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Abstract: Smart manufacturing, which integrates a multi-sensing system with physical
manufacturing processes, has been widely adopted in the industry to support online and real-time
decision making to improve manufacturing quality. A Multi-sensing system for each specific
manufacturing process can efficiently collect the in situ process variables from different sensor
modalities to reflect the process variations in real-time. However, in practice, we usually do not
have enough budget to equip too many sensors in each manufacturing process due to the cost
consideration. Moreover, it is also important to better interpret the relationship between the sensing
modalities and the quality variables based on the model. Therefore, it is necessary to model the
quality-process relationship by selecting the most relevant sensor modalities with the specific quality
measurement from the multi-modal sensing system in smart manufacturing. In this research, we
adopted the concept of best subset variable selection and proposed a new model called Multi-mOdal
beSt Subset modeling (MOSS). The proposed MOSS can effectively select the important sensor
modalities and improve the modeling accuracy in quality-process modeling via functional norms
that characterize the overall effects of individual modalities. The significance of sensor modalities can
be used to determine the sensor placement strategy in smart manufacturing. The selected modalities
can better interpret the quality-process model by identifying the most correlated root cause of quality
variations. The merits of the proposed model are illustrated by both simulations and a real case study
in an Additive Manufacturing (i.e., fused deposition modeling) process.

Keywords: Data fusion; fused deposition modeling; multi-modal sensing; quality modeling; smart
manufacturing

1. Introduction

Smart manufacturing integrates multi-modal sensing systems and computing resources (e.g.,
Fog computing and Cloud computing) to support efficient real-time quality modeling, monitoring,
diagnosis, and control in manufacturing [1-4]. Specifically, one modality in this paper is defined
as a group of features extracted from the sensing signal that measures the same kind of physical
quantity from the same place in the manufacturing process [5]. Therefore, based on the multi-modal
sensing systems, different modalities of relevant variables that can reflect the status of manufacturing
processes are collected to effectively model the quality-process relationship in smart manufacturing [6,
7]. However, how to effectively design and achieve the multi-modal sensing system in smart
manufacturing is still an open question [8]. For example, one can equip sensors and collect
the corresponding process variables as many as possible to accurately model the quality-process
relationship in the manufacturing process. But this approach is not cost-effective, because some
modalities might be redundant or comparable with each other. On the other hand, with a multi-modal
sensing system, it is important to identify the most relevant modalities in a quality-process model to
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effectively interpret the potential root cause of the quality variation [9]. Therefore, it is critical to find a
quality-process model strategy that can effectively select the best subset from the multi-modal sensing
data, and rank the relevance for each modality toward the modeled quality variable.

Take the fused deposition modeling (FDM), which is an extruder based additive manufacturing
(AM) process, as an example [10]. As a promising advanced manufacturing process, FDM can efficiently
fabricate personalized products with a high degree of geometric complexity [11-13]. Therefore, FDM
has been employed in many significant applications, such as aerospace automobile and healthcare
field [14,15]. However, most of these applications are not yet widely deployed in practice due to the
quality variation of products, such as geometric deviations caused by process variations during the
fabrication [16,17]. Because the fabrication mechanism of the FDM process is complex, the potential
root cause for the geometric deviation is also diverse. For example, abnormal events during the
fabrication process such as irregular filament feeding, extruder vibration, and extruder temperature
variation might directly lead to a geometric deviation of the product. As shown in Fig. 1, in order to
comprehensively study the influence of these events on geometric deviations, a smart manufacturing
paradigm of the FDM process with a multi-modal sensing system is proposed. The data collected
from these sensor modalities can directly or indirectly reflect the characteristics and variations of the
fabrication in a FDM process. However, this design for the multi-modal sensing system might not be
the most cost-effective. For example, the data collected from the infrared sensor and the thermocouple
on the extruder might be correlated since both of them measure the thermal distribution near the
melting pool area [12]. In the literature, there has been a series of quality-process models to study
the influence from different sensor modalities on the quality variable [10,12,18,19]. However, most of
the existing quality-process models cannot work for nonlinear model components, and thus cannot
identify the significant modalities to obtain a cost-effective (e.g., without redundant or comparable
modalities) multi-modal sensing system. Then the budget limitation for a multi-modal sensing system
might restrict the deployment of these methods in practice. Moreover, the interpretability of these
quality-process models might be questionable, without identifying the significant sensing modalities
and ranking their contributions toward a specific quality variable in a FDM process. Therefore, it is
important to quantify the relevance of each sensor modality toward the specific quality response in
quality modeling. In this way, we can provide a cost-effective multi-modal sensing system to the FDM
process, and also accurately pinpoint the potential root cause of a defect based on the sensor modality
selection result to reduce or avoid the product defect in the future [10].
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Figure 1. A Delta FDM Printer with a Multi-modal Sensing System

The objective of this research is to propose a model that can effectively select the real-time sensing
modalities in quality modeling to support the cost-effective multi-modal sensing system design in
smart manufacturing. To tackle the knowledge gap, we propose a new modeling method called
Multi-mOdal beSt Subset modeling (MOSS) that adopts the best subset selection idea from the best
subset regression [20]. The proposed MOSS can effectively select the best subset from the original
dataset via a two-level variable selection (i.e., among sensor modalities and within each modality)
effort. Specifically, two regularization norms are embedded in the quality-process model to realize
this effort. The first one is a functional norm that can effectively identify the relevance of each sensor
modality toward the quality response in model estimation. Smoothing splines framework [21] is
used to represent nonlinear model components, and quantify the contribution of each modality in the
proposed MOSS. By comparing the magnitudes of functional norms among modalities estimated from
the model, the rank of relevance toward the quality response can be accurately identified. The second
norm is an /-1 norm that encourages the sparsity of model coefficients corresponding to features within
each data modality. By comparing with the existing methods [22-26], the proposed MOSS can realize
the two-level variable selection simultaneously with both linear and nonlinear model components,
and further select the sensor modalities in smart manufacturing. To evaluate the quality prediction
performance and the variable selection accuracy for the proposed MOSS, both simulations and a
real case study are implemented. The results show the proposed MOSS can effectively select the
significant modalities with an accurate variable selection accuracy via the smooth spline framework
compared with three benchmark methods (i.e., Lasso regression [22], group Lasso [23], and hierarchical
Lasso [24])

The rest of the paper is organized as follows. Section 2 summarizes the state-of-the-art of quality
improvement and modeling for FDM processes and multi-modal modeling methods. Section 3
introduces the proposed best subset model in detail. Section 4 validates the prediction performance
and the variable selection accuracy of the proposed method via a simulation study. Section 5 employs
a real case study on the FDM process to model multiple geometric quality measurements via the
proposed MOSS. Lastly, Section 6 concludes and discusses future work.
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2. Related works

In this section, the state-of-the-art research on quality improvement and modeling for the AM
process is reviewed. First, to improve the product quality from the AM process, the optimized process
recipe (i.e., the combination of process setting variables) has been studied. For example, Fordan et
al. identified how the important setting variables (e.g., layer thickness) can influence the mechanical
property of the AM products through a design of experiment study [27]. Moreover, for the geometric
deviation of the product, Sood et al. employed the gray Taguchi method to study the influence of
five setting variables (i.e., part orientation, deposition width, layer thickness, air gap, and deposition
angle) on the product geometric deviation [28]. Similarly, Zhang and Peng applied the Taguchi method
which is combined with a fuzzy comprehensive evaluation to established empirical relations between
the setting variables and the geometric deviation of product [29]. Nancharaiah et al. applied an
ANOVA method to investigate the significant setting variables in FDM processes toward the geometric
deviation [30]. However, the aforementioned works mainly concentrate on the run-to-run study to
optimize the process recipe and identify the significant process setting variables in the AM process,
instead of modeling the relationship between the product quality with the process variables from the
sensing system which can reflect the real-time fabrication variation.

To model the in situ sensing data with the product in an AM process, many data-driven models
have been proposed in the literature. For instance, Rao et al. presented an advanced Bayesian
nonparametric analysis method for in situ sensing data to identified process failures and the types
of failures in a FDM process in real-time [10]. Sun et al. proposed a functional quantitative and
qualitative model to predict two types of quality responses via offline setting variables and in situ
process variables [12]. Dinwiddie et al. proposed a monitor system based on infrared cameras to
monitor the temperature distribution of the extrusion process in a FDM process [31]. Tlegenov et
al. presented a nozzle clogging monitoring system based on the in situ vibration data through a
physics-based dynamic model for a FDM process [32]. Li et al. proposed a data-driven method for
in situ monitoring and process diagnosis based on the vibration sensors. The least-squares support
vector machine (LS-SVM) method was employed to identify the filament clogging event in real-time.
Liu et al. proposed a data-driven model to predict the product surface roughness based on the features
generated from thermocouples, infrared temperature sensors, and accelerometers [33]. Kousiatza
and Karalekas illustrated a geometric deviation monitoring system based on the fiber Bragg grating
sensors and thermocouples. The in situ data collected from the sensors is employed to generate the
temperature distribution and product profile based on a data-driven model [34]. Similarly, Fang et
al. proposed a strain variation monitoring system based on the embedded FBG sensors inside the
product [35]. Yang et al. developed an acoustic emission sensor based filament breakage monitoring
system. The summary statistics of the in situ acoustic emission signal was employed as the monitor
index [36]. However, the aforementioned methods typically only focus on quality-process modeling
instead of selecting the relevance of sensing modality. Thus, they may not provide insights on the
contribution of each sensing modality toward the quality variable. Therefore, the existed method
might be not sufficient to guide the multi-modal sensing system design in smart manufacturing.

On the other hand, there are many modality and variable selection modeling methods that
have been proposed in the literature [37]. For example, Tibshirani proposed the Lasso penalty to
employ the variable selection effort in an ordinary regression model by constraining the sum of
the absolute value of the model coefficients being less than a constant [22]. To extend the variable
selection efforts for the different modality of predictors, the group Lasso was proposed [38]. The group
Lasso proposed a group-wise penalty to encourage the group (i.e., data modality) sparsity in model
estimation. To effectively implement the modality selection and the variable selection within each
modality simultaneously, Huang et al. proposed the group bridge method to simultaneously select the
important modality and also the feature within each modality at the same time via a specially designed
group bridge penalty [39]. However, the proposed group bridge penalty is not always differentiable
and tends to be inconsistent for feature selection [40]. Zhou and Zhu proposed the hierarchical Lasso



158

Version December 15, 2020 submitted to Sensors 50f 19

approach to effectively remove insignificant modality and implement the variable selection within
each modality by penalizing the coefficients using two levels of I-1 penalty [24]. Paynabar et al. [25]
and Sun et al. [26] proposed a hierarchical nonnegative garrote method to achieve these two-level
variable selection efforts in linear regression models. Fan and Li developed the smoothly clipped
absolute deviation (SCAD) penalty to effectively select variables and estimate linear model coefficients
simultaneously [41]. However, the aforementioned methods mainly focus on selecting linear functional
model components, and cannot deal with the nonlinear model components. For the nonlinear model
components, Lin and Zhang proposed the component Selection and Smoothing Operator (COSSO)
method to regularize the data modality as the summation of component norms based on the smooth
spline method [42]. Ravikumar et al. proposed the sparse additive model (SpAM) to regularize the
data modality based on an empirical functional norm via a non-parametric smoother [43]. However,
these methods do not involve the variable selection effort within each modality among the nonlinear
model components. Therefore, it is important to propose a model that can handle the nonlinear model
components with the capability that can simultaneously select both the significant modalities and the
variables within each modality in model estimation.

3. Methodology

In order to clarify the scope of this study, we assume that an additive model structure is sufficient
to model the quality-process relationship. This assumption is validated in Appendix.Al. Moreover,
quality measurement of Product i is treated as the quality variable in modeling, denoted as y; and
i =1,...,n. The model can be expressed as:

d
_ T
yi_“+ Zfr xirﬁ'f +€it1 (1)
r=1
where « is an unknown intercept, f; s are unknown smooth functions, x;, = (xj1,. ..,xirpr)T is

the feature vector generated from modality r for product i with p, number of features, and B, =
(Br1,---,Brp,) T is the vector of weight coefficients for the predictor vector x;,. It is worth to mention
that the data can be aligned based on the dynamic time warping [44]. To guarantee that model Eq.(1)
is estimable, in this paper, we shall use the constraints f, = 0,7 = 1,...,d [45]. Therefore the
quality-process relationship in Eq.(1) can be expressed as an additive model where each modality
is represented by an additive component function f,. This model structure can help better interpret
the contribution of each modality component [9]. Moreover, to estimate component function f, f; is
formulated in a reproducing kernel Hilbert space (RKHS) framework. Specifically, the whole mean
response function (« + Y9, f,) in Eq.(1) is assumed to reside in an RKHS F of functions. The space
has a tensor sum decomposition F =1 F; with F; = le F',where F1,.., Fé are d orthogonal
subspaces of F such that f,  F" to indicate d modalities. To estimate the model parameters (f;, &, B;),
a penalized least square optimization formulation is proposed as:

d 2 d
argmin}_ v o« Y fr 1B AMY. BritA Y, fra) 2
frrﬁr i r=1 r r=1

2
where the firstterm Y, y; a Y9, f; xIB,  represents the least-square loss for model estimation;

Yo Br1 = X Z}’ll Byj is the I-1 regularization term which implements the variable selection
effort within each modality [22]; A; is the tuning parameter to control the sparsity of the B;;

Yt 5= v, f? is the L-2 functional norm regularization to determine the sparsity among
data modalities [39]. Therefore, the proposed MOSS can effectively and simultaneously select the
significant sensing modalities for nonlinear function components, and also identify the important
predictors within each modality. To effectively estimate the functional norm for each modality, modality
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inputs x] B,,i = 1, ..., n, are all standardized to [0, 1] within each modality. Therefore, by comparing
the magnitude of functional norms, the best subset of modalities toward the quality response can be
effectively identified. It is worth to mention that, once the significant modalities and the important
features within each modality are identified, the raw sensor features can be used to interpret the root
cause of the product defects. Moreover, by choosing the different tuning parameter A,, the number of
selected modalities in the best subset can be controlled.

To estimate the model parameters in Eq.(2), a block updating algorithm is developed to break
down the proposed optimization problem into two simpler optimization problems as follow:

2

d d
argmin)_ v o« Y. fr x.B, +M Y fro, (3)
&, fr i r=1 r=1
and
d 2
argmin}_ v o« Y fr x.B; +A1Y Brq- (4)
r i r=1 r

A direct optimization of Eq.(3) is difficult due to the functional norm regularization term. Inspired by
the COmponent Selection and Smoothing Operator (COSSO) [42], an equivalent formulation of Eq.(3)
is proposed as follow:

2

d d d
argmin} "y, o« Y fr xpB A0 Y01 fr 3+ Y 6, 5)
afrfr i r=1 r=1 r=1

where Ag is a tuning constant and 6, > 0 is the constrained weight coefficients for each sensor
modality. By the representer theorem for smooth splines [21], the solution of f; has the form f,(x) =
Y cifR, xl-Tr Br, x , where c; s are unknown coefficients and R, is the reproducing kernel function
of F'. Let R, be the n 1 matrix with the (i, j)-th element being R, ((x].8,), (x}rrﬁr)), i=1,..,n,
j =1,..,n. Define Ry = Zﬁlzl 0;R; and the matrix R, = Zle 6,R,. For fixed 6, s, we can find the
estimates of the intercept a and the coefficient vector ¢ = (cy, ..., cn)T by

argmin (y a1, Rye)'(y al, Ryc)+nrgc'Ryc, (6)
a,c
which is a standard smoothing spline problem [21] and can be solved, including the tuning of Ao, by
standard smoothing splines software [45]. By fixing « and ¢, defining g, = R, ¢ and letting G be the
n  r matrix with the r-th column being g,, we can efficiently solve § = (6, ...,6,;)T by

d
argmin(z  GO)" (z GO) +nAy Y 6, subjecttod, 0,r=1,...,d, )
0 r=1

where z = y (1/2)nApc  al,. Therefore, by iterating Eq.(6) and Eq.(7), the intercept a and
the functional components f, can be estimated via the penalized constrained least squares fitting
framework in [46,47].

Next, to estimate the Eq.(4), we can fix « and f, and the problem will be reduced to a linear
regression model with a Lasso penalty. It can be efficiently solved by the coordinate descent algorithm
as shown in [48]. Therefore, an alternately updating strategy is proposed to find the solution of
the proposed model as shown in Algorithm 1. To select the optimal tuning parameters, the 5-fold
cross-validation is employed [22,45]. The selection procedures are shown in Algorithm 1. The root
mean square errors (RMSEs) from the cross-validation is used to select lambda; and lambdas.
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Algorithm 1 Block Updating Algorithm

Input: data (xj1,xpp,..., %4, ¥i),i = 1,..,n;, where x;, = (xl-,l,...,xirpr)T is the r-th modality for
product i with p, number of features

Initialization: 6 = 1;; A¢: solving the smoothing spline problem as [45], and tuning Ay according to
cross-validation; §,: initialized via ridge regression, r =1, ..., d.

Repeat
Select the tuning parameter A, based on cross-validation
Repeat until «, ¢, and 6 coverage:

Step 1: argmin y al, Ryc B y al, Rye + n)»ocTRec
a,c

Step 2: argmin (z GB)T (z GO)+nA, Zle 6,, subjecttof, O0,r=1,...,d.
0

Select the tuning parameter A; based on cross-validation
Repeat until B, coverage:

2
Step l:argminy; y; « Y9, f xIBr MY Brg-

Br

4. Simulation

4.1. Simulation Setting

The objective of this simulation study is to evaluate the statistical performance of the proposed
model compared with other benchmark models. In total, there are eight different simulation settings
that are summarized in Table 1. Specifically, the sample size for each simulation case represents
how many samples are generated. In each sample, the multi-modal data and the corresponding
model response are generated based on a pre-defined model structure. The Decibels signal-to-noise

ratio (SNR) is defined as SNR4g = 101log, Al\/ffii 21 , where Mgigna is the mean of signal power for
multi-modality data, and Mp;ge is the power for the noise. The sparsity represents the ratio between
the total significant variables and the total number of variables in the model. Finally, we chooses linear
and nonlinear structures to test the robustness of the proposed methods to model a nonlinear system.

Table 1. Simulation Settings

Sparsity
Case No. Sample Size Signal-to-noise Ratio (db) (Total Signi cant Variables Model Structure
in All Modalities)
1 100 1 0.1(6) Linear
2 100 0.6 0.25 (16) Nonlinear
3 100 1 0.1 (6) Nonlinear
4 100 0.6 0.25 (16) Linear
5 300 1 0.1 (6) Nonlinear
6 300 0.6 0.25 (16) Linear
7 300 1 0.1 (6) Linear
8 300 0.6 0.25 (16) Nonlinear

To explicate the advantages of the proposed method, in each simulation, four modalities of data
are generated as the raw signals. The summary of these four data modalities and the number of
their corresponding features are shown in Table.2. Specifically, Modality 1 and Modality 2 are time
series signals generated respectively from AR(2) model with ¢; = [0.9, 0.2]T and AR(3) model with
¢ =1 07,03, O.I]T [49]. Moreover, the i.i.d noise for both AR models is generated from N(0,0.5).
In practice, the features generated from the raw signal are widely used in modeling to reduce the
data dimension and decrease the computation intensity [26]. Therefore, to effectively generate the
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signal features from Modality 1 and Modality 2, the discrete wavelet analysis is employed because
it can effectively extract the features from both time and frequency domain [50]. Moreover, x; and
x; are the features that are the Levell and Level2 db4 detailed wavelet coefficients from Modality 1.
Similarly, x3 and x4 are Levell and Level2 db4 detailed wavelet coefficients extracted from Modality
2. Moreover, since there might be a 2-D image signal in the smart manufacturing system, such as a
thermal distribution image, we also generate the 2-D image as Modality 3 in each sample. Specifically,
the 2-D image is generated from a multivariate normal distribution, and the covariance function
defined by inverse exponential squared Euclidean distance: £ (z,z ) =exp — z—z > [51]. zisan
arithmetic sequence from 0 to 2 with 10 elements. An example of the image generated in the simulation
is shown in Fig.2. Moreover, x5 and x4 are Levell (i.e., high-resolution image features) and Level2
(i.e., low-resolution image features) 2-D sym4 wavelet coefficients extracted from Modality 3. As
the disturbance, we also generate Modality 4 as the uncorrelated signal to validate the robustness of
variable selection performance for the proposed model. The corresponding feature x7 for Modality 4 is
generated from a Gaussian distribution N (0, 1).

"/

Mesh View Pixel View

Figure 2. The simulated thermal distribution Signal

Table 2. Data Summary in Simulation (number of features is shown in parenthesis)

Data ‘ Modality 1 ‘ Modality 2 ‘ Modality 3 ‘ Modality 4 ‘
; . . . . . Noise
High-resolution | Low-resolution | High-resolution | Low-resolution . . .
> . . . > . . . High-resolution | Low-resolution generated
time-series time-series time-series time-series . .
Features image features | image features | from Normal
features features features features S
(25) 4) Distribution
® %) ® ) an

After generating the features from each data modality, we need to determine the significant
modalities and corresponding significant features in each sample. The significant modalities and
the features will be randomly selected from Modalities 1 to 3 following a uniform distribution.
Moreover, for each significant variable x;; (i.e., jth variable from ith modality), the corresponding
model coefficients B; ; is generated through a uniform distribution as Unif(—3,3). Therefore, for the
simulation that has a linear model structure, the response y for each sample can be generated as:

y=Y Y Bijxij+&. (8)
i
Moreover, for the simulation that has a nonlinear model structure, the response is generated as:

y=2_2 Bijexp (xij +¢, ©)
i

where ¢ N (0,7? , and the magnitude of 7 is determined by the signal-to-noise ratio from the
simulation setting.

For each simulation setting shown in Table.1, 100 replicates are simulated. The proposed MOSS is
compared with three benchmark models to evaluate its prediction performance and also the variable
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selection accuracy: (1) the Lasso regression which can only implement the variable selection efforts
without the concept of data modality [22]; (2) the group Lasso which can implement the variable
selection in modality level but cannot select the variable within each modality [39]; and 3) the
hierarchical Lasso which can implement the variable selection in both among modalities and within
each modality [24]. These three benchmarks can help to comprehensively validate the performance of
the MOSS for both variable selection and prediction accuracy. To evaluate the prediction accuracy, in
each replication of the simulation, 80% samples are used as the training dataset, and the remaining
20% of samples are used as the testing dataset. To fairly compare the variable selection accuracy, the
significant variables for each simulation case are the same among each replication. Moreover, the
number of modalities selected from the MOSS is fixed as the maximum number of modalities selected
among benchmarks in each replication. Based on this scenario, we can validate whether the proposed
MOSS can effectively guide the multi-modal sensing system design with a limited budget (i.e., limited
sensor modalities) by selecting the most relevant sensor modalities compared with benchmarks.

4.2. Results and discussion

Table 3. Normalized RMSE (Standard Error) of Each Simulation Case

Lasso Regression =~ Group Lasso  Hierarchical Lasso  MOSS (Proposed)

Case 1 8.72% 8.35% 8.37% 7.58%
(0.04) (0.02) (0.02) (0.02)

Case? 9.42% 9.10% 8.82% 7.71%
5¢ (0.07) (0.01) (0.02) (0.01)
Case 3 15.75% 14.97% 13.24% 11.92%
(0.05) (0.03) (0.05) (0.02)

Case 4 9.94% 9.51% 8.42% 7.93%
S¢ (0.05) (0.02) (0.02) (0.02)
Case 5 13.41% 12.75% 12.69% 10.46%
(0.06) (0.04) (0.05) (0.02)

Case 6 7.81% 7.04% 7.15% 6.67%
S¢ (0.07) (0.01) (0.01) (0.01)
Case 7 8.65% 8.17% 7.81% 7.23%
(0.06) (0.01) (0.04) (0.02)

Case 8 12.89% 10.61% 10.17% 8.82%
S (0.08) (0.01) (0.02) (0.02)

The average of the normalized root-mean-squared error (RMSE) and the corresponding standard
error for eight simulation cases are shown in Table. 3. The values shown in bold are the smallest
prediction errors and the corresponding standard error obtained from different models in each
simulation case. From the results, the proposed MOSS yields the best prediction accuracy in most
of the cases with both linear and nonlinear model structures. It is because the proposed MOSS can
deal with the nonlinear model components, and can effectively implement the variable selection for
both among the modalities and within each modality compared with the benchmarks via the function
norm and /-1 norm simultaneously. For the Lasso regression, it can be observed that the standard error
is relatively large than other methods. It is because without considering the variable relationships
among modalities, the variable selection result might not be stable among replications. Moreover,
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since the group Lasso cannot effectively implement the variable selection within each modality, more
insignificant variables are included in the model and the prediction accuracy is relatively low. For the
hierarchical Lasso, it has a comparable result with the proposed MOSS method, but for the nonlinear
model components, the proposed MOSS has a better prediction accuracy since the functional norm can
work with both linear and nonlinear model components.

Table 4. Average Variable Selection Recall of Each Simulation Case

Lasso Regression ~ Group Lasso  Hierarchical Lasso MOSS (Proposed)

Casel 51.2% 56.2% 61.2% 64.8%
Case 2 54.3% 57.1% 62.3% 68.7%
Case 3 55.1% 60.8% 63.3% 61.9%
Case 4 48.2% 52.4% 62.9% 68.7%
Case 5 60.2% 54.1% 70.4% 75.4%
Case 6 63.4% 58.7% 68.6% 73.2%
Case 7 66.1% 59.2% 67.3% 71.5%
Case 8 63.2% 53.8% 70.6% 73.6%

On the other hand, to evaluate the variable selection accuracy of each method, the Recall =
Number of Significant Variables Selected . . .
Total Number of Selocted Variables — 1S €mployed as the performance measurement since it can reasonably
reflect the cost-effective of variable selection results. The results are shown in Table.4. The proposed
MOSS yields the best cost-effective performance in all simulation settings. It shows the merits of the
proposed MOSS that can efficiently select the significant modalities and variables simultaneously.
Moreover, the group Lasso has good precision for most simulation cases. The Lasso regression almost
has the worst variable selection performance on all simulation settings since it cannot address the
modality structure among variables, and can only consider the variables that are independent in
variable selection. Moreover, it is not surprising since the group Lasso does not implement the variable
selection within each modality, therefore the number of selected variables for group Lasso is much
higher than other methods. The recall for the group Lasso also proves this idea. The hierarchical
Lasso usually has a comparable variable selection precision with the MOSS since it can also implement
the variable selection for both modalities and within each modality. But limited by its linear model
component assumption, the proposed MOSS can be more flexible compared with the hierarchical
Lasso.

5. A Real Case Study

5.1. Experiment Setup

In order to evaluate the performance of the proposed model, we apply the proposed method
to the data sets collected from a real FDM process [12]. Specifically, we predict the corresponding
geometric deviation features based on the in situ process data collected from different sensors. In this
data sets, the FDM product is fabricated under different combinations of process setting variables
based on the design of the experiment method. The selected process setting variables in the experiment
are shown in Table.5. In total, there are four setting variables in two levels: extruder speed, extruder
temperature, temperature disturbance, and platform vibration disturbance. The extruder speed and the
extruder temperature are both the significant setting variables that can directly influence the product
quality [52]. To introduce extra disturbance to the system, two types of process noise are involved in
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Table 5. Setting Variables in the Experiment [12]

Extruder travel speed  Extruder temperature Temperature disturbance  Vibration disturbance

Level 1 40mm/s 225 On On
Level 2 70mm/s 245 Off Off

the experiment. The disturbances are introduced by a fan near the extruder, which can significantly
change the thermodynamic in the near area, and a vibrator on the printing bed. These disturbances are
employed to validate whether the proposed method can identify the disturbance in variable selection
results. A full factorial design with three replications of each experiment treat is executed in this case
study. In total, 48 products are fabricated. The full design of the experiment table is attached in the
Appendix. Al. In the experiment, the modified national aerospace standard 979 test part design (as
shown in Fig.3) is selected as the product design [10].
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Figure 3. Standard drawing of NAS 979 part [10]

The multi-modal sensing system for the FDM process in the experiment is equipped with
two tri-axis accelerometers, two thermocouples, and one infrared (IR) sensor as shown in Fig.1(a).
All signals are measured at a sampling frequency of 1 Hz via a data acquisition system built by
Ni-cRIO-9073. Such a senor selection and frequency combination has shown to be effective to reflect
the real-time FDM process condition [10,12]. For the vibration sensor, it contains the vibration signals
from the three-axis, and each axis is considered as one separate data modality. It is because the signal
from each axis can reflect different types of process variation for a FDM process, and can further help
to accurately identify the significant modality in the process. The wavelet analysis is used to compactly
represent the in situ signals collected from these sensors in this case study. Specifically, the Level4
detail wavelet coefficients generated based on the db4 basis are employed as signal features in this
case study. Finally, there are 47 features extracted from each data modality, and there are nine data
modalities in total. After the product fabrication, the coordinate measuring machine is used to measure
the corresponding geometric quality variables (i.e., length, flatness, and concentric).

5.2. Results and Discussion

Table 6. Average of Normalized RMSEs

Quality Measurements (from CMM)  Lasso Group  Hierarchical MOSS

Lasso Lasso (Proposed)
Length 20.15%  17.65% 16.14% 14.57%
Flatness 12.43%  11.44% 9.79% 7.91%

Concentric 11.06%  9.83% 9.02% 7.86%
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To evaluate the prediction performance of the proposed model, a 5-fold CV training-testing
strategy is employed. Similar to the simulation study, the Lasso, group Lasso, and hierarchical Lasso
are used as the benchmark methods. The average of normalized RMSEs for testing from 5-fold CV is
shown in Table.6. It can be observed that the proposed MOSS yields the best prediction accuracy for
all three quality measurements. It is because the proposed method can properly identify the significant
data modalities based on the smooth spline functional norm and also the important features within
each modality. The Lasso regression has the worst prediction accuracy since it does not to consider
the modality structure among each variable. This issue might lead to an inaccurate variable selection
result. Similarly, the group Lasso has comparable results with the Lasso regression since it can only
consider the variable selection among modalities. Moreover, the hierarchical Lasso has a better result
compared with Lasso and group Lasso since it can implement the variable selection on two-levels
simultaneously. However, due to it might usually restrict on a local optimal when estimating the
model coefficients, the proposed method could be more effective to identify the significant modalities.

Number of Times for each
Modality Selected in 5-fold CV
(Leave Vibration Disturbance Samples Out)

Number of Times for each
Modality Selected in 5-fold CV

5 5
Lasso Lasso 2 2 1 o 2 1
4 4
Grou, Grou
Y 3 P 1 2 2 2 3
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MOSS o MOSS 4 1 2 2 o 1
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| — l °
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Temperature Temperature Temperature Temperature
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Figure 4. (a) Number of Times for each Modality Selected in 5-fold CV; (b) Number of Times for each
Modality Selected in 5-fold CV after Leaving Vibration Disturbance Samples Out

On the other hand, to evaluate the modality selection results, the number of times that each
modality is selected in the 5-fold CV for product flatness is shown in Fig.4. Specifically, the modality
selection results for two scenarios are studied: (1) the modality selection results with all samples
collected from the experiments; and (2) the modality selection results for the samples that do not
have the vibration disturbance on the printing bed. The motivation of this sensitivity analysis is to
evaluate whether the proposed method and the benchmarks can accurately identify the significant data
modalities in model estimation. From the Fig.4, it can observe that when the printing platform has the
vibration disturbance, the proposed MOSS method can effectively identify the influence of extruder
and platform vibration in the model estimation, which are the most relevant modalities for product
flatness [12]. Once the vibration disturbance is removed, the number of selection times for platform
vibration is significantly reduced. It is because the contribution of platform vibration is decreasing
without the vibration disturbance during the fabrication process. On the other hand, other benchmarks
cannot always select these important modalities in model estimation. Moreover, after removing the
samples that have the vibration disturbance, the proposed MOSS method can also effectively identify
the most relevant modalities (i.e., extruder vibration) on this scenario and have a better selection
accuracy compared with other benchmarks in a 5-fold CV. Therefore, it can be concluded that the
proposed MOSS can effectively select the sensing modalities in a quality model. This result can further
guide the multi-modal sensing system design and support the root cause analysis to improve the
product quality and the process reliability of the FDM.
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Figure 5. Normalized NRMSEs for Flatness with Different Number of Modalities
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Figure 6. Contribution of each Modality for Flatness Prediction with Different Numbers of Modalities
in MOSS

Moreover, to identify whether the proposed MOSS can effectively identify the best subset of
modalities when modeling the quality-process relationship, the prediction results for product flatness
with a different number of selected modalities are shown in Fig.5, Fig.6, and Fig.7. The number of
modalities selected represents the maximum number of modalities that the method can select in model
estimation. To guarantee the modeling performance, the number of selected modalities is started
from three. It can be observed that in Fig.5 the proposed MOSS method yield the best prediction
accuracy in all scenarios compared with benchmarks. It is because that the proposed MOSS method
can accurately selecting the significance of the sensing modality. To validate this point of view, we
also summarized the selected modalities in detail. Due to the limited space, we mainly showed the
selected modalities for MOSS and Hierarchical Lasso in Fig.6 and Fig.7 for the number of modalities
from three to eight. Since the hierarchical Lasso has the closest prediction accuracy with the MOSS.
Based on the modality selection result, it can be observed that the proposed MOSS can accurately
select the modalities in a proper order compared with the benchmark. For example, when the number
of selected modalities increased to four, the MOSS selected x-axial extruder vibration as the additional
modality, and the hierarchical Lasso selected platform temperature as the additional modality. For the
flatness of the product, as discussed above, the variation of platform temperature is not significant
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Contribution of Each Modality to the Model (Hierarchical Lasso)
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Figure 7. Contribution of each Modality for Flatness Prediction with Different Numbers of Modalities
in Hierarchical Lasso

compared with the vibration on the extruder. This modality selection result also explains why the
prediction accuracy for Moss is much better than hierarchical Lasso when the number of selected
modalities is four. On the other hand, it can also be found that even though the selected modalities are
the same for both MOSS and hierarchical Lasso, the prediction accuracy of Moss is still slightly better
than the hierarchical Lasso. One possible explanation is the MOSS can better leverage the selection
efforts between the modalities and the variables within each modality based on the smooth spline
non-parametric estimation. Moreover, the hierarchical Lasso usually yields a local optimal due to
the modeling estimation restriction [25]. The MOSS also has the flexibility to control the number of
modalities selected in the model estimation, and further guide a cost-effective multi-modal sensing
system design. Therefore, when there are limited resources and have to select the best subset of
modalities, the MOSS can still select the most relevant modalities, and while estimating an accurate
quality-process model.

6. Conclusion

Smart manufacturing integrates the multi-modal sensing system and the computation capability
to effectively support real-time data analytics. However, how to design a multi-modal sensing
system with a cost-effective consideration for the manufacturing process is a challenging question.
Because it is difficult to accurately identify the relevance and contribution of each sensor modality
toward the specific quality response. Therefore, in this research, we proposed a new model called
MOSS, which can effectively rank the significant sensor modalities and simultaneously identify the
important features within each modality in model estimation. It can guide the sensing system design
in smart manufacturing, and also provides a way to identify the contribution of each modality to
potentially guide the diagnosis for the quality variation [10]. The MOSS can be easily extended to
other applications and domains, such as other manufacturing processes or healthcare applications
which usually need to model the data with a multi-modal format [53,54].

This research also leads to several future research directions. First, we can generalize the MOSS
so that multiple quality responses can be jointly modeled. One possible extension of the MOSS is to
multiple response regression under the non-parametric estimation framework [55]. Next, the spatial
process variables and quality responses, such as the thermal video and 3d profile of the product, can
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be incorporated into the MOSS to reasonable quantify the spatio-temporal relationship contained in
both process variables and quality variables [56]. Finally, the monitoring and control strategy can also
be integrated with the MOSS in a real-time manner to effectively detect the anomaly event during the
fabrication process, and further improve process reliability and reduce process variation [57].
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szs Appendix A.

Table Al. Design of Experiment Table for Case Study [12]

Run Number Extruder Extruder Temperature Vibration
Number Speed Level = Temperature Level Disturbance Level Disturbance Level
44 1 0 0 0 0
43 2 0 0 0 1
7 3 0 0 1 0
48 4 0 0 1 1
20 5 0 1 0 0
21 6 0 1 0 1
6 7 0 1 1 0
29 8 0 1 1 1
12 9 1 0 0 0
26 10 1 0 0 1
30 11 1 0 1 0
24 12 1 0 1 1
14 13 1 1 0 0
22 14 1 1 0 1
3 15 1 1 1 0
38 16 1 1 1 1
10 17 0 0 0 0
28 18 0 0 0 1
33 19 0 0 1 0
41 20 0 0 1 1
32 21 0 1 0 0
8 22 0 1 0 1
15 23 0 1 1 0
45 24 0 1 1 1
19 25 1 0 0 0
36 26 1 0 0 1
42 27 1 0 1 0
35 28 1 0 1 1
11 29 1 1 0 0
31 30 1 1 0 1
5 31 1 1 1 0
4 32 1 1 1 1
16 33 0 0 0 0
1 34 0 0 0 1
13 35 0 0 1 0
40 36 0 0 1 1
2 37 0 1 0 0
39 38 0 1 0 1
46 39 0 1 1 0
25 40 0 1 1 1
34 41 1 0 0 0
23 42 1 0 0 1
17 43 1 0 1 0
37 44 1 0 1 1
27 45 1 1 0 0
47 46 1 1 0 1
18 47 1 1 1 0
9 48 1 1 1 1
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Figure A1. Residual Plot and Assumption Check for the Proposed MOSS in Case Study
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