we

considered varying four simulation settings: the inherent number of data clusters, the signal-

to-noise ratios, the model sparsity, and the distributions that variables follow. To mimic the

characteristics of the real manufacturing data set, the simulation data were generated as

follows: for two settings on the inherent number of clusters, we respectively clustered the

real data set into NC clusters using k-means clustering, each denoted as X̂f . Then we

extracted the original time stamp for each observation in the cluster f as tf and the means

of all variables as µf , where f = 1, ..., NC from real data. Then we simulated each data

cluster with 1. Xf ∼ N(µf ,Σ), 2. Xf ∼ t(µf ,Σ, df = 10), and 3. Xf ∼ Uniform(µf )

in three different scenarios, Xf has the same size as X̂f , and the regularized covariance

matrix Σ = [σij] with σij = 1 when i = j, and σij = 0.3 when i 6= j. To investigate

the different impact of covariance structure, we can investigate the results from datasets
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following t-distribution with the same covariance matrix and Uniform distribution, which

did not rely on covariance. Finally, we aggregated all simulated clusters Xf with the time

stamps tf to produce the simulated data matrix X.

We further created simulation models to evaluate the modeling performance. To gen-

erate the response variable y, we used a linear model given by y = X̃β + ε, where

y = (y1, ..., yn)′ was the response, X̃ was the simulated data matrix with all the main

effect variables (t, x1, ..., xp)
′ in X and the two-factor interactions in the multiplication form

(tx1, ..., xp−1xp)
′. β = (βt, β1, ..., βp, βt1, ..., β(p−1)p)

′ is the model parameter vector corre-

sponding to main effect variables and the interaction terms, ε = (ε1, ..., εn)′ were the residual

terms with εi ∼ N(0, σ2) as independent and identically distributed. To obtain the value

of β, we first trained a linear model using the real data set, and extracted the model co-

efficients as β̂. Then, we randomly set MS% of main effect parameters (βt, β1, ..., βp)
′ and

10% of interaction term parameters (βt1, ..., β(p−1)p)
′ in β as significant (non-zeros), with

values randomly chosen from β̂. Furthermore, we varied the signal-to-noise ratio (SNR)

when generating the error term ε, where SNR = var(X̃β)
var(ε)

, and var(·) represents the variance

(Friedman et al. 2001). In summary, two levels of the three factors are shown in Table 1.

We evaluated the performance of the proposed filtering method with 90% of data ran-

domly extracted from the raw data over 50 replications to ensure reproducibility. Same as

the case study, We normalized all the variables in this study. Instead of optimizing the

filtering ratio, we evaluate the performance measures when different filtering ratios are used.

Specifically, we selected three levels of the pre-determined filtering ratios to filter the training

data in each replication. The α value for identifying the significant second-order index gap

in (2.3) is set to be α = 0.01. Then the filtered data sets were used to estimate a linear

model for the evaluation goodness-of-fit.

Five performance measures were used including entropy loss (Gray 2011), R2, adjusted-

R2, the CPU time for the data filtering step, and the CPU time for the modeling step. R2

quantifies the goodness-of-fit for the model on the filtered training data while the adjusted-R2

(Gelman and Pardoe 2006) simultaneously evaluates the goodness-of-fit and the complex-

ity of the model. Besides the previously adopted random sampling and stratified sampling
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methods, the third benchmark method was to directly use the full data set for modeling. Us-

ing the full data yielded zero entropy loss but is not necessarily the best model performance.

The simulation was performed on a workstation with CPU Xeon Processor E5-2687W, 3.10

GHz, 64 GB RAM.

For the simplicity of presentation, we only include the tables of the results with varying

inherent number of clusters in the manuscript (Table 2 and Table 3), while presenting the

rest of tables corresponding to the other scenarios in the supplementary materials. Both

tables show that the proposed method significantly outperformed the two benchmark meth-

ods on entropy loss as the filtering ratio decreased. Furthermore, the proposed method

outperformed all methods in comparison on R2 and adjusted-R2. As the inherent number

of clusters increased from 30 (Table 2) to 1000 (Table 3), each cluster contained less data

and information. As a result, the clustering pattern is becoming less significant in data

composition and the modeling performance is less affected by such a pattern. However, the

proposed method always outperformed the benchmark filtering methods for the majority of

performance measures in both scenarios. Although the proposed filtering method took a

longer time at the filtering step, it costs less than 10 seconds on average and was deemed

as a time-efficient method by production engineers. The rest of the results, corresponding

to the Normal, t, and Uniform distribution, show that the proposed methods outperformed

benchmark methods for the majority of scenarios at reducing entropy loss and achieving

better goodness-of-fit.

Additionally, we generated the Figure 4 based on the information from Table 2. It is

seen that there was a significant reduction of entropy loss achieved by the proposed filtering

method over the two benchmark filtering methods. The proposed filtering method outper-

formed the benchmark methods for the adjusted R2 as well. Such improvements became

more significant as the filtering ratio decreased.

5 Discussion

As sensor and communication technologies advance, Industrial Internet-based sensing sys-

tems are capable of collecting massive data for process modeling and control. However, such
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systems also generate a lot of redundant information which significantly limits the quality

and efficiency of the data analysis. As a result, extracting representative and high-quality

data subsets is important to improve the efficiency of the data analysis. In this work, we

proposed a filtering method and new criteria (FIC) to facilitate data analysis by selecting a

small but effective data subset. Specifically, the proposed method partitions raw data into

clusters and proportionally extracts a data subset from each cluster. The proposed cluster-

based data filtering method outperformed the benchmark filtering methods on performance

measures, such as information loss, the modeling goodness-of-fit in the case study and the

simulation. Furthermore, the new filtering ratio selection criteria (FIC) has shown its effec-

tiveness in terms of balancing the trade-offs between the size of data preserved in filtering

and the quality of the filtered data.

Although we focus on reducing the sample size in this paper, we can combine the pro-

posed method with other variable screening methods when both the sample size and the

number of variables are large. State-of-the-art variable screening methods include LASSO

(Tibshirani et al. 2005), Elastic Net (Zou and Hastie 2005), sure independence screening

(Fan and Lv 2008). This paper leads to a few future research directions. Data analysis un-

der big data environments have become prevalent and even sometimes necessary because of

the computational performance requirement. However, efficiently utilizing big data through

analysis that is both time-efficient and accurate is still a challenging problem. The proposed

method can also facilitate internet-of-things (IoT)-based data collection, communication,

storage, and analysis. For example, as the inline data de-duplication (real-time data filter-

ing for continuous data streaming), has become more popular in recent years (Zhou et al.

2013), future work will focus on the conversion of the current offline data filtering to online.

Specifically, we need to investigate when to update the filtering ratio due to process changes,

product changes, etc. Furthermore, an integer programming heuristic or relaxation tech-

nique (Schrijver 1998) can be derived to help directly solve the data filtering problem shown

in the objective function (2.1) so that the filtering performance may be further improved.

Lastly, we will investigate filtering for functional data (Sun et al. 2017) and imaging data

(Li et al. 2019) as in situ data measurement for manufacturing.
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8 Tables

Table 1: Simulation Setting Summary

Parameters Low High

Number of Clusters (NC) 30 1000

Model Sparsity (MS) 0.3 0.7

Signal-to-Noise Ratio (SNR) 3 10

1 The same settings were applied on Nor-

mal, t, and Uniform distribution
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Table 2: Means and standard errors (within parenthesis) of five performance measures based

on 50 simulation replications for Normal distribution with NC = 30, MS = 0.3, and SNR =

3

Filtering ratio Filtering Method Entropy Loss R2 Adjusted-R2
Filtering Time Modeling Time

(in seconds) (in seconds)

0.1

Full Data
− 0.748 0.748 − 39.664

− ( 0.000 ) ( 0.000 ) − ( 0.220 )

BM1

0.270 0.750 0.750 0.106 10.073

( 0.005 ) ( 0.001 ) ( 0.001 ) ( 0.008 ) ( 0.146 )

BM2

0.247 0.752 0.752 0.123 10.292

( 0.004 ) ( 0.001 ) ( 0.001 ) ( 0.009 ) ( 0.223 )

Proposed
0.237 0.753 0.753 9.496 10.359

( 0.003 ) ( 0.001 ) ( 0.001 ) ( 0.178 ) ( 0.154 )

0.01

Full Data
− 0.748 0.748 − 39.664

− ( 0.000 ) ( 0.000 ) − ( 0.220 )

BM1

5.194 0.764 0.762 0.052 0.725

( 0.111 ) ( 0.005 ) ( 0.005 ) ( 0.004 ) ( 0.013 )

BM2

4.987 0.768 0.765 0.051 0.745

( 0.108 ) ( 0.005 ) ( 0.005 ) ( 0.004 ) ( 0.013 )

Proposed
3.849 0.789 0.787 9.622 0.717

( 0.056 ) ( 0.006 ) ( 0.006 ) ( 0.179 ) ( 0.017 )

0.005

Full Data
− 0.748 0.748 − 39.664

− ( 0.000 ) ( 0.000 ) − ( 0.220 )

BM1

10.875 0.774 0.769 0.049 0.457

( 0.298 ) ( 0.009 ) ( 0.010 ) ( 0.003 ) ( 0.011 )

BM2

10.790 0.791 0.786 0.068 0.484

( 0.281 ) ( 0.009 ) ( 0.009 ) ( 0.007 ) ( 0.010 )

Proposed
7.312 0.833 0.829 9.595 0.403

( 0.101 ) ( 0.011 ) ( 0.011 ) ( 0.176 ) ( 0.012 )

0.005

Full Data
− 0.748 0.748 − 39.664

− ( 0.000 ) ( 0.000 ) − ( 0.220 )

BM1

10.875 0.774 0.769 0.049 0.457

( 0.298 ) ( 0.009 ) ( 0.010 ) ( 0.003 ) ( 0.011 )

BM2

10.790 0.791 0.786 0.068 0.484

( 0.281 ) ( 0.009 ) ( 0.009 ) ( 0.007 ) ( 0.010 )

Proposed
7.312 0.833 0.829 9.595 0.403

( 0.101 ) ( 0.011 ) ( 0.011 ) ( 0.176 ) ( 0.012 )
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Table 3: Means and standard errors (within parenthesis) of five performance measures based

on 50 simulation replications for Normal distribution with NC = 1000, MS = 0.3, and

SNR = 3

Filtering ratio Filtering Method Entropy Loss R2 Adjusted-R2
Filtering Time Modeling Time

(in seconds) (in seconds)

0.1

Full Data
− 0.750 0.750 − 39.821

− ( 0.000 ) ( 0.000 ) − ( 0.169 )

BM1

0.319 0.753 0.753 0.104 7.680

( 0.013 ) ( 0.001 ) ( 0.001 ) ( 0.007 ) ( 0.104 )

BM2

0.261 0.752 0.752 0.129 7.589

( 0.006 ) ( 0.001 ) ( 0.001 ) ( 0.010 ) ( 0.110 )

Proposed
0.302 0.754 0.754 10.019 7.705

( 0.013 ) ( 0.001 ) ( 0.001 ) ( 0.337 ) ( 0.096 )

0.01

Full Data
− 0.750 0.750 − 39.821

− ( 0.000 ) ( 0.000 ) − ( 0.169 )

BM1

3.836 0.785 0.782 0.050 0.721

( 0.254 ) ( 0.005 ) ( 0.005 ) ( 0.003 ) ( 0.012 )

BM2

3.992 0.772 0.769 0.062 0.743

( 0.245 ) ( 0.005 ) ( 0.005 ) ( 0.007 ) ( 0.012 )

Proposed
3.203 0.792 0.789 9.994 0.649

( 0.176 ) ( 0.009 ) ( 0.009 ) ( 0.334 ) ( 0.009 )

0.005

Full Data
− 0.750 0.750 − 39.821

− ( 0.000 ) ( 0.000 ) − ( 0.169 )

BM1

6.812 0.791 0.786 0.054 0.431

( 0.478 ) ( 0.008 ) ( 0.008 ) ( 0.005 ) ( 0.010 )

BM2

8.652 0.788 0.782 0.058 0.505

( 0.740 ) ( 0.010 ) ( 0.010 ) ( 0.005 ) ( 0.008 )

Proposed
5.480 0.838 0.833 9.997 0.371

( 0.363 ) ( 0.013 ) ( 0.013 ) ( 0.330 ) ( 0.009 )

0.005

Full Data
− 0.750 0.750 − 39.821

− ( 0.000 ) ( 0.000 ) − ( 0.169 )

BM1

6.812 0.791 0.786 0.054 0.431

( 0.478 ) ( 0.008 ) ( 0.008 ) ( 0.005 ) ( 0.010 )

BM2

8.652 0.788 0.782 0.058 0.505

( 0.740 ) ( 0.010 ) ( 0.010 ) ( 0.005 ) ( 0.008 )

Proposed
5.480 0.838 0.833 9.997 0.371

( 0.363 ) ( 0.013 ) ( 0.013 ) ( 0.330 ) ( 0.009 )
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Figure 1: The increase of entropy loss as the filtering ratio decreases.

(a) (b)

Figure 2: (a) The mean and standard errors (in vertical solid and dotted lines) of the

optimal filtering ratio over 50 replications using the proposed filtering method versus the

mean entropy loss at different filtering ratios for all methods over 50 replications. (b) The

comparison in a boxplot of entropy loss for all methods using the fixed filtering ratio over

50 replications.
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(a) (b)

Figure 3: (a) The boxplots of the optimal filtering ratios determined over 50 replications.

(b) The entropy losses obtained under the optimal filtering ratio over 50 replications.

(a) Comparison of entropy loss. (b) Comparison of adjusted R2.

Figure 4: The means and standard errors (in black error bars) of two performance measures

based on 50 simulation replications.
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9 List of Figures

1. The increase of entropy loss as the filtering ratio decreases.

2. (a) The mean and standard errors (in vertical solid and dotted lines) of the optimal

filtering ratio over 50 replications using the proposed filtering method versus the mean

entropy loss at different filtering ratios for all methods over 50 replications. (b) The

comparison in a boxplot of entropy loss for all methods using the fixed filtering ratio

over 50 replications.

3. (a) The boxplots of the optimal filtering ratios determined over 50 replications. (b)

The entropy losses obtained under the optimal filtering ratio over 50 replications.

4. The means and standard errors (in black error bars) of two performance measures

based on 50 simulation replications.
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