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Abstract

We investigate whether Differentially Private SGD offers better privacy in practice
than what is guaranteed by its state-of-the-art analysis. We do so via novel data
poisoning attacks, which we show correspond to realistic privacy attacks. While
previous work (Ma et al., arXiv 2019) proposed this connection between differential
privacy and data poisoning as a defense against data poisoning, our use as a tool
for understanding the privacy of a specific mechanism is new. More generally, our
work takes a quantitative, empirical approach to understanding the privacy afforded
by specific implementations of differentially private algorithms that we believe has
the potential to complement and influence analytical work on differential privacy.

1 Introduction

Differential privacy [DMNSO06] has become the de facto standard for guaranteeing privacy in ma-
chine learning and statistical analysis, and is now being deployed by many organizations including
Apple [TVV™17], Google [EPK14, BEM ™17, PSM™18], and the US Census Bureau [HMA™17].
Now that differential privacy has moved from theory to practice, there has been considerable attention
on optimizing and evaluating differentially private machine learning algorithms, notably differentially
private stochastic gradient descent (henceforth, DP-SGD) [SCS13, BST14, ACG™16], which is now
widely available in TensorFlow Privacy [Goo]. DP-SGD is the building block for training many
widely used private classification models, including feed-forward and convolutional neural networks.

Differential privacy gives a strong worst-case guarantee of individual privacy: a differentially private
algorithm ensures that, for any set of training examples, no attacker, no matter how powerful, can
learn much more information about a single training example than they could have learned had that
example been excluded from the training data. The amount of information is quantified by a privacy
parameter €.' Intuitively, a smaller € means stronger privacy protections, but leads to lower accuracy.
As such there is often pressure to set this parameter as large as one feels still gives a reasonable
privacy guarantee, and relatively large parameters such as ¢ = 2 are not uncommon. However, this
guarantee is not entirely satisfying, as such an algorithm might allow an attacker to guess a random
bit of information about each training example with approximately 86% accuracy. As such there is
often a gap between the strong formal protections promised by differential privacy and the specific
quantitative implications of the choice of € in practice.

This state-of-affairs is often justified by the fact that our analysis of the algorithm is often pessimistic.
First of all, € is a parameter that has to be determined by careful analysis, and often existing theoretical
analysis is not tight. Indeed a big part of making differentially private machine learning practical
has been the significant body of work giving progressively more refined privacy analyses specifically

"There are several common variants of differential privacy [DKMT06, DR16, BS16, Mirl7, BDRS18,
DRS19] that quantify the influence of a single example in slightly different ways, sometimes using more than
one parameter. For this high-level discussion, we focus on the single, primary parameter €.
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for DP-SGD [ACG1 16, DRS19, MTZ19, YLP*19], and for all we know these bounds on ¢ will
continue to shrink. Indeed, it is provably intractable to determine the tightest bound on ¢ for a given
algorithm [GM18]. Second, differential privacy is a worst-case notion, as the mechanism might have
stronger privacy guarantees on realistic datasets and realistic attackers. Although it is plausible that
differentially private algorithms with large values of ¢ provide strong privacy in practice, it is far from
certain, which makes it difficult to understand the appropriate value of ¢ for practical deployments.

1.1 Our Contributions

Auditing DP-SGD. In this paper we investigate the extent to which DP-SGD,? does or does not give
better privacy in practice than what its current theoretical analysis suggests. We do so using novel data
poisoning attacks. Specifically, our method starts with a dataset D of interest (e.g. Fashion-MNIST)
and some algorithm A (e.g. DP-SGD with a specific setting of hyperparameters), and produces a
small poisoning set S of k points and a binary classifier 7" such that T" distinguishes the distribution
A(D) from A(D U S) with significant advantage over random guessing. If A were e-DP, then T
could have accuracy at most exp(ek)/(1 + exp(ek)), so if we can estimate the accuracy of T we can
infer a lower bound on €. While previous work [MZH19] proposed to use this connection between
differential privacy and data poisoning as a defense against data poisoning, our use in this context of
auditing the privacy of DP-SGD is new.

Specifically, for certain natural choices of hyperparameters in DP-SGD, and standard benchmark
datasets (see Figure 2), our attacks give lower bounds on ¢ that are approximately 10x better than
what we could obtain from previous methods, and are within approximately 10x of the worst-case,
analytically derived upper bound. For context, previous theoretical improvements to the analysis
have improved the worst-case upper bounds by factors of more than 1000x over the naive analysis,
and thus our results show that we cannot hope for similarly dramatic gains in the future.

Novel Data Poisoning Attacks. We find that existing data poisoning attacks, as well as membership
inference attacks proposed by prior work, have poor or trivial performance not only against DP-SGD,
but even against SGD with gradient clipping (i.e. rescaling gradients to have norm no larger than
some C'). Gradient clipping is an important part of DP-SGD, but does not provide any formal privacy
guarantees on its own. Thus, we develop a novel data poisoning attack that is more robust to gradient
clipping, and also performs much better against DP-SGD.

Intuitively, data poisoning attacks introduce new points whose gradients will change the model in a
certain direction, and the attack impact increases when adding poisoning points of larger gradients.
Existing attacks modify the model in a random direction, and have to push far enough that the original
distribution on model parameters and the new distribution become distinguishable. To be effective,
these attacks use points which induce large gradients, making the attack sensitive to gradient clipping.
On the other hand, our attack improves by finding the direction where the model parameters have
the lowest variance, and select poisoning points that modify the model in that direction. Therefore,
we achieve the same effect of model poisoning with poisoning points of smaller gradients, thereby
making the attack more robust to clipping.

The Role of Auditing in DP. More generally, our work takes a quantitative, empirical approach to
auditing the privacy afforded by specific implementations of differentially private algorithms. Our
auditing algorithm described in Section 2.2 is generic, and can be used with an appropriate poisoning
algorithm, like the one we describe for DP-SGD. We do not advocate trying to definitively measure
privacy of an algorithm empirically, since it’s hopeless to try to anticipate all future attacks. Rather,
we believe this empirical approach has the potential to complement and influence analytical work on
differential privacy, somewhat analogous to the way cryptanalysis informs the design and deployment
of cryptography.

Specifically, we believe this approach can complement the theory in several ways: (1) Most directly,
by advancing the state-of-art in privacy attacks, we can either demonstrate that a given algorithm
with a given choice of parameters is not sufficiently private, or give some confidence that it might be
sufficiently private. (2) Establishing strong lower bounds on ¢ gives a sense of how much more one
could hope to get out of tightening the existing privacy analysis. (3) Observing how the performance

2 Although our methods are general, in this work we exclusively study the implementation and privacy
analysis of DP-SGD in TensorFlow Privacy [Goo].



of the attack depends on different datasets, hyperparameters, and variants of the algorithm can identify
promising new phenomena to explore theoretically. (4) Producing concrete privacy violations can
help non-experts interpret the concrete implications of specific choices of the privacy parameter.

1.2 Related Work

DP-SGD. Differentially private SGD was introduced in [SCS13], and an asymptotically optimal
analysis of its privacy properties was given in [BST14]. Notably Abadi et al. [ACG"16] gave
greatly improved concrete bounds on its privacy parameter, and showed its practicality for training
neural networks, making DP-SGD one of the most promising methods for practical private machine
learning. There have been several subsequent efforts to refine the privacy analysis of this specific
algorithm [MTZ19, DRS19, YLP™19]. A recent work [HT19] gave a heuristic argument that SGD
itself (without adding noise to the gradients) satisfies differential privacy, but even then the bounds
on ¢ are quite large (e.g. ¢ = 13.01) for most datasets.

Privacy Attacks. Although privacy attacks have a very long history, the history of privacy attacks
against aggregate statistical information, such as machine learning models, goes back to the seminal
work of Dinur and Nissim [DNO3] on reconstruction attacks. A similar, but easier to implement
type of attack, membership inference attacks, was first performed by Homer et al. [HSR*08], and
theoretically analyzed in [SOJH09, DSS™T15]. Shokri et al. [SSSS17] and Yeom et al. [YGFJ18] gave
black-box membership inference algorithms for complex machine learning models. Membership
inference attacks are compelling because they require relatively weak assumptions, but, as we show,
state-of-the-art membership inference attacks lead to quantitatively weak privacy violations. Carlini et
al. [CLE™" 19] show that specific data points, called canaries, can be memorized by language models,
and that differential privacy with very weak parameters (¢ > 10°) protects from this memorization.
Sablayrolles et al. [SDSJ20] show how to modify images to make them “’traceable”—to be able to
determine whether they were used in a training set.

More directly related to our work, privacy attacks were recently used by Jayaraman and Evans [JE19]
to understand the concrete privacy leakage from differentially private machine learning algorithms,
specifically DP-SGD. However, the goal of their work is to compare the privacy guarantees offered
by different variants of differential privacy, rather than to determine the level of privacy afforded by a
given algorithm. As such, their attacks are quantitatively much less powerful than ours (as we show
in Figure 2), and are much further from determining the precise privacy guarantees of DP-SGD.

Differential Privacy and Data Poisoning. Ma et al. [MZH19] and Hong et al. [HCK20] evaluate
the effectiveness of data poisoning attacks on differentially private machine learning algorithms. Ma
et al. consider both the output perturbation and objective perturbation algorithms for learning ridge
regression and logistic regression models, proposing attacks on differentially private algorithms, and
also argue that differentially privacy can serve as a defense for poisoning attacks. Hong et al. propose
differential privacy as a defense for poisoning attacks, showing that DP-SGD performs effectively at
defending against existing poisoning attacks in the literature. While differential privacy provides a
provable defense for poisoning attacks, our intuition is that the strong poisoning attacks we design
allow us to measure a lower bound on the privacy offered by differentially private algorithms.

2 (Measuring) Differential Privacy

2.1 Differential Privacy Background

We begin by outlining differential privacy and one of its relevant properties: group privacy. We
consider machine learning classification tasks, where a dataset consists of many samples from some
domain D = X x ), where & is the feature domain, and ) the label domain. We say two datasets
Dy, D, differ on k rows if we can replace at most k elements from Dy to produce D, .

Definition 2.1 ((DMNSO06]). An algorithm A : D — R is (g, d)-differentially private if for any two
datasets Dy, D1 which differ on at most one row, and every set of outputs O C R:

PrlA(Dy) € O] < ¢ PrlA(D;) € O] + 4, (1)

where the probabilities are taken only over the randomness of A.



Lemma 1 (Group Privacy). Let Dy, D; be two datasets differing on at most k rows, A is an
(e, )-differentially private algorithm, and O an arbitrary output set. Then
Pr[A(Dy) € O] < " Pr[A(Dy) € O] + &=L . 6.

ef—1

2

Group privacy will give guarantees for poisoning attacks that introduce multiple points.

DP-SGD. The most prominent differentially private mechanism for training machine
learning models is differentially private stochastic gradient descent (DP-SGD) [SCS13,
BST14, ACGT16]. DP-SGD makes two modifications to the standard SGD procedure:
clipping gradients to a fixed maximum norm . D,

C, and adding noise to gradients with standard Algorithm 1: D,P S,'GD -

deviation oC, for a given &, as shown in Al- Data: Input: Clipping norm C', noise

gorithm 1. Given the hyperparameters — clip- magmtude o, lteration count T, batch

ping norm, noise magnitude, iteration count, and size b, dataset D, initial model

batch size — one can analyze DP-SGD to con- parameters 0o, learning rate 7

clude that it satisfies (¢, §)-differential privacy ¥OF ée_[g]
> 0. N
for some parameters ¢, = 0 For (x,y) € batch of b random elements
of D

2.2 Statistically

= Vol(0;;
Measuring Differential Privacy g ol(0;; (z,9))

G =G +b"'g -min(1,Clg|;")
0; = 0;_1 — (G + N(0, (Co)2))
Return 61

In this section we describe our main statistical
procedure for obtaining lower bounds on the pri-
vacy parameter for a given algorithm .4, which
functions differently from the membership infer-
ence attack used in prior work ([SSSS17, JE19] and described in Appendix D). Here, we describe the
procedure generally, in the case where § = 0; in Appendix A, we show how to adapt the procedure
for & > 0, and in Section 3, we discuss how we instantiate it in our work. Given a learning algorithm
A, we construct two datasets Dy and D, differing on k rows, and some output set O. We defer the
discussion of constructing Dy, D1, and O to Section 3. We also wish to bound the probability that
we incorrectly measure €, by a small value a. From Equation (2), observe that by estimating the
quantities pg = Pr[A(Dy) € O] and p; = Pr[A(D;) € O], we can compute the largest ¢, 5 such
that Equation (2) holds. With § = 0, this simplifies to e,z = In(po/p1). This serves as an estimate
of the leakage of the private algorithm, but requires estimating py and p; accurately.

For an arbitrary algorithm, it’s infeasible to com-
pute po, p1 precisely, so we rely on Monte Carlo
estimation, by training some fixed 7' number of
times. However, this approach incurs statistical
uncertainty, which we correct for by using Clop-
per Pearson confidence intervals [CP34]. That is,

Algorithm 2: Empirically Measuring €

Data: Algorithm A, datasets Dy, D, at
distance k, output set O, trial count
T, confidence level «

ctg =0,ct; =0

to ensure that our estimate 7,5 holds with prob-
ability > 1 — «, we find a Clopper Pearson lower
bound for p; that holds with probability 1 — «/2,
and an upper bound for p, holding with probabil-
ity 1 — «/2. Qualitatively, we can be confident
that our lower bound on privacy leakage £’ holds

For i € [T
If .A(D()) €O ctg=ctyg+1
IfA(Dl) €O cty=cty +1
Po =
CLOPPERPEARSONLOWER (ctg, T', v/2)
P1 =

CLOPPERPEARSONUPPER(cty, T, cr/2)

with probability 1 — «. This procedure is outlined
Return LB = ln(ﬁo/ﬁl)//{

in Algorithm 2, and we prove its correctness in
Theorem 2.

Theorem 2. When provided with black box access to an algorithm A, two datasets Dy and D,
differing on at most k rows, an output set O, a trial number 7" and statistical confidence «, if
Algorithm 2 returns €, 3, then, with probability 1 — «, A does not satisfy £’-DP for any ¢’ < 3.

We stress that when we say €15 is a lower bound with probability 1 — «, this is only over the
randomness of the Monte Carlo sampling, and is not based on any modeling or assumptions. We can
always move our confidence closer to 1 by taking T larger.

Proof of Theorem 2. First, the guarantee of the Clopper-Pearson confidence intervals is that, with
probability at least 1 — «, pg < pg and p; > p1, which implies po/p1 > po/P1. Second, if A is



¢-DP, then by group privacy we would have py/p; < exp(ke), meaning A is nor £-DP for any
g’ < +1In(py/p1). Combining the two statements, A is not &’ for any ¢’ < ¢ In(po/p1) = erp. O

The €, reported by Algorithm 2 has two fundamental upper bounds, the provable €;5,, and an upper
bound, eppr (T, @), imposed by Monte Carlo estimation. The first upper bound is natural: if we run
the algorithm on some .4 for which the € we can prove is ey, = 1, thenep < €4, = 1. To understand
eopr (T, ), suppose we run 500 trials, and desire « = 0.01. The best possible performance is if
we get perfect inference accuracy and k = 1, where cty = 500 and ct; = 0. The Clopper Pearson
confidence interval produces pg = 0.989,p1 = 0.011, which gives e, 5 = 4.54/k = 4.54. Then,
with 99% probability, the true ¢ is at least 4.54, and e pr (T, o) = 4.54.

We remark that the above procedure only demonstrates that .4 cannot be strictly better than (5, 0)-
DP, but allows for it to be (e1,5/2, d)-DP for very small 6. However, in our work, po, p1 turn out
never to be too close to 0, so these differences have little effect on our findings. In Appendix A,
we formally discuss how to modify this algorithm for (g, §)-DP for § > 0. We also show when we
can increase €, by considering the maximum upper bounds of the original output set O and its
complement O,

3 Poisoning Attacks

We now show how to use poisoning attacks to run Al-
gorithm 2. Intuitively, we begin with a dataset D and
replace k£ rows with poisoning points to form D;; we
then use the impact of poisoning as an output set O. We
start with existing backdoor attacks [GDGG17], and then
propose a more effective clipping-aware poisoning attack.

ClipBKD Backdoor

3.1 Poisoning Background

In a poisoning attack, an adversary replaces k data points

from a training dataset D of n points. The poisoned train- Figure 1: The distribution of gradients
ing dataset is provided as input to the training algorithm, from an iteration of DP-SGD under a
which releases a model f that minimizes a loss function clean dataset (blue ellipse) and a poi-
L(f, D) onits given dataset D. soned dataset (red ellipse). The right
pair depicts traditional backdoors while
the left pair depicts our backdoors. Our
attack pushes in the direction of least
variance, so is impacted less by gradient
clipping, which is indicated by the two
distributions overlapping less.

We focus on a specific type of poisoning attack, called a
backdoor attack [GDGG17]. In a backdoored model, the
performance on natural data is maintained, but, by adding
a small perturbation to a data point = into Pert(x), the
adversary changes the predicted class of the perturbed data.
These attacks have been developed for image datasets. In
the original attack [GDGG17], described in Algorithm 3,
the perturbation function Pert(-) adds a pattern in the corner of an image. The poisoning attack takes
natural data (x, y), perturbs the image to Pert(z), and changes the class to some y,,. The objective is
to decrease the loss on (Pert(x), y,) values from the perturbed test set.

3.2 Clipping-Aware Poisoning

DP-SGD makes two modifications to the learning process to preserve privacy: clipping gradients and
adding noise. Clipping provides no formal privacy on its own, but many poisoning attacks perform
significantly worse in the presence of clipping. Indeed, the basic backdoor attack from Section 3.1
results in a fairly weak lower bound of at most e, 5 = 0.11 using the Fashion-MNIST dataset, even
with no added noise (which has an €4, = 00). To improve this number, we must make the poisoning
attack sufficiently robust to clipping.

To understand existing backdoor attacks’ difficulty with clipping, consider clipping’s impact on
logistic regression. The gradient of model parameters w with respect to a poisoning point (zp, y,) is

Vol (w, b; Lp, yp) = El(w xp + b, yp)xp-



Algorithm 3: Baseline Backdoor Poisoning Attack and Test Statistic (Section 3.1)

Data: Dataset X, Y, poison size k, perturbation function Pert, target class y,
Function Backpoor (X, Y, k, Pert,y,):

X, = GETRANDOMROWS (X, k)

X, = Pert(X)

X}, = REPLACERANDOMROWS (X, X))

Y}) = REPLACERANDOMROWS(Y, y,,)

return Dy = (X,Y), Dy = (X, Y})

Data: Model f, dataset (X,Y’), pert. function Pert, target class v, loss function ¢, threshold Z
Function BAckpooRTEST(f, X, Y, Pert,y,, ¢, Z):

X, = Pert(X)

It ex, ¢(f: (xp,yp) > Z Return Backdoored

Return Not Backdoored

Algorithm 4: Clipping-Aware Backdoor Poisoning Attack and Test Statistic (Section 3.2)

Data: Dataset X, Y, pretrained model f, poison size k, dataset dimension d, norm m
Function CL1PBkD (X, Y k, f,m):

U,D,V =SVD(X) > Singular value decomposition
zp =mVy >V is the singular vector for smallest singular value
yp = argmin, f(z,) > Pick class maximizing gradient norm
X} = REPLACERANDOMROWS (X, [z] * k) > Add poisoning point k times
Y}, = REPLACERANDOMROWS(Y, [y,] * k) > Add targeted class & times

return DO = (Xa Y)a Dl = (tirv Y—t‘l:")

Data: Model f, Poison Data x,,, ,,, Threshold Z
Function CL1PBKDTEST(f, zp, Yp, £):

If (f(xp) — £(0%)) - y, > Z Return Backdoored
Return Not Backdoored

Standard poisoning attacks, including the backdoor attack from Section 3.1, focus on increasing
|¢/(w -z, + b,y,)|; by doubling this quantity, if |z,| is fixed, half as many poisoning points are
required for the same effect. However, in the presence of clipping, this relationship is broken.

To be more effective in the presence of clipping, the attack must produce not only large gradi-
ents, but distinguishable gradients. That is, the distribution of gradients arising from poisoned
and cleaned data must be significantly different. To analyze distinguishability, we consider the
variance of gradients, illustrated in Figure 1, and seek a poisoning point (x,,¥y,) minimizing
Var g yyep[Vwl(w, bz, yp) - Vi l(w, b; 2, y)]. This is dependent on the model parameters at a
specific iteration of DP-SGD: we circumvent this issue by minimizing the following upper bound,
which holds for all models (for logistic regression, |¢'(w - = + b; y)| < 1):

Var g epll (w - xzp 4 b, yp)xy - £ (w - 2 4 b, y)z] < Var, yyeplzp - ).

We can minimize this variance with respect to the poisoning point x,, by using the singular value
decomposition: selecting x,, as the singular vector corresponding to the smallest singular value
(i.e. the direction of least variance), and scale x,, to a similar norm to the rest of the dataset. We select
Yyp to be the smallest probability class on x,. We then insert & copies of the poisoning point (xp, yp).
We call this approach CLIPBKD, detailed in Algorithm 4. We prove in Appendix B that when we
run CLIPBKD (modified for linear regression) to estimate the privacy of the output perturbation
algorithm, we obtain £, within a small factor of the upper bound ¢, giving evidence that this
attack is well suited to our application in differential privacy. In addition, our theoretical analysis
highlights a data-dependence—the attack is more effective when the data has directions of small
variance. As a result, it may be that more “spherically distributed” datasets are less vulnerable to
privacy violations. In Appendix C, we describe how to adapt CLIPBKD to transfer learning from a
pre-trained model.

For both standard and clipping-aware backdoors, we generate Dy, D; with a given poisoning size k,
using functions BACKDOOR or CLIPBKD, respectively. With larger k, the poisoning attack will be



Dataset | Epochs Learning Rate Batch Size ¢ Regularization
FMNIST 24 0.15 250 0
CIFARI10 20 0.8 500 0

P100 100 2 250 10-%/107°

Table 1: Training details for experiments in Section 4. P100 regularization is 10~ for logistic
regression and 10~* for neural networks, following [JE19].

more distinguishable, making it more effective when there is more noise (when €4, is small). Then
the test statistic is whether the backdoored points are distinguishable by a threshold on their loss (i.e.,
output set O is whether BKDTEST or CLIPBKDTEST return “Backdoored”). We first run an initial
phase of T trials to find a good threshold Z for the test functions. We then run another 7’ trials in
Algorithm 2 to estimate py and p; based on either the BKDTEST or the CLIPBKDTEST test statistic.

4 Experiments and Discussion

4.1 Experimental Setup

We evaluate both membership inference (MI, as used by [YGFJ18] and [JE19] and described in
Appendix D) and our algorithms on three datasets: Fashion-MNIST (FMNIST), CIFAR10, and
Purchase-100 (P100). For each dataset, we consider both a logistic regression (LR) model and a two-
layer feedforward neural network (FNN), trained with DP-SGD using various hyperparameters:

FMNIST [XRV17] is a dataset of 70000 28x28 pixel images of clothing from one of 10 classes, split
into a train set of 60000 images and a test set of 10000 images. It is a standard benchmark dataset for
differentially private machine learning. To improve training speed, we consider a simplified version,
using only classes 0 and 1 (T-shirt and trouser), and downsample so each class contains 3000 training
and 1000 testing points. CIFAR10 [Kri09] is a harder dataset than FMNIST, consisting of 60000
32x32x3 images of vehicles and animals, split into a train set of 50000 and a test set of 10000. For
training speed, we again take only class 0 and 1 (airplane and automobile), making our train set
contain 10000 samples, and the test set 2000 samples. For models we train on CIFAR10, we follow
standard practice for differential privacy and fine-tune the last layer of a model pretrained nonprivately
on the more complex CIFAR100, a similarly sized but more complex benchmark dataset [PCS™20].
P100 [SSSS17] is a modification of a Kaggle dataset [Pur], with 200000 records of 100 features,
and 100 classes. The features are purchases, and the classes are user clusters. Following [JE19], we
subsample the dataset so it has 10000 train records and 10000 test records.

Model Size. The two-layer feedforward neural networks all have a width of 32 neurons. For
CIFARI1O, the logistic regression model and feedforward neural network are added on top of the
pretrained convolutional neural network.

Computing Thresholds. In order to run Algorithm 2, we need to specify Dy, D1 and O. We’ve
described how to use poisoning to compute Dy, D1, and how the test statistics for these attacks are
constructed, assuming a known threshold. To produce this threshold, we train 500 models on the
unpoisoned dataset and 500 models on the poisoned dataset, and identify which of the resulting 1000
thresholds produces the best €5, using Algorithm 2.

Training Details. We discuss the details of training in Table 1. We selected these values to ensure a
good tradeoff between accuracy and ¢, and selecting {5 regularization for P100 based on [JE19].

Our techniques are general, and could be applied to any dataset-model pair to identify privacy risks
for DP-SGD. Examining these six dataset-model pairs demonstrates that our technique can be used to
identify new privacy risks in DP-SGD, and a comprehensive empirical study is not our focus.

4.2 Results and Discussion

Figure 2 presents a direct comparison of the privacy bounds produced by ClipBKD (our attack), the
standard backdoor attack, and MI. As standard backdoor attacks only exist for images, we only report
results on them on FMNIST and CIFAR10. The pattern we choose for backdoor attacks is a 5x5
white square in the top-left corner of an image. For ClipBKD, we use T' = 500 trials and confidence
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Figure 2: Performance of privacy attacks MI (Membership Inference—[YGFJ18, JE19]), Backdoor,
and ClipBKD on our datasets. LR = logistic regression, FNN = two-layer neural network. Backdoor
attacks have not been developed for Purchase-100, so only MI and Clip-BKD were run. Backdoors
do not provide positive e, 5 on CIFAR10 due to difficulty with the pretrained model.

level & = 0.01 (i.e., our Monte Carlo estimates hold with 99% confidence) and report the best result
from k = 1,2, 4, 8 poisoning points. Results for MI use 1000 samples, and average over 10 trained
models. For context, we display the best theoretical upper bound on ey, and also € op7(500,0.01),
which is the best value of €, that we could hope to produce using 7" trials and confidence level o.

For every dataset and model, we find that ClipBKD significantly outperforms MI, by a factor of
between 2.5x and 1500x. As a representative example, for €4, = 4 on Purchase-100 with 2-layer
neural networks, ClipBKD gives an €, g of 0.46, while MI gives €5 of 0.04, an improvement of
12.1x. We also find ClipBKD always improves over standard backdoors: on FMNIST by an average
factor of 3.84x, and standard backdoors never reach positive €1, 5 on CIFAR, due to the large number
of points required to poison the pretrained model. We also find that ClipBKD returns €, 5 that are
close to €p,; for finite £4,, the majority of gaps are a factor of < 12.3x, reaching as low as 6.6x. For
example, on Purchase-100, when ¢4, = 4, we find that ClipBKD returns an €5 of 0.46, a gap of
8.7x.

Sensitivity to Hyperparameters. We also give a more thorough evaluation of ClipBKD’s perfor-
mance as a function of DP-SGD’s hyperparameters. We vary clipping norm between 0.5, 1, and
2 and vary the noise to ensure €4, between 1, 2, 4, 8, 16, and co. We also vary the initialization
randomness between random normal initializations with variance O (fixed initialization), 0.5¢, o, and
20, where o is the variance of Glorot normal initialization. Table 2 reports the best €, 5 produced by
the attack over £ = 1, 2,4, 8. Our best measured values of £, 5 occur when initialization is fixed, and
are within a 4.2-7.7x factor of €4, speaking to the effectiveness of ClipBKD. When ¢4, = oo and the
initialization is fixed, we achieve perfect inference accuracy, matching e p7(500,0.01) = 4.54.

These experiments reveal three intuitive trends. First, as €, increases (equivalently, the noise level
decreases), €1, g also increases. Second, as the initialization randomness decreases, €, g increases.
All existing analyses of DP-SGD give privacy upper bounds for any fixed initialization, and our
results suggest that initial randomization might play a significant role. Finally, as clipping norm
decreases, € p decreases, except when the initialization is fixed. In fact, our results show that e,
is more sensitive to the clipping norm than the amount of noise. All existing analyses of DP-SGD
consider only the noise multiplier o p but not the clipping norm, but the role of the clipping norm
itself seems highly significant.



Params

Fixed Init

Init Rand = 0.50

Init Rand = o

Init Rand = 20

ewm =1,0a6p = 5.02
e = 2,0ap = 2.68
Eth = 4, OGD = 1.55
Eth = S,UGD =1.01
Eth = 16,0'GD =0.73
gt = 00,0ap =0

0.13/0.15/0.13
0.33/0.37/0.28
0.89/0.75/0.71
1.61/1.85/1.90
2.15/2.16/2.43
4.54/4.5414.54

0.13/0.17/0.13
0.27/0.33/0.39
0.28/0.52/0.78
0.33/0.55/1.27
0.36/0.80/1.39
0.29/0.95/2.36

0.06/0.12/0.09
0.10/0.17/0.27
0.08/0.20/0.54
0.07/0.25/0.53
0.137/0.27/0.72
0.10/0.42/0.79

0.01/0.06/0.08
0.01/0.06/0.17
0.02/0.10/0.18
0.01/0.05/0.20
0.02/0.08/0.16
0.03/0.09/0.27

Table 2: Lower bound €1, g measured with CLIPBKD for clipping norms of (0.5 / 1/ 2) for two-layer
neural networks trained on FMNIST. Training accuracy for all models is 96%-98%. Results are
the maximum over k = 1,2,4,8. ogp refers to the DP-SGD noise multiplier, while ¢ is Glorot
initialization randomness [GB10]. All reported values of €, are valid with 99% confidence over the

randomness of our experiments.

Params Init Rand = 0.50 Init Rand = o Init Rand = 20
e = 1l,06p =7.78 | 0.09/0.01/0.00 0.05/0.00/0.00 0.07/0.05/0.00
e =2,06p =4.04 | 0.16/0.27/0.11 0.21/0.17/0.03 0.20/0.10/0.02
e =4,06p =2.20 | 0.38/0.33/0.30 0.29/0.35/0.30 0.34/0.33/0.13
e =8,06p =1.31 | 052/0.53/042 0.54/0.53/0.52 0.56/0.46/0.50
e = 16,06p = 0.89 | 0.80/0.77/0.71 0.63/0.77/0.76  0.74/0.70/0.72
em =00,0ap =0 2.73/4.53/4.54 1.52/3.08/4.52 090/1.91/2.79

Table 3: Lower bound ¢, measured with CLIPBKD for clipping norms of (0.5 / 1 / 2) for two-
layer neural networks trained on P100. Results are the maximum over k = 1,2,4, 8. o¢gp refers
to the DP-SGD noise multiplier, while o is Glorot initialization randomness [GB10]. We do not
run experiments with fixed initialization as we already achieve o p7 (500, 0.01) with initialization
of 0.50. All reported values of €5 are valid with 99% confidence over the randomness of our
experiments.

We emphasize that for every choice of the hyperparameters, the training accuracy is 96-98%, so the
algorithm has comparable utility, but potentially very different privacy and robustness to poisoning,
as we vary these parameters. We believe these phenomena deserve further analytical study.

On the P100 dataset, we perform an identical parameter sweep, shown in Table 3. On P100, we use ¢
regularization, a higher learning rate, and more epochs, making the contribution of the initialization
smaller. As we would expect from these modifications, the role of both clipping norm and random
initialization are diminished.

5 Conclusion and Future Directions

In this work we use novel poisoning attacks to establish strong limits on the privacy of specific
differentially private algorithms, namely DP-SGD. We establish that the worst-case privacy bounds
for this algorithm are approaching their limits.

Our findings highlight several questions for future exploration: (1) How much can our attacks be
pushed quantitatively? Can the gap between our lower bounds and the worst-case upper bounds be
closed? (2) Can we incorporate additional features into the privacy analysis of DP-SGD, such as
the specific gradient-clipping norm, and the amount of initial randomness? (3) How realistic are the
instances produced by our attacks, and can we extend the attacks to give easily interpretable examples
of privacy risks for non-experts?

Although there is no hope of determining the precise privacy level of a given algorithm in a fully
empirical way, we believe our work demonstrates how a quantitative, empirical approach to privacy
attacks can effectively complement analytical work on privacy in machine learning.

6 Broader Impact

Differentially private algorithms have the potential to unlock the societal benefits of analyzing datasets
of sensitive information while giving strong protections of individual privacy. While all differentially
private algorithms offer a strong qualitative privacy guarantee, the specific quantitative implications



of specific deployments are not as well understood, and, in order to give high utility, these systems
only offer weak worst-case guarantees. The concern is that such systems might only be offering a
veneer of individual privacy, and we believe this status quo poses significant risk. We believe our
work is a step towards giving organizations the information and tools they need to make informed
decisions about the implications of specific deployments of differential privacy. Moreover, our
work can support those working on new methods and tools to ultimately push the Pareto frontier of
privacy-utility tradeoffs forward.

We note that the sort of individual privacy guarantees do not address all possible concerns about
how data is used, not even all concerns that are informally described as “privacy concerns.” Our
work cannot ultimately answer when and how differential privacy should or should not be used in
specific applications, it merely provides the people entrusted with making those decisions with correct
information. This situation is similar to cryptography, where tools like encryption address specific
problems, and must be used carefully and only when appropriate, but better encryption technology,
or exposing the flaws of specific encryption technologies enables better policy decisions.

Lastly, we point out that our work only exposes potential privacy risks in experiments based on public
benchmark datasets. We have not used our methods to reveal any sensitive information about real
individuals that was previously believed to be private. As with cryptanalysis, it is important to follow
ethical disclosure guidelines of any attacks against deployed systems to balance the value of public
knowledge of the breach versus harm to existing users.
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