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1. Methods of Regularization

Ridge regression and the idea of regularization that it comes
to symbolize are ubiquitous in modern data analysis since its
formal introduction to statistics about half a century ago by
Hoerl and Kennard (1970a, 1970b). In this short discussion, we
shall focus in particular on their in!uence and connections with
some of the popular techniques in nonparametric statistics and
machine learning, and how the general perspective of methods
of regularization allows us to view a plethora of seemingly
di"erent methods as variants of ridge regression.

When considering a multiple linear regression model:

yn×1 = Xn×pβp×1 + εn×1,

the ridge estimator of β is given by

β̂ = argmin
β∈Rp

{‖y − Xβ‖2 + λ‖β‖2}.

The #rst term of the objective function on the right-hand side
measures for a given β ∈ Rp, how well it #ts the data whereas
the second term explicitly encourages for an estimate close to
the origin. The tuning parameter λ > 0 balances the tradeo"
between the #delity to the data and preference toward simpler
estimates.

Ridge regression embodies the idea of regularization which
is ubiquitous in modern data analysis. More broadly, suppose
that we are interested in estimating a parameter θ , be it the
conditional mean, a quantile or the conditional density among
others, from data; then following the spirit of ridge regression, a
method of regularization proceeds to do so via

θ̂ = argmin
θ∈%

{
Ln(θ ; data) + λ‖θ‖2} . (1)

There are two main ingredients to this general recipe:

• Parameter space—(%, ‖ · ‖) is a normed space;
• Loss function—Ln(·; data) is a loss function that measures the

goodness of #t.

In particular, taking

%lin = {θ(x) = x%β : β ∈ Rp}
the class of linear functions endowed with norm ‖θ‖ = ‖β‖&2
and Ln to be the least squares loss yields the usual ridge regres-
sion. Despite of its simplicity, the !exibility in choosing the
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parameter space and loss function in (1) allows us to extend
the idea beyond linear models or regression. In the rest of this
discussion, we shall illustrate how a couple of simple guiding
principles in doing so bring together many di"erent models and
estimates, and how each of them can be traced back to the idea
of ridge regression.

2. Parameter Space—RKHS

The parameter space %lin de#ned above is an example of the
so-called reproducing kernel Hilbert space (RKHS)—a Hilbert
space with continuous evaluation functionals (see, e.g., Aron-
szajn 1950). Another notable example of RKHS is the periodic
Sobolev spaces, say, the collection of periodic twice di"eren-
tiable functions de#ned over the unit interval [0, 1]:

%Sob :=
{

f (x) =
√

2
∑

k≥0
(ak sin(2πkx) + bk cos(2πkx))

: ak, bk ∈ R,
∫

(f ′′)2 < ∞
}

.

This particular choice of parameter space can be identi#ed with
the so-called (periodic) smoothing splines (see, e.g., Wahba
1990). More generally, RKHS proves to be an extremely useful
and versatile option for the parameter space.

2.1. RKHS and Similarity Measures

An RKHS H of functions de#ned over a domain X is endowed
with an inner product 〈·, ·〉, and complete under the inner
product such that for any x ∈ X the evaluation functional
Lx : H → R, f -→ f (x) is continuous. By Reisz theorem, the
continuity of Lx entails that there exists a Kx ∈ H such that

Lxf = 〈f , Kx〉, for all f ∈ H.

Now consider a bivariate function K : X × X → R such that
K(x, y) = 〈Kx, Ky〉 for all x, y ∈ X . It is clear that K is symmetric
and positive de#nite in that for any ai ∈ R and xi ∈ X ,

∑
aiajK(xi, xj) = ‖

∑
aiKxi‖2 ≥ 0.

We shall call a symmetric and positive de#nite function as such a
kernel, and in particular, K de#ned above the reproducing kernel
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of (H, 〈·, ·〉). In the case of %lin endowed with Euclidean norm
on the coe$cient vectors, K is simply the Euclidean inner prod-
uct, that is, K(xi, xj) = x%

i xj. The Moore–Aronszjan theorem
indicates that there is a one-to-one correspondence between an
RKHS and a kernel. To signify this correspondence, we o%en
write H(K) as the RKHS (H, 〈·, ·〉) with reproducing kernel K.

Although the use of RKHS in statistics can be traced back
at least to the early 1960s, it gained tremendous popularity in
the late 1990s and early 2000s with the rise of kernel methods
in machine learning (see, e.g., Scholkopf and Smola 2001 and
references therein). While the concept of RKHS may be abstract
to many, kernels on the other hand are more intuitive—they
are generalizations of the inner product in Euclidean spaces to
a generic domain and can be viewed as a similarity measure
between a pair of objects from the same domain. Fundamen-
tally, any sensible prediction is based on the idea that similar
inputs result in similar outcomes. While the similarity between
outcomes is determined by the choice of a loss function, the
similarity between inputs now rests on the choice of a kernel
or similarity measure.

2.2. Statistical Modeling via Choices of Kernel

Traditionally in statistics, the choice of the parameter space %

is the focus of modeling. The connection with kernels means
we can instead focus on de#ning the appropriate similarity
measures. These two angles, in the case of RKHS, turn out
to be equivalent. We now brie!y describe several examples
that demonstrate the intimate yet subtle connections between
a number of di"erent models.

The #rst example is the additive models (see, e.g., Hastie and
Tibshirani 1990). Under the additive model, a p-variate function
f can be represented by

f (x) = f1(x1) + · · · + fp(xp),

where xj is the jth coordinate of x. Note that such an additive
representation may not be unique and usually side conditions
such as fj(0) = 0 are imposed to ensure identi#ability. Assuming
that fj comes from an RKHS H(Kj) identi#ed with a kernel Kj,
then f resides in an RKHS with kernel K1 + · · · + Kp. This
observation immediately relates additive models to the so-called
multiple kernel learning (see, e.g., Gönen and Alpaydin 2011
and references therein).

Another example where the connection is a little less appar-
ent is the so-called varying-coe$cient models (see, e.g., Hastie
and Tibshirani 1993). The varying-coe$cient model posits the
following structure of the conditional mean of a response given
covariates t ∈ R and x = (x1, . . . , xp) ∈ Rp:

f (x) = f1(t)x1 + f2(t)x2 + · · · + fp(t)xp.

Similar to additive models, side conditions can be imposed to
ensure the identi#ability of the representation on the right-hand
side. Assuming that fj’s come from a common RKHS character-
ized by a kernel K0, then f resides in an RKHS identi#ed with
the kernel:

K((t, x), (s, y)) =
( p∑

k=1
xkyk

)

K0(t, s),

which can be viewed as the tensor product of the linear kernel in
Rp and K0. This draws a connection between varying-coe$cient
models and another popular yet seemingly di"erent class of sta-
tistical models based upon the so-called tensor product RKHSs
(see, e.g., Wahba 1990).

Our last example is the so-called functional linear regression
where the covariate X is a square-integrable stochastic process
de#ned over a certain domain T :

Y =
∫

T
X(t)β(t)dt + ε.

Assuming that β is a member of the RKHS with kernel K0,
under suitable technical conditions, the regression function can
be identi#ed with an RKHS with kernel

K(x1, x2) =
∫

T ×T
x1(t)x2(s)K0(s, t)dsdt.

As we can see from these examples, RKHS provides a uni#ed
framework for many seemingly di"erent statistical models, all
of which when put in the context of methods of regularization
share the same spirit as ridge regression. The prowess of such a
framework, however, goes beyond such a conceptual synthesis.
It also allows for a uni#ed treatment from an operational level
thanks to the so-called representer lemma, or kernel trick.

2.3. Representer Lemma and Kernel Trick

In the case of ridge regression, %lin is #nite-dimensional and
the ridge estimate can be computed explicitly. This is not
always possible for general and possibly in#nite-dimensional
RKHSs. Nonetheless, one of the key practical advantages of
using RKHS in the framework of the method of regulariza-
tion (1) is that it allows for e$cient computation even if % is
in#nite-dimensional thanks to the so-called representer lemma
(Kimeldorf and Wahba 1971). The renowned lemma states that
if the loss function Ln(θ ; data) depends on θ only through its
evaluations θ(x1), . . . , θ(xn), then the solution θ̂ to (1) can be
expressed as

θ̂(·) =
n∑

i=1
αiK(xi, ·)

for some α1, . . . , αn ∈ R, where K is the reproducing kernel of
the RKHS (%, ‖ · ‖). We can then plug it back to (1) to get

(α1, . . . , αn) = argmin
η1,...,ηn∈R

{
Ln

( n∑

i=1
ηiK(xi, ·); data

)

+ λ




n∑

i,j=1
ηiηjK(xi, xj)




}

. (2)

A couple of important observations can be made here. First
of all, the representer lemma shows that there is no loss of
generality to estimate a function θ ∈ % by a linear com-
bination of up to n basis functions. As such, it allows us to
estimate a possibly in#nite-dimensional parameter θ by solving
a #nite-dimensional optimization problem (2). Moreover, as we
assumed, Ln depends on θ only through θ(x1), . . . , θ(xn). As
such, the objective function on the right-hand side will only
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involve K via G = [K(xi, xj)]1≤i,j≤n, the Gram matrix. This
has an important practical appeal—if we can de#ne a similarity
measure on the observed inputs, then we can go ahead and
estimate the function θ .

In the case of ridge regression, Ln is the least squares loss, and
we can further derive

(α1, . . . , αn) = (G%G + λG)−1Gy.

This explicit derivation is o%en referred to as the so-called kernel
trick, and the above formula applies beyond the usual ridge
regression where, as mentioned before, K(x, y) = x%y, to the
case where (%, ‖ · ‖) is an arbitrary RKHS.

3. Loss Function—Fisher Consistency

The other ingredient in the method of regularization (1) is the
loss function. The choice of the loss function o%entimes is clear
for a given statistical problem. For example, from the consider-
ation of statistical e$ciency alone, we almost always take Ln to
be the negative log-likelihood whenever possible. The di$culty
with this choice, however, is that the corresponding optimiza-
tion problem in either (1) or (2) may become computationally
intractable. The most notable example is perhaps classi#cation
where the computational challenge in direct minimization of the
misclassi#cation loss is widely recognized and has stimulated
the proposal of numerous surrogate loss functions. In general,
a reasonable loss function needs to be Fisher consistent in that
the “true” parameter θ∗ can be identi#ed with

θ∗ = argmin
θ

ELn(θ ; data).

We now give a few examples illustrating this guiding principle
in choosing appropriate loss functions.

3.1. Regression

Consider, for example, a regression problem

Y = θ∗(X) + ε, (3)

where ε is the idiosyncratic noise independent of X. In the
usual mean regression setting, ε is assumed to be centered with
mean zero and #nite variance, and our goal is to estimate the
conditional expectation: θ∗(x) = E(Y|X = x). A natural choice
of the loss function is the least squares:

Ln(θ ; data) = 1
n

n∑

i=1

[
yi − θ(xi)

]2 .

It is not hard to see that in this case Ln is Fisher consistent.
More generally, one may consider generalized regression

where the conditional distribution of Y|X belongs to an expo-
nential family:

Y|X ∼ h(Y) exp[Yθ∗(X) − b(θ∗(X))],
for some strictly convex function b : R -→ R (see, e.g., McCul-
lagh and Nelder 1989). Our goal is to estimate the canonical
parameter θ∗ that can be identi#ed by

b′(θ∗(x)) = E(Y|X = x).

In this case, we can take Ln to be the negative (conditional) log-
likelihood:

Ln(θ ; data) = 1
n

n∑

i=1

[
b(θ(xi)) − yiθ(xi)

]
.

The convexity of b(·) implies again that Ln is Fisher consistent.
A third example is quantile regression, where the τ quantile

of ε in (3) is assumed to be zero, that is,

θ∗(x) = inf
{

y : P(Y ≥ y|X = x) ≥ τ
}

.

See, for example, Koenker and Hallock (2001). Write

ρτ (u) = τ (u)− + (1 − τ )(u)+,

where (·)− and (·)+ represent the negative and positive parts,
respectively. Then the following loss function is commonly
adopted:

Ln(θ) = 1
n

n∑

i=1
ρτ (yi − θ(xi)).

This is another example of Fisher consistent loss function as it
can be shown that θ∗ minimizes ELn(θ ; data).

3.2. Density Estimation

The goal of density estimation is to estimate a density function
p(·) a%er observing

x1, x2, . . . , xn ∼iid p(·).

To incorporate natural constraints for density, that it is nonnega-
tive and integrates to one, it is o%en customary to reparameterize
a density function in terms of its logarithm:

p(·) = exp(θ(·))/
∫

exp(θ(x))dx.

An obvious choice of loss function for estimating θ is the nega-
tive log-likelihood:

Ln(θ ; data) = − 1
n

n∑

i=1
θ(xi) + log

(∫
exp(θ(x))dx

)
.

It is fairly straightforward to show that Ln is indeed Fisher
consistent. Using this loss function in (1), however, incurs a
couple of computational challenges. First, θ and θ + c for any
constant c ∈ R correspond to the same density function. To
avoid such ambiguity, side conditions on θ , for example,

∫
θ =

0, is o%en imposed. Another challenge when using Ln is that it is
not convex in θ , which makes the optimization problem involved
hard to solve.

An ingenious solution is provided by Silverman (1982) who
suggested an alternative loss function:

Ln(θ ; data) = − 1
n

n∑

i=1
θ(xi) +

(∫
exp(θ(x))dx

)
.
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This loss function is strictly convex. Furthermore, it can be
shown that it is also Fisher consistent in that

log p = argmin
θ

ELn(θ).

3.3. Classi!cation

Now consider the problem of classi#cation. To #x ideas, we shall
focus on binary classi#cation where (X, Y) is a random couple
where X ∈ X = Rp, Y ∈ Y = {±1}. The goal is to construct a
good classi#er that maps from X to Y , so we can predict Y a%er
observing X in the future. A natural choice of the loss function
in this context is the misclassi#cation loss:

Ln(θ ; data) = 1
n

n∑

i=1
I(yi 1= θ(xi)),

and the so-called Bayes rule provides the optimal classi#er with
the smallest misclassi#cation error:

argmin
θ

ELn(θ ; data) = θ∗(·)

:=
{ +1 if P(Y = +1|X = ·) > 1/2,

−1 P(Y = −1|X = ·) > 1/2.

The challenge, however, is again computation. Optimizing Ln(·)
is practically infeasible even for moderate size problems.

To overcome such a di$culty, one o%en resorts to convex
relaxations. Instead of seeking directly a classi#er that maps
from X to Y , we consider recovering a discriminant function.
A discriminant function g maps from X to R, and it can be
translated to a classi#er θ = sign(g). Loss functions of the
following type are o%en entertained:

Ln,φ(g; data) = 1
n

n∑

i=1
φ(yig(xi)),

where φ : R -→ R is a convex function. Notable examples of
φ, include the exponential loss (φ(u) = exp(−u)) related to
boosting, and hinge loss (φ(u) = (1 − u)+) associated with
support vector machines, among numerous others.

For such a convex relaxation approach to work, we need to
#rst make sure that the loss function Ln,φ is Fisher consistent in
that θ∗ = sign(g∗) where

g∗ = argmin ELn,φ(g; data).

It turns out that such a consistency property holds under fairly
general conditions: if φ is convex, then Ln,φ is Fisher consistent
if and only if φ is di"erentiable at 0 and φ′(0) < 0 (see, e.g., Lin
2002; Zhang 2004).

4. Summary

Since its formal introduction by Hoerl and Kennard (1970a,
1970b), ridge regression and the method of regularization
embodied by ridge regression can be found in di"erent corners
of statistics, o%entimes under di"erent disguises. Looking at
them through the lens of the method of regularization reveals
their conceptual connection with ridge regression, allows us to
o"er a uni#ed treatment, and provides further insights into their
operating characteristics. The legacy of ridge regression, on the
other hand, lives through and beyond these essential tools in
modern data analysis.
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