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Abstract—This paper presents an algorithm for the identifica-
tion of parameters for a stochastic hot water end-use process that
drives a homogeneous population of thermostatically controlled
electric water heaters (EWH). Usually, only metered interval
consumption data (kWh) is collected and the hot water end-use
process is unobservable to utility and aggregators. However, the
availability of EWHs for demand response (DR) is closely coupled
with the hot water end-use process. In this context, the hot water
end-use process is modeled as a two-state Markov chain (Use / No
use), which causes the thermostatic ON-OFF switching process
to behave as a Markov renewal process (MRP). A set of first
passage-time problems is developed to obtain the moments of the
transition probability densities of the MRP. These problems are
addressed by establishing a system of coupled partial differential
equations characterizing the temperature evolution of the EWH
population. A key quantity in the methodology for estimating
the parameters is the total time an EWH is ON within a period
of interest. It is referred to as the total busy time. Total busy
time in this approach is a random variable for which analytical
expressions of the moments are developed as a function of the
metered window length. The latter expressions become the basis
of a hot water demand model identification algorithm which is
validated using agent-based simulations of EWHs.

Index Terms—Electric water heaters, demand response, esti-
mation, Markov renewal processes, first passage time.

I. INTRODUCTION

Connectivity is becoming ubiquituous and, with smart ap-
pliances today, it is technically and economically feasible to
leverage available distributed energy resources (DERs), such
as “smart” air-conditioners and electric water heaters (EWH)
to provide ancillary services using demand dispatch [1]. In
demand dispatch, the DERs are aggregated, coordinated, and
dispatched to provide grid services while taking into account
local quality of service (QoS) requirements for the end-
users. For example, the QoS requirement for EWHs dictates
the temperature range specifying the device’s thermostatic
controller parameters needed to ensure that water in the tank
is maintained within a desirable temperature range. Together
with QoS requirements, the DER end-use dynamics, such as
hot water extraction rates from an EWH, place limits on the
feasible range of demand dispatch schemes. This is because
QoS specifications and end-use dynamics together determine
the nominal power consumption of the device. Since QoS
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specification (e.g., temperature range) do not change over
time, they are static and relatively simple to model. However,
end-use is generally a stochastic process and strongly affects
nominal power consumption of a DER. Thus, having an
accurate estimate of the uncontrollable end-use process can be
valuable to predict performance of demand dispatch schemes.

Several DER control architectures have been proposed in
the literature for demand dispatch schemes and a variety
of local/distributed control policies to model the aggregate
response (or flexibility) of DER populations [2]-[6]. Their
overall aim is to utilize the flexibility available from the
DERs while preserving QoS. However, these aggregate models
assume that the underlying end-use process is known a priori,
which in a practical setting is generally not the case. In
other words, the expected capability of these demand dispatch
schemes strongly depends on knowing the end-use process. In
this paper, we propose a method to overcome this challenge
by estimating representative end-use process parameters for a
population of EWHs only from measured electric utility meter
data (kWh) and physical water heater parameters.

Aggregate models of DERs generally assume the underlying
end-use process to be white noise with drift that represents the
fluctuations in energy due to uncontrollable end-user events
as in [3]. The aggregated heat loss or gain due to end-user
events in the case of heating and cooling loads such as electric
space heaters and refrigerators can be accurately represented
by the white noise process. However, the energy losses in
an EWH are only due to: () water extraction from the tank
and (i7) standing losses due to ambient conditions. Therefore,
white noise is not an adequate representation of the end-
use process for EWHs [7]. In [8], the end-use process is
described by a Poisson random pulse (PRP) with randomized
pulse amplitudes and widths, which is representative of the
physics of water extraction processes [7]. While a hot water
end-use process consists of varying water extraction rates, this
paper focuses on a two state continuous-time Markov chain
with constant water extraction rates as a starting point for
the challenging stochastic parameter estimation problem [9].
Relatively constant periods of hot water extraction rates is a
reasonable assumption due to the correlated nature of human
activities over the hours of a day.

The literature on estimating end-use process parameters
include data-driven methods [10], where historical electric
meter data is used to develop regression-based models for
load forecasting purposes. However, these “business as usual”
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regression-based models are insufficient to predict both DER
behavior and the effect on QoS when subjected to demand
dispatch [9]. A method to generate hot water profile based
on average energy consumption per activity such as bath and
laundry is developed in [11]. Statistical models using time
use data of daily activities of household members gathered
from surveys such as American Time Use Survey (ATUS)
data or time use data by Statistics Sweden (SCB), to predict
the controlled load behavior have been developed to tackle
this modeling gap [12]-[15]. These household activity data
inform a model about the interaction between humans and
their appliances. Then, the models are aggregated to predict
the energy consumption of all residential households. While
this approach is promising, it relies on high fidelity data, which
is usually unavailable and not generalizable.

The impact of utility control on the load behavior can be
seen from Fig. 1 which shows the aggregate power consump-
tion of approximately 1700 EWHs in Vermont over several
days. Daily profiles of power consumption usually consist of a
morning peak, between 7 am and 9 am in Fig. 1 and an evening
peak. In this figure, the utility turned OFF all water heaters
between 2pm to 6pm resulting in cold load pick-up setting a
peak right after 6pm. This peak is significantly different than
the one observed in the morning and is due to the type of
demand response program deployed by the utility. Note that
the aggregate demand profile of EWHs can be divided into
hourly periods of relatively constant demand as characterized
by constant water extraction rates. Therefore, capturing the
underlying water extraction process is helpful to predict even
the controlled load dynamics as shown herein.

Cold load,
pick-up

——aggregate power consumption

utility turns OFF all
EWHs for 5 hours

5 hours

0 H
Nov 14, 00:00 Nov 14, 12:00 Nov 15, 00:00

Nov 15, 12:00

Nov 16, 00:00
2012

Figure 1. Average power consumption of 1700 real EWHs in VT

This paper builds on and extends the estimation methods
presented in [9], [16], [17] where physics-based models of
electric space heaters are employed. The estimation scheme
first introduces a total busy-time random variable defined as
the total ON time of the heater within fixed-time intervals. The
rationale for defining this quantity is that by splitting the power
consumption data of an electric water heater into periods of
stationary statistics, one can relate the total thermostat ON
time to the underlying likewise stationary water extraction
statistics. Recursive relations for the moments of the total
busy time are then used to develop an estimation algorithm
for calculating the parameters of the stochastic hot water end-
use process [9]. This paper extends the estimation scheme to
the physically-based models of electric water heaters with two
key contributions:

(1) The analytical results from [7], which were only valid
for low water extraction rates have now been generalized to
the case of arbitrary water extraction rates. This includes:

(¢) The generalization of the coupled Kolmogorov equations
representing the aggregate dynamics of a homogeneous group
of EWHs to the case of arbitrary water extraction statistics;
and (i7) the development of an adequate set of first passage-
time probability density functions that are used to obtain the
moments of the total ON time over fixed time windows.

(2) From the analytical contribution, a practically relevant
identification procedure is developed and validated for esti-
mating stochastic parameters of the unmeasured, hot water
end-use process based only on interval meter readings and
physical (tank) parameters for a homogeneous population of
EWHs.

II. OVERVIEW OF IDENTIFICATION PROCEDURE

This section provides a overview of the inputs and outputs
of the identification procedure, as illustrated in Fig. 2.

A. Availability of the metered data

In general, gathering data on hot water end-use processes
requires expensive, device-level flow meters. In rare cases,
sensors may be available to measure water extraction rates
for the entire residence (all water) or device-level (hot water
only) [18]. Furthermore, it can be seen from Fig. 1 that the
power consumption of electric water heaters driven by the end-
use process vary significantly throughout a day since it is a
non-stationary random process. However, it can be considered
stationary during durations of near-constant electric demand
[7], [17], e.g. the morning peak between 7am and 9am in
Fig. 1. Thus, we classify the daily kWh meter data into periods
of statistically stationary hot water usage and propose the
estimation strategy on one such period. This strategy can easily
be generalized to multiple distinct periods that make up a
representative day or a week.

B. The electric water heater model

The EWH considered herein consists of a first-order, sim-
plified model with just a single equivalent heating element
and an “average,” lumped temperature state. The hot water is
extracted from the top of the tank and the cold water enters
from the bottom. The temperature dynamics are governed by
the following ordinary differential equation (ODE),

rate

dZ(t) _ Prem(t) _ ((t) — =) _ (z(t) xm)u?(t), (1)

t cpLn TL 60L
where xz(t) is the average temperature of the electric water
heater, xj, is the temperature of the cold water entering through
the tank inlet, z, is the ambient temperature, ¢ = 4.186 [kJ/kg-
°C] is the specific heat capacity of 50°C water, p = 0.988
[kg/liters] is the density of hot water, L [liters] is the capacity
of the water heater tank, P™° is the rated power in kW of the
heating element, 7 is the heat transfer efficiency, 7, is the time
constant representing the standing losses. The uncontrollable
rate at which hot water is extracted from the tank is given
by w(t) := w(t)q(t) [liters/min], where ¢(t) € {0,1} is the
logic state for the hot water usage process, i.e., ¢(t) = 1,
if water is extracted from the tank at rate w(¢) [liters/min] at
time ¢; else w(t) = ¢(t) = 0. The EWH operates in thermostat
mode and m(t) € {0,1} represents the physical state of the
mechanical relay (open = 0) at time ¢. The thermostat control
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logic maintains the temperature within the user-specified, fixed
dead-band [z_,z4|, x_ < z. The logic switches from ON
(m(t) = 1) to OFF (m(t) = 0) at the upper boundary (x)
and from OFF to ON at the lower boundary (z_).

This paper considers the case of a homogeneous group of
electric water heaters whose physical parameters and dead-
band settings are known from manufacturer specifications
and user-preferences, respectively. Energy measurements are
then used as proxies for the time an EWH is ON within
a time window of interest and referred to as the total busy
time. The moments of the total busy time random variable
are derived in Section V. The proposed estimation strategy,
shown in Fig.2, takes as input the energy measurements and
computes the total busy time within successive time windows
of interest. Statistics of the total busy time along with the
physical parameters of a homogeneous group of EWH are
used to estimate the parameters of the unobservable end-use
process, which is mathematically described in the next section.

Input Output

1. Measured kWh data
2. EWH parameters e.g. tank
size, rating of heating element

Parameters of
end-use
process

Estimation
from
moments

Get moments of
occupation time

Figure 2. Overview of the end-use process identification problem

III. MODELING OF THE HOT WATER END-USE PROCESS
AND ESTIMATION

This section describes the modeling of water heater end-use
process and the corresponding Markov renewal process (MRP)
defined at the switching instants of the thermostat. A set of
first passage time problems are then presented to determine
the transition density functions of the MRP.

A. Modeling water heater end-use process

Consider the rate of hot water extraction from the tank of an
individual EWH to be constant (i.e., w(t) = W). Then, the hot
water end-use process is either in demand (g(¢) = 1) or not in
demand (g(t) = 0), and evolves according to what is assumed
to be a two-state ({0, 1}) Markov chain model ¢(t) (see [7]).
The corresponding time invariant transition probabilities are
given by,

Pg(t+h) = 1]g(t) = 0) = doh+o(h) (@
Pg(t+h) = 0lg(t) = 1) = Mh+o(h) (3

where i > 0 is a small time increment. The electric water
heater operating under this simplified demand process main-
tains the temperature within the deadband by the operation
of the thermostat switch. A Markov renewal process, y(t) is
defined by recording the thermostatic switching instants (m(t))
which occur at the edges of the deadband [7]. The Markov
renewal process, y(t) consists of four states {0,0’,1,1'}, as
illustrated in Fig. 3, where 1 represents the onset of a power
consumption without hot water use, 1’ indicates the onset of a
power consumption in the presence of hot water use. Similarly,
0 denotes the onset of a power interruption with no hot water
use and, finally, 0’ indicates the onset of a power interruption
but with hot water use. The transitions between states can
only occur at the edges of the deadband, i.e. the switching
instants of the EWH’s thermostat transitions from 1 to 0, if

x(t) = x4 without hot water use and transitions from 1 to 0/,
if ©(t) = x4 with hot water use. The remaining transitions
follow in a similar fashion. Note that Fig. 3 also includes the
first passage time probability density functions, g;;(t), which
are defined as,

gide :P[t§{<t+d77y(t_>:]]v (4)

Vi,j = {1,1’,0,1'}, where ¢ is the first time the MRP y(t)
switches to state j given that y(¢) has just switched to state i
at t = 0. The transitions between the states 1 and 1’ and 0 and
0" are not possible since the MRP y(t) as defined, switches
state only when the thermostat changes state, at which time
the end-use state ¢(¢) is also recorded . More specifically,
911/(t) = glll(t) = goo’ (t) = g()/()(t) = 0. In the next subsec-
tion, the statistical evolution of the ensemble of homogeneous
EWHs is obtained from two coupled Kolmogorov equations
with boundary conditions. These equations are then used to
express the g;; probability density functions.

Markov renewal process Power consumption
y(t) (measured)

End-use process
(unobservable)

Figure 3. State transition diagram of the Markov renewal process

B. Partial differential equation description of load dynamics

The probability density functions, f;, fis, associated with
the Markov process consisting of the continuous state x(t),
the discrete state m(¢) and the hot water end-use process ¢(t)
are defined by,

FiA )N = PIA < 2(t) < A+ dX\,m(t) = i,q(t) = 0] (5)
FoOu)dA = PIA < 2(t) < A+ d\m(t) = i,q(t) = 1] (6)

for i = {1,0}. The probability density functions satisfy the
following system of coupled partial differential equations [7],

9 - a9 - L
afi(ﬂf,f) fVi%fi(ﬂ?,t)JrA fi(, ) (7
where,
g % 7t :
R = [ 200 v = dig(un o, ®
)\0 _)\0 T_ — 2, Prate )
A= i = - )
[—)\1 A1 } i T <CPL77 '
_—x, Prate
U’i' = r r - — ( > Z+ A,
T cpLn
for all i € {0,1}, where A := “7"*W is the heat loss from

the tank due to hot water extraction. In A, note that variable
2(t) has been replaced with constant x_ in order to make the
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analysis more tractable. This is an acceptable approximation
since the exact loss rate should not vary too much over a
small (a few degrees) temperature deadband. The cooling rates
are represented by, vi,v;r < 0 when thermostat is ON, and
v, Vor When the thermostat is OFF. The conditional transition
probability functions g;;(¢) are obtained by the first passages
of the z(t) temperature process to the x_ or z boundaries.
The corresponding transition probability functions are given
by (see [7])

9ij(t) = vifi(z4,1), ©)

gji(t) :Ujfj(m—ﬂt)v v i:{171/},j:{0,0,}. (10)
In the next subsection, we use (7), (9) and (10) to derive a set

of recursive equations yielding analytical expressions of any
order moments of the g;;(t) first passage-time densities.

C. High water usage case and the first passage time problems

The previous section introduced the coupled system of
PDEs that govern the time evolution of the probability density
functions f;(x,t) away from the edges of the thermostat
deadband. It should be noted here that v; < 0 and vy < 0
represents the case of low hot water use in which the tem-
perature of the tank increases in the presence of hot water
use. However, during periods of high hot water use, the tank
temperature decreases instead and is characterized by v; < 0
and vy > 0. The first passage time analysis for the case of
lower hot water use was developed in [7]. In this section, the
focus is on the more important case of high hot water use in
which the temperature decreases in the presence of hot water
use even though the thermostat is ON which is represented by
v1 < 0,v1, > 0 in the system of coupled PDE:s.

, T

Theorem 1: Let my(z) = {mg)(x),mg )(x)} be the

vector of moments of the £ order corresponding to the vector

probability density function: fi(x,t),k > 0. The vectors

my () satisfy the following recursive system of linear ordinary
differential equations (ODE):

d _ B B L
amo(ac) =V 'A "o (x) + Vit fi(z,0), (A1)
and for all £ > 1, we have
d _ - 1o
3 (@) = Vi A T (@) — BV e (@), (12)

with the absorbing boundary conditions f;(z,¢) = 0 and
fi(zo,t) = 0, where —co < 29 < z_,0 € R?*! and the

initial condition,
Fi(,0) = [‘5(“@ P x)}

for the first passage time in 1 and

fuo(,0%) = [5(93 ! x_)}

for the first passage time in 1’. Further defining,

13)

(14)

Ti(2)" = [mo(x) () ...’()],  (15)
it obeys the following ODE,
d - _,
&Fk(ﬂf) = Ayl (z) + Brug(z) (16)

VAT 0 0 0
Vit VAT 0 0
Ay = 0 2Vt VTIAT 0
0 0
.0 Evit ViIAT
vl oo 0 f(z,0)
0 I 0 0
B = su(z) =
0 0 0 I 0
with the condition,
lim T(z) =0, —o0<zg<az_. (17)

Tro——00

Proof : See Appendix A B

It should be noted here that in the case under consideration of
high water usage, MRP y(¢) can only exit from 1 and 1’ in
state 0, owing to the fact that temperature always decreases in
the presence of water demand. Furthermore, one can derive a
similar system of equations for the moments starting at 0 or
0’. Tt is omitted for lack of space.

The previous theorem provides initial conditions, boundary
conditions and a system of linear ODEs to carry out first
passage time computations under high water extraction rates.
By solving the system of ODEs in (16) one can derive
analytical expressions of the moments of the first passage
time densities g;;. First passage time process is conceptually
depicted in Fig. 4. It follows the temperature of an EWH and
corresponding MRP states visited, as it enters the lower edge
(z_) in state 1 and transitions to O at the top edge (z) of the
deadband. Within the deadband, temperature decreases with
rate —vy, when water is being extracted from the tank and
increases otherwise with rate —wv;. The particular set-up of
Fig. 4 is used to obtain the moments of gi¢ and g;¢.

Time of first escape at . | Transition
> t0 0

1 1 1 11’1/

\/\/ -

55
33

|
<
=y

Tank temperature

P

Startat ' _

0 1 0 1 1 0

End-use process

Figure 4. This figure illustrates the first passage time process starting at the
lower edge of the deadband (z_) in state 1 (thermostat ON and without hot
water use). The first passage time corresponds to the first time the temperature
reaches the upper boundary (z4) of the deadband.

IV. ILLUSTRATIVE EXAMPLE

In this section, an illustrative example is presented for the
first passage time moment calculations described in the previ-
ous section. These moments lead to approximate analytical
expressions for the transition probability density functions
gi; that are essential to relate the statistics of the power
consumption data to the end-use process.
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A. Solution of first passage time problems

Consider a homogeneous group of electric water heaters
with cooling rates v1,vy and vg, vy and simplified case of
two moments, i.e., Mo (x) and 731 (x). The linear system (16)
can be written for the first passage time in 1 as,

d - . .
&Fl(x) = AlFl(x) — Blu(x) (18)
ﬁ—& L 0
A
-y 00 Vo
A= 0 W vBl—{o I]’
S R VR Ve
1 1 1 (19)
. fi(z,0 0
U(.’I}) = fl (g, ):| ,V]_ = |:’U01 ’U1/:| (20)
[, () (1)
i} mD ()] m (@)
mo(x) = / ,mi(x) = / , 21
= [ ><x>] o lmil @) o
7 [6(x — 2_ - A
f($70) = (x 0 v ):| 7AT = [ )\00 _)1\1:| , (22)

where zero vector 0 € R2X1, zero matrix 0 € R2¥2, and [ is
identity matrix. This system has two repeated eigenvalues:

_ A04’)\1 ( )\0 )\1
’7220.

V1017 Ao+ A1 v+ Ao + A1 Ul) 23)
(24
The average heating rate should be positive or equivalently
the average cooling rate should be negative, because the prob-
ability flux should escape entirely from the upper boundary
(x = x4). The mathematical consequence of this fact is that
the nonzero eigenvalue (1) of the system should be positive
(71 > 0) and the average cooling rate
Ao A1
()\0 +)\1’Ull + " +)\11)1> <0,
which indeed implies that v; > 0. Solving the initial value
problem described in the previous section results in the fol-
lowing zero order and first order moments,

71

(25)

o(zy) = [, 0]

@)= (%)

Similarly, first passage time calculations can be performed for
the 1’ state. For the remaining states (0,0") a similar procedure
is used and its details are omitted here.

(26)

A

M 2o
XoTa7 V1t XA v/

—

my

T
) 0} (27)

B. Approximation of g;; by moment matching

The conditional probability density functions (pdfs) g;; are
approximated by the moment matching techniques, in which
the pdfs are represented by the approximated functions §;;
whose moments match those obtained from the solution of the
first passage time problems. In this paper, only the zero and
first order moments are considered resulting in the following
Markovian-type (exponential) approximation of the pdf,

mg my
9ij (t) = %-CXP{-—EEt}
m my

1

(28)

where mg',m7’ are the appropriate zero order and first order

moments of g;;. In Laplace domain,

Gils) = <(m3??2) ( o

This result can be extended to generalized phase-type distri-
butions by matching any number of moments depending upon
the desired accuracy and is the topic of ongoing work [19].

(29)

V. PARAMETER ESTIMATION FROM TOTAL BUSY TIME

In this section, we bring together the results from prior
sections and propose an estimation strategy based on the avail-
able data. The MRP defined at the switching instants of the
thermostat classifies the process into four states {1,1’,0,0'}.
However, the available utility grade power consumption data
cannot distinguish between 1 (thermostat ON, without hot
water use) and 1’ (thermostat ON, with hot water use) states
since the hot water end-use process is not observed. Similarly,
the states 0 and 0’ are indistinguishable from measurements.
However, in the stationary steady-state of the MRP, the total
ON time random variables become identically distributed since
the state at the start of a measurement interval becomes ran-
dom with a common distribution. Therefore, in the stationary
steady-state the states 1 and 1’ are combined into an ON state
with a density obtained by combining the 1 and 1’ densities

with weights m(()m) and m(()o1 ) and similarly with states 0 and
0" which are probabilistically combined into an OFF state.
The thermostat ON and OFF are represented by 15 and Oa,
respectively, and the resulting process is a 154-0a alternating
renewal process (ARP). Subscript (.) 4 is added to distinguish
between the states of the MRP and the ARP. The stationary
ARP statistics are then used to identify the parameters of the

underlying hot water end-use process.

A. Moments of the total busy time

The parameters of 15-05 ARP in its stationary steady-state
which is blind to the initial MRP state at the start of power
measurement windows, are now identifiable from the data
available for estimation. Furthermore, let £(t) = fg m(7)dT
be the total time the thermostat is ON within a time period
of length ¢. This variable &£(t) is also called rotal busy
time random variable over an interval of length ¢. Recursive
expressions for the moments of £(¢) in steady state were
derived in [9] that do not require the knowledge of the state of
the thermostat at the start of the window. The first-order and
the second-order moments of £(¢), in the Laplace domain, are
obtained after application of [Theorem 2 in 9] resulting in the
following equilibrium distribution expressions,

M1, 1

Eeq[€(1)](s) = Tt ol 52 (30
Eal€?()(0) = 2 — =
2 (1= Fo()1-Fi()

(MIA + MOA)S4 (1 - FOA (S)FlA (3))

€19

where F;(s) = L[fi(t)],7 € {1a,04}, is the Laplace transform
the pdf associated with 1, and O, states, and u; = E[f;(¢)],¢ €
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{14,04} with E[.] being the usual expectation operator. A
short description on computation of F;(s), u; fori € {14,04}
is provided in Appendix B. We are finally in a position to
estimate Ag, A; from the moments of £(¢) as is presented next.

B. Numerical validation of parameter estimation

The parameter estimation strategy is demonstrated on a
period of relatively stationary water demand for example, the
morning peak between 7am and 9am in Fig. 4. The case
here is that of high water usage with the end-use parameters
¢ = {Ao, A1}, for which the transitions probability functions
(gi;) are derived in IV. Data for this type of estimation can be
obtained by measuring the aggregated power consumption of
a group of EWHs within the same period of interest over the
course of several days, and then appended together. Following
this line of thought, 10,000 EWHs are simulated for 16 hours,
with tank size 250 litres, heating element rated at 4.5 kW,
hot water rate of extraction of 5.4 litres/min, ambient and
inlet temperature 21.1° C, thermostat set-point and deadband
adjusted at 51° C and 6° C respectively. Aggregated power
consumption of this group is measured where each 2 hour
period is assumed to represent a single day. The simulated
data then represents the aggregate power consumption over 8
days and in what follows, we show that this data at least in
the simulation environment is sufficient to accurately estimate
the unknown ¢.

The proposed estimation problem determines ¢* = {A§, A}
that minimizes the loss function,

__argmin

¢* o NI7to) - 7(t, )| 12

where 7(t, ¢) = (Eeq[£(t)](t, #), Eeq[€2(1)](t, ¢)) T is the em-
pirical mean and second moment obtained from the data,
F(t,0) = (Eegl€(0)](t, @), Begl€2(1)](1,6))T is the analytical
mean and second order moment from (30), (31). The estima-
tion problem (32) is solved using 1sgcurvefit in Matlab
for t € {1,2,5,15} minutes. It can be seen from Table I that
the estimated ¢ are close to true ¢. An immediate observation
from the results in Table I, is that shorter windows result
in the estimated parameters closer to the true values. This
type of analysis will enable the utilities to collect appropriate
metered data that results in reasonable estimates of the end-
use consumption. Therefore, we show next the accuracy of the
estimated ¢ in the context of cold-load pickup of Fig. 1.

The objective now is to show a potential application of
the estimation scheme in demand dispatch. Consider the same
group of EWHs that generated the data for estimation under
constant water demand. After 2 hours all EWHs are forced
OFF for a period of 4 hours and subsequently allowed to
turn back ON, mimicking the direct load control scheme
from Fig. 1. Aggregate response of EWHs for the actual
and estimated parameters is shown in Fig. 5 with ¢ 2
minutes. Clearly, the aggregated power demand and the mean
tank temperature match well. Similar results are obtained for
t € {1,5,15} minutes. The difference however, is in the
transient response after EWHs are allowed to turn back ON,
as shown in Fig. 6.

The estimated ¢ differs slightly from the true ¢ as seen in
Table I even though the steady state response of the estimated

(32)

system is exact. This is because the estimated ¢ = {1, Ao}
corresponds to the same steady state of the end-use process as
the actual ¢. The difference in the transient response, as shown
in Fig. 6, is apparent from the nonzero eigenvalue ; in (23).
For the window size of 15 minutes, it follows from (23) that
the nonzero eigenvalue obtained from the estimated parameters
is twice the eigenvalue obtained from true parameters. One
possible explanation for this behavior is that shorter windows
correspond to increasing the sampling frequency of the ARP.
Therefore, several window sizes may result in the same oc-
cupation behavior of the ARP. Furthermore, the estimates can
be improved by including the correlation information between
occupation time of successive windows for estimation as in
[9]. However, further work is required to fully characterize the
impact of this aliasing-type effect observed here. Nonetheless,
the estimated values are helpful to model steady-state demand
and average EWH QoS under homogeneous conditions.

TABLE I

COMPARISON BETWEEN ESTIMATED AND ACTUAL PARAMETERS
Window size  Actual 1 min 2 min 5min 15 min
Ao 0.0014 0.0014 0.0016  0.0021  0.0029
A1 0.0083 0.0084 0.0095 0.0120 0.0170
s
240+ == =actual
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S OFF for 4 hours
g20) —_
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Figure 5. Aggregate power consumption of the group of EWHs is shown here
when all EWHs are forced OFF for 4 hours. The window size for estimation
is 2 minutes.
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Figure 6. The aggregate power consumption of EWHs using the parameter
estimates of ¢ obtained from different window sizes ¢t € {1,2,5,15} is
plotted on the left and the shaded region is enhanced in the right plot. It
shows that the aggregate power consumption differ in the oscillations before
steady state is achieved.

VI. CONCLUSION AND FUTURE WORK

This paper develops preliminary results for an identification
algorithm to estimate the parameters of an underlying hot
water end-use process of electric water heaters from energy
measurement. Unlike prior work in the area, which focused on
low hot water extraction rates, this identification procedure has
been generalized herein to include arbitrary extraction rates
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and validated within a conventional DR setting for 10,000
EWHs. The estimated parameters serve to accurately model
the dynamics of a homogeneous fleet of EWHs and is valuable
for utilities to predict the controlled load behavior when
subjected to demand dispatch.

Future work seeks to extend the procedure to estimate
the water intensity rate, w(¢), to relax the homogeneous
assumption on the fleet, and study the role of uncertainty in
the physical EWH (tank) parameters on the end-use process
estimates. Finally, we will incorporate actual interval meter
data from a utility partner to estimate and optimize demand
dispatch capability from a fleet of EWHs and compare against
similar estimates from “black box” learning-based methods.

APPENDIX

A. Proof of theorems

Proof : (Theorem 1) Upon taking the Laplace transforms of
the partial differential equations in (7) for ¢ = 1 results in

F . .
L) ot o1 = AT R ) — Vi (0, 0). 69)
Since the k™ order moment is defined as,
2
F
() = (—1)’“M Y k=0,1,..., (34

Dsk o
therefore, setting s = 0 in (33) yields the linear first order
ODE of zero order moment (17 (x)) as,
d’rﬁo (1‘)
dx
The first order moment is obtained by taking the derivative of
(33) w.r.t. s and consequently setting s = 0 which results in,

= Vi A Mg (z) — Vi f(2,07). (35)

i
%x) = Vi AT (2) = Vi to(x). (36)
Hence the k" order moments is given by,
i
Ld’;(x) — VAT (@) — KV, Y (e) (37)

which can be written in the form of the system of ODE of
(16). The system of (16) consists of 2k equations and 4k
unknowns. However, recall from the discussiog in section II-
C that g1o/(t) = grror = 0. Therefore, rh’,(:) = 0 which
reduces the number of unknowns to 3k. Furthermore, owing
to the decrease in temperature in 1’ state, I'y(x_) # 0 and
is unknown, since there will always be some probability flux
that crosses z_. However, in a properly designed EWH, the
long term mean upward temperature drift is positive and, the
temperature of the tank will eventually reach z,. To obtain
the remaining 1k linearly independent equations, consider an
arbitrary boundary x_ such that —oco < zg < z_ with the
condition (17). Evaluating (16) at x = xg and x; = z_ gives
the remaining equations necessary to obtain the moments of
first passage time densities. W

B. Calculation of I ,, Fy,

Probability density function F7,(s), Fo,(s) corresponding
to the 15,04 of ARP are given by,

F1,(s) = Gro(s)m$™ + Gro(s)my™), (38)

Fo, (s) = Go1(s)m§™ + Goy (s)ym{'?, (39)

where, G10(s),Go1(8), G10(8),Go1/(s) are the transition
probability functions obtained by solving first passage time
problems as derived in Section IV, and m(()” ) is the zero order
moment of g;;. The mean p;, and po, associated with Fy,
and Fp, respectively follows from (38), (39) after taking the
expectation,

[, = méOl)mgIO) + m(()Ol )mgl 0)7 (40)
oy = mSOm{ om0y O, @1
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