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ISLET: Fast and Optimal Low-Rank Tensor Regression via Importance Sketching⇤
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Abstract. In this paper, we develop a novel procedure for low-rank tensor regression, namely Importance
Sketching Low-rank Estimation for Tensors (ISLET). The central idea behind ISLET is importance
sketching, i.e., carefully designed sketches based on both the responses and low-dimensional structure
of the parameter of interest. We show that the proposed method is sharply minimax optimal in terms
of the mean-squared error under low-rank Tucker assumptions and under the randomized Gaussian
ensemble design. In addition, if a tensor is low-rank with group sparsity, our procedure also achieves
minimax optimality. Further, we show through numerical study that ISLET achieves comparable or
better mean-squared error performance to existing state-of-the-art methods while having substantial
storage and run-time advantages including capabilities for parallel and distributed computing. In
particular, our procedure performs reliable estimation with tensors of dimension p = O(108) and is
1 or 2 orders of magnitude faster than baseline methods.
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gression
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1. Introduction. The past decades have seen a large body of work on tensors or multiway
arrays [63, 100, 30, 67]. Tensors arise in numerous applications involving multiway data (e.g.,
brain imaging [132], hyperspectral imaging [70], or recommender system design [11]). In addi-
tion, tensor methods have been applied to many problems in statistics and machine learning
where the observations are not necessarily tensors, such as topic and latent variable models
[2], additive index models [5], and high-order interaction pursuit [53], among others. In many
of these settings, the tensor of interest is high-dimensional in that the ambient dimension,
i.e, the dimension of the target parameter, is substantially larger than the sample size. How-
ever, in practice, the tensor parameter often has intrinsic dimension-reduced structure, such
as low-rankness and sparsity [63, 105, 114], which makes inference possible. How to exploit
such structure for tensors poses new statistical and computational challenges [96].

From a statistical perspective, a key question is how many samples are required to learn
the suitable dimension-reduced structure and what the optimal mean-squared error rates are.
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TENSOR REGRESSION VIA IMPORTANCE SKETCHING 445

Prior work has developed various tensor-based methods with theoretical guarantees based
on regularization approaches [68, 84, 96, 110], the spectral method and projected gradient
descent [27], alternating gradient descent [69, 106, 132], stochastic gradient descent [45], and
power iteration methods [2]. However, a number of these methods are not statistically optimal.
Furthermore, some of these methods rely on evaluation of a full gradient, which is typically
costly in the high-dimensional setting. This leads to computational challenges including both
the storage of tensors and run time of the algorithm.

From a computational perspective, one approach to addressing both the storage and run-
time challenge is randomized sketching. Sketching methods have been widely studied (see, e.g.,
[3, 4, 8, 14, 31, 32, 33, 35, 36, 54, 76, 85, 90, 92, 93, 95, 103, 104, 107, 111, 117, 118]). Many of
these prior works on matrix or tensor sketching mainly focused on relative approximation error
[14, 32, 85, 95] after randomized sketching which either may not yield optimal mean-squared
error rates under statistical settings [95] or requires multiple sketching iterations [93, 94].

In this article, we address both computational and statistical challenges by developing a
novel sketching-based estimating procedure for tensor regression. The proposed procedure is
provably fast and sharply minimax optimal in terms of mean-squared error under randomized
Gaussian design. The central idea lies in constructing specifically designed structural sketches,
namely importance sketching. In contrast with randomized sketching methods, importance
sketching utilizes both the response and structure of the target tensor parameter and reduces
the dimension of parameters (i.e., the number of columns) instead of samples (i.e., the number
of rows), which leads to statistical optimality while maintaining the computational advantages
of many randomized sketching methods. See more comparison between importance sketching
in this work and sketching in prior literature in section 1.3.

1.1. Problem statement. Specifically, we focus on the following low-rank tensor regres-
sion model:

(1.1) yj = hXj ,Ai+ "j , j = 1, . . . , n,

where yj and "j are responses and observation noise, respectively; {Xj}nj=1
are tensor covari-

ates with randomized design; and A 2 R
p1⇥···⇥pd is the order-d tensor with parameters aligned

in d ways. Here h·, ·i stands for the usual vectorized inner product. The goal is to recover A
based on observations {yj ,Xj}nj=1

. In particular, when d = 2, this becomes a low-rank matrix
regression problem, which has been widely studied in recent years [23, 64, 97]. The main focus
of this paper is solving the underdetermined equation system, where the sample size n is much
smaller than the number of coe�cients

Qd
i=1

pi. This is because many applications belong to
this regime. In particular, in the real data example to be discussed later, one MRI image is
121-by-145-by-121, which includes 2,122,945 parameters. Typically we can collect far fewer
MRI images in practice.

The general regression model (1.1) includes specific problem instances with di↵erent
choices of design X . Examples include matrix/tensor regression with general random or
deterministic design [27, 71, 96, 132], matrix trace regression [6, 23, 41, 43, 64, 97], and ma-
trix sparse recovery [123]. Another example is matrix/tensor recovery via rank-1 projections

[18, 28, 53], which arise by setting Xj = uj � vj � wj , where uj ,vj ,wj are random vectors
and “�” represents the outer product, which includes phase retrieval [17, 21] as a special
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case. The very popular matrix/tensor completion example [25, 72, 83, 119, 120, 125] arises
by setting Xj =

�
eaj � ebj � ecj

�
, where ej is the jth canonical vector and {aj , bj , cj}nj=1

are
randomly selected integers from {1, . . . , p1}⇥{1, . . . , p2}⇥{1, . . . , p3}. Specific applications of
this low-rank tensor regression model include neuroimaging analysis [50, 69, 132], longitudinal
relational data analysis [56], 3D imaging processing [51], etc.

For convenience of presentation, we specialize the discussions on order-3 tensors later, while
the results can be extended to the general order-d tensors. In the modern high-dimensional
setting, a variety of matrix/tensor data satisfy intrinsic structural assumptions, such as low-
rankness [114] or sparsity [132], which makes the accurate estimation of A possible even if the
sample size n is smaller than the number of coe�cients in the target tensor A. We thus focus
on the low Tucker rank (r1, r2, r3) tensor A with the following Tucker decomposition [113]:

(1.2) A = JS;U1,U2,U3K := S ⇥1 U1 ⇥2 U2 ⇥3 U3,

where S is an r1-by-r2-by-r3 core tensor andUk is a pk-by-rk matrix with orthonormal columns
for k = 1, 2, 3. The rigorous definition of Tucker rank of a tensor and more discussions on
tensor algebra are postponed to section 2.1. In addition, the canonical polyadic (CP) low-
rank tensors have also been widely considered in recent literature [53, 54, 106, 132]. Since any
CP-rank-r tensor A =

Pr
i=1

�iai � bi � ci has the Tucker decomposition A = JL;A,B,CK,
where L is the r-by-r-by-r diagonal tensor with diagonal entries �1, . . . ,�r, A = [a1, . . . ,ar],
and likewise for B,C [63], our results naturally adapt to low CP-rank tensor regression. Also,
with a slight abuse of notation, we will refer to low-rank and low Tucker rank interchangeably
throughout the paper. Moreover, we also consider a sparse setting where there may exist a
subset of modes, say Js ✓ {1, 2, 3}, such that A is sparse along these modes, i.e.,

(1.3) A = JS;U1,U2,U3K, kUkk0 =
pkX

i=1

1{(Uk)[i,:] 6=0}  sk, k 2 Js.

1.2. Our contributions. We make the following major contributions to low-rank tensor
regression in this article. First, we introduce the main algorithm—Importance Sketching Low-

rank Estimation for Tensors (ISLET). Our algorithm has three steps: (i) first we use the tensor
technique high-order orthogonal iteration (HOOI) [34] or sparse tensor alternating threshold-
ing - singular value decomposition (STAT-SVD) [127] to determine the importance sketching
directions. Here HOOI and STAT-SVD are regular and sparse tensor low-rank decomposition
methods, respectively, whose explanations are postponed to sections 2.2 and 2.3; (ii) using the
sketching directions from the first step, we perform importance sketching and then evaluate
the dimension-reduced regression using the sketched tensors/matrices (to incorporate sparsity,
we add a group-sparsity regularizer); (iii) we construct the final tensor estimator using the
sketched components. Although the focus of this work is on low-rank tensor regression, we
point out that our three-step procedure applies to general high-dimensional statistics prob-
lems with low-dimensional structure, provided that we can find a suitable projection operator
in step (i) and inverse projection operator in step (iii).

One of the main advantages of ISLET is the scalability of the algorithm. The proposed
procedure is computationally e�cient due to the dimension reduction by importance sketch-
ings. Most importantly, ISLET only require access to the full data twice, which significantly
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TENSOR REGRESSION VIA IMPORTANCE SKETCHING 447

saves run time for large-scale settings when it is not possible to store all samples into the
core memory. We also show that our algorithm can be naturally distributed across multiple
machines that can significantly reduce computation time.

Second, we prove a deterministic oracle inequality for the ISLET procedure under the low-
Tucker-rank assumption and general noise and design (Theorems 2 and 3). We additionally
show that ISLET achieves the optimal mean-squared error (with the optimal constant for
nonsparse ISLET) under randomized Gaussian design (Theorems 4, 5, 6, and 7). The following
informal statement summarizes two of the main results of the article.

Theorem 1 (ISLET for tensor regression: informal). Consider the regular tensor regression

problem with Gaussian ensemble design, where A is Tucker rank-(r1, r2, r3), Xj has i.i.d.

standard normal entries, "j
iid⇠ N(0,�2), and "j ,Xj are independent:

(a) Under regularity conditions, ISLET achieves the following optimal rate of convergence

with the matching constant:

E

��� bA�A
���
2

HS

= (1 + o(1))
m�

2

n
,

where m = r1r2r3+r1(p1�r1)+r2(p2�r2)+r3(p3�r3) is exactly the degree of freedom

of all Tucker rank-(r1, r2, r3) tensors in R
p1⇥p2⇥p3 and k·k

HS
is the Hilbert–Schmidt

norm to be defined in section 2.1.
(b) If, in addition, (1.3) holds with sparsity level sk, then under regularity conditions,

ISLET achieves the following optimal rate of convergence:

E

��� bA�A
���
2

HS

⇣ ms�
2

n
,

where ms = r1r2r3 +
P

k2Js sk (rk + log(pk/sk)) +
P

k/2Js pkrk and “⇣” denotes the

asymptotic equivalence between two number series (see a more formal definition in

section 2.1).

To the best of our knowledge, we are the first to develop the matching-constant optimal
rate results for regular tensor regression under randomized Gaussian ensemble design, even for
the low-rank matrix recovery case since it is not clear whether prior approaches (e.g., nuclear
norm minimization) achieve sharp constants. We are also the first to develop the optimal rate
results for tensor regression with sparsity condition (1.3).

Third, proving the optimal mean-squared error bound presents a number of technical
challenges and we introduce novel proof ideas to overcome these di�culties. In particular, one
major di�culty lies in the analysis of reduced-dimensional regressions (see (2.4) in section 2)
since we analyze sketched regression models. To this end, we introduce partial linear models for
these reduced-dimensional regressions from which we develop estimation error upper bounds.

The final and most important computational contribution is to display through numerical
studies the advantages of our ISLET algorithms. Compared to state-of-the-art tensor estima-
tion algorithms including nonconvex projected gradient descent (PGD) [27], Tucker regression
[132], and convex regularization [109], we show that our ISLET algorithm achieves comparable
statistical performance with substantially faster computation. In particular, the run time is
1–3 orders of magnitude faster than existing methods. In the most prominent example, our
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448 A. R. ZHANG, Y. LUO, G. RASKUTTI, AND M. YUAN

ISLET procedure can e�ciently solve the ultrahigh-dimensional tensor regression with covari-
ates of 7.68 terabytes. For the order-2 case, i.e., low-rank matrix regression, our simulation
studies show that ISLET outperforms the classic nuclear norm minimization estimator. We
also provide a real data application where we study the association between the attention
deficit hyperactivity disorder disease and the high-dimensional MRI image tensors. We show
that the proposed procedure provides significantly better prediction performance in much less
time compared to state-of-the-art methods.

1.3. Related literature. Our work is related to a broad range of literature varying from
a number of communities including scientific computing, computer science, signal processing,
applied mathematics, and statistics. Here we make an attempt to discuss existing results from
these various communities; however, we do not claim that our literature survey is exhaustive.

Large-scale linear systems where the solution admits a low-rank tensor structure com-
monly arise after discretizing high-dimensional partial di↵erential equations [57, 58, 74], and
various methods have been proposed. For example, the authors of [12] developed algebraic
and Gauss–Newton methods to solve the linear system with a CP low-rank tensor solution.
The authors of [7, 10] proposed iterative projection methods to solve large-scale linear sys-
tems with Kronecker-product-type design matrices. The authors of [46] introduced a greedy
approach. The authors of [65, 66] considered Riemannian optimization methods and tensor
Krylov subspace methods, respectively. The readers are referred to [49] for a recent survey.
Di↵erent from these works, our proposed ISLET is a one-step procedure that only involves
solving a simple least squares regression after performing dimension reduction on covariates
by importance sketching (see Steps 1 and 2 in section 2.2). Moreover, many prior works
mainly focused on computational aspects of their proposed methods [7, 13, 40, 46, 49], while
we show that ISLET is not only computationally e�cient (see more discussion and comparison
on computation complexity in the Computation and implementation part of section 2.2) but
also has optimal theoretical guarantees in terms of mean-squared error under the statistical
setting.

In addition, sketching methods play an important role in computation acceleration and
have been widely considered in previous literature. For example, the authors of [32, 82,
85] provided accurate approximation algorithms based on sketching with novel embedding
matrices, where the run time is proportional to the number of the nonzero entries of the input
matrix. Sketching methods have also been studied in robust `1 low-rank matrix approximation
[79, 80, 81, 103, 131], general `p low-rank matrix approximation [8, 29], low-rank tensor
approximation [104], etc. In the regression context, the sketching method has been considered
for the least squares regression [32, 35, 85, 94, 95], `p regression [32, 82, 85], Kronecker product
regression [35], ridge regression [3, 116], regularized kernel regression [20, 130], etc. Various
types of random sketching matrices have been developed, including random sub-Gaussian [94],
random sampling [37, 38], CountSketch [26, 31], Sparse Johnson–Lindenstrauss transformation
[62], among many others. The readers are also referred to survey papers on sketching by
Mahoney [76] and Woodru↵ [118]. The proposed method in this paper is di↵erent from these
previous works in various aspects. First, many randomized sketching methods in the literature
focus on relative approximation error [76, 118] and the sketching matrices are constructed
only based on covariates [37, 38, 62, 94, 95]. In contrast, we explicitly construct “supervised”
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TENSOR REGRESSION VIA IMPORTANCE SKETCHING 449

sketching matrices based on both the response yj and covariatesXj and obtain optimal bounds
in mean-squared error under the statistical setting. Second, essentially speaking, our proposed
importance sketching scheme reduces the number of columns (parameters) instead of the
number of rows (samples) in the linear equation system. Third, di↵erent from the sketching
on an overdetermined system of least squares [32, 35, 85, 94, 95], we mainly focus on the
high-dimensional setting where the number of samples can be significantly smaller than the
number of coe�cients.

1.4. Organization. In section 2.1, we introduce important notation; then we present our
ISLET procedure under nonsparse and sparse settings in sections 2.2 and 2.3, respectively,
and illustrate the procedure from a sketching perspective in section 2.4. In section 3, we
provide general theoretical guarantees for our procedure which make no assumptions on the
design or the noise distribution; in section 4, we specialize our bounds to tensor regression with
low Tucker rank and assume the design is independent Gaussian; a simulation study showing
the substantial computational benefits of our algorithm is provided in section 5. Additional
notation, discussion on general-order ISLET, simulation results, an application to attention
deficit hyperactivity disorder (ADHD) MRI imaging data analysis, and all technical proofs
are provided in the supplementary materials [128], linked from the main article webpage.

2. Our procedure: ISLET. Here we introduce the general procedure of Importance
Sketching Low-rank Estimation for Tensors (ISLET). Although for ease of presentation we will
focus on order-3 tensors, the procedure for the general order-d case can also be treated. Details
of matrices and tensors greater than order 3 are provided in section SM3 of the supplementary
materials [128].

2.1. Notation and preliminaries. The following notation will be used throughout this
article. Additional definitions can be found in section SM1 in the supplementary materials.
Lowercase letters (e.g., a, b), lowercase boldface letters (e.g., u,v), uppercase boldface letters
(e.g., U,V), and boldface calligraphic letters (e.g., A,X ) are used to denote scalars, vectors,
matrices, and order-3-or-higher tensors, respectively. For simplicity, we denote Xj as the
tensor indexed by j in a sequence of tensors {Xj}. For any two series of numbers, say {ai}
and {bi}, denote a ⇣ b if there exist uniform constants c, C > 0 such that cai  bi 
Cai for all i and a = ⌦(b) if there exists uniform constant c > 0 such that ai � cbi for
all i. We use bracket subscripts to denote subvectors, submatrices, and subtensors. For
example, v[2:r] is the vector with the 2nd to rth entries of v; D[i1,i2] is the entry of D on
the i1th row and i2th column; D[(r+1):p1,:] contains the (r + 1)th to the p1th rows of D;
and A[1:s1,1:s2,1:s3] is the s1-by-s2-by-s3 subtensor of A with index set {(i1, i2, i3) : 1  i1 
s1, 1  i2  s2, 1  i3  s3}. For any vector v 2 R

p1 , define its `q norm as kvkq =

(
P

i |vi|q)
1/q. For any matrix D 2 R

p1⇥p2 , let �k(D) be the kth singular value of D. In
particular, the least nontrivial singular value of D, defined as �min(D) = �p1^p2(D), will
be extensively used in later analysis. We also denote SVDr(D) = [u1 · · · ur] and QR(D)
as the subspace composed of the leading r left singular vectors and the Q part of the QR
orthogonalization of D, respectively. The matrix Frobenius and spectral norms are defined

as kDkF =
�P

i1,i2
D2

[i1,i2]

�
1/2

= (
Pp1^p2

i=1
�
2

i (D))1/2 and kDk = maxu2Rp2 kDuk2/kuk2 =

�1(D). In addition, Ir represents the r-by-r identity matrix. Let Op,r = {U : U>U = Ir}
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450 A. R. ZHANG, Y. LUO, G. RASKUTTI, AND M. YUAN

be the set of all p-by-r matrices with orthonormal columns. For any U 2 Op,r, PU = UU>

represents the projection matrix onto the column space of U; we also use U? 2 Op,p�r to
represent the orthonormal complement of U. For any event A, let P(A) be the probability
that A occurs.

For any matrix D 2 R
p1⇥p2 and order-d tensor A 2 R

p1⇥···⇥pd , let vec(D) and vec(A)
be the vectorization of D and A, respectively. The matricization M(·) is the operation that
unfolds or flattens the order-d tensor A 2 R

p1⇥···⇥pd into the matrix Mk(A) 2 R
pk⇥

Q
j 6=k pj

for k = 1, . . . , d. Since the formal entrywise definitions of matricization and vectorization
are rather tedious, we leave them to section SM1 in the supplementary materials [128]. The

Hilbert–Schmidt norm is defined as kAkHS =
�P

i1,...,id
A2

[i1,...,id]

�
1/2

. An order-d tensor is
rank-one if it can be written as the outer product of d nonzero vectors. The CP rank of any
tensor A is defined as the minimal number r such that A can be decomposed as A =

Pr
i=1

Bi

for rank-1 tensors Bi. The Tucker rank (or multilinear rank) of a tensor A is defined as a
d-tuple (r1, . . . , rd), where rk = rank(Mk(A)). The k-mode product of A 2 R

p1⇥···⇥pd with a
matrix U 2 R

pk⇥rk is denoted by A⇥k U and is of size p1 ⇥ · · ·⇥ pk�1 ⇥ rk ⇥ pk+1 ⇥ · · ·⇥ pd,
such that

(A⇥k U)[i1,...,ik�1,j,ik+1,...,id] =
pkX

ik=1

A[i1,i2,...,id]U[ik,j].

For convenience of presentation, all mode indices (·)k of an order-3 tensor are in the sense of
modulo-3, e.g., r1 = r4, s2 = s5, p0 = p3, X ⇥4 U4 = X ⇥1 U1.

For any matrices U 2 R
p1⇥p2 and V 2 R

m1⇥m2 , let

U⌦V =

2

64
U[1,1] ·V · · · U[1,p2] ·V

...
...

U[p1,1] ·V · · · U[p1,p2] ·V

3

75 2 R
(p1m1)⇥(p2m2)

be the Kronecker product. Some intrinsic identities among Kronecker product, vectorization,
and matricization, which will be used later in this paper, are summarized in Lemma 1 in the
supplementary materials [128]. Readers can refer to [63] for a more comprehensive introduction
to tensor algebra. Finally, we use C,C1, C2, c and other variations to represent the large and
small constants, whose actual value may vary from line to line.

2.2. Regular low-rank tensor recovery. We first consider the tensor regression model
(1.1), where A is low-rank (1.2) without sparsity assumptions. The proposed algorithm of
ISLET is divided into three steps, and a pictorial illustration is provided in Figures 1–3 for
readers’ better understanding. The pseudocode is provided in Algorithm 2.1.
Step 1 (Probing importance sketching directions) We first probe the importance sketching

directions. When the covariates satisfy Evec(Xj)vec(Xj)> = Ip1p2p3 , we evaluate

(2.1) eA =
1

n

nX

j=1

yjXj .

eA is essentially the covariance tensor between y and X . Since A = JS;U1,U2,U3K
has low Tucker rank, we perform the high-order orthogonal iterations (HOOI) on
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TENSOR REGRESSION VIA IMPORTANCE SKETCHING 451

eA to obtain eUk 2 Opk,rk , k = 1, 2, 3, as initial estimates for Uk. Here HOOI is a
classic method for tensor decomposition that can be traced back to De Lathauwer, De
Moor, and Vandewalle [34]. The central idea of HOOI is the power iterated singular
value thresholding. Then the outcome of HOOI {eUk}3k=1

yields the following low-rank
approximation for A:

(2.2) A ⇡ J eS; eU1,
eU2,

eU3K, where eS = J eA; eU>
1 ,

eU>
2 ,

eU>
3 K 2 R

r1⇥r2⇥r3 .

We further evaluate

eVk := QR
⇣
M>

k ( eS)
⌘
2 Ork+1rk+2,rk , k = 1, 2, 3.

{eUk,
eVk}3k=1

obtained here are regarded as the importance sketching directions. As

we will further illustrate in section 3.1, the combinations of eUk and eVk provide ap-
proximations for singular subspaces of Mk(A).

Step 2 (Linear regression on sketched covariates) Next, we perform sketching to reduce the
dimension of the original regression model (1.1). To be specific, we project the original
high-dimensional covariates onto the dimension-reduced subspace that is important in
the covariance between y and X and construct the following importance sketching

covariates:

eX =
h
eXB eXD1

eXD2

eXD3

i
2 R

n⇥m
,

eXB 2 R
n⇥mB ,

⇣
eXB

⌘

[i,:]
= vec

⇣
Xi ⇥1

eU>
1 ⇥2

eU>
2 ⇥3

eU>
3

⌘
,

eXDk 2 R
n⇥mDk ,

⇣
eXDk

⌘

[i,:]
= vec

⇣
eU>
k?Mk

⇣
Xi ⇥k+1

eU>
k+1

⇥k+2
eU>
k+2

⌘
eVk

⌘
,

(2.3)

where mB = r1r2r3, mDk = (pk � rk)rk, k = 1, 2, 3, and m = mB + mD1
+ mD2

+
mD3

. Then we evaluate the least-squares estimator of the submodel with importance
sketching covariates eX,

(2.4) b� = argmin
�2Rm

���y � eX�
���
2

2

.

The dimension of sketching covariate regression (2.4) ism, which is significantly smaller
than the dimension of the original tensor regression model, p1p2p3. Consequently, the
computational cost can be significantly reduced.

Step 3 (Assembling the final estimate) Then b� is divided into four segments according to the
blockwise structure of eX = [eXB, eXD1

, eXD2
, eXD3

],

vec( bB) = b�[1:mB],

vec(bD1) = b�[(mB+1):(mB+mD1
)],

vec(bD2) = b�[(mB+mD1
+1):(mB+mD1

+mD2
)],

vec(bD3) = b�[(mB+mD1
+mD2

+1):(mB+mD1
+mD2

+mD3
)].

(2.5)
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452 A. R. ZHANG, Y. LUO, G. RASKUTTI, AND M. YUAN

Finally, we construct the regression estimator bA for the original problem (1.1) using
the regression estimator b� for the submodel (2.5): let bBk = Mk( bB), and calculate

bLk =
⇣
eUk

bBk
eVk + eUk? bDk

⌘⇣
bBk

eVk

⌘�1

, k = 1, 2, 3, bA =
r
bB; bL1,

bL2,
bL3

z
.(2.6)

More interpretation of (2.6) is given in section 3.1.

Remark 1 (alternative construction of eA in Step 1). When Evec(X )vec(X )> 6= Ip1p2p3 , we

could consider the following alternative ways to construct the initial estimate eA. First, in
some cases we could do construction depending on the covariance structure ofX . For example,
in the framework of tensor recovery via rank-one sketching (discussed in the introduction), we
have Xj = uj � uj � uj and uj 2 R

p has i.i.d. entry N(0, 1). By the high-order Stein identity
[61], one can show that

eA =
1

6

2

4 1

n

nX

j=1

yjuj � uj � uj �
pX

j=1

(w � ej � ej + ej �w � ej + ej � ej �w)

3

5

is a proper initial unbiased estimator for A [53, Lemma 4]. Here w = 1

n

Pn
i=1

yjuj , ej is the
jth canonical basis in R

p. Another commonly used setting in data analysis is the high-order
Kronecker covariance structure: E(vec(Xj)vec(Xj)>) = ⌃3⌦⌃2⌦⌃1, where⌃k 2 R

pk⇥pk , k =
1, 2, 3, are covariance matrices along three modes, respectively [55, 75, 78, 91, 133]. Under this
assumption, we can first apply existing approaches to obtain estimators b⌃k for ⌃k and then

whiten the covariates by replacing Xj by JXj ; b⌃
�1/2
1 , b⌃

�1/2
2 , b⌃

�1/2
3 K. After this preprocessing

step, the other steps of ISLET still follow. Moreover, it still remains an open question how to
perform initialization if X has the more general, unstructured, and unknown design.

Remark 2 (alternative methods to HOOI). In addition to HOOI, there are a variety of
methods proposed in the literature to compute the low-rank tensor approximation, such as
Newton-type optimization methods on manifolds [39, 59, 60, 99], black box approximation [9,
19, 77, 87, 88, 126], generalizations of Krylov subspace method [47, 98], greedy approximation
method [46], among many others. Further, black box approximation methods [9, 19, 87,
88, 126] can be applied even if the initial estimator eA does not fit into the core memory.
When the tensor is further approximately CP low-rank, we can also apply the randomized
compressing method [101, 102] or randomized block sampling [115] to obtain the CP low-rank
tensor approximation. Although the rest of our discussion will focus on the HOOI procedure
for initialization, these alternative methods can also be applied to obtain an initialization for
the ISLET algorithm.
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= 1
, ( + … + )

(/ (0)1 */ *0

(a) Construct the covariance tensor eA

≈

𝑆̃𝑆 ×1 �𝑈𝑈1 ×2 �𝑈𝑈2 ×3 �𝑈𝑈3𝒜̃𝒜

(b) Perform HOOI on eA to obtain sketching direc-
tions

(c) The sketching directions yield low-rank approximations for

Mk( eA)

Figure 1. Illustration for Step 1 of ISLET.
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454 A. R. ZHANG, Y. LUO, G. RASKUTTI, AND M. YUAN

(a) Construct importance sketching covariates by projections

(b) Perform regression of submodel with importance sketching covariates

Figure 2. Illustration for Step 2 of ISLET.

Figure 3. Illustration for Step 3 of ISLET.
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TENSOR REGRESSION VIA IMPORTANCE SKETCHING 455

Computation and implementation. We briefly discuss computational complexity and
implementation aspects for the ISLET procedure here. It is noteworthy that ISLET accesses
the sample only twice for constructing the covariance tensor (Step 1) and importance sketching
covariates (Step 2), respectively. In large-scale cases where it is di�cult to store the whole
dataset into random-access memory (RAM), this advantage can highly save the computational
costs.

In addition, in the order-3 tensor case, when each mode shares the same dimension pk = p

and rank rk = r, the total number of observable values is O(np3) and the time complexity of
ISLET is O

�
np

3
r + nr

6 + Tp
4
�
, where T is the number of HOOI iterations. For general order-

d tensor regression, the time complexity of ISLET is O
�
np

d
r + nr

2d + Tp
d+1

�
. In contrast,

the time complexity of the nonconvex PGD [27] is O
�
T
0(npd + rp

d+1)
�
, where T 0 is the number

of iterations of gradient descent; the authors of [13] introduced an optimization-based method
with time complexity O(T 0

dnp
d
r), where T

0 is the number of iterations in the Gauss–Newton
method. We can see that if T 0 � r, a typical situation in practice, ISLET is significantly faster
than these previous methods.

It is worth pointing out that the computing time of ISLET is still high when the tensor
parameter has a large order d. In fact, without any structural assumption on the design tensors
Xj , such a time cost may be unavoidable since reading in all data requires O(npd) operations.
If there is extra structure on the design tensor, e.g., Kronecker product [7, 57, 58, 74] and low
separation rank [10, 46], the computing time can be significantly reduced by applying methods
in this body of literature. Here we mainly focus on the setting where Xj does not satisfy a
clear structural assumption since in many real data applications, e.g., the neuroimaging data
example studied in this and many other works [1, 71, 106, 132], the design tensors Xj may
not have a clear known structure.

Moreover, in the order-3 tensor case, instead of storing all {Xj}nj=1
in the memory which

requires O(np3) RAM, ISLET only requires O(p3 + n(pr + r
3)) RAM space if one chooses to

access the samples from hard disks but not to store to RAM. This makes large-scale computing
possible. We empirically investigate the computation cost by simulation studies in section 5.

The proposed ISLET procedure also allows convenient parallel computing. Suppose we
distribute all n samples across B machines: {(Xbi, ybi)}Bb

i=1
, b = 1, . . . , B, where Bb ⇡ n/B. To

evaluate the covariance tensor in Step 1, we can calculate eAb =
PBi

i=1
ybiXbi in each machine

and then summarize them as eA = 1

n

PB
b=1

eAb; to construct sketching covariates and perform
partial regression in Step 2, we calculate

(2.7) yb = (yb1, . . . , ybBb
)> 2 R

Bb ,

eXbi =
h
eXB,bi

eXD1,bi
eXD2,bi

eXD3,bi

i
2 R

m
,

eXB,bi = vec
⇣
Xbi ⇥1

eU>
1 ⇥2

eU>
2 ⇥3

eU>
3

⌘
,

eXDk,bi = vec
⇣
eU>
k?Mk

⇣
Xbi ⇥k+1

eU>
k+1

⇥k+2
eU>
k+2

⌘
eVk

⌘
,

(2.8)

(2.9) eGb =
BbX

i=1

eX>
bi
eXbi, ezb =

BbX

i=1

eX>
biybiD
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in each machine. Then we combine the outcomes to

b� =

 
BX

b=1

eGb

!�1 BX

b=1

ezb

!
.

The computational complexity can be reduced to O
�np3r+nr6

B + Tp
4
�
via the parallel scheme.

In the large-scale simulation we present in this article, we implement this parallel scheme for
speed-up.

To implement the proposed procedure, the inputs of Tucker rank are required as tuning
parameters. When they are unknown in practice, we can perform cross-validation or an adap-
tive rank selection scheme. A more detailed description and numerical results are postponed
to section SM4 in the supplementary materials [128].

2.3. Sparse low-rank tensor recovery. When the target tensor A is simultaneously low-
rank and sparse, in the sense that (1.3) holds for a subset Js ✓ {1, 2, 3} known a priori,
we introduce the following sparse ISLET procedure. The pseudocode for sparse ISLET is
summarized in Algorithm 2.2.
Step 1 (Probing sketching directions) When Evec(X )vec(X )> = Ip1p2p3 , we still evaluate the

covariance tensor eA as (2.1). Noting that A = JS;U1,U2,U3K and {Uk}k2Js are
rowwise sparse, we apply the sparse tensor alternating thresholding singular value
decomposition (STAT-SVD) [127] on eA to obtain eUk 2 Opk,rk , k = 1, 2, 3, as initial
estimates for Uk. Here STAT-SVD is a sparse tensor decomposition method proposed
by [127] with central ideas of the double projection and thresholding scheme as well
as power iteration. Via STAT-SVD, we obtain the following sparse and low-rank
approximation of A:

A ⇡ J eS; eU1,
eU2,

eU3K, eUk 2 Opk,rk ,
eS = J eA; eU>

1 ,
eU>
2 ,

eU>
3 K 2 R

r1⇥r2⇥r3 .

We further evaluate

eVk = QR
⇣
M>

k ( eS)
⌘
2 Ork+1rk+2,rk .

Step 2 (Group Lasso on sketched covariates) We perform sketching and construct the following
importance sketching covariates based on {eUk,

eVk}3k=1
:

eXB 2 R
n⇥(r1r2r3), (eXB)[i,:] = vec

⇣
Xi ⇥1

eU>
1 ⇥2

eU>
2 ⇥3

eU>
3

⌘
,

eXEk 2 R
n⇥pkrk , (eXEk)[i,:] = vec

⇣
Mk

⇣
Xi ⇥k+1

eU>
k+1

⇥k+2
eU>
k+2

⌘
eVk

⌘
.

(2.10)

Then we perform regression on submodels with these reduced-dimensional covariates
eXB and eXEk , respectively, using least squares and group Lasso [44, 124]:

(2.11) bB 2 R
r1⇥r2⇥r3 , vec( bB) = argmin

�2Rr1r2r3

ky � eXB�k22,

(2.12)

bEk 2 R
pk⇥rk , vec(bEk) =

(
argmin� ky � eXEk�k22 if k /2 Js;

argmin� ky � eXEk�k22 + ⌘k
Ppk

j=1
k�Gk

j
k2 if k 2 Js.
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Here {⌘k}k2Js are the penalization level and

(2.13) G
k
j = {j, j + pk, . . . , j + pk(rk � 1)} , j = 1, . . . , pk,

form a partition of {1, . . . , pkrk} that is induced by the construction of eXEk (details
for why to use group lasso can be found in section 3.2).

Step 3 (Constructing the final estimator) bA can be constructed using the regression coe�-
cients bB and bEk’s in the submodels (2.11) and (2.12),

(2.14) bA =
r
bB, (bE1(eU>

1
bE1)

�1), (bE2(eU>
2
bE2)

�1), (bE3(eU>
3
bE3)

�1)
z
.

More interpretation of (2.14) can be found in section 3.2.

Algorithm 2.1 Importance Sketching Low-Rank Estimation for Tensors (ISLET): Order-3
Case.
1: Input: sample {yj ,Xj}nj=1

, Tucker rank r = (r1, r2, r3).

2: Calculate eA = 1

n

Pn
j=1

yjXj .

3: Apply HOOI on eA and obtain initial estimates eU1,
eU2,

eU3.
4: Let eS = J eA; eU>

1
, eU>

2
, eU>

3
K. Evaluate the sketching direction,

eVk = QR
h
Mk( eS)>

i
, k = 1, 2, 3.

5: Construct eX =
h
eXB eXD1

eXD2

eXD3

i
2 R

n⇥m, where

eXB 2 R
n⇥mB , (eXB)[i,:] = vec

⇣
Xi ⇥1

eU>
1 ⇥2

eU>
2 ⇥3

eU>
3

⌘
,

eXDk 2 R
n⇥mDk , (eXDk)[i,:] = vec

⇣
eU>
k?Mk

⇣
Xi ⇥k+1

eU>
k+1

⇥k+2
eU>
k+2

⌘
eVk

⌘

for mB = r1r2r3,mDk = (pk � rk)rk, and k = 1, 2, 3.

6: Solve b� = argmin�2Rm ky � eX�k2
2
.

7: Partition b� and assign each part to bB, bD1,
bD2,

bD3, respectively,

vec( bB) := b�B = b�[1:mB],

vec(bDk) := b�Dk
= b�h⇣

mB+
Pk�1

k0=1
mDk0

+1

⌘
:

⇣
mB+

Pk
k0=1

mDk0

⌘i, k = 1, 2, 3.

8: Let bBk = Mk( bB). Evaluate

bA = J bB; bL1,
bL2,

bL3K, bLk =
⇣
eUk

bBk
eVk + eUk? bDk

⌘⇣
bBk

eVk

⌘�1

, k = 1, 2, 3.
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Algorithm 2.2 Sparse Importance Sketching Low-Rank Estimation for Tensors (Sparse
ISLET): Order-3 Case.

1: Input: sample {yj ,Xj}nj=1
, Tucker rank r = (r1, r2, r3), sparsity index Js ✓ {1, 2, 3}.

2: Evaluate eA = 1

n

Pn
j=1

yjXj .

3: Apply STAT-SVD on eA with sparsity index Js. Let the outcome be eU1,
eU2,

eU3.
4: Let eS = J eA; eU>

1
, eU>

2
, eU>

3
K and evaluate the probing direction,

eVk = QR
h
Mk( eS)>

i
, k = 1, 2, 3.

5: Construct

eXB 2 R
n⇥(r1r2r3), (eXB)[i,:] = vec(Xi ⇥1

eU>
1 ⇥2

eU>
2 ⇥3

eU>
3 ),

eXEk 2 R
n⇥(pkrk), (eXEk)[i,:] = vec

⇣
Mk

⇣
Xi ⇥k+1

eU>
k+1

⇥k+2
eU>
k+2

⌘
eVk

⌘
.

6: Solve

bB 2 R
r1r2r3 , vec( bB) = argmin

�2Rr1r2r3

ky � eXB�k22;

bEk 2 R
pk⇥rk , vec(bEk) =

(
argmin� ky � eXEk�k22 + �k

Ppk
j=1

k�Gk
j
k2, k 2 Js;

argmin� ky � eXEk�k22, k /2 Js.

7: Evaluate

bA =
r
bB; (bE1(eU>

1
bE1)

�1), (bE2(eU>
2
bE2)

�1), (bE3(eU>
3
bE3)

�1)
z
.

2.4. A sketching perspective of ISLET. While one of the main focuses of this article is on
low-rank tensor regression, from a sketching perspective, ISLET can be seen as a special case
of a more general algorithm that broadly applies to high-dimensional statistical problems with
dimension-reduced structure. In fact, the three steps of the ISLET procedure are completely
general and are summarized informally here:
Step 1 (Probing projection directions) For the tensor regression problem, we use the HOOI [34]

or STAT-SVD [127] approach for finding the informative low-rank subspaces along
which we project/sketch. More generally, if we let eA = 1

n

Pn
j=1

yjXj , where Xj has
ambient dimension p, we can define a general projection operator (with a slight abuse
of notation) Pm(.) : R

p ! R
m indexed by low dimension m and let S( eA) be the

m-dimensional subspace of Rp determined by performing Pm( eA).
Step 2 (Estimation in subspaces) The second step involves first projecting the data X onto

the subspace S( eA), specifically eX = PS( eA)
(X ) 2 R

n⇥m. Then we perform regression

or other procedures of choice using the sketched data eX to determine the dimension-
reduced parameter b� 2 R

m.
Step 3 (Embedding to high-dimensional space) Finally, we need to project the estimator back
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to the high-dimensional space R
p by applying an equivalent to the inverse of the

projection operator P�1

S( eA)
: Rm ! R

p. For low-rank tensor regression, we require the

formula (2.6).
The description above illustrates that the idea of ISLET is applicable to more general
high-dimensional problems with dimension-reduced structure. In fact, the well-regarded sure

independence screening in high-dimensional sparse linear regression [42, 121] can be seen as a
special case of this idea. To be specific, consider the high-dimensional linear regression model,

yi = X[i,:]� + "i, i = 1, . . . , n,

where � is the m-sparse vector of interest and yi 2 R and X
>
[i,:] 2 R

p are the observable

response and covariate. Then the m-dimensional subspace S(e�) in Step 1 can be the coordi-
nates corresponding to the m largest entries of e� =

Pn
i=1

X
>
[i,:]yi; Step 2 corresponds to the

dimension reduced least squares in sure independence screening; and the inverse operator in
Step 3 is simply filling in 0’s in the coordinates that do not correspond to S(e�). In addition,
this idea applies more broadly to problems such as matrix and tensor completion. One of
the novel contributions of this article is finding suitable projection and inverse operators for
low-rank tensors.

We can also contrast this approach with prior approaches that involve randomized sketch-
ing [36, 93, 95]. These prior approaches showed that the randomized sketching may lose data
substantially, increase the variance, and yield suboptimal results for many statistical prob-
lems. There are two key di↵erences with how we exploit sketching in our context: (1) we
sketch along the parameter directions of X , reducing the data from R

n⇥p to R
n⇥m; whereas

approaches in [36, 93, 95] sketch along the sample directions, reducing the data from R
n⇥p

to R
m⇥p, which reduces the e↵ective sample size from n to m; (2) second, and most impor-

tantly, rather than using the randomized sketching that is unsupervised without the response
y, our importance sketching is supervised, that is, obtained using both the response y and
covariates X . Then we sketch along the subspace S( eA) which contains information on the
low-dimensional structure of the parameter A. This is why our general procedure has both
desirable statistical and computational properties.

3. Oracle inequalities. In this section, we provide general oracle inequalities without
focusing on specific design, which provides a general guideline for the theoretical analyses of
our ISLET procedure. We first introduce a quantification of the errors in sketching directions
obtained in the first step of ISLET. Let Vk 2 Ork+1rk+2,rk be the right singular subspace of
Mk(S), where S is the core tensor in the Tucker decomposition of A: A = JS;U1,U2,U3K.
By Lemma 1 in the supplementary materials [128],

W1 := (U3⌦U2)V1 2 Op2p3,r1 , W2 := (U3 ⌦U1)V2 2 Op1p3,r2 ,

and W3 := (U2 ⌦U1)V3 2 Op1p2,r3

(3.1)

are the right singular subspaces of M1(A),M2(A), and M3(A), respectively. Recall that we
initially estimate Uk and Vk by eUk and eVk, respectively, in Step 1 of ISLET. Define

fW1 = (eU3 ⌦ eU2)eV1,
fW2 = (eU3 ⌦ eU1)eV2, and fW3 = (eU2 ⌦ eU1)eV3
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460 A. R. ZHANG, Y. LUO, G. RASKUTTI, AND M. YUAN

in parallel to (3.1). Intuitively speaking, {eUk,
fWk}3k=1

can be seen as the initial sample
approximations for {Uk,Wk}3k=1

. Therefore, we quantify the sketching direction error by

✓ := max
k=1,2,3

n
k sin⇥(eUk,Uk)k, k sin⇥(fWk,Wk)k

o
.(3.2)

Next, we provide the oracle inequality via ✓ for ISLET under regular and sparse settings,
respectively, in the next two subsections.

3.1. Regular tensor regression and oracle inequality. In order to study the theoretical
properties of the proposed procedure, we need to introduce another representation of the
original model (1.1). Decompose the vectorized parameter A as follows:

vec(A) = PeUvec(A) + PeU?
vec(A)

= PeU3⌦eU2⌦eU1

vec(A) + PR1(
fW1⌦eU1?)

vec(A) + PR2(
fW2⌦eU2?)

vec(A)

+ PR3(
fW3⌦eU3?)

vec(A) + PeU?
vec(A)

= (eU3 ⌦ eU2 ⌦ eU1)vec( eB) +R1(fW1 ⌦ eU1?)vec(eD1) +R2(fW2 ⌦ eU2?)vec(eD2)

+R3(fW3 ⌦ eU3?)vec(eD3) + PeU?
vec(A).

(3.3)

(See the proof of Theorem 2 for a detailed derivation of (3.3).) Here

eU =
h
eU3 ⌦ eU2 ⌦ eU1 R1(fW1 ⌦ eU1?) R2

⇣
fW2 ⌦ eU2?

⌘
R3

⇣
fW3 ⌦ eU3?

⌘i
,

eB :=
r
A; eU>

1 ,
eU>
2 ,

eU>
3

z
2 R

r1r2r3 , and eDk := eU>
k?Mk(A)fWk 2 R

(pk�rk)⇥rk

are the singular subspace of the “Cross structure” and the low-dimensional projections of A
onto the “body” and “arms” formed by sketching directions {eUk,

eVk}3k=1
, respectively. (See

Figure 4 for an illustration of eU, eB, and eVk.) Due to di↵erent alignments, the ith row of
{Wk ⌦ Uk?}3k=1

does not necessarily correspond to the ith entry of vec(A) for all 1  i 
p1p2p3. We thus permute the rows of {fWk ⌦ eUk?}3k=1

to match each row of Rk(fWk ⌦ eUk?)
to the corresponding entry in vec(A). The formal definition of the rowwise permutation
operator Rk is rather clunky and is postponed to section SM1 in the supplementary materials.
Intuitively speaking, PeUvec(A) represents the projection of A onto the Cross structure and

PeU?
vec(A) can be seen as a residual. If the estimates {eUk,

fWk}3k=1
are close enough to

{Uk,Wk}3k=1
, i.e., ✓ defined in (3.2) is small, we expect that the residual PeU?

vec(A) has
small amplitude.
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TENSOR REGRESSION VIA IMPORTANCE SKETCHING 461

Figure 4. Illustration of decomposition (3.3). Here we assume eU>
k = [Irk 0rk⇥(pk�rk)], k = 1, 2, 3,

for a better visualization. The gray, green, blue, and red cubes represent the subspaces of eU3 ⌦ eU2 ⌦ eU1,
eU3⌦ eU2⌦ eU1?, eU3⌦ eU2?⌦ eU1, and eU3?⌦ eU2⌦ eU1. The gray cube also corresponds to the projected parameters
eB; matricizations of green, blue, and red cubes correspond to the projected parameters eU>

1?M1(A)(eU3 ⌦ eU2),
eU>

2?M2(A)(eU3⌦ eU1), and eU>
3?M3(A)(eU2⌦ eU1), respectively. The three planes in the right panel correspond

to the subspace of eV1, eV2, and eV3, respectively.

Based on (3.3), we can rewrite the original regression model (1.1) into the following partial
regression model:

yj = (eXB)[j,:]vec( eB) +
3X

k=1

(eXDk)[j,:]vec(
eDk) + vec(Xj)

>
PeU?

vec(A) + "j

= eX[j,:]e� + e"j , j = 1, . . . , n.

(3.4)

(See the proof of Theorem 2 for a detailed derivation of (3.4).) Here we have the following:
• e"j = vec(Xj)>PeU?

vec(A) + "j is the oracle noise; e" = (e"1, . . . , e"n)>;
• eXB, eXDk are sketching covariates introduced in (2.3);

• e� =
⇥
vec( eB)>, vec(eD1)>, vec(eD2)>, vec(eD3)>

⇤>
= eU>vec(A) 2 R

m is the dimension-
reduced parameter.

Equation (3.4) reveals the essence of the least squares estimator (2.4) in the ISLET procedure—
the outcomes of (2.4) and (2.5), i.e., bB and bDk, are sample-based estimates of eB and eDk.
Finally, based on the detailed algebraic calculation in Step 3 and the proof of Theorem 2,

A =
r
eB; eL1,

eL2,
eL3

z
, eLk =

⇣
eUk

eBk
eVk + eUk? eDk

⌘⇣
eBk

eVk

⌘�1

.(3.5)

Equation (3.5) is essentially a higher-order version of the Schur complement formula (also see
[16]). Finally, we apply the plug-in estimator to obtain the final estimator bA (see (2.6) in
Step 3 of the ISLET procedure).

Based on previous discussions, it can be seen that the estimation error of the original tensor
regression is driven by the error of the least squares estimator b�, i.e., k(eX> eX)�1 eX>e"k2

2
. We

have the following oracle inequality for the proposed ISLET procedure.

Theorem 2 (oracle inequality of regular tensor estimation: Order-3 case). Suppose A 2
R
p1⇥p2⇥p3 has Tucker rank-(r1, r2, r3) tensor and bA is the outcome of Algorithm 2.1. Assume

the sketching directions {eUk,
eVk}3k=1

satisfy ✓ < 1/2 (see (3.2) for the definition of ✓) and
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462 A. R. ZHANG, Y. LUO, G. RASKUTTI, AND M. YUAN

��bDk(bBk
eVk)�1

��  ⇢. We don’t impose other specific assumptions on Xi and "i. Then we have

��� bA�A
���
2

HS

 (1 + C(✓ + ⇢))
���(eX> eX)�1 eX>e"

���
2

2

for uniform constant C > 0 that does not rely on any other parameters.

Proof. See Appendix SM6.1 for a complete proof. In particular, the proof contains three
major steps. After introducing a number of notations, we first transform the original re-
gression model to the partial regression model (3.4) and then rewrite the upper bound
k(eX> eX)�1 eX>e"k2

2
to k bB � eBk2

HS
+
P

3

k=1
kbDk � eDkk2F . Next, we introduce a factorization

of A in parallel with the one of bA, based on which the loss k bA �AkHS is decomposed into
eight terms. Finally, we introduce a novel deterministic error bound for the “Cross scheme”
(Lemma 3 in the supplementary materials [128]; also see [126]), carefully analyze each term
in the decomposition of k bA�AkHS, and finalize the proof.

Theorem 2 shows that once the sketching directions eU and eV are reasonably accurate,
the estimation error for bA will be close to the error of partial linear regression in (3.4). This
bound is general and deterministic, which can be used as a key step in more specific settings
of low-rank tensor regression.

3.2. Sparse tensor regression and oracle inequality. Next, we study the oracle perfor-
mance of the proposed procedure for sparse tensor regression, where A further satisfies the
sparsity constraint (1.3). As in the previous section, we decompose the vectorized parameter
as

vec(A) = PeU3⌦eU2⌦eU1

vec(A) + P
(eU3⌦eU2⌦eU1)?

vec(A)

= (eU3 ⌦ eU2 ⌦ eU3)vec( eB) + P
(eU3⌦eU2⌦eU1)?

vec(A);
(3.6)

vec(A) = PRk(
fWk⌦Ipk )

vec(A) + PRk(
fWk⌦Ipk )?

vec(A)

= Rk(fWk ⌦ Ipk)vec(
eEk) + PRk(

fWk⌦Ipk )?
vec(A), k = 1, 2, 3.

(3.7)

Here

eB := JA; eU>
1 ,

eU>
2 ,

eU>
3 K 2 R

r1r2r3 ;

eEk := Mk

⇣
A⇥(k+1)

eU>
k+1

⇥(k+2)
eU>
k+2

⌘
eVk 2 R

pk⇥rk , k = 1, 2, 3,
(3.8)

are the low-dimensional projections of A onto the importance sketching directions. Since
{Uk,Wk} are the left and right singular subspaces of Mk(A), we can demonstrate that

P(U3⌦U2⌦U1)?vec(A) and PRk(Wk⌦Ipk )?
vec(A) are zeros. Thus if the estimates {eUk,

fWk}3k=1

are su�ciently accurate, i.e., ✓ defined in (3.2) is small, we can expect that the residuals
P
(eU3⌦eU2⌦eU1)?

vec(A) and PRk(
fWk⌦Ipk )?

vec(A) have small amplitudes. Then, based on a

more detailed calculation in the proof of Theorem 3, the model of sparse and low-rank tensor
regression yj = hXj ,Ai+ "j can be rewritten as the following partial linear regression:

(3.9) yj = (eXB)[j,:]vec(eB) + (e"B)j ,
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TENSOR REGRESSION VIA IMPORTANCE SKETCHING 463

(3.10) yj = (eXEk)[j,:]vec(
eEk) + (e"Ek)j , k = 1, 2, 3.

Here eXB and eXEk are the covariates defined in (2.10) and e"B = ((e"B)1, . . . , (e"B)n)>,
e"Ek = ((e"Ek)1, . . . , (e"Ek)n)

> are oracle noises defined as

(e"B)j =
D
vec(Xj), P(eU3⌦eU2⌦eU1)?

vec(A)
E
+ "j

and (e"Ek)j =

⌧
vec(Xj), P(Rk(

fWk⌦Ipk ))?
vec(A)

�
+ "j .

(3.11)

Therefore, Step 2 of sparse ISLET can be interpreted as the estimation of eB and eEk.
We apply regular least squares to estimate eB and eEk for k /2 Js. For any sparse mode

k 2 Js, eEk are group sparse due to the definition (3.8) and the assumption that Uk are
rowwise sparse. Specifically, eEk satisfies

���vec(eEk)
���
0,2

:=
pkX

i=1

1⇢
(vec(eEk))Gk

i
6=0

�  sk,(3.12)

where

G
k
i = {i, i+ pk, . . . , i+ pk(rk � 1)} , i = 1, . . . , pk, 8k 2 Js,

is a partition of {1, . . . , pkrk} (see the proof for Theorem 3 for a more detailed argument for
(3.12)). By detailed calculations in Step 3 of the proof for Theorem 2, one can verify that

A =
r
eB, (eE1(eU>

1
eE1)

�1), (eE2(eU>
2
eE2)

�1), (eE3(eU>
3
eE3)

�1)
z
.

Then the finally sparse ISLET estimator bA in (2.14) can be seen as the plug-in estimator.
To ensure that the group Lasso estimator in (2.12) provides a stable estimation for the

proposed procedure, we introduce the following group restricted isometry condition, which
can also be seen as an extension of the restricted isometry property (RIP), a commonly used
condition in compressed sensing and high-dimensional linear regression literature [24].

Condition 1. We say a matrix X 2 R
n⇥p

satisfies the group restricted isometry property

(GRIP) with respect to partition G1, . . . , Gm ✓ {1, . . . , p} if there exists � > 0 such that

(3.13) n(1� �)kvk22  kXvk22  n(1 + �)kvk22
for all groupwise sparse vectors v satisfying

Pm
k=1

1{vGk
6=0}  s.

We still use ✓ defined in (3.2) to characterize the sketching direction errors. The following
oracle inequality holds for sparse tensor regression with importance sketching.

Theorem 3 (oracle inequality for sparse tensor regression: Order-3 case). Consider the sparse

low-rank tensor regression (1.1), (1.3). Suppose ✓ < 1/2 and the importance sketching covari-

ates eXB and eXEk (k /2 Js) are nonsingular. For any k 2 Js,
eXEk satisfies the GRIP (Con-

dition 1) with respect to partition G
k
1
, . . . , G

k
pk in (2.13) and � < 1/3. We apply the proposed

Algorithm 2.2 with group Lasso penalty

⌘k = C1 max
i=1,...,pk

���(eXEk,[:,Gk
i ]
)>e"Ek

���
2
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464 A. R. ZHANG, Y. LUO, G. RASKUTTI, AND M. YUAN

for k 2 Js and some constant C1 � 3. We also assume keU>
k?

bEk(eU>
k
bEk)�1k  ⇢. Then

��� bA�A
���
2

HS

 (1 + C2s(✓ + ⇢))

 ���(eX>
B eXB)

�1 eX>
Be"B

���
2

2

+
X

k/2Js

���(eX>
Ek

eXEk)
�1 eX>

Ek
e"Ek

���
2

2

+ C3

X

k2Js

sk · max
i=1,...,pk

���(eXEk,[:,Gk
i ]
)>e"Ek/n

���
2

2

!
.

(3.14)

Proof. See Appendix SM6.2.

Remark 3. In oracle error bound (3.14), k(eX>
B
eXB)�1 eX>

Be"Bk22,
��(eX>

Ek
eXEk)

�1 eX>
Ek
e"B

��2
2
,

and sk maxi=1,...,pk k(eXEk,[:,Gk
i ]
)>e"Ek/nk22 correspond to the estimation errors of bB, bEk of the

nonsparse mode and bEk of the sparse mode, respectively. When the GRIP (Condition 1)
is replaced by the group restricted eigenvalue condition (see, e.g., [73]), a result similar to
Theorem 3 can be derived.

4. Fast low-rank tensor regression via ISLET. We further study the low-rank tensor
regression with Gaussian ensemble design; i.e., Xi has i.i.d. standard normal entries. This has
been considered a benchmark setting for low-rank tensor/matrix recovery literature [23, 27].
For convenience, we denote p = (p1, p2, p3), r = (r1, r2, r3), p = max{p1, p2, p3}, and r =
max{r1, r2, r3}. We discuss the regular low-rank and sparse low-rank tensor regression in the
next two subsections, respectively.

4.1. Regular low-rank tensor regression with ISLET. We have the following theoretical
guarantee for ISLET under Gaussian ensemble design.

Theorem 4 (upper bound for tensor regression via ISLET). Consider the tensor regression

model (1.1), where A 2 R
p1⇥p2⇥p3 is Tucker rank-(r1, r2, r3), Xi has i.i.d. standard normal

entries, and "
i.i.d.⇠ N(0,�2). Denote e�2 = kAk2

HS
+�

2
, �0 = mink �k, �k = �rk(Mk(A)),  =

maxk kMk(A)k/�rk(Mk(A)), and m = r1r2r3+
P

3

k=1
(pk � rk)rk. If n1^n2 � Ce�2

(p3/2+pr)
�2

0

,

then the sample-splitting ISLET estimator (see the forthcoming Remark 5) satisfies

��� bA�A
���
2

HS

 m

n2

✓
�
2 +

C1e�4
mp

n2

1
�2

0

◆ 
1 + C2

r
log p

m
+ C3

s
me�2

(n1 ^ n2)�2

0

!

with probability at least 1� p
�C4.

Proof. See section SM6.3 for details. Specifically, we first derive the estimation error
upper bounds for sketching directions eUk via the deterministic error bound of HOOI [129].

Then we apply concentration inequalities to obtain upper bounds for
��(eX> eX)�1 eX>e"

��2
2
and

kbDk(bBk
eVk)�1k for k = 1, 2, 3. Finally, the oracle inequality of Theorem 2 leads to the desired

upper bound.

Remark 4 (sample complexity). In Theorem 4, we show that as long as the sample size n =
⌦(p3/2r+pr

2), ISLET achieves consistent estimation under regularity conditions. This sample
complexity outperforms many computationally feasible algorithms in previous literature, e.g.,
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TENSOR REGRESSION VIA IMPORTANCE SKETCHING 465

n = ⌦(p2rpolylog(p)) in PGD [27], sum of nuclear norm minimization [110], and square norm
minimization [84]. To the best of our knowledge, ISLET is the first computationally e�cient
algorithm that achieves this sample complexity result.

On the other hand, the authors of [84] showed that the direct nonconvex Tucker rank min-
imization, a computationally infeasible method, can do exact recovery with O(pr+ r

3) linear
measurements in the noiseless setting. The authors of [13] showed that if tensor parameter A
is CP rank-r, the linear system yj = hA,Xji, j = 1, . . . , n, has a unique solution with prob-
ability one if one has O(pr) measurements. It remains an open question whether the sample
complexity of n = ⌦(p3/2r + pr

2) is necessary for all computationally e�cient procedures.

Remark 5 (sample splitting). The direct analysis for the proposed ISLET in Algorithm
2.1 is technically involved, among which one major di�culty is the dependency between the
sketching directions eUk obtained in Step 1 and the regression noise e" in Step 2. To overcome
this di�culty, we choose to analyze a modified procedure with the sample splitting scheme:
we randomly split all n samples into two sets with cardinalities n1 and n2, respectively. Then
we use the first set of n1 samples to construct the covariance tensor eA (Step 1) and use
the second set of n2 samples to evaluate the importance sketching covariates (Step 2). As
illustrated by numerical studies in section 5, such a scheme is mainly for technical purposes
and is not necessary in practice. Simulations suggest that it is preferable to use all samples
{yi,Xi}ni=1

for both constructing the initial estimate eA and performing linear regression on
sketching covariates.

We further consider the statistical limits for low-rank tensor regression with Gaussian
ensemble. Consider the following class of general low-rank tensors:

(4.1) Ap,r =
�
A 2 R

p1⇥p2⇥p3 : Tucker rank(A)  (r1, r2, r3)
 
.

The following minimax lower bound holds for all low-rank tensors in Ap,r.

Theorem 5 (minimax lower bound). If n > m+1, the following nonasymptotic lower bound

in estimation error holds:

(4.2) inf
bA

sup
A2Ap,r

E

��� bA�A
���
2

HS

� m

n�m� 1
· �2

.

If n  m+ 1,

(4.3) inf
bA

sup
A2Ap,r

E

��� bA�A
���
2

HS

= +1.

Proof. See Appendix SM6.4.

Combining Theorems 4 and 5, we can see that as long as the sample size satisfies me�2

n1�2

0

=

o(1), m(p1+p2+p3)e�4

n1n2�2

0

= o(�2), and n2 = (1+ o(1))n, the statistical loss of the proposed method

is sharp with matching constant to the lower bound.

Remark 6 (matrix ISLET vs. previous matrix recovery methods). If the order of tensor re-
duces to two, the tensor regression becomes the well-regarded low-rank matrix recovery in the
literature [23, 97]:

yi = hXi,Ai+ "i, i = 1, . . . , n.
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466 A. R. ZHANG, Y. LUO, G. RASKUTTI, AND M. YUAN

Here A 2 R
p1⇥p2 is the unknown rank-r target matrix, {Xi}ni=1

are design matrices, and
"i ⇠ N(0,�2) are noises. The low-rank matrix recovery, including its instances, such as phase
retrieval [21], has been widely considered in recent literature. Various methods, such as nuclear
norm minimization [22, 97], PGD [108], singular value thresholding [15], Procrustes flow [112],
etc., have been introduced, and both the theoretical and computational performances have
been extensively studied. Similar to the proof of Theorem 4, the upper bound for matrix
ISLET estimator bA (Algorithm SM3.2 in the supplementary materials [128])

���bA�A
���
2

F
 m

n2

✓
�
2 +

C1e�4
mp

n2

1
�2

0

◆ 
1 + C2

r
log p

m
+ C3

s
me�2

(n1 ^ n2)�2

0

!

can be established with high probability. Herem = (p1+p2�r)r, �0 = �r(A), e�2 = kAk2F+�
2.

The lower bound similarly to Theorem 5 also holds.

4.2. Sparse tensor regression with importance sketching. We further consider the si-
multaneously sparse and low-rank tensor regression with Gaussian ensemble design. We have
the following theoretical guarantee for sparse ISLET. For the same reason as for regular ISLET
(see Remark 5), the sample splitting scheme is introduced in our technical analysis.

Theorem 6 (upper bounds for sparse tensor regression via ISLET). Consider the tensor re-

gression model (1.1), where A is simultaneously low-rank and sparse (1.3), Xi has i.i.d. stan-

dard Gaussian entries, and "i
i.i.d.⇠ N(0,�2). Denote �0 = mink �rk(Mk(A)), sk = pk if k /2

Js, ms = r1r2r3+
P

k2Js sk(rk+log pk)+
P

k/2Js pkrk, and  = maxk kMk(A)k/�rk(Mk(A)).
We apply the proposed Algorithm 2.2 with sample splitting scheme (see Remark 5) and group

Lasso penalty ⌘k = C0e�
p
n2(rk + log(pk)). If log(p1) ⇣ log(p2) ⇣ log(p3) ⇣ log(p),

n1 �
C1

2e�2

�2

0

 
s1s2s3 log(p) +

3X

k=1

(s2kr
2

k + r
2

k+1
r
2

k+2
)

!
, n2 �

C2ms
2e�2

�2

0

,

and the output bA of sparse ISLET satisfies

(4.4)
��� bA�A

���
2

HS

 C3ms

n2

✓
�
2 +

C4ms
2e�2

n1

◆

with probability at least 1� p
�C

.

Proof. See Appendix SM6.5.

We further consider the following class of simultaneously sparse and low-rank tensors:

(4.5) Ap,r,s = {A = JS;U1,U2,U3K : Uk 2 Opk,rk , kUkk0,2  sk, k 2 Js} .

The following minimax lower bound of the estimation risk holds in this class.

Theorem 7 (lower bounds). There exists constant C > 0 such that whenever ms � C, the

following lower bound holds for any arbitrary estimator bA based on {Xi, yi}ni=1
:

(4.6) inf
A

sup
A2Ap,r,s

E

��� bA�A
���
2

HS

� cms

n
�
2
.D
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Proof. See Appendix SM6.6.

Combining Theorems 6 and 7, we can see the proposed procedure achieves optimal rate

of convergence if
mskAk2

HS

n1�2 = O(1) and n2 ⇣ n.

5. Numerical analysis. In this section, we conduct a simulation study to investigate the
numerical performance of ISLET. In each study, we construct sensing tensors X j 2 R

p⇥p⇥p

with independent standard normal entries. In the nonsparse settings, using the Tucker decom-
position we generate the core tensor S 2 R

r⇥r⇥r and Ek 2 Rp,r with i.i.d. Gaussian entries,
the coe�cient tensor A = JS;E1;E2;E3K; in the sparse settings, we construct S and A in
the same way and generate Ek as

(Ek)[i,:] =

⇢
(Ēk)[j,:], i 2 ⌦k, and i is the jth element of ⌦k;
0, i /2 ⌦k,

where ⌦k is a uniform random subset of {1, . . . , p} with cardinality sk and Ēk has sk-by-r

i.i.d. Gaussian entries. Finally, let the response yj = hXj ,Ai+"j , j = 1, 2, . . . , n, where "j
i.i.d.⇠

N(0,�2). We report both the average root mean-squared error (RMSE) k bA�A||HS/||AkHS

and the run time for each setting. Unless otherwise noted, the reported results are based
on the average of 100 repeats and on a computer with Intel Xeon E5-2680 2.50GHz CPU.
Additional simulation results of tuning-free ISLET and approximate low-rank tensor regression
are collected in sections SM4 and SM5 in the supplementary materials [128].

Since we proposed to evaluate sketching directions and dimension-reduced regression
(Steps 1 and 2 of Algorithm 2.1) both using the complete sample, but introduced a sam-
ple splitting scheme (Remark 5) to prove Theorems 4 and 6, we investigate how the sample
splitting scheme a↵ects the numerical performance of ISLET in this simulation setting. Let
n vary from 1000 to 4000, p = 10, r = 3, 5, � = 5. In addition to the original ISLET without
splitting, we also implement sample-splitting ISLET, where a random n1 ⇡ { 3

10
n,

4

10
n,

5

10
n}

samples are allocated for importance direction estimation (Step 1 of ISLET) and n � n1 are
allocated for dimension-reduced regression (Step 2 of ISLET). The results plotted in Figure
5 clearly show that the no-sample-splitting scheme yields much smaller estimation error than
all sample-splitting approaches. Although the sample-splitting scheme brings advantages for
our theoretical analyses for ISLET, it is not necessary in practice. Therefore, we will only
perform ISLET without sample splitting for the rest of the simulation studies.
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Figure 5. No-splitting vs. splitting ISLET: n varies from 1000 to 4000, p = 10, r = 3, 5, � = 5.

We also compare the performance of nonsparse ISLET with a number of contemporary
methods, including nonconvex projected gradient descent (nonconvex PGD) [27], Tucker low-
rank regression via alternating gradient descent (Tucker regression)1 [71, 132], and convex
regularization low-rank tensor recovery (convex regularization)2 [72, 96, 110]. We implement
all four methods for p = 10, but only the ISLET and nonconvex projected PGD for p = 50,
as the time cost of Tucker regression and convex regularization are beyond our computational
limit if p = 50. Results for p = 10 and p = 50 are, respectively, plotted in panels (a) and (b)
and panels (c) and (d) of Figure 6. Plots in Figures (a) and (c) show that the RMSEs of ISLET,
tucker tensor regression, and nonconvex PGD are close, and all of them are slightly better
than the convex regularization method; Figures 6(b) and (d) further indicate that ISLET is
much faster than other methods—the advantage significantly increases as n and p grow. In
particular, ISLET is about 10 times faster than nonconvex PGD when p = 50, n = 12000. In
summary, the proposed ISLET achieves similar statistical performance within a significantly
shorter time period comparing to the other state-or-the-art methods.

1Software package downloaded at https://hua-zhou.github.io/TensorReg/
2The convex regularization aims to minimize the following objective function:

nX

i

1
2n

(yi � hX i,Ai)2 + �

3X

k=1

||Mk(A)||⇤.

Here, k · k⇤ is the matrix nuclear norm.
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Figure 6. ISLET vs. nonconvex PGD, Tucker regression, and convex regularization. Here � = 5; panels
(a) and (b): p = 10; panels (c) and (d): p = 50.

Next, we investigate the performance of ISLET when p and n substantially grow. Let
p = 100, 150, 200, r = 3, 5, n 2 [8000, 20000]. The results in RMSE and run time are shown in
Figures 7(a), (b), (c), and (d), respectively. We can see that the estimation error significantly
decays as the sample size n grows, the dimension p decreases, or the Tucker rank r decreases.

We further fix r = 2, n = 30000 and let p grow to 400. Now the space cost for storing
{Xi}ni=1

reaches 4003 ⇥ 30000 ⇥ 4bytes = 7.68 terabytes, which is far beyond the volume of
most personal computing devices. Since each sample is used only twice in ISLET, we perform
this experiment in a parallel way. To be specific, in each machine b = 1, . . . , 40, we store the
random seed, draw pseudorandom tensor Xbi, evaluate ybi and eAb by the procedure in section
2.2, and clean up the memory of Xbi. After synchronizing the outcomes and obtaining the
importance sketching directions, for each machine b = 1, . . . , 40, we generate pseudorandom
covariates Xbi again using the stored random seeds, evaluate eGb and eXbi by (2.8)–(2.9), and
clean up the memory of Xbi again. The rest of the procedure follows from section 2.2 and
the original ISLET in Algorithm 2.1. The average RMSE and run time for five repeats are
shown in Figure 8. We clearly see that ISLET yields good statistical performance within a
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reasonable amount of time, while the other contemporary methods can hardly do so in such
an ultrahigh-dimensional setting.
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Figure 7. Performance of ISLET when p and n significantly grow.
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Figure 8. Performance of ISLET in ultrahigh-dimensional setting. p grows up to 400, n = 30000.
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In addition, we explore the numerical performance of ISLET for simultaneously sparse and
low-rank tensor regression. To perform sparse ISLET (Algorithm 2.2), we apply the gglasso

package3 [122] for group Lasso and penalty level selection. Let n vary from 1500 to 4000,
p = 20, 25, 30, r = 3, 5, � = 5, s = s1 = s2 = s3 = 8. The result is shown in Figure 9. Similar
to the nonsparse ISLET, as sample size n increases or Tucker rank r decreases, the average
estimation errors decrease.

We also compare sparse ISLET with slice-sparse nonconvex PGD proposed in [27]. Let
n 2 [5000, 12000], p = 50, r = 3, 5, � = 5, s1 = s2 = s3 = 15. From Figure 10, we can see that
ISLET yields much smaller estimation error with significantly shorter time than nonconvex
PGD—the di↵erence between two algorithms becomes more significant as n grows.
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Figure 9. RMSE of ISLET for sparse and low-rank tensor recovery.
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Figure 10. ISLET vs. nonconvex PGD for sparse tensor regression.

Finally, if the tensor is of order 2, tensor regression becomes the classic low-rank matrix

recovery problem [23, 97]. Among existing approaches for low-rank matrix recovery, the

3Available online from https://cran.r-project.org/web/packages/gglasso/index.html.
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nuclear norm minimization (NNM) has been proposed and extensively studied in recent lit-
erature. We compare the numerical performance of matrix ISLET (see Algorithm SM3.2 in
section SM3 for implementation details) and NNM that aims to solve4

nX

i=1

(yi � hXi,Ai)2 + �||A||⇤,

where kAk⇤ =
P

i �i(A) is the matrix nuclear norm. We consider two specific settings: (1)
p1 = p2 = 50, r = 2, � = 10, n 2 [2000, 16000]; (2) p1 = p2 = 100, r = 4, � = 10, n 2
[2000, 28000]. From Figure 11, we find that ISLET has similar, or sometimes even better,
performance than NNM in estimation error. On the other hand, the run time of ISLET is
negligibly small compared to NNM.
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Figure 11. ISLET vs. NNM for low-rank matrix recovery.

6. Discussion. In this article, we develop a general importance sketching algorithm for
high-dimensional low-rank tensor regression. In particular, to su�ciently reduce the dimension

4The optimization of NNM is implemented by accelerated proximal gradient method [108] using the software
package available online from https://blog.nus.edu.sg/mattohkc/softwares/nnls/.
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of the higher-order structure, we propose a fast algorithm named Importance Sketching Low-

rank Estimation for Tensors (ISLET). The proposed algorithm includes three major steps:
we first apply tensor decomposition approaches, such as HOOI and STAT-SVD, to obtain im-
portance sketching directions; then we perform regression using the sketched tensor/matrices
(in the sparse case, we add group-sparsity regularizers); finally we assemble the final estima-
tor. We establish deterministic oracle inequalities for the proposed procedure under general
design and noise distributions. We also prove that ISLET achieves optimal mean-squared
error rate under Gaussian ensemble design—regular ISLET can further achieve the optimal
constant for mean-squared error. As illustrated in simulation studies, the proposed procedure
is computationally e�cient compared to contemporary methods. Although the presentation
mainly focuses on order-3 tensors here, the method and theory for the general order-d tensors
can be elaborated similarly.

It is also noteworthy that the storage cost for Tucker decomposition in the proposed
procedure grows exponentially with the order d. Thus, if the target tensor has a large order,
it is more desirable to consider other low-rank approximation methods than Tucker, such as the
CP decomposition [12, 13], Hierarchical Tucker (HT) decomposition [7, 48, 52], Tensor Train
(TT) decomposition [86, 89], etc. The ISLET framework can be adapted to these structures
as long as there are two key components: there exist a sketching approach for dimension
reduction and a computational inversion step for embedding the low-dimensional estimate
back to the high-dimensional space (also see section 2.4). Whether these components hold for
the previously described methods remains an interesting open question.

In addition to low-rank tensor regression, the idea of ISLET can be applied to various
other high-dimensional problems. First, high-order interaction pursuit is an important topic
in high-dimensional statistics that aims at the interaction among three or more variables in
the regression setting. This problem can be transformed to the tensor estimation based on a
number of rank-1 projections by the argument in [53]. Similarly to analysis on tensor regression
in this paper, the idea of ISLET can be used to develop an optimal and e�cient procedure
for high-order interaction pursuit with provable advantages over other baseline methods.

In addition, matrix/tensor completion has attracted significant attention in recent litera-
ture [25, 72, 119, 120, 125]. The central task of matrix/tensor completion is to complete the
low-rank matrix/tensor based on a limited number of observable entries. Since each observable
entry in matrix/tensor completion can be seen as a special rank-one projection of the original
matrix/tensor, the idea behind ISLET can be used to achieve a more e�cient algorithm in
matrix/tensor completion with theoretical guarantees. It will be an interesting future topic
to further investigate the performance of ISLET on other high-dimensional problems.
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