
Learning Implicitly with Noisy Data in Linear

Arithmetic

Alexander Philipp Rader
Imperial College London

alexander.rader20@imperial.ac.uk

Ionela Georgiana Mocanu
University of Edinburgh
i.g.mocanu@ed.ac.uk

Vaishak Belle
University of Edinburgh & Alan Turing Institute

vaishak@ed.ac.uk

Brendan Juba
Washington University in St. Louis

bjuba@wustl.edu

Abstract

Robustly learning in expressive languages with real-world data continues to be a
challenging task. Numerous conventional methods appeal to heuristics without any
assurances of robustness. While PAC-Semantics offers strong guarantees, learning
explicit representations is not tractable even in a propositional setting. However,
recent work on so-called "implicit" learning has shown tremendous promise in
terms of obtaining polynomial-time results for fragments of first-order logic. In this
work, we extend implicit learning in PAC-Semantics to handle noisy data in the
form of intervals and threshold uncertainty in the language of linear arithmetic. We
prove that our extended framework keeps the existing polynomial-time complexity
guarantees. Furthermore, we provide the first empirical investigation of this hitherto
purely theoretical framework. Using benchmark problems, we show that our
implicit approach to learning optimal linear programming objective constraints
significantly outperforms an explicit approach in practice.

1 Introduction

Data in the real world can be incomplete, noisy and imprecise. Approaches from the knowledge
representation communities take great care to represent expert knowledge; however, this knowledge
can be hard to come by, challenging to formalize for non-experts, and brittle. In contrast, connectionist
approaches, such as neural networks, have been particularly successful in learning from real-world
data. However, they represent knowledge as distributed networks of nodes, which is neither human-
readable nor very explainable (Gunning and Aha, 2019).

In this work, we are concerned with learning in expressive languages, where knowledge is represented
as logical formulas. In a logical context, Valiant (2000) recognized that the challenge of learning
should be integrated with deduction. He proposed a semantics to capture the quality possessed by
the output of (probably approximately correct) PAC-learning algorithms, the PAC-Semantics. We
will focus on an implicit learning approach in PAC-Semantics, where the step of creating an explicit
representation is circumvented. Very recently, the learnability results have been extended to first-order
clauses in (Belle and Juba, 2019), and then to fragments of satisfiability modulo theories (SMT) in
(Mocanu, Belle, and Juba, 2020). We build upon these results in the following ways:

1. Extending the PAC-Semantics framework to be able to handle imprecise data.
2. Proving that the polynomial running time is preserved.
3. Realising the first implementation of the PAC-Semantics framework.
4. Empirically demonstrating the advantages of implicit reasoning regarding speed and noise

resistance.

4th Knowledge Representation and Reasoning Meets Machine Learning Workshop (KR2ML 2020), at NeurIPS.

2 Extending the implicit PAC-Semantics framework

In this section, we extend the implicit PAC-Semantics framework from Mocanu, Belle, and Juba
(2020) to allow examples to be intervals while maintaining a polynomial running time. The rationale is
that real-world data is often imprecise and thus better represented as intervals rather than assignments.

Formulas are expressed in SMT, which is a generalisation of Satisfiability (SAT). It includes function
symbols of the form {0, 1,+,�,, <,�, >,=, 6=}, interpreted in the usual way over the reals. The
framework is PAC-Semantics, which was introduced by Valiant (2000) to capture the quality possessed
by knowledge learned from independently drawn examples from some unknown distribution D. The
output produced using this approach does not express validity in the traditional (Tarskian) sense.
Instead, the notion of validity is then defined as follows:

Definition 1: [(1� ✏)-validity (Valiant, 2000)] Given a joint distribution D over Σn, we say that a
Boolean function f is (1� ✏)-valid if Prρρρ∈D[f(⇢⇢⇢) = 1] � 1� ✏.

The reasoning problem of interest is deciding whether a query formula ↵ is (1� ✏) valid. Knowledge
about the distribution D comes from the set of examples ⇢⇢⇢, independently drawn from this distribution
and from a collection of axioms ∆ which constitutes the knowledge base.

Input: Procedure A, query ↵, variables ✏, �, � 2 (0, 1), list of partial intervals {�(1), ...,�(m)},
knowledge base ∆

Output: Accept if there exists a derivation proof S of ↵ from ∆ and formulas '1,'2, ... that are
simultaneously witnessed true with probability at least (1� ✏+ �) on BBB(D)
Reject if ∆) ↵ is not (1� ✏� �)-valid under D

begin
B b✏⇥mc, FAILED 0.
foreach k in m do

if A(↵,�(k),∆) returns UNSAT then
Increment FAILED.
if FAILED > B then return Reject;

return Accept
Algorithm 1: DecidePAC

Unfortunately, explicitly learning even simple models like DNF formulas is believed to be intractable.
(Daniely and Shalev-Shwartz, 2016). However, Khardon and Roth (1997) and Juba (2013) observed
that by circumventing the need to produce an explicit representation, learning to reason can be
effectively reduced to classical reasoning, leading to a notion of implicit learning. The idea is
to answer the query directly using the examples, which is demonstrated in algorithm 1. Mocanu,
Belle, and Juba (2020) have shown that implicit reasoning is polynomial-time for SMT queries with
partial assignments of examples. We now show that polynomial running-time is preserved for partial
intervals of examples. To turn complete assignments into partial intervals, we introduce the notion of
a blurring process:

Definition 2: [Blurring process] Given a full assignment ⇢⇢⇢(k) = {⇢1⇢1⇢1, . . . ,⇢n⇢n⇢n}, a blurring function is

defined as B : Σn ! {Σ[{�1,+1}}2n, which produces a set of intervals �(k) consistent with the

assignment ⇢⇢⇢(k), i.e., with the property that for each ⇢⇢⇢i, B(⇢⇢⇢)2i−1  ⇢⇢⇢i  B(⇢⇢⇢)2i, where B(⇢⇢⇢)2i−1

is a random value from (�1,⇢⇢⇢i] - lower bound, and B(⇢⇢⇢)2i is a random value from [⇢⇢⇢i,1) - upper
bound. We refer to elements of the set Σ2n as partial intervals, where a full assignment is bound by
the lower and upper bound. A blurring process B is a blur-valued random variable (i.e. a random
function).

In this way, we allow the degree of uncertainty of an observation to be given by the width of the
interval in which the real value lies. This leads us to the main theorem (Note that a formula ' is
witnessed true under partial intervals � if it is true under every assignment possible under �.):

Theorem 3: [Implicit learning] Let ∆ be a conjunction of constraints representing the knowledge
base and an input query ↵. We draw at random m = 1

2γ2 ln
1
δ

sets of intervals {�(1),�(2), ...,�(m)}

2

Acknowledgements

Ionela G. Mocanu was supported by the Engineering and Physical Sciences Research Council (EP-
SRC) Centre for Doctoral Training in Pervasive Parallelism (grant EP/L01503X/1) at the University
of Edinburgh, School of Informatics. Vaishak Belle was supported by a Royal Society University
Research Fellowship. Brendan Juba was supported by NSF/Amazon award IIS-1939677.

References

Belle, V.; and Juba, B. 2019. Implicitly Learning to Reason in First-Order Logic. In NeurIPS. URL
http://arxiv.org/abs/1906.10106.

Daniely, A.; and Shalev-Shwartz, S. 2016. Complexity theoretic limitations on learning DNF’s. In
COLT, 815–830.

Gunning, D.; and Aha, D. 2019. DARPA’s Explainable Artificial Intelligence (XAI) Program. AI
Magazine 40(2): 44–58. doi:10.1609/aimag.v40i2.2850. URL https://www.aaai.org/ojs/
index.php/aimagazine/article/view/2850.

Hillier, F. S.; and Lieberman, G. J. 1995. Introduction to Mathematical Programming. McGraw-Hill.

Juba, B. 2013. Implicit learning of common sense for reasoning. In IJCAI, 939–946.

Khardon, R.; and Roth, D. 1997. Learning to Reason. J. ACM 44(5): 697–725. ISSN 0004-5411.
doi:10.1145/265910.265918. URL https://doi.org/10.1145/265910.265918.

Mocanu, I.; Belle, V.; and Juba, B. 2020. Polynomial-time Implicit Learnability in SMT. In
Proceedings to the 24th European Conference on Artificial Intelligence (ECAI 2020).

Schede, E. A.; Kolb, S.; and Teso, S. 2019. Learning Linear Programs from Data. In 2019 IEEE 31st
International Conference on Tools with Artificial Intelligence (ICTAI), 1019–1026.

Valiant, L. G. 2000. Robust logics. Artificial Intelligence 117(2): 231–253. ISSN 0004-3702. doi:10.
1016/S0004-3702(00)00002-3. URL http://www.sciencedirect.com/science/article/
pii/S0004370200000023.

5

Learning Implicitly with Noisy Data in Linear Arithmetic -

Appendix

1 Proofs

1.1 Implicit learning

Theorem 1: [Implicit learning] Let ∆ be a conjunction of constraints representing the knowledge base and
an input query ↵. We draw at random m = 1

2γ2 ln
1
δ
sets of intervals {�(1),�(2), ...,�(m)} from BBB(D) for the

distribution D and a blurring process BBB. Suppose that we have a decision procedure A. Then with probability
1− �:

• If (∆ ⇒ ↵) is not (1− ✏−�) - valid with respect to the distribution D, Algorithm 1 returns Reject; and

• If there exists some KB I such that ∆∧I |= ↵ and I is witnessed true with probability at least (1−✏+�)
on BBB(D), then Algorithm 1 returns Accept.

Moreover, if A runs in polynomial-time (in the number of variables, size of query, and size of knowledge
base), so does Algorithm 1.

Proof Consider a sound and complete decision procedure A for the language domain aforementioned and
the reasoning problem of deciding ∆ |= ↵. By definition of soundness and completeness, ∆ |= ↵ if and only if
A(∆∧¬↵) = UNSAT. Suppose we receive observations about the world as sets of blurred intervals � and we
wish to decide entailment of the aforementioned problem with respect to these blurred observations, hence
calculate A(∆|φ ∧ ¬↵|φ) = UNSAT. This holds iff A(∆ ∧ � ↓ ∧¬↵) = UNSAT, iff A(∆ ∧ I ∧ � ↓ ∧¬↵) =
UNSAT for any KB I that is witnessed true under �. If ∆ ⇒ ↵ is unsatisfied on a point drawn from D,
it is not entailed by the blurred example from B(D) either, so FAILED increments when such points are
drawn, and does not increment when a suitable I is witnessed true. By Hoeffding’s inequality, the returned
value satisfies the given conditions with probability 1−� for m examples. The decision procedure will return
UNSAT in polynomial time T (n) depending on the size of the knowledge base and query. Every iteration
costs the time for checking feasibility which is bounded by the time complexity of the decision procedure
used for deciding satisfiability. The total number of iterations is m = 1

2γ2 log
1
δ
, corresponding to the number

of samples drawn, which gives us the total time bound of O(T (n) · 1
γ2 log

1
δ
).

1.2 OptimisePAC

The pseudocode for the OptimisePAC algorithm is given in algorithm 1. We now prove that the algorithm
will find a sufficiently close estimate of the objective value in polynomial time:

Theorem 2: Let ∆ be a conjunction of constraints representing the knowledge base and as input preference
function f . We draw at random m = O(1

γ2 log
1
δ
) partial intervals �(1), ...,�(m) from BBB(D) for a distribution

D and a blurring process BBB. Suppose that we have a decision procedure A for linear programming running
in time T (n). Then the OptimisePAC algorithm will return a significant bits of a value v∗ that is attainable
on I ∧∆ for all KBs I that are witnessed with probability 1− ✏+ �, and such that for the value u∗ obtained
by incrementing the ath bit, ∆ ⇒ (f ≤ u∗) is (1 − ✏ − �)-valid (resp., f ≥ u∗ with the ath bit decreased if
minimising) in time O(T (n) ·m · a).

Proof We will use a theorem due to [Talagrand(1994)] (Theorem 4.9 of [Anthony and Bartlett(1999)]):

1

Input: Preference function f , validity ✏ ∈ (0, 1), accuracy a ∈ Z
+, list of intervals

� = {�(1),�(2), ...,�(m)}, goal ∈ {”maximise”, ”minimise”}
Output: t estimated optimal value w.r.t. f
begin

if goal = ”minimise” then f ← −f ;
if DecidePAC(�, 0 ≥ f, ✏) accepts then

if DecidePAC(�,−1 ≥ f, ✏) rejects then
l ← −1, u ← 0

else
b ← −2
while DecidePAC(�, b ≥ f, ✏) accepts do b ← b× 2;
l ← b, u ← b/2

else

if DecidePAC(�, 1 ≥ f, ✏) accepts then
l ← 0, u ← 1

else
b ← 2
while DecidePAC(�, b ≥ f, ✏) rejects do b ← b× 2;
l ← b/2, u ← b

for a iterations do

if DecidePAC(�, (l + u)/2 ≥ f, ✏) accepts then u ← (l + u)/2 else l ← (l + u)/2;
if goal = ”minimise” then return −l else return l;

Algorithm 1: OptimisePAC

Theorem 3: [[Anthony and Bartlett(1999), Theorem 4.9]] There are positive constants c1, c2, c3 such that
the following holds. Suppose that F is a set of functions defined on the domain X and that F has a finite
VC dimension d. Let � ∈ (0, 1) and m ∈ Z

+. Then the probability that the empirical mean of any f ∈ F on

m examples differs from its expectation by more than � is at most c1c
d
2e

−c3γ
2
m.

Thus for m ≥ c3

γ2 (d ln c2 + ln c1

δ
), the bound is at most �.

Recall, the VC dimension is the size of the largest set of points that can be given all labels by a class
(“shattered”). Consider a fixed class of Boolean functions on the blurred samples, and which is parameterized
by the objective value bounds b. This function outputs the value 1 whenever ∆ ∧ � ∧ (f(x) ≤ b) returns
UNSAT, and 0 otherwise. We will show that this class has VC-dimension at most 1.

We will show that for any two blurred examples �1 and �2, it is not possible to get all the labellings
{(1, 1), (1, 0), (0, 1), (0, 0)} by varying b. Suppose there is some b∗ for which �1 gives the label 1 and �2 gives
0, meaning that for �1 the bound f ≤ b∗ does not hold and for �2 it does. Since f ≤ b∗ holds for �2, then
for any b > b∗, the decision procedure will return 0 for �2. On the other hand, the bound f ≤ b∗ will not
hold for �1 for all values b < b∗. Thus, in either direction, one of the labels for one of the two remains the
same. So, it is not possible to get all possible labellings of �1 and �2 and so the VC-dimension is ≤ 1.

Therefore, by Talagrand’s bound, given m examples, with probability 1− � DecidePAC answers correctly
for all queries made by OptimisePAC. In particular, we note that the algorithm maintains the invariant that
l is the largest value for which l ≥ f was rejected by DecidePAC. Since it was not accepted, we see that for
any I that is witnessed with probability ≥ 1− ✏+ �, there must exist some x satisfying I ∧∆ with f(x) > l
(resp., f(x) < l if minimising). Since DecidePAC does not reject with u, ∆ ⇒ f(x) ≤ u is (1− ✏− �)-valid,
where u and l only differ by the value of the ath most significant bit. Thus l is as needed.

Finally, the decision procedure A is run each time we call the DecidePAC algorithm. This gives us the
total run time stated in the theorem.

2 Experimental setup

We ran tests on all four problems. For each test, we had 10 independent runs on increasing sample sizes
from 50 to 500 and increasing dimensions from 2 to 4, if applicable. We have 50% positive and 50% negative

2

References

[Anthony and Bartlett(1999)] Anthony, M.; and Bartlett, P. L. 1999. Neural Network Learning: Theoretical
Foundations. USA: Cambridge University Press, 1st edition. ISBN 052111862X.

[Talagrand(1994)] Talagrand, M. 1994. Sharper bounds for Gaussian and empirical processes. The Annals
of Probability 22(1): 28–76.

11

	Introduction
	Extending the implicit PAC-Semantics framework
	Empirical analysis
	Conclusion

