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Abstract: Smart manufacturing, which integrates a multi-sensing system with physical1

manufacturing processes, has been widely adopted in the industry to support online and real-time2

decision making to improve manufacturing quality. A Multi-sensing system for each specific3

manufacturing process can efficiently collect the in situ process variables from different sensor4

modalities to reflect the process variations in real-time. However, in practice, we usually do not5

have enough budget to equip too many sensors in each manufacturing process due to the cost6

consideration. Moreover, it is also important to better interpret the relationship between the sensing7

modalities and the quality variables based on the model. Therefore, it is necessary to model the8

quality-process relationship by selecting the most relevant sensor modalities with the specific quality9

measurement from the multi-modal sensing system in smart manufacturing. In this research, we10

adopted the concept of best subset variable selection and proposed a new model called Multi-mOdal11

beSt Subset modeling (MOSS). The proposed MOSS can effectively select the important sensor12

modalities and improve the modeling accuracy in quality-process modeling via functional norms13

that characterize the overall effects of individual modalities. The significance of sensor modalities can14

be used to determine the sensor placement strategy in smart manufacturing. The selected modalities15

can better interpret the quality-process model by identifying the most correlated root cause of quality16

variations. The merits of the proposed model are illustrated by both simulations and a real case study17

in an Additive Manufacturing (i.e., fused deposition modeling) process.18

Keywords: Data fusion; fused deposition modeling; multi-modal sensing; quality modeling; smart19

manufacturing20

1. Introduction21

Smart manufacturing integrates multi-modal sensing systems and computing resources (e.g.,22

Fog computing and Cloud computing) to support efficient real-time quality modeling, monitoring,23

diagnosis, and control in manufacturing [1–4]. Specifically, one modality in this paper is defined24

as a group of features extracted from the sensing signal that measures the same kind of physical25

quantity from the same place in the manufacturing process [5]. Therefore, based on the multi-modal26

sensing systems, different modalities of relevant variables that can reflect the status of manufacturing27

processes are collected to effectively model the quality-process relationship in smart manufacturing [6,28

7]. However, how to effectively design and achieve the multi-modal sensing system in smart29

manufacturing is still an open question [8]. For example, one can equip sensors and collect30

the corresponding process variables as many as possible to accurately model the quality-process31

relationship in the manufacturing process. But this approach is not cost-effective, because some32

modalities might be redundant or comparable with each other. On the other hand, with a multi-modal33

sensing system, it is important to identify the most relevant modalities in a quality-process model to34
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effectively interpret the potential root cause of the quality variation [9]. Therefore, it is critical to find a35

quality-process model strategy that can effectively select the best subset from the multi-modal sensing36

data, and rank the relevance for each modality toward the modeled quality variable.37

Take the fused deposition modeling (FDM), which is an extruder based additive manufacturing38

(AM) process, as an example [10]. As a promising advanced manufacturing process, FDM can efficiently39

fabricate personalized products with a high degree of geometric complexity [11–13]. Therefore, FDM40

has been employed in many significant applications, such as aerospace automobile and healthcare41

field [14,15]. However, most of these applications are not yet widely deployed in practice due to the42

quality variation of products, such as geometric deviations caused by process variations during the43

fabrication [16,17]. Because the fabrication mechanism of the FDM process is complex, the potential44

root cause for the geometric deviation is also diverse. For example, abnormal events during the45

fabrication process such as irregular filament feeding, extruder vibration, and extruder temperature46

variation might directly lead to a geometric deviation of the product. As shown in Fig. 1, in order to47

comprehensively study the influence of these events on geometric deviations, a smart manufacturing48

paradigm of the FDM process with a multi-modal sensing system is proposed. The data collected49

from these sensor modalities can directly or indirectly reflect the characteristics and variations of the50

fabrication in a FDM process. However, this design for the multi-modal sensing system might not be51

the most cost-effective. For example, the data collected from the infrared sensor and the thermocouple52

on the extruder might be correlated since both of them measure the thermal distribution near the53

melting pool area [12]. In the literature, there has been a series of quality-process models to study54

the influence from different sensor modalities on the quality variable [10,12,18,19]. However, most of55

the existing quality-process models cannot work for nonlinear model components, and thus cannot56

identify the significant modalities to obtain a cost-effective (e.g., without redundant or comparable57

modalities) multi-modal sensing system. Then the budget limitation for a multi-modal sensing system58

might restrict the deployment of these methods in practice. Moreover, the interpretability of these59

quality-process models might be questionable, without identifying the significant sensing modalities60

and ranking their contributions toward a specific quality variable in a FDM process. Therefore, it is61

important to quantify the relevance of each sensor modality toward the specific quality response in62

quality modeling. In this way, we can provide a cost-effective multi-modal sensing system to the FDM63

process, and also accurately pinpoint the potential root cause of a defect based on the sensor modality64

selection result to reduce or avoid the product defect in the future [10].65
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Figure 1. A Delta FDM Printer with a Multi-modal Sensing System

The objective of this research is to propose a model that can effectively select the real-time sensing66

modalities in quality modeling to support the cost-effective multi-modal sensing system design in67

smart manufacturing. To tackle the knowledge gap, we propose a new modeling method called68

Multi-mOdal beSt Subset modeling (MOSS) that adopts the best subset selection idea from the best69

subset regression [20]. The proposed MOSS can effectively select the best subset from the original70

dataset via a two-level variable selection (i.e., among sensor modalities and within each modality)71

effort. Specifically, two regularization norms are embedded in the quality-process model to realize72

this effort. The first one is a functional norm that can effectively identify the relevance of each sensor73

modality toward the quality response in model estimation. Smoothing splines framework [21] is74

used to represent nonlinear model components, and quantify the contribution of each modality in the75

proposed MOSS. By comparing the magnitudes of functional norms among modalities estimated from76

the model, the rank of relevance toward the quality response can be accurately identified. The second77

norm is an l-1 norm that encourages the sparsity of model coefficients corresponding to features within78

each data modality. By comparing with the existing methods [22–26], the proposed MOSS can realize79

the two-level variable selection simultaneously with both linear and nonlinear model components,80

and further select the sensor modalities in smart manufacturing. To evaluate the quality prediction81

performance and the variable selection accuracy for the proposed MOSS, both simulations and a82

real case study are implemented. The results show the proposed MOSS can effectively select the83

significant modalities with an accurate variable selection accuracy via the smooth spline framework84

compared with three benchmark methods (i.e., Lasso regression [22], group Lasso [23], and hierarchical85

Lasso [24])86

The rest of the paper is organized as follows. Section 2 summarizes the state-of-the-art of quality87

improvement and modeling for FDM processes and multi-modal modeling methods. Section 388

introduces the proposed best subset model in detail. Section 4 validates the prediction performance89

and the variable selection accuracy of the proposed method via a simulation study. Section 5 employs90

a real case study on the FDM process to model multiple geometric quality measurements via the91

proposed MOSS. Lastly, Section 6 concludes and discusses future work.92
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2. Related works93

In this section, the state-of-the-art research on quality improvement and modeling for the AM94

process is reviewed. First, to improve the product quality from the AM process, the optimized process95

recipe (i.e., the combination of process setting variables) has been studied. For example, Fordan et96

al. identified how the important setting variables (e.g., layer thickness) can influence the mechanical97

property of the AM products through a design of experiment study [27]. Moreover, for the geometric98

deviation of the product, Sood et al. employed the gray Taguchi method to study the influence of99

five setting variables (i.e., part orientation, deposition width, layer thickness, air gap, and deposition100

angle) on the product geometric deviation [28]. Similarly, Zhang and Peng applied the Taguchi method101

which is combined with a fuzzy comprehensive evaluation to established empirical relations between102

the setting variables and the geometric deviation of product [29]. Nancharaiah et al. applied an103

ANOVA method to investigate the significant setting variables in FDM processes toward the geometric104

deviation [30]. However, the aforementioned works mainly concentrate on the run-to-run study to105

optimize the process recipe and identify the significant process setting variables in the AM process,106

instead of modeling the relationship between the product quality with the process variables from the107

sensing system which can reflect the real-time fabrication variation.108

To model the in situ sensing data with the product in an AM process, many data-driven models109

have been proposed in the literature. For instance, Rao et al. presented an advanced Bayesian110

nonparametric analysis method for in situ sensing data to identified process failures and the types111

of failures in a FDM process in real-time [10]. Sun et al. proposed a functional quantitative and112

qualitative model to predict two types of quality responses via offline setting variables and in situ113

process variables [12]. Dinwiddie et al. proposed a monitor system based on infrared cameras to114

monitor the temperature distribution of the extrusion process in a FDM process [31]. Tlegenov et115

al. presented a nozzle clogging monitoring system based on the in situ vibration data through a116

physics-based dynamic model for a FDM process [32]. Li et al. proposed a data-driven method for117

in situ monitoring and process diagnosis based on the vibration sensors. The least-squares support118

vector machine (LS-SVM) method was employed to identify the filament clogging event in real-time.119

Liu et al. proposed a data-driven model to predict the product surface roughness based on the features120

generated from thermocouples, infrared temperature sensors, and accelerometers [33]. Kousiatza121

and Karalekas illustrated a geometric deviation monitoring system based on the fiber Bragg grating122

sensors and thermocouples. The in situ data collected from the sensors is employed to generate the123

temperature distribution and product profile based on a data-driven model [34]. Similarly, Fang et124

al. proposed a strain variation monitoring system based on the embedded FBG sensors inside the125

product [35]. Yang et al. developed an acoustic emission sensor based filament breakage monitoring126

system. The summary statistics of the in situ acoustic emission signal was employed as the monitor127

index [36]. However, the aforementioned methods typically only focus on quality-process modeling128

instead of selecting the relevance of sensing modality. Thus, they may not provide insights on the129

contribution of each sensing modality toward the quality variable. Therefore, the existed method130

might be not sufficient to guide the multi-modal sensing system design in smart manufacturing.131

On the other hand, there are many modality and variable selection modeling methods that132

have been proposed in the literature [37]. For example, Tibshirani proposed the Lasso penalty to133

employ the variable selection effort in an ordinary regression model by constraining the sum of134

the absolute value of the model coefficients being less than a constant [22]. To extend the variable135

selection efforts for the different modality of predictors, the group Lasso was proposed [38]. The group136

Lasso proposed a group-wise penalty to encourage the group (i.e., data modality) sparsity in model137

estimation. To effectively implement the modality selection and the variable selection within each138

modality simultaneously, Huang et al. proposed the group bridge method to simultaneously select the139

important modality and also the feature within each modality at the same time via a specially designed140

group bridge penalty [39]. However, the proposed group bridge penalty is not always differentiable141

and tends to be inconsistent for feature selection [40]. Zhou and Zhu proposed the hierarchical Lasso142
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approach to effectively remove insignificant modality and implement the variable selection within143

each modality by penalizing the coefficients using two levels of l-1 penalty [24]. Paynabar et al. [25]144

and Sun et al. [26] proposed a hierarchical nonnegative garrote method to achieve these two-level145

variable selection efforts in linear regression models. Fan and Li developed the smoothly clipped146

absolute deviation (SCAD) penalty to effectively select variables and estimate linear model coefficients147

simultaneously [41]. However, the aforementioned methods mainly focus on selecting linear functional148

model components, and cannot deal with the nonlinear model components. For the nonlinear model149

components, Lin and Zhang proposed the component Selection and Smoothing Operator (COSSO)150

method to regularize the data modality as the summation of component norms based on the smooth151

spline method [42]. Ravikumar et al. proposed the sparse additive model (SpAM) to regularize the152

data modality based on an empirical functional norm via a non-parametric smoother [43]. However,153

these methods do not involve the variable selection effort within each modality among the nonlinear154

model components. Therefore, it is important to propose a model that can handle the nonlinear model155

components with the capability that can simultaneously select both the significant modalities and the156

variables within each modality in model estimation.157

3. Methodology158

In order to clarify the scope of this study, we assume that an additive model structure is sufficient
to model the quality-process relationship. This assumption is validated in Appendix.A1. Moreover,
quality measurement of Product i is treated as the quality variable in modeling, denoted as yi and
i = 1, ..., n. The model can be expressed as:

yi = α +
d

∑
r=1

fr

�
xT

irβr

�
+ εit, (1)

where α is an unknown intercept, fr's are unknown smooth functions, xir = (xir1, . . . , xirpr )
T is

the feature vector generated from modality r for product i with pr number of features, and βr =

(βr1, . . . , βrpr )
T is the vector of weight coefficients for the predictor vector xir. It is worth to mention

that the data can be aligned based on the dynamic time warping [44]. To guarantee that model Eq.(1)
is estimable, in this paper, we shall use the constraints

R
fr = 0, r = 1, . . . , d [45]. Therefore the

quality-process relationship in Eq.(1) can be expressed as an additive model where each modality
is represented by an additive component function fr. This model structure can help better interpret
the contribution of each modality component [9]. Moreover, to estimate component function fr, fr is
formulated in a reproducing kernel Hilbert space (RKHS) framework. Specifically, the whole mean
response function (α + ∑d

r=1 fr) in Eq.(1) is assumed to reside in an RKHS F of functions. The space
has a tensor sum decomposition F = 1

LF1 with F1 =
Ld

r=1 F r, where F 1, ...,F d are d orthogonal
subspaces of F such that fr 2 F r to indicate d modalities. To estimate the model parameters ( fr, α, βr),
a penalized least square optimization formulation is proposed as:

argmin
fr ,βr

∑
i

 
yi � α�

d

∑
r=1

fr

�
xT

irβr

�!2

+ λ1 ∑
r
kβrk1 + λ2

d

∑
r=1
k frk2 , (2)

where the first term ∑i

�
yi � α�∑d

r=1 fr
�
xT

irβr
��2

represents the least-square loss for model estimation;159

∑r kβrk1 = ∑r ∑
pr
j=1 jβrjj is the l-1 regularization term which implements the variable selection160

effort within each modality [22]; λ1 is the tuning parameter to control the sparsity of the βr;161

∑d
r=1 k frk2 = ∑d

r=1

qR
f 2
r is the L-2 functional norm regularization to determine the sparsity among162

data modalities [39]. Therefore, the proposed MOSS can effectively and simultaneously select the163

significant sensing modalities for nonlinear function components, and also identify the important164

predictors within each modality. To effectively estimate the functional norm for each modality, modality165
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inputs xT
irβr, i = 1, ..., n, are all standardized to [0, 1] within each modality. Therefore, by comparing166

the magnitude of functional norms, the best subset of modalities toward the quality response can be167

effectively identified. It is worth to mention that, once the significant modalities and the important168

features within each modality are identified, the raw sensor features can be used to interpret the root169

cause of the product defects. Moreover, by choosing the different tuning parameter λ2, the number of170

selected modalities in the best subset can be controlled.171

To estimate the model parameters in Eq.(2), a block updating algorithm is developed to break
down the proposed optimization problem into two simpler optimization problems as follow:

argmin
α, fr

∑
i

 
yi � α�

d

∑
r=1

fr

�
xT

irβr

�!2

+ λ2

d

∑
r=1
k frk2 , (3)

and

argmin
βr

∑
i

 
yi � α�

d

∑
r=1

fr

�
xT

irβr

�!2

+ λ1 ∑
r
kβrk1 . (4)

A direct optimization of Eq.(3) is difficult due to the functional norm regularization term. Inspired by
the COmponent Selection and Smoothing Operator (COSSO) [42], an equivalent formulation of Eq.(3)
is proposed as follow:

argmin
α, fr ,θr

∑
i

 
yi � α�

d

∑
r=1

fr

�
xT

irβr

�!2

+ λ0

d

∑
r=1

θ�1
r k frk2

2 + λ2

d

∑
r=1

θr, (5)

where λ0 is a tuning constant and θr > 0 is the constrained weight coefficients for each sensor
modality. By the representer theorem for smooth splines [21], the solution of fr has the form fr(x) =
∑n

i=1 ciθrRr
�

xT
irβr, x

�
, where ci's are unknown coefficients and Rr is the reproducing kernel function

of F r. Let R�r be the n � n matrix with the (i, j)-th element being Rr((xT
irβr), (xT

jrβr)), i = 1, ..., n,

j = 1, ..., n. Define Rθ = ∑d
r=1 θrRr and the matrix R�θ = ∑d

r=1 θrR�r . For fixed θr's, we can find the
estimates of the intercept α and the coefficient vector c = (c1, ..., cn)

T by

argmin
α,c

(y� α1n � R�θ c)T (y� α1n � R�θ c) + nλ0cTR�θ c, (6)

which is a standard smoothing spline problem [21] and can be solved, including the tuning of λ0, by
standard smoothing splines software [45]. By fixing α and c, defining gr = R�r c and letting G be the
n� r matrix with the r-th column being gr, we can efficiently solve θ = (θ1, ..., θd)

T by

argmin
θ

(z� Gθ)T (z� Gθ) + nλ2

d

∑
r=1

θr, subject to θr � 0, r = 1, . . . , d, (7)

where z = y � (1/2)nλ0c � α1n. Therefore, by iterating Eq.(6) and Eq.(7), the intercept α and172

the functional components fr can be estimated via the penalized constrained least squares fitting173

framework in [46,47].174

Next, to estimate the Eq.(4), we can fix α and fr and the problem will be reduced to a linear175

regression model with a Lasso penalty. It can be efficiently solved by the coordinate descent algorithm176

as shown in [48]. Therefore, an alternately updating strategy is proposed to find the solution of177

the proposed model as shown in Algorithm 1. To select the optimal tuning parameters, the 5-fold178

cross-validation is employed [22,45]. The selection procedures are shown in Algorithm 1. The root179

mean square errors (RMSEs) from the cross-validation is used to select lambda1 and lambda2.180
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Algorithm 1 Block Updating Algorithm

Input: data (xi1, xi2, . . . , xid, yi), i = 1, ..., n; where xir = (xir1, . . . , xirpr )
T is the r-th modality for

product i with pr number of features
Initialization: θ = 1d; λ0: solving the smoothing spline problem as [45], and tuning λ0 according to
cross-validation; βr: initialized via ridge regression, r = 1, ..., d.

Repeat
Select the tuning parameter λ2 based on cross-validation
Repeat until α, c, and θ coverage:

Step 1: argmin
α,c

�
y� α1n � R�θ c

�T�y� α1n � R�θ c
�
+ nλ0cTR�θ c

Step 2: argmin
θ

(z� Gθ)T (z� Gθ) + nλ2 ∑d
r=1 θr, subject to θr � 0, r = 1, . . . , d.

Select the tuning parameter λ1 based on cross-validation
Repeat until βr coverage:

Step 1:argmin
βr

∑i

�
yi � α�∑d

r=1 fr
�
xT

irβr
��2

+ λ1 ∑r kβrk1 .

4. Simulation181

4.1. Simulation Setting182

The objective of this simulation study is to evaluate the statistical performance of the proposed183

model compared with other benchmark models. In total, there are eight different simulation settings184

that are summarized in Table 1. Specifically, the sample size for each simulation case represents185

how many samples are generated. In each sample, the multi-modal data and the corresponding186

model response are generated based on a pre-defined model structure. The Decibels signal-to-noise187

ratio (SNR) is defined as SNRdB = 10 log10

�Msignal
Mnoise

�
, where Msignal is the mean of signal power for188

multi-modality data, and Mnoise is the power for the noise. The sparsity represents the ratio between189

the total significant variables and the total number of variables in the model. Finally, we chooses linear190

and nonlinear structures to test the robustness of the proposed methods to model a nonlinear system.191

Table 1. Simulation Settings

Case No. Sample Size Signal-to-noise Ratio (db)
Sparsity

(Total Signi�cant Variables
in All Modalities)

Model Structure

1 100 1 0.1 (6) Linear
2 100 0.6 0.25 (16) Nonlinear
3 100 1 0.1 (6) Nonlinear
4 100 0.6 0.25 (16) Linear
5 300 1 0.1 (6) Nonlinear
6 300 0.6 0.25 (16) Linear
7 300 1 0.1 (6) Linear
8 300 0.6 0.25 (16) Nonlinear

To explicate the advantages of the proposed method, in each simulation, four modalities of data192

are generated as the raw signals. The summary of these four data modalities and the number of193

their corresponding features are shown in Table.2. Specifically, Modality 1 and Modality 2 are time194

series signals generated respectively from AR(2) model with φ1 = [0.9,�0.2]T and AR(3) model with195

φ2 = [�0.7, 0.3, 0.1]T [49]. Moreover, the i.i.d noise for both AR models is generated from N(0,0.5).196

In practice, the features generated from the raw signal are widely used in modeling to reduce the197

data dimension and decrease the computation intensity [26]. Therefore, to effectively generate the198
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signal features from Modality 1 and Modality 2, the discrete wavelet analysis is employed because199

it can effectively extract the features from both time and frequency domain [50]. Moreover, x1 and200

x2 are the features that are the Level1 and Level2 db4 detailed wavelet coefficients from Modality 1.201

Similarly, x3 and x4 are Level1 and Level2 db4 detailed wavelet coefficients extracted from Modality202

2. Moreover, since there might be a 2-D image signal in the smart manufacturing system, such as a203

thermal distribution image, we also generate the 2-D image as Modality 3 in each sample. Specifically,204

the 2-D image is generated from a multivariate normal distribution, and the covariance function205

defined by inverse exponential squared Euclidean distance: Σ (z, z0) = exp
n
−kz− z0k2

o
[51]. z is an206

arithmetic sequence from 0 to 2 with 10 elements. An example of the image generated in the simulation207

is shown in Fig.2. Moreover, x5 and x6 are Level1 (i.e., high-resolution image features) and Level2208

(i.e., low-resolution image features) 2-D sym4 wavelet coefficients extracted from Modality 3. As209

the disturbance, we also generate Modality 4 as the uncorrelated signal to validate the robustness of210

variable selection performance for the proposed model. The corresponding feature x7 for Modality 4 is211

generated from a Gaussian distribution N(0, 1).212

Figure 2. The simulated thermal distribution Signal

Table 2. Data Summary in Simulation (number of features is shown in parenthesis)

Data Modality 1 Modality 2 Modality 3 Modality 4

Features

High-resolution
time-series

features
(8)

Low-resolution
time-series

features
(4)

High-resolution
time-series

features
(8)

Low-resolution
time-series

features
(4)

High-resolution
image features

(25)

Low-resolution
image features

(4)

Noise
generated

from Normal
Distribution

(11)

After generating the features from each data modality, we need to determine the significant
modalities and corresponding significant features in each sample. The significant modalities and
the features will be randomly selected from Modalities 1 to 3 following a uniform distribution.
Moreover, for each significant variable xi,j (i.e., jth variable from ith modality), the corresponding
model coefficients βi,j is generated through a uniform distribution as Uni f (−3, 3). Therefore, for the
simulation that has a linear model structure, the response y for each sample can be generated as:

y = ∑
i

∑
j

βi,jxi,j + ξ. (8)

Moreover, for the simulation that has a nonlinear model structure, the response is generated as:

y = ∑
i

∑
j

βi,j exp
�
xi,j
�
+ ξ, (9)

where ξ � N
�
0, γ2�, and the magnitude of γ2 is determined by the signal-to-noise ratio from the213

simulation setting.214

For each simulation setting shown in Table.1, 100 replicates are simulated. The proposed MOSS is215

compared with three benchmark models to evaluate its prediction performance and also the variable216
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selection accuracy: (1) the Lasso regression which can only implement the variable selection efforts217

without the concept of data modality [22]; (2) the group Lasso which can implement the variable218

selection in modality level but cannot select the variable within each modality [39]; and 3) the219

hierarchical Lasso which can implement the variable selection in both among modalities and within220

each modality [24]. These three benchmarks can help to comprehensively validate the performance of221

the MOSS for both variable selection and prediction accuracy. To evaluate the prediction accuracy, in222

each replication of the simulation, 80% samples are used as the training dataset, and the remaining223

20% of samples are used as the testing dataset. To fairly compare the variable selection accuracy, the224

significant variables for each simulation case are the same among each replication. Moreover, the225

number of modalities selected from the MOSS is fixed as the maximum number of modalities selected226

among benchmarks in each replication. Based on this scenario, we can validate whether the proposed227

MOSS can effectively guide the multi-modal sensing system design with a limited budget (i.e., limited228

sensor modalities) by selecting the most relevant sensor modalities compared with benchmarks.229

4.2. Results and discussion230

Table 3. Normalized RMSE (Standard Error) of Each Simulation Case

Lasso Regression Group Lasso Hierarchical Lasso MOSS (Proposed)

Case 1
8.72%
(0.04)

8.35%
(0.02)

8.37%
(0.02)

7.58%
(0.02)

Case 2
9.42%
(0.07)

9.10%
(0.01)

8.82%
(0.02)

7.71%
(0.01)

Case 3
15.75%
(0.05)

14.97%
(0.03)

13.24%
(0.05)

11.92%
(0.02)

Case 4
9.94%
(0.05)

9.51%
(0.02)

8.42%
(0.02)

7.93%
(0.02)

Case 5
13.41%
(0.06)

12.75%
(0.04)

12.69%
(0.05)

10.46%
(0.02)

Case 6
7.81%
(0.07)

7.04%
(0.01)

7.15%
(0.01)

6.67%
(0.01)

Case 7
8.65%
(0.06)

8.17%
(0.01)

7.81%
(0.04)

7.23%
(0.02)

Case 8
12.89%
(0.08)

10.61%
(0.01)

10.17%
(0.02)

8.82%
(0.02)

The average of the normalized root-mean-squared error (RMSE) and the corresponding standard231

error for eight simulation cases are shown in Table. 3. The values shown in bold are the smallest232

prediction errors and the corresponding standard error obtained from different models in each233

simulation case. From the results, the proposed MOSS yields the best prediction accuracy in most234

of the cases with both linear and nonlinear model structures. It is because the proposed MOSS can235

deal with the nonlinear model components, and can effectively implement the variable selection for236

both among the modalities and within each modality compared with the benchmarks via the function237

norm and l-1 norm simultaneously. For the Lasso regression, it can be observed that the standard error238

is relatively large than other methods. It is because without considering the variable relationships239

among modalities, the variable selection result might not be stable among replications. Moreover,240
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since the group Lasso cannot effectively implement the variable selection within each modality, more241

insignificant variables are included in the model and the prediction accuracy is relatively low. For the242

hierarchical Lasso, it has a comparable result with the proposed MOSS method, but for the nonlinear243

model components, the proposed MOSS has a better prediction accuracy since the functional norm can244

work with both linear and nonlinear model components.245

Table 4. Average Variable Selection Recall of Each Simulation Case

Lasso Regression Group Lasso Hierarchical Lasso MOSS (Proposed)

Case 1 51.2% 56.2% 61.2% 64.8%

Case 2 54.3% 57.1% 62.3% 68.7%

Case 3 55.1% 60.8% 63.3% 61.9%

Case 4 48.2% 52.4% 62.9% 68.7%

Case 5 60.2% 54.1% 70.4% 75.4%

Case 6 63.4% 58.7% 68.6% 73.2%

Case 7 66.1% 59.2% 67.3% 71.5%

Case 8 63.2% 53.8% 70.6% 73.6%

On the other hand, to evaluate the variable selection accuracy of each method, the Recall =246

Number of Significant Variables Selected
Total Number of Selected Variables is employed as the performance measurement since it can reasonably247

reflect the cost-effective of variable selection results. The results are shown in Table.4. The proposed248

MOSS yields the best cost-effective performance in all simulation settings. It shows the merits of the249

proposed MOSS that can efficiently select the significant modalities and variables simultaneously.250

Moreover, the group Lasso has good precision for most simulation cases. The Lasso regression almost251

has the worst variable selection performance on all simulation settings since it cannot address the252

modality structure among variables, and can only consider the variables that are independent in253

variable selection. Moreover, it is not surprising since the group Lasso does not implement the variable254

selection within each modality, therefore the number of selected variables for group Lasso is much255

higher than other methods. The recall for the group Lasso also proves this idea. The hierarchical256

Lasso usually has a comparable variable selection precision with the MOSS since it can also implement257

the variable selection for both modalities and within each modality. But limited by its linear model258

component assumption, the proposed MOSS can be more flexible compared with the hierarchical259

Lasso.260

5. A Real Case Study261

5.1. Experiment Setup262

In order to evaluate the performance of the proposed model, we apply the proposed method263

to the data sets collected from a real FDM process [12]. Specifically, we predict the corresponding264

geometric deviation features based on the in situ process data collected from different sensors. In this265

data sets, the FDM product is fabricated under different combinations of process setting variables266

based on the design of the experiment method. The selected process setting variables in the experiment267

are shown in Table.5. In total, there are four setting variables in two levels: extruder speed, extruder268

temperature, temperature disturbance, and platform vibration disturbance. The extruder speed and the269

extruder temperature are both the significant setting variables that can directly influence the product270

quality [52]. To introduce extra disturbance to the system, two types of process noise are involved in271
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Table 5. Setting Variables in the Experiment [12]

Extruder travel speed Extruder temperature Temperature disturbance Vibration disturbance

Level 1 40mm/s 225� On On
Level 2 70mm/s 245� Off Off

the experiment. The disturbances are introduced by a fan near the extruder, which can significantly272

change the thermodynamic in the near area, and a vibrator on the printing bed. These disturbances are273

employed to validate whether the proposed method can identify the disturbance in variable selection274

results. A full factorial design with three replications of each experiment treat is executed in this case275

study. In total, 48 products are fabricated. The full design of the experiment table is attached in the276

Appendix. A1. In the experiment, the modified national aerospace standard 979 test part design (as277

shown in Fig.3) is selected as the product design [10].278

Figure 3. Standard drawing of NAS 979 part [10]

The multi-modal sensing system for the FDM process in the experiment is equipped with279

two tri-axis accelerometers, two thermocouples, and one infrared (IR) sensor as shown in Fig.1(a).280

All signals are measured at a sampling frequency of 1 Hz via a data acquisition system built by281

Ni-cRIO-9073. Such a senor selection and frequency combination has shown to be effective to reflect282

the real-time FDM process condition [10,12]. For the vibration sensor, it contains the vibration signals283

from the three-axis, and each axis is considered as one separate data modality. It is because the signal284

from each axis can reflect different types of process variation for a FDM process, and can further help285

to accurately identify the significant modality in the process. The wavelet analysis is used to compactly286

represent the in situ signals collected from these sensors in this case study. Specifically, the Level4287

detail wavelet coefficients generated based on the db4 basis are employed as signal features in this288

case study. Finally, there are 47 features extracted from each data modality, and there are nine data289

modalities in total. After the product fabrication, the coordinate measuring machine is used to measure290

the corresponding geometric quality variables (i.e., length, flatness, and concentric).291

5.2. Results and Discussion292

Table 6. Average of Normalized RMSEs

Quality Measurements (from CMM) Lasso
Group
Lasso

Hierarchical
Lasso

MOSS
(Proposed)

Length 20.15% 17.65% 16.14% 14.57%
Flatness 12.43% 11.44% 9.79% 7.91%

Concentric 11.06% 9.83% 9.02% 7.86%
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To evaluate the prediction performance of the proposed model, a 5-fold CV training-testing293

strategy is employed. Similar to the simulation study, the Lasso, group Lasso, and hierarchical Lasso294

are used as the benchmark methods. The average of normalized RMSEs for testing from 5-fold CV is295

shown in Table.6. It can be observed that the proposed MOSS yields the best prediction accuracy for296

all three quality measurements. It is because the proposed method can properly identify the significant297

data modalities based on the smooth spline functional norm and also the important features within298

each modality. The Lasso regression has the worst prediction accuracy since it does not to consider299

the modality structure among each variable. This issue might lead to an inaccurate variable selection300

result. Similarly, the group Lasso has comparable results with the Lasso regression since it can only301

consider the variable selection among modalities. Moreover, the hierarchical Lasso has a better result302

compared with Lasso and group Lasso since it can implement the variable selection on two-levels303

simultaneously. However, due to it might usually restrict on a local optimal when estimating the304

model coefficients, the proposed method could be more effective to identify the significant modalities.305

Figure 4. (a) Number of Times for each Modality Selected in 5-fold CV; (b) Number of Times for each
Modality Selected in 5-fold CV after Leaving Vibration Disturbance Samples Out

On the other hand, to evaluate the modality selection results, the number of times that each306

modality is selected in the 5-fold CV for product flatness is shown in Fig.4. Specifically, the modality307

selection results for two scenarios are studied: (1) the modality selection results with all samples308

collected from the experiments; and (2) the modality selection results for the samples that do not309

have the vibration disturbance on the printing bed. The motivation of this sensitivity analysis is to310

evaluate whether the proposed method and the benchmarks can accurately identify the significant data311

modalities in model estimation. From the Fig.4, it can observe that when the printing platform has the312

vibration disturbance, the proposed MOSS method can effectively identify the influence of extruder313

and platform vibration in the model estimation, which are the most relevant modalities for product314

flatness [12]. Once the vibration disturbance is removed, the number of selection times for platform315

vibration is significantly reduced. It is because the contribution of platform vibration is decreasing316

without the vibration disturbance during the fabrication process. On the other hand, other benchmarks317

cannot always select these important modalities in model estimation. Moreover, after removing the318

samples that have the vibration disturbance, the proposed MOSS method can also effectively identify319

the most relevant modalities (i.e., extruder vibration) on this scenario and have a better selection320

accuracy compared with other benchmarks in a 5-fold CV. Therefore, it can be concluded that the321

proposed MOSS can effectively select the sensing modalities in a quality model. This result can further322

guide the multi-modal sensing system design and support the root cause analysis to improve the323

product quality and the process reliability of the FDM.324
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Figure 5. Normalized NRMSEs for Flatness with Different Number of Modalities

Figure 6. Contribution of each Modality for Flatness Prediction with Different Numbers of Modalities
in MOSS

Moreover, to identify whether the proposed MOSS can effectively identify the best subset of325

modalities when modeling the quality-process relationship, the prediction results for product flatness326

with a different number of selected modalities are shown in Fig.5, Fig.6, and Fig.7. The number of327

modalities selected represents the maximum number of modalities that the method can select in model328

estimation. To guarantee the modeling performance, the number of selected modalities is started329

from three. It can be observed that in Fig.5 the proposed MOSS method yield the best prediction330

accuracy in all scenarios compared with benchmarks. It is because that the proposed MOSS method331

can accurately selecting the significance of the sensing modality. To validate this point of view, we332

also summarized the selected modalities in detail. Due to the limited space, we mainly showed the333

selected modalities for MOSS and Hierarchical Lasso in Fig.6 and Fig.7 for the number of modalities334

from three to eight. Since the hierarchical Lasso has the closest prediction accuracy with the MOSS.335

Based on the modality selection result, it can be observed that the proposed MOSS can accurately336

select the modalities in a proper order compared with the benchmark. For example, when the number337

of selected modalities increased to four, the MOSS selected x-axial extruder vibration as the additional338

modality, and the hierarchical Lasso selected platform temperature as the additional modality. For the339

flatness of the product, as discussed above, the variation of platform temperature is not significant340
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Figure 7. Contribution of each Modality for Flatness Prediction with Different Numbers of Modalities
in Hierarchical Lasso

compared with the vibration on the extruder. This modality selection result also explains why the341

prediction accuracy for Moss is much better than hierarchical Lasso when the number of selected342

modalities is four. On the other hand, it can also be found that even though the selected modalities are343

the same for both MOSS and hierarchical Lasso, the prediction accuracy of Moss is still slightly better344

than the hierarchical Lasso. One possible explanation is the MOSS can better leverage the selection345

efforts between the modalities and the variables within each modality based on the smooth spline346

non-parametric estimation. Moreover, the hierarchical Lasso usually yields a local optimal due to347

the modeling estimation restriction [25]. The MOSS also has the flexibility to control the number of348

modalities selected in the model estimation, and further guide a cost-effective multi-modal sensing349

system design. Therefore, when there are limited resources and have to select the best subset of350

modalities, the MOSS can still select the most relevant modalities, and while estimating an accurate351

quality-process model.352

6. Conclusion353

Smart manufacturing integrates the multi-modal sensing system and the computation capability354

to effectively support real-time data analytics. However, how to design a multi-modal sensing355

system with a cost-effective consideration for the manufacturing process is a challenging question.356

Because it is difficult to accurately identify the relevance and contribution of each sensor modality357

toward the specific quality response. Therefore, in this research, we proposed a new model called358

MOSS, which can effectively rank the significant sensor modalities and simultaneously identify the359

important features within each modality in model estimation. It can guide the sensing system design360

in smart manufacturing, and also provides a way to identify the contribution of each modality to361

potentially guide the diagnosis for the quality variation [10]. The MOSS can be easily extended to362

other applications and domains, such as other manufacturing processes or healthcare applications363

which usually need to model the data with a multi-modal format [53,54].364

This research also leads to several future research directions. First, we can generalize the MOSS365

so that multiple quality responses can be jointly modeled. One possible extension of the MOSS is to366

multiple response regression under the non-parametric estimation framework [55]. Next, the spatial367

process variables and quality responses, such as the thermal video and 3d profile of the product, can368
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be incorporated into the MOSS to reasonable quantify the spatio-temporal relationship contained in369

both process variables and quality variables [56]. Finally, the monitoring and control strategy can also370

be integrated with the MOSS in a real-time manner to effectively detect the anomaly event during the371

fabrication process, and further improve process reliability and reduce process variation [57].372
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Appendix A.373

Table A1. Design of Experiment Table for Case Study [12]

Run
Number Number

Extruder
Speed Level

Extruder
Temperature Level

Temperature
Disturbance Level

Vibration
Disturbance Level

44 1 0 0 0 0
43 2 0 0 0 1
7 3 0 0 1 0

48 4 0 0 1 1
20 5 0 1 0 0
21 6 0 1 0 1
6 7 0 1 1 0

29 8 0 1 1 1
12 9 1 0 0 0
26 10 1 0 0 1
30 11 1 0 1 0
24 12 1 0 1 1
14 13 1 1 0 0
22 14 1 1 0 1
3 15 1 1 1 0

38 16 1 1 1 1
10 17 0 0 0 0
28 18 0 0 0 1
33 19 0 0 1 0
41 20 0 0 1 1
32 21 0 1 0 0
8 22 0 1 0 1

15 23 0 1 1 0
45 24 0 1 1 1
19 25 1 0 0 0
36 26 1 0 0 1
42 27 1 0 1 0
35 28 1 0 1 1
11 29 1 1 0 0
31 30 1 1 0 1
5 31 1 1 1 0
4 32 1 1 1 1

16 33 0 0 0 0
1 34 0 0 0 1

13 35 0 0 1 0
40 36 0 0 1 1
2 37 0 1 0 0

39 38 0 1 0 1
46 39 0 1 1 0
25 40 0 1 1 1
34 41 1 0 0 0
23 42 1 0 0 1
17 43 1 0 1 0
37 44 1 0 1 1
27 45 1 1 0 0
47 46 1 1 0 1
18 47 1 1 1 0
9 48 1 1 1 1
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Figure A1. Residual Plot and Assumption Check for the Proposed MOSS in Case Study
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