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Abstract. We study the use of Long Short-Term Memory neural net-
works to the modeling and prediction of music. Approaches to applying
machine learning in modeling and prediction of music often apply little,
if any, music theory as part of their algorithms. In contrast, we pro-
pose an approach which employs minimal music theory to embed the
relationships between notes and chord structure explicitly. We extend
the Tonnetz lattice, originally developed by Euler to introduce a metric
between notes, in order to induce a metric between chords. Multidimen-
sional scaling is employed to embed chords in twenty dimensions while
best preserving this music-theoretic metric. We then demonstrate the
utility of this embedding in the prediction of the next chord in a musi-
cal piece, having observed a short sequence of previous chords. Applying
a standard training, test, and validation methodology to a dataset of
Bach chorales, we achieve an accuracy rate of 50.4% on validation data,
compared to an expected rate of 0.2% when guessing the chord ran-
domly. This suggests that using Euler’s Tonnetz for embedding provides
a framework in which machine learning tools can excel in classification
and prediction tasks with musical data.

Keywords: Long short-term memory · LSTM · Music theory ·
Multidimensional scaling · Euler’s Tonnetz

1 Introduction

Long Short-Term Memory (LSTM) neural networks are well known and well uti-
lized neural networks for prediction and classification tasks [1,3,4]. In particular
they have been used to create polyphonic music models—models that can predict
or create music by learning from existing musical pieces. Usually one classifies
or predicts on collections of notes called chords. Such a predictive model can aid
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in composing musical scores which capture the harmonic stylings of a particu-
lar musical artist or genre. Learning the large scale harmonic structure, such as
harmonic cadences, from the level of individual to an entire musical tradition
is of great interest to the musical community. In particular, we will use music
theory to construct an embedding of chords as a foundation for an LSTM neural
network to predict in a musical piece the chord following its previous measure.

Prior work has been done in applying machine learning to the prediction,
classification, and composition of music in various contexts, and in particular in
the utility of LSTMs to learn long sequences of patterns in ordered data. There
is a focus on music composition, generation, and improvisation using LSTMs
[4–6,8] which involve future prediction on different time scales and styles using
many approaches. Some work has been done on an even broader scale; trying to
incorporate large scale musical structure [7] and classification of musical genre
[16].

Similarly, there have been approaches to incorporating music theory; see [13]
as an example which relates information about major and their relative minor
keys, among other things. Analysis has been done on networks which explicitly
encode information beyond harmonic structure, including pitch and meter [14],
which suffers (as they suggest in their paper title) from an extremely large state
and hyperparameter spaces.

Towards the analysis of LSTM network structure in music prediction, the
authors in [1] use the JSB chorales dataset to predict the next set of notes in a
given chorale. They use this to test various LSTM architectures to quantify the
use of gates and peephole connections in an LSTM structure.

Finally, approaches to embedding chords via a “chord2vec” (in analogy with
the famous word2vec in natural language processing) has been explored in [3]
which embeds the data via the word2vec methodology then studies LSTM per-
formance, among a variety of null models.

Taking a different approach, we choose to train our LSTMs on chord types, so
collections of notes modulo an octave. Chords take into account the information
of pitch class, e.g. there is a difference between the notes C4 and C5. In our
setting the chord (C4, E5, G4) is identified with (C5, E3, G5), both of which are
called a C-major triad. We then can measure harmonic distance between chord
types by measuring how far apart they are from one another on the Tonnetz
lattice—a lattice structure originally developed by Euler to represent musical
harmony, see Fig. 1 for Eulers original picture. Multidimensional scaling can
then be used to embed chords as vectors in a relatively low dimensional space
using the Tonnetz distance. This embedding uses musical information to create
the feature space of the chords rather than trying to train a neural network
directly on one-hot encoded chords or the use of other embedding methods such
as chord2vec [3].

A description of the training and the setup of the model are in the Sect. 2
below along with an explanation of the dataset on which we train our model. We
also reference our visualization illustrating the process of a song being classified
by chords [17].
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Fig. 1. The original Tonnetz depicted first in Euler’s 1739 Tentamen novae theoriae
musicae ex certissismis harmoniae principiis dilucide expositae.

In the following sections, we investigate the size of the hidden layers in their
ability to predict chords. The details of this model are also discussed in Sect. 2.
We look at the results of two different types of prediction and various hidden
layer sizes in Sect. 3.

2 Evaluation

For the setup of our experiments, that will be discussed in this section, we
focus on two important aspects: the embedding method and the structure of the
LSTMs. First, we describe the embedding method of chords which takes into
account the structure of chords utilizing Euler’s Tonnetz lattice and the dataset
that will be used. Second, we give the details of the LSTM structure and how it
is applied to the embedded chords.

2.1 Data Set and Embedding

We train, test, and validate our model on a set of 382 Bach chorales,
JSB Chorales [9]. This collection of Bach chorales is pre-partitioned into sub-
collections of training, testing, and validation songs. The format of the songs
is given in MIDI or Musical Instrument Digital Interface. Unlike other music
formats such as .wav or .mp3, MIDI allows one to access individual notes and
beats within a song. Musical software can then be used to play the music similar
to how a player piano plays a piano roll. The advantage of the data being repre-
sented in this format is that one can work with music on the level of individual
notes and beats to create discretizations of songs which preserve their harmonic
or melodic structure.

We preprocess the MIDI files using the python package music21 [10]. In
particular, we process MIDI files by partitioning their time axis into 8th note
bins and snapping all the notes in a particular bin to that bin’s left time point.
This process is called quantization. Once the music has been quantized all the
musical notes at each eighth note are grouped into a collection of notes called
chords. Of course in some time bins there may be no notes present, this is a
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musical rest. To preserve the time structure of the song we replace the rest with
the previous non-empty chord. A chord C in a song S can then be represented as
a subset of musicals pitches e.g. C = {C3, E4, G3}. Here the subscript 3 indicates
the specific pitch of the note type C. For instance, middle C on a piano is given
by C3 while C4 is an octave above. We then quotient the set of chords by their
pitch class, thereby identifying C3 with C4 and so on. By identifying the pitch
classes N = {C,C�/D�,D,D�, . . . , A�/B�,B} with Z12, we define the set of all
chord types as the power set

Ch = 2Z12 .

This set of chord types is quite large, so we restrict ourselves to only those
chord types which are subsets of 7-chords which are common amongst many
generations of music. We build 7-chords in the following manner. First define
the sets:

1. Set of fifths 5 = {6, 7, 8} (diminished, perfect, augmented)
2. Set of thirds 3 = {2, 3, 4, 5} (diminished, minor, major, augmented)
3. Set of sevenths 7 = {9, 10, 11} (diminished, minor, major)

We then build the set of C 7-chords as

Ch7(C) = {{0, x, y, z} |x ∈ 5, y ∈ 3, z ∈ 7} .

Now the set of all 7-chords is the union over all translates of Ch7(C)

Ch7 =
⋃

k∈Z12

(Ch7(C) + k) .

Hence the collection of all sub-chords of 7-chords is the union of powersets

Ch≤7 =
⋃

C∈Ch7

2C.

The collection Ch≤7 has exactly 529 chord types consisting of single notes,
dyads, triads, and tetrachords subsetted from 7-chord types.

Given a chord C in the song S we use music21’s root, fifth, third, and seventh
functions to project C to a subchord C̃ lying in Ch≤7. From this point of
view we project a song to a lower dimensional harmonic space where prediction
becomes a more feasible task. We then embed these projected chords into a
weighted version of the well-known Tonnetz lattice T originally developed by
Euler, see Fig. 2 for a modern unrolled display. The Tonnetz lattice is built using
the following construction:

1. Let the underlying node set of T be Z12

2. For each node k ∈ T:
(a) Join node k to the node k + 7 by an edge of weight 3
(b) Join node k to the nodes k + 3 and k + 4 by edges of weight 5
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Fig. 2. The unrolled Tonnetz lattice formed by connecting notes to their neighboring
fifth, major third, and minor third. Image from [11]

The significance of the weights comes from the harmonic distance between
notes. For example, if we strike a key on the piano we would produce a sound
wave whose displacement can be expanded into a Fourier series given by

φ(t) =
∞∑

n=1

an cos (nωt) + bn sin (nωt) .

Here the frequency term ω is called the fundamental and for n ≥ 2 the terms nω
indicate its overtones. The first three overtones are the octave, fifth, and a major
third respectively. A fifth occurs by tripling the frequency of the fundamental,
this is represented in the Tonnetz with an edge of weight 3. Similarly a major
third occurs by quintupling the fundamental frequency—so an edge weight of 5 in
the Tonnetz. In order to have symmetry across major and minor modes we treat
a minor third the same as a major third in harmonic distance. We then define
the weighted Tonnetz metric dT on T as the shortest-path-distance in T. We can
view dT as a 2nd order approximation of the true harmonic distance between
notes. For those who wish to explore the structure of the Tonnetz further, we
refer are readers to [11].

We use the Tonnetz metric dT to induce a metric dtotalT on Ch≤7 given by
its total-average. Explicitly for C,D ∈ Ch≤7 we define

dtotalT (C,D) =
1

|C||D|
∑

x∈C
y∈D

dT(x, y).

It can be verified that this defines a metric. One can also use the well-known
Hausdorff metric between subsets of a metric space but there will less variability
in distances between chords. The total-average distance intuitively measures how
every note in the first chord changes with respect to every note in the latter. We
then use metric multidimensional scaling (mMDS) via python’s sklearn package
to approximately embed the metric space Ch≤7 into R

n as chord-vectors. If we
order the space Ch≤7 we can represent dtotalT as a matrix D with entries δij
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giving the distance dtotalT (xi, xj) between the ith and jth chord respectively. If
we let m = 529 denote the number of chords in Ch≤7 then for a given integer n
mMDS solves the convex minimization problem

min
X∈Rm×n

∑

i,j

(δij − dij(X))2

where dij(X) denotes the Euclidean distance between the rows X(i) and X(j)

of X. The above objective function is called the stress of the embedding X. In
particular, the package finds a solution by applying an iterative algorithm SMA-
COF to find the fixed point to the so-called Guttman transform—providing the
embedding. See [15] for in-depth analysis. To estimate the optimal embedding
dimension for Ch≤7 we plot the stress of the mMDS embedding as a function of
the embedding dimension and locate where the stress first stabilizes, see Fig. 3.
We estimate an embedding dimension of n = 20 using this method. We con-
jecture that dtotalT cannot be exactly embedded into Euclidean space. This is
supported by the non-zero leveling off of the stress with dimension. Essentially
points in Ch≤7 which are far apart will always have an error in their embedded
distance due to the “curvature” of the space.

We now have a map Tonnetz2vec : Chords → R
20. Using this map we

can convert a song in MIDI format to a time-series of vectors in R
20. We then

train an LSTM to predict harmonic changes in music and test the validity of the
Tonnetz lattice as a fundamental space for learning musical harmony.

2.2 Model Architecture and Training

We use a network with 2 uni-directional LSTM hidden layers and a linear output
layer to train the embedded Bach chorales data set to predict the next chord
in a song given the previous measure of chords. This is implemented in Python
using the Pytorch library [18]. For each element(chord) in the input sequence
(chords series) each layer computes the following functions:

it = σ(W ixx[t] + W iaa[t − 1] + bi) Input gate

ft = σ(W fxx[t] + W faa[t − 1] + bf ) Forget gate
ot = σ(W oxx[t] + W oaa[t − 1] + bo) Output gate

c̃[t] = tanh(W gxx[t] + W gaa[t − 1] + bg) Candidate cell state
a[t] = ot � tanh(c[t]) Hidden state update
c[t] = ft � c[t − 1] + it � c̃[t] Cell state update

where a[t] is the hidden state at time t, c[t] is the cell state at time t and
x[t] is input at time t for t = 1, 2, · · · , s. The output of the model is an affine
transformation of the hidden state in the last time step t = s, i.e.,

y[s] = W yaa[s] + by.

Let n be the input dimension and m be the hidden layer dimension. Now the
weight matrices are W ix,W fx,W ox,W gx ∈ R

m×n, and W ia,W fa, W oa,W ga ∈
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Fig. 3. mMDS stress of the Tonnetz embedding as a function of embedding dimension.

R
m×m. The bias terms are bi, bf , bo, bg ∈ R

m and for the output layer we have
the weight matrix W ya ∈ R

n×m and the bias vector by ∈ R
n. We parse the

embedded Bach chorales data set into input-output pairs such that the input
time series consists of the previous 8 chords {x[t − 7], x[t − 6], · · · , x[t]} and
the output being the next chord x[t + 1]. Each song is parsed using moving
window of size 9 (8 input chords and 1 output chord). For the training phase,
we train all the input-output pairs occuring in 229 Bach chorales in one batch
and backpropagate with Adam optimization algorithm [12] using for the loss
function the mean squared error (MSE) in the chord embedding space.

3 Results

In this section we apply the methodology described above to the JSB Chorales
dataset. We first study how performance on test data varies depending on the
use of simple accuracy (exact chord matches) compared to a relaxed notion of a
match (at least 3 notes agree with the true chord). We find that performance is
improved with the relaxation, but qualitative behavior and location of local
maxima/minima is not noticeably different. Hence, model selection to avoid
overfitting is not impacted by the use of different metrics.

In the second part of this study, we vary the size of the hidden layers in our
LSTM model and study its effect on prediction accuracy. We see a monotone
increase in accuracy on the validation data set with a maximum of 0.504 with a
hidden layer size of 512 (the maximum value studied), though the values begin
to plateau with a hidden layer size of 128.
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3.1 Bach Chorales

The publicly available Bach chorale data set comes preprocessed and divided
into training, testing, and validation sets; we use this subdivision here. Chords
are mapped to 20 dimensions as described in Subsect. 2.2. Mean squared error is
used as a loss function for training, and test set performance is evaluated either
as an exact match “Accuracy” or as “3-note accuracy” which is a relaxation
which counts a prediction as correct if at least three notes in the true and pre-
dicted chord agree. From the perspective of live music, two chords agreeing on
three notes often gives a similar harmonic impression. From a machine learning
perspective, this relaxes the classification task to achieving 3-note accuracy. In
Fig. 4, we visualize an experiment with an LSTM trained on 200 chorales and
the accuracy on test data evaluated on 77 chorales. We observe nearly identical

Fig. 4. Value of loss function on training data (top) and two types of accuracy on
test data (bottom) for an LSTM with a hidden layer size of 128 over 1000 epochs
of training. Similar qualitative behavior is observed using the two types of accuracy,
making decisions for model selection the same for both.

Table 1. Training and test set performance for the JSB chorale dataset for various
choices of the size of the LSTM hidden layer.

Hidden layer size 4 8 16 32 64 128 256 512

Validation accuracy 0.000 0.000 0.201 0.321 0.412 0.477 0.495 0.504

Validation accuracy (3-note) 0.100 0.073 0.247 0.376 0.467 0.550 0.596 0.614
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qualitative trends in both accuracy and note accuracy, with approximately a
difference of ten percentage points in reported. While a 3-note accuracy may
be of further interest as more fine-tuned models are developed, for the pur-
poses of model selection we find it sufficient to restrict to simple accuracy (exact
matches).

Fig. 5. Value of loss functions (top) and simple accuracy on test data (bottom) for a
range of hidden layer sizes over 2000 epochs of training. For hidden layer sizes above
128, maximum accuracies are observed at different points in training.

We now study the influence of the size of the hidden layer of the LSTM in an
otherwise fixed model training scenario. Decay of the loss function on training
data as well as performance on test data are visualized in Fig. 5 for various hidden
layer sizes. A model is chosen based on optimal performance on test data during
training to reduce the likelihood of overfitting. While there is non-monotonic
trends in qualitative behavior as the size of the hidden layer increases, we see a
general increase in performance on test data. An optimal model is selected based
on the epoch achieving maximum accuracy, then the performance is evaluated
on the validation data set.

The resulting validation accuracy is in Table 1. For each hidden layer size,
the performance of the optimal model on the validation data tracks that of
the optimal test data performance quite closely. When the hidden layers are
significant bottlenecks, of sizes 4 or 8, training is quite slow and the respective
performance on validation is extremely poor. For sizes 16 upwards, we see a
monotonic improvement in prediction which decelerates at a hidden layer size
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of 128. This gives strong evidence that successful chord prediction can be done
without an extremely large neural network. Such small networks are useful for the
purposes of interpretability and detailed analysis, especially if one seeks to later
extend such a model for harmonic structure to also incorporate, for example,
pitch and tempo.

4 Conclusion

We have developed a framework for machine learning on music which incorpo-
rates music theory via the Tonnetz lattice. This is distinguished from a one-hot
encoding of notes in the chord which provides little intuition and has many
challenges associated with it in the translation from output layer to identifying
predicted notes or chord(s). By contrast, this embedding allows one to work
directly with chords, which are often more intuitive for musicians in under-
standing broader musical structure. There are a broad range of directions to
investigate in optimizing performance and predictions made by an LSTM model
using this embedding. However, the prediction accuracy results of this paper
are promising for learning the harmonic structure within a musical genre. This
suggests a path forward to predict music by learning its harmonic, melodic, and
rhythmic structures separately. From the machine learning perspective, under-
standing the performance and behavior of predictions using this embedding is
of great interest. Analysis of the model in terms of well-known chord transitions
and its behavior on different genres is also of note. Admittedly, our study in this
paper focuses on the Western musical tradition in a genre of music with rigorous
rules; towards this we are very interested in exploring how such models behave
when trained in other musical traditions, and what such a model can do when
asked to make predictions across culture.
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