
Circulation Control for Faster Minimum Cost Flow in Unit-Capacity Graphs

Kyriakos Axiotis
MIT

Cambridge, MA, USA
kaxiotis@mit.edu

Aleksander Mądry
MIT

Cambridge, MA, USA
madry@mit.edu

Adrian Vladu
Boston University

Boston, MA
avladu@mit.edu

Abstract—We present an m4/3+o(1) logW -time algorithm for
solving the minimum cost flow problem in graphs with unit
capacity, where W is the maximum absolute value of any
edge weight. For sparse graphs, this improves over the best
known running time for this problem and, by well-known
reductions, also implies improved running times for the shortest
path problem with negative weights, minimum cost bipartite
b-matching when ∥b∥1 = O(m), and recovers the running time
of the currently fastest algorithm for maximum flow in graphs
with unit capacities (Liu-Sidford, 2020).

Our algorithm relies on developing an interior point
method–based framework which acts on the space of circu-
lations in the underlying graph. From the combinatorial point
of view, this framework can be viewed as iteratively improving
the cost of a suboptimal solution by pushing flow around
circulations. These circulations are derived by computing a reg-
ularized version of the standard Newton step, which is partially
inspired by previous work on the unit-capacity maximum flow
problem (Liu-Sidford, 2019), and subsequently refined based
on the very recent progress on this problem (Liu-Sidford, 2020).
The resulting step problem can then be computed efficiently
using the recent work on ℓp-norm minimizing flows (Kyng-
Peng-Sachdeva-Wang, 2019). We obtain our faster algorithm
by combining this new step primitive with a customized
preconditioning method, which aims to ensure that the graph
on which these circulations are computed has sufficiently large
conductance.

Keywords-minimum cost flow, shortest path, interior point
method

I. INTRODUCTION

Finding the least costly way to route a demand through
a network is a fundamental algorithmic primitive. Within
the context of algorithmic graph theory it is captured as the
minimum cost flow problem, in which given a graph with
costs on its arcs and a set of demands on its vertices, one
needs to find a flow that routes the demand while minimizing
its cost. This problem has received significant attention [1]
and inspired the development of new algorithmic techniques.
For example, Orlin’s network simplex algorithm [2] offered
an explanation of the excellent behavior that the simplex
method exhibits in practice when applied to flow problems.
More broadly, the recent progress on algorithms for the flow
problems [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15] has been an instance of the general approach
to graph algorithms that leverages the tools of continuous
optimization, rather than classical combinatorial techniques.

Also, there exist efficient reductions that enable us to lever-
age algorithms for the minimum cost flow problem to solve a
host of other fundamental problems, including the maximum
flow problem, the minimum cost bipartite matching problem,
and the shortest path problem with negative weights.

A. Our Contributions

In this paper1, we present an m4/3+o(1) logW -time al-
gorithms for the minimum cost flow problem in graphs
with unit capacities, where W denotes the bound on the
magnitude of the arc costs. This improves upon the previ-
ously known Õ(m10/7 logW) running time bound of Cohen
et al. [11] and matches the running times of the recent
algorithms due to Liu and Sidford [14], [15] for the unit
capacity maximum flow problem.2

Similarly to most of the relevant prior work, our algorithm
at its core relies on an interior point method, but the variant
of the interior point method we design and employ is directly
attuned to the combinatorial properties of the graph. In
particular, in contrast to [11], we do not rely on a reduction
to the bipartite perfect b-matching problem (which requires
a sophisticated analysis). Instead, our algorithm operates
directly in the space of circulations of the original graph.

One can also draw an analogy between the network
simplex method [2] and ours. The former navigated the
corners of a feasible polytope and improved an existing
suboptimal solution through pushing flow around cycles.
In contrast, we iteratively improve our existing suboptimal
solution by augmenting it with circulations, but navigate
through the strict interior of the polytope, seeking to keep a
specific condition called centrality satisfied. Also, while in
the network simplex case, the key difficulty is in finding the
right pivoting rule, our approach shifts the attention towards
finding the right circulation to augment the flow with so as
to maintain the centrality invariant.

1A full version of this paper is available as [16].
2The initial version of this paper obtained a running time of

m11/8+o(1) logW , which matched the running time of the then-fastest
unit-capacity maximum flow algorithm due to Liu and Sidford [14]. After
this version was released [16], Liu and Sidford [15] developed an improved
running time of m4/3+o(1) for the unit-capacity maximum flow problem.
Their techniques turned out to be immediately adaptable to our minimum
cost flow framework, and led to the current m4/3+o(1) logW running time
for the unit-capacity minimum cost flow problem.

A key ingredient of our approach is a custom precondi-
tioning method, which enables us to control the flows we use
to update the solution in each iteration. We derive a new way
to tie the conductance of the graph to a certain guarantee on
the flows computed in the preconditioned graph. This allows
us to perform a better, tighter analysis of the quality of the
preconditioner we use.

On a more technical level, our work provides a number
of insights into the underlying interior point method. In
particular, in our m11/8+o(1) logW -time algorithm (that we
develop first), the progress steps we perform in order to
reduce the duality gap of our current solution are cast
as a refinement procedure, which simply attempts to cor-
rect a residual. This procedure is very similar to iterative
refinement—widely used in the more restricted case of
minimizing convex quadratic functions [17], [18]. Also, in
contrast to the classic approach for maintaining constraint
feasibility during the interior point method update step—
which relies on controlling the ℓ2 norm of the relative
updates to the slack variables—we want to perform steps for
which it is only guaranteed that these relative updates are
small in ℓ∞ norm. To this end, we employ a custom residual
correction procedure that works by re-weighting the capacity
constraints. (It is worth noting that a similar procedure has
been used in [14].3)

This paves the way for the final algorithm that has the
further improved running time of m4/3+o(1) logW . As a
matter of fact, the key bottleneck to obtaining a faster
algorithm using the above approach is the need to ensure that
the residual error in the solution obtained after performing
a step bounded in ℓ∞ norm can be reduced to zero. This
requires increasing the weights on the constraint barriers,
and these weight increases are exactly what limits the
exponent in the running time to 11/8. The step problem
we need to solve, however, is well conditioned within a
local ℓ∞ ball around the current iterate. Therefore, being
able to certify that the point returned by solving the step
problem optimally lies within this local ℓ∞ ball, implies
that we can efficiently find it using a direct optimization
subroutine. This latter observation is the key insight in the
very recent preprint by Liu-Sidford [15] that enables them
to improve the running time for maximum flow in graphs
with unit capacity. We employ this insight in our setting in
order to obtain an improved running time for unit-capacity
minimum cost flow as well.

Finally, in order to guarantee that the ℓ∞ norm of each
progress step is indeed as small as needed, we employ
a convex optimization subroutine with mixed ℓ2 and ℓp
terms [19], instead of solving a linear system of equations in
each update step as is typically done. (Such subroutine was
similarly used by Liu and Sidford [14], [15], in a slightly

3While our analysis aims to enforce a small ℓ2 norm of the residual error,
[14] seek to control the ℓ4 norm of the congestion vector. These techniques
turn out to be largely equivalent.

different form.)

B. Previous Work

Due to the size of the existing literature on the studied
problems, we focus our discussion only on the works that are
the most relevant to our results and refer the reader to [20]
and Section 1.2 in [11] for a more detailed discussion.

In 2013, Mądry [5] developed an algorithm that produces
an optimal solution to the unit capacity maximum flow
problem in Õ(m10/7) time and thus improves over a long
standing running time barrier of Õ(n3/2) in the case of
sparse graphs. An important characteristic of this approach
was the careful tracking of an electrical energy quantity
which allowed to control the step size. The underlying
approach was then simplified by providing a more direct
correspondence between the update steps of the interior point
method and computing augmenting paths via electrical flow
computations [9]. This framework has been also extended
to a more general setting of unit capacity minimum cost
flow [11], achieving a running time of Õ(m10/7 logW),
where W upper bounds the largest cost of a graph edge
in absolute value.

In a different context, motivated by new developments in-
volving regression problems [21], [22], [23], Kyng et al. [19]
studied the ℓp regression problems on graphs, obtaining an
algorithm which runs in m1+o(1) time for a range of large
values of p. This algorithm’s running time was subsequently
further improved by Adil and Sachdeva [24].

Liu and Sidford [14] have recently obtained an improved
algorithm for the unit capacity maximum flow problem with
a running time of m11/8+o(1). One of their key insights was
that the work on ℓp-regression problems enables treating
energy control as a self-contained problem in each iteration
of the interior point method, rather than maintaining energy
as a global potential over the whole course of the algorithm,
which was the case in previous work. Then, in their recent
follow-up work, Liu and Sidford [15] strengthen the step
problem primitive by directly optimizing a regularized log
barrier function as opposed to performing a sequence of
regularized Newton step. This led to a running time of
m4/3+o(1) for the unit capacity maximum flow problem.

C. Organization of the Paper

We begin with technical preliminaries in Section II. In
Section III, we present our interior point framework spe-
cialized to minimum cost flow, and provide a basic analysis
which yields an algorithm running in Õ(m3/2 logW) time.
We further refine our framework in Section IV, where we
develop the key tools needed for our results, giving a faster,
m11/8+o(1) logW -time algorithm for obtaining the solution
to a slightly perturbed instance of the original minimum cost
flow problem. Finally, in Section V, we demonstrate how to
combine the framework developed in the previous sections

with an insight from the recent work of Liu and Sidford [15]
to achieve the final running time of m4/3+o(1) logW .

II. PRELIMINARIES

In this section, we introduce some basic notation and
definitions that we will need later.

A. Basic Notation

Vectors: We use 0 and 1 to represent the all-zeros and
all-ones vectors, respectively. Given two vectors x and y
of the same dimension, we use ⟨x ,y⟩ to represent their
inner product. We apply scalar operations to vectors with the
interpretation that they are applied point-wise, for example
x/y represents the vector whose ith entry is xi/yi. We use
the inline notation (x ;y) to represent the concatenation of
vectors x and y .

Norms: Given a vector x ∈ Rn and a scalar p ≥ 1,
we write the ℓp norm of x as ∥x∥p = (

∑n
i=1 |xi|p)

1/p.
Using this definition we also obtain ∥x∥∞ = maxni=1 |xi|.
Throughout this paper we will be working especially with
the ℓ1, ℓ2 and ℓ∞ norms.

Graphs: Given a graph G = (V,E) and a vertex v ∈ V ,
we will write e ∼ v to denote the set of edges e ∈ E that
are incident to v in G, i.e. the set of edges that have v as
an endpoint.

Asymptotic notation: Given a parameter m denoting
the number of edges of a graph, we use Õ (c) to denote a
quantity that is O(c logk m) for some constant k.

B. Minimum Cost Flow

We denote by G = (V,E, c) a directed graph with vertex
set V , arc set E and cost vector c ∈ R|E|. We denote by
m = |E| the number of arcs, and by n = |V | the number
of vertices in G. An arc e of G connects an ordered pair
(u, v), where u is its tail and v is its head. The basic notion
of this paper is the notion of a flow. Given a graph G we
view a flow in G as a vector f ∈ Rm that assigns a value
to each arc of G. If this value is negative we interpret it as
having a flow of |fe| flowing in the direction opposite to the
arc orientation. This convention is especially useful when
discussing flows in undirected graphs.

We will be working with flows in G that satisfy a certain
demand d ∈ Rn such that

∑
u du = 0. We say that a

flow f satisfies or routes demand d if it satisfies the flow
conservation constraints with respect to the demands. That
is: ∑

e∈E+(u)

fe −
∑

e∈E−(u)

fe = du, for all u ∈ V . (1)

Here, E+(u) and E−(u) are the sets of arcs of G that
are entering u and leaving u, respectively. Intuitively, these
constraints enforce that the net balance of the total in-flow
into vertex u and the total out-flow leaving that vertex is

equal to du. A flow for which the demand vector d is zero
everywhere is called a circulation.

We say that a flow f is feasible (or that it respects
capacities) in G if it obeys the capacity constraints:

0 ≤ fe ≤ ue, for all e ∈ E , (2)

where u ∈ Rm is a vector of arc capacities.
The unit capacity minimum cost flow problem is to find

a flow f ∈ Rm that meets the unit capacity constraints
0 ≤ fe ≤ 1 for all e ∈ E and routes the demand d , while
minimizing the cost

∑
e∈E

cefe.

Cycle Basis: A set of circulations C in G is called a
cycle basis if any circulation in G can be expressed as a
linear combination of circulations in C. If G is connected,
the dimension of a cycle basis of G is m− n+ 1.

III. MINIMUM COST FLOW BY CIRCULATION
IMPROVEMENT

In this section we present our (customized) interior point
method–based framework for solving the minimum cost flow
problem, setting the foundations for the faster algorithm of
Section IV.

A. LP Formulation and Interior Point Method

We first cast the minimum cost flow problem as a linear
program that we then proceed to solve using an interior point
method.

LP formulation: It will be useful to consider the
parametrization of a flow in terms of the circulation space of
the graph. The goal of this re-parametrization is to initialize
the interior point method with an initial flow f 0 which
routes the prescribed demand d , then iteratively improve it
by adding circulations to get a flow which routes the same
demand d but has lower duality gap. It is noteworthy that the
specific parametrization of the circulation space is irrelevant
to the interior point method, due to its affine invariance.
We will elaborate on this point later. For us it will be a
useful tool for understanding the centrality condition arising
from the interior point method and applying more aggressive
progress steps.

Given the (connected) underlying graph G = (V,E), let
C ∈ Rm×(m−n+1) be a matrix whose columns encode the
characteristic vectors of a basis for G’s circulation space.

In order to construct such a matrix, we let
C1, C2, ..., Cm−n+1 be an arbitrary cycle basis for G,
where we ignore the arc orientations. An easy way to
produce one is to consider a spanning tree T ⊆ G. For
each arc (u, v) ∈ E which is not in T , consider the unique
path in T connecting v and u. The arcs on this path along
with the arc (u, v) determine a cycle in the basis. More
specifically, consider the set of arcs of G present in Ci,
sorted according to the order in which they are visited
along the cycle, starting with the off-tree arc (u, v), then
continuing with those witnessed along the tree path from v

to u. If an arc e ∈ E has the opposite orientation to the one
corresponding to the traversal of the cycle, we represent it
as ē, otherwise we write it just as e.

Now, letting Ci consist of a subset of arcs in E, each of
which appears either with its original orientation e, or the
opposite orientation ē, we write the ith column of matrix C
as follows.

C e,i =

⎧⎪⎨⎪⎩
1 , if e ∈ Ci ,

−1 , if ē ∈ Ci ,

0 , otherwise.

We can now use C to represent any circulation in G.
Given any x ∈ Rm−n+1 we have that f = Cx is a
circulation. Furthermore the sign of each coordinate fe,
e = (u, v) ∈ E, shows whether f e is a flow that runs in
the same direction as e or vice-versa, i.e. fe > 0 if f carries
flow from u to v, and similarly fe < 0 if f carries flow
from v to u. On the other hand, for any circulation f ∈ Rm

there exists an x ∈ Rm−n+1 such that f = Cx (or in other
words the image of C is the space of circulations).

Now let f 0 be a flow in G such that for each arc
e ∈ E, 0 < (f 0)e < 1, and f 0 routes the demand d . The
minimum cost flow problem can be cast as the following
linear program:

min ⟨c,Cx ⟩ (3)
0 ≤ f 0 +Cx ≤ 1 .

We see that the objective value of this linear program differs
by a term of ⟨c, f 0⟩ from the original objective. We did not
include it here, since it is a constant. It is useful to also
consider its dual:

max −⟨1− f 0,y
+⟩ − ⟨f 0,y

−⟩ (4)

C⊤ (y+ − y−) = −C⊤c

y+,y− ≥ 0 .

The objective we are left to solve simply suggests that
in order to find the minimum cost flow in the graph with
unit capacities, we equivalently have to find the minimum
cost circulation in the residual graph under shifted capacity
constraints. This carries a significant similarity with the
network simplex algorithm [2], which has been used in
the past as a specialization of the simplex method to the
minimum cost flow problem. It essentially consisted of
maintaining a solution routing the prescribed demand d ,
and iteratively improving it by pushing flow around a cycle,
while satisfying capacity constraints. Rather than performing
such updates, which always maintain a flow on the boundary
of polytope corresponding to the set of feasible solutions,
the interior point method maintains a more sophisticated
condition on these intermediate solutions. Another similar
approach can be found in [25], where updates are iteratively

pushed around cycles in order to solve Laplacian linear
systems.

Like these methods, our approach will be to repeatedly
improve the cost of the solution by pushing augmenting
circulations. Crucially, maintaining a solution centrality con-
dition, stemming from interior point methods, will allow us
to make significant progress during each augmentation step.

Barrier Formulation: In order to apply an interior
point method on (3), we need to replace the feasibility
constraints by a convex barrier function. We seek a nearly
optimal solution, i.e. one that has small duality gap. The
vanilla interior point method consists of iteratively finding
the optimizer xµ for a family of functions parametrized by
µ > 0

min
x∈Rm−n+1

Fw
µ (x) =

1

µ
· ⟨c,Cx ⟩

−
∑
e∈E

(
w+

e · log(1− f 0 −Cx)e

+ w−
e · log(f 0 +Cx)e

)
. (5)

where w+
e , w

−
e > 0 are weights on the flow capacity

constraints. In order to find the optimizer xµ, one performs
Newton method on Fw

µ , after warm starting with xµ(1+δ)

for some δ > 0.
While classical methods maintain w = 1 at all times,

this extra parameter has been introduced in previous work
in order to allow the method to make progress more ag-
gressively. To simplify notation we define the slack vector
s = (s+; s−) as

s+ = 1− f 0 −Cx , (6)

s− = f 0 +Cx , (7)

representing the upper slack (i.e. the distance of the current
flow f = f 0+Cx to the upper capacity constraint of f ≤ 1)
and the lower slack (i.e. the distance from the current flow
to the lower capacity constraint 0 ≤ f). We will use the
vector w = (w+;w−) to represent the weights for the two
sets of barriers that we are using.

B. Optimality and Duality Gap

In order to describe the method and analyze it, it is
important to understand the optimality conditions for Fw

µ .
We say that a vector x which minimizes Fw

µ is central
(or satisfies centrality). This condition is described in the
following lemma.

Lemma 3.1: The vector x is a minimizer for Fw
µ if and

only if

C⊤
(
w+

s+
− w−

s−

)
= −C⊤c

µ
. (8)

Furthermore the vector y = (y+;y−) with y+ = µ · w+

s+ ,
y− = µ · w−

s− is a feasible dual vector, and the duality gap
of the primal-dual solution (x ,y) is exactly µ∥w∥1.

Maintaining the centrality condition (8) will be the key
challenge in obtaining a faster interior point method for this
linear program. This emphasizes the fact that the aim of
this method is to construct a feasible set of slacks s+ =
1 − f 0 − Cx > 0 and s− = f 0 + Cx > 0 such that
C⊤

(
w+

s+ − w−

s−

)
= −C⊤c

µ for a very small µ > 0. It is
important to note that even though the existence of such an
x needs to be guaranteed, it is not necessary to explicitly
maintain it. This will be apparent in the definition below.

Definition 3.2 (µ-central flow): Given weights w =
(w+;w−) ∈ R2m

>0 , a flow 0 < f < 1 is called µ-
central with respect to w if for some cycle basis matrix
C ∈ Rm×(m−n+1),

C⊤
(

w+

1− f
− w−

f

)
= −C⊤c

µ
(9)

for some µ > 0. We will call the parameter µ the centrality
of f with respect to w .
It should be noted that the precise choice of cycle basis C in
the above definition is irrelevant, as the property is invariant
under the choice of cycle basis.

C. Initialization

The initialization procedure description and analysis is
standard and thus deferred to the full version of the paper.
From now on we can assume that we have a graph G
together with a µ-central flow with µ ≤ 2∥c∥2.

D. Vanilla Interior Point Method

The steps mentioned enable us to recover the classical
Õ
(
m1/2

)
iteration bound. This is shown in the following

lemma.
Lemma 3.3: Given a µ0-central flow with respect to

weights 1 and µ0 = mO(1), we can obtain a minimum cost
flow solution with duality gap at most ε = 1/mO(1) using
Õ
(
m1/2

)
calls to AUGMENT.

As previously discussed, each iteration of the interior
point point method can be implemented in Õ(m) time using
fast Laplacian solvers. This carries over to an algorithm with
a total running time of Õ(m3/2 logW), matching that of
previous classical algorithms.

IV. A FASTER ALGORITHM FOR MINIMUM COST FLOW

Our improved algorithm will be based on the interior
point method framework that was developed in Section III.
The main bottleneck for the running time of that algorithm
stems from the fact that the augmenting circulation we
compute might not allow us to decrease the duality gap
by more than a factor of 1 + 1/Ω(

√
m), as otherwise it

is generally impossible to guarantee that the circulation
will never congest some edges by more than the available
capacity. Hence the iteration bound of Õ(m1/2), common
to standard interior point methods.

We alleviate this difficulty by adding an ℓp regularization
term in the augmenting flow objective, similarly to [14].
In [14], the authors follow the idea of [9] by computing
augmenting s-t flows. A crucial ingredient is the fact that
the congestion of these resulting augmenting flows is then
immediately bounded by using a result from [9] which states
that as long as there is enough s-t residual capacity, these
flows come together with an electrical potential embedding,
where no edge is too stretched.

However, this property is specific to the s-t maximum
flow problem. To apply a similar argument for the minimum
cost flow problem, one would need to guarantee that all
cuts of the graph have sufficient residual capacity, which
is not automatically enforced as in the case of s-t max
flow. In order to enforce this cut property, we further
regularize our objective in a different way. We do this by
temporarily superimposing a star on top of our graph, thus
obtaining an augmented graph. This transformation improves
the conductance properties of the graph, ensuring that there
is enough residual capacity in all cuts of the graph.

In Section IV-A, we describe the regularized step problem
and outline the guarantees of the solution. In particular,
the bias introduced by the regularizers implies that the
augmenting flow is not a circulation anymore, and that we
have introduced an additional residual for our solution in
the barrier objective. We bound the magnitude of both of
these perturbations and “undo” them at a later stage. Finally,
we present our electrical stretch guarantee, which serves
as the crucial ingredient in both preserving feasibility and
maintaining centrality.

Even though the electrical stretch guarantee suffices for
all purposes if the interior point method barrier terms are
unweighted, as soon as weights come in the guarantee is
affected. In particular, for any edge whose forward and
backward weights are too imbalanced, the electrical stretch
and congestion bounds that we obtain loosen. We deal
with this issue by ensuring that the forward and backward
weights for each edge are always relatively balanced, while
introducing an additional demand perturbation.

In Section IV-B we provide the full view of the algorithm,
which consists of combining all the ingredients of the
previous sections, together with a residual routing scheme
that includes both vanilla centering steps and constraint re-
weighting to obtain an ℓ∞-based interior point method rather
than an ℓ4-based one, as achieved by the vanilla algorithm.

As we mentioned, the solution obtained by the interior
point method is for a minimum cost flow problem with a
slightly perturbed demand. By an approach given in [11],
one can turn such a solution into an optimal solution for the
original demand, as long as the total demand perturbation is
small.

A. Regularized Newton Step

The initialization procedure from Section III-C produces
a solution with large duality gap, i.e. O(µm) where µ ≤
2∥c∥2. Our goal will be to reduce this by gradually lowering
the parameter µ, while maintaining centrality. While in
general to achieve this we require solving a sequence of
linear systems of equations (as we saw in Section III-D),
here we choose to solve a slightly perturbed linear system.

In order to do so, we modify the optimization problem
from the previous section by adding two regularization
terms, which will force the produced solution to be well-
behaved. In addition, we allow the newly produced flow f̃ ,
which we will use to update the current solution, to not be
a circulation, as long as the demand it routes is small in ℓ1
norm. While this breaks the structure of the problem we are
solving, it only does so mildly – therefore once the interior
point method has finished running we can repair the broken
demand using combinatorial techniques.

Mixed Objective: To specify the regularized objective,
we first augment the graph G with O(m) extra edges,
which are responsible for routing a subset of the flows that
would otherwise force the output of the objective to be too
degenerate.

Definition 4.1 (Weighted degree): Given a graph G(V,E)
and a weight vector w = (w+;w−) ∈ R2m, the weighted
degree of v ∈ V in G with respect to w is defined as dwv =∑

e∼v(w
+
e + w−

e).
Definition 4.2: Given a graph G = (V,E) we define the

augmented graph G⋆ = (V ∪ {v⋆}, E⋆), where E⋆ = E ∪
E′ and E′ is obtained by constructing ⌈dwv ⌉ parallel edges
(v, v⋆) for each v ∈ V .

Furthermore, if C is a cycle basis for G, we let C⋆ be
a cycle basis for G⋆ obtained by appending columns to C ,
i.e.

C⋆ =

[
C P1

0 P2

]
. (10)

We observe that |E′| =
∑
v∈V

⌈dwv ⌉ ≤
∑
v∈V

(dwv + 1) ≤

3∥w∥1. We can now write the regularized objective.
Definition 4.3: Given a vector h , we define the regular-

ized objective as

max
f̃=C⋆x̃

∑
e∈E

he · f̃e −
1

2

∑
e∈E

(f̃e)
2 ·
(

w+
e

(s+e)2
+

w−
e

(s−e)2

)
− R⋆

2

∑
e∈E′

(f̃e)
2 − Rp

p

∑
e∈E∪E′

(f̃e)
p ,

(11)

where p > 2 is an even positive integer, and R⋆, Rp are
some appropriately chosen non-negative scalars.
While this objective might seem difficult to handle, the fact
that we are solving a problem on graphs makes it feasible
for our purposes. In particular, the works of [19], [24] show
that this objective can be solved to high precision in time

O(m1+o(1)), whenever p is sufficiently large. The resulting
error can be easily handled, but for simplicity purposes let
us from now assume that we can solve (11) exactly.

Let us now understand the effect of the augmenting edges
E′. Since they allow routing some of the flow through v⋆, if
we look at the restriction of f̃ to the edges of G we see that
it stops being a circulation. Let d̃ be the demand routed
by the restriction of f̃ to G. We will see that f̃ satisfies
optimality conditions for an objective similar to (11) among
all flows that route the demand d̃ in G.

Before that, we give a useful lemma that, given a residual
−C⊤h , can be used to certify an upper bound on the
energy required to route it. We capture this via the following
definition.

Definition 4.4: Given a vector h , weights w , and slacks
s , we define

Emax(h ,w , s) =
1

2

∑
e∈E

h2
e ·
(

w+
e

(s+e)2
+

w−
e

(s−e)2

)−1

. (12)

Lemma 4.5: Given weights w , slacks s , and a residual
−C⊤h , we have that

Ew ,s(h) ≤ Emax(h ,w , s) .

Furthermore, if h = δ
(

w+

s+ − w−

s−

)
, we have that

Emax(h ,w , s) ≤ 1

2
δ2 ∥w∥1 .

We are now ready to state the lemma that gives guarantees
for the restriction of f̃ to G.

Lemma 4.6 (Optimality in the non-augmented graph):
Let f̃⋆ = C⋆x̃⋆ be the optimizer of the regularized objective
from (11), and let f̃ be its restriction to the edges of G.
Let d̃ be the demand routed by f̃ in G. Then f̃ optimizes
the objective

max
f̃ :

f̃ routes d̃ in G

⟨
h , f̃

⟩
− 1

2

∑
e∈E

(f̃e)
2 ·
(

w+
e

(s+e)2
+

w−
e

(s−e)2

)

− Rp

p

∑
e∈E

(f̃e)
p . (13)

Furthermore

C⊤
(

w+

(s+)2
+

w−

(s−)2

)
· f̃ = C⊤ (h +∆h) , (14)

where ∆h = −Rp(f̃)
p−1 , and

∥d̃∥1 ≤
(
6∥w∥1 · Emax(h ,w , s)

R⋆

)1/2

, (15)

∥f̃⋆∥p ≤
(
p · Emax(h ,w , s)

Rp

)1/p

. (16)

Finally, the energy required to route the perturbed residual
can be bounded by the energy required to route the original
residual:

1

2

∑
e∈E

(f̃e)
2

(
w+

e

(s+e)2
+

w−
e

(s−e)2

)
≤ 4 · Emax(h ,w , s) . (17)

Finally, we present an important property of the solution
of the regularized Newton step, which will be crucial for
obtaining the final result.

Lemma 4.7: Let f̃⋆ be the solution of the regularized
objective (11) and f̃ its restriction on G, and suppose that
∥w∥1 ≥ 3. Then one has that over the edges e ∈ E:⏐⏐⏐⏐(w+

e

(s+e)2
+

w−
e

(s−e)2
+Rp · f̃p−2

e

)
f̃e − he

⏐⏐⏐⏐ ≤ γ̂ , (18)

where

γ̂ =
(
R⋆ +Rp · ∥f̃ ⋆∥p−2

∞

)1/2
·


h√

(w+ +w−)
(

w+

(s+)2 + w−

(s−)2

)

∞

· 32 log ∥w∥1 .

Furthermore, this implies that(
w+

e

(s+e)2
+

w−
e

(s−e)2

)
·
⏐⏐⏐f̃e⏐⏐⏐ ≤ |he|+ γ̂ . (19)

B. Executing the Interior Point Method

Having defined the regularized objective, we now show
how to execute the interior point method using the solution
returned by a high precision solver. Since the solution to this
objective will not exactly optimize the unregularized objec-
tive, we will have to do some slight manual adjustments.

In the vanilla interior point method analysis that we saw
earlier, we witnessed a very stringent requirement on the
condition that we are able to correct a residual. Namely,
we required that the energy required to route it decreases in
every iteration of the correction step, which was guaranteed
by the fact that after performing the first correction step the
upper bound on energy

∑
wiρ

4
i is at most a small constant

(i.e. 1/4).
This requirement is too strong since, as a matter of fact,

the most important obstacle handled by interior point meth-
ods is preserving slack feasibility. In our specific context this
means that we want to perform updates to the current flow
without violating capacity constraints, which is guaranteed
by a weaker ℓ∞ bound, i.e. ∥ρ∥∞ ≤ 1/2. While this
condition is sufficient to preserve feasibility, it is not clear
that after performing the corresponding update to the flow,
the energy required to route the residual will be small, so
the resulting residual can be reduced to 0. Instead we can
enforce this property by canceling the components of the
gradient which cause this energy to be large.

Definition 4.8 (Perturbed residual correction): Consider
a flow f with the corresponding slack vector s > 0,
weights w and parameter µ > 0, with a corresponding
residual ∇Fw

µ (x) = −C⊤h where h = δ
(

w+

s+ − w−

s−

)
and δ ≤ ∥w∥−1/4

1 /2. The perturbed residual correction step
is defined as an update to f via:

f ′ = f + f̃ , (20)

(s−)′ = s− + f̃ , (21)

(s+)′ = s+ − f̃ , (22)

where f̃ is the solution to the linear system

ρ+ =
f̃

s+
, (23)

ρ− =
−f̃

s− , (24)

C⊤
(
w+ρ+

s+
− w−ρ−

s−

)
= C⊤(h +∆h) , (25)

such that

∥ρ∥∞ ≤ 1

2
, (26)

for some perturbation ∆h , followed by the updates to the
w vector via:

(w+
e)

′ =

{
w+

e +
(s+e)′

(s−e)′
· w−

e (ρ
−
e)

2 if |ρ−e | ≥ C∞ ,

w+
e otherwise,

(27)

and

(w−
e)

′ =

{
w−

e +
(s−e)′

(s+e)′
· w+

e (ρ
+
e)

2 if |ρ+e | ≥ C∞ ,

w−
e otherwise,

(28)

where
C∞ =

1

2δ
√

2 ∥w∥1
.

We will also use the following weight balancing proce-
dure, in order to avoid extreme weight imbalances that might
otherwise impair our argument.

Definition 4.9 (Weight balancing procedure): An edge
e ∈ E is called balanced if max {w+

e , w
−
e } ≤ δ ∥w∥1

or min {w+
e , w

−
e } ≥ 96 · δ4 ∥w∥21. Otherwise it is called

imbalanced. Now,given a flow f that is µ-central with
respect to weights w and with slacks s , let S ⊆ E be the
set of edges that are not balanced. The weight balancing
procedure consists of computing new weights w ′ such that

• For each e ∈ S: If w+
e ≤ w−

e then w
′+
e = 96 ·δ4 ∥w∥21,

w
′−
e = w−

e , while if w+
e > w−

e then w
′+
e = w+

e , w
′−
e =

96 · δ4 ∥w∥21.
• For each e /∈ S we set w

′+
e = w+

e , w
′−
e = w−

e .
Additionally, we compute a flow f ′ with slacks s ′ > 0 such
that

w
′+

s ′+
− w

′−

s ′− =
w+

s+
− w−

s− .

We are now ready to state the lemma quantifying the
progress in each iteration.

Lemma 4.10 (Progress lemma): Given a central instance
with parameter µ and weights w , we can obtain a new
central instance with parameter µ/(1 + δ) and weights
w ′′′ +∆w ≥ w with

δ ≥ m−1/4/10 ,

such that

∥w ′′′ −w∥1
≤ ∥∆w∥1
+
(
δ2∥w +∆w∥1

)5/2 · 6 · 104 · log ∥w +∆w∥1
+m−10

+
(
106 · δ2∥w +∆w∥1 · log ∥w +∆w∥1

)2
· p · ∥w +∆w∥1/p1 .

where ∆w ≥ 0 is the weight increase caused by applying
the procedure described in Definition 4.9 on weights w .
Furthermore, the demand perturbation is d̃ +∆d̃ , where

∥d̃∥1 ≤ 1 .

and ∆d̃ is the demand perturbation caused by applying the
procedure described in Definition 4.9 on weights w .

Lemma 4.10 is the main workhorse of the improved
algorithm. It shows that we can make large progress within
the interior point method, while paying for some demand
perturbation and for some slight increase in ∥w∥1. In order
to guarantee sufficient progress, all we are left to do is to
ensure that we can set an appropriate δ such that the sum
of weights never increases beyond O(m). This is a mere
consequence of the result given above.

Lemma 4.11: Suppose we have a µ-central instance with
weights w ≥ 1, where ∥w∥1 ≤ 2m+1 and µ = mO(1). Let
ε = m−O(1), and let δ = m−(3/8+o(1)). In Õ(δ−1) iterations
of the procedure described in Lemma 4.10 we obtain an
instance with duality gap at most ε with a total demand
perturbation of Õ(δ−1).

Combining with the repairing procedure elaborated
in [11], which can repair an excess demand d̃ in
Õ
(
m∥d̃∥1

)
time, we obtain the main theorem.

Theorem 4.12: Given a directed graph G(V,E, c) with
m arcs and n vertices, such that ∥c∥∞ ≤ W , and a demand
vector d ∈ Zn, in m11/8+o(1) logW time we can obtain a
flow f which routes d in G while satisfying the capacity
constraints 0 ≤ f ≤ 1 and minimizing the cost

∑
e∈E cefe,

or certifies that no such flow exists.

V. IMPROVING THE RUNNING TIME TO m4/3+o(1) logW

The running time of the algorithm we presented above
hits a barrier at m11/8+o(1) logW . The key bottleneck there

is the post-processing we do on the residual error of the
(intermediate) solutions we obtain after performing each
progress step. Indeed, while the length of our steps is
dictated by the ℓ∞-norm of our step size ∥ρ∥∞ (which is,
in a sense optimal), it is unclear how to ensure that the
energy required to route a flow that fixes the corresponding
residual error is sufficiently small, without overly increasing
the weights of the constraint barriers. In fact, the extent of
weight perturbations necessary for this post-processing step
are exactly what determines the m11/8+o(1) logW running
time. All the other weight perturbations, which are caused
by the regularization terms, are much milder and would lead
to the desired m4/3+o(1) logW running time.

After the first version of this paper was posted [16],
Liu and Sidford [15] published a preprint that obtains an
improved running time for the unit-capacity maximum flow.
The main technique introduced in that paper boils down
exactly to avoiding the aforementioned bottleneck. Roughly,
instead of advancing from a central point to the next one via
a progress step followed by a sequence of residual correction
steps, they instead directly solve the optimization problem
which lands them at the next central point.

To do so, one must guarantee that this optimization
problem is well-conditioned at all times, in the sense that
the objective has a Hessian which always stays within a
constant factor from the one at the origin. While such a
Hessian stability condition is not true in general, Liu and
Sidford [15] modify the logarithmic barriers they use by
extending them with quadratics outside the region where
they would be naturally well-behaved. The resulting new
objective function can be efficiently optimized by slightly
extending the mixed ℓ2-ℓp solver of Kyng et al [19].

Incorporating this idea in our framework yields a the
desired running time improvement of our unit-capacity min-
imum cost flow algorithm as well. Most of the details,
particularly those involving preconditioning and weight per-
turbations carry over from the previous sections. In fact,
the only change to the algorithm needed is to replace the
regularized Newton step with solving a regularized problem
which directly involves the logarithmic barrier.

Method Overview: Let us specify the ideal optimization
problem which we would solve in order to advance along
the central path. Suppose we have a µ-central instance i.e.
we have a flow f = f 0 +Cx which satisfies

C⊤
(

w+

1− f 0 −Cx
− w−

f 0 +Cx

)
= −C⊤c

µ
. (29)

as it optimizes the convex objective

min
x

Fw
µ (x) =

1

µ
⟨c,Cx ⟩ −

∑
e∈E

(
w+

e log(1− f 0 −Cx)e

+ w−
e log(f 0 +Cx)e

)
.

Our goal is to design an optimization procedure which
enables us to augment f with a circulation Cx̃ in order
to obtain an optimizer for

min
x ′

Fw
µ/(1+δ)(x

′)

=
1 + δ

µ
⟨c,Cx ′⟩

−
∑
e∈E

(
w+

e log(1− f 0 −Cx ′)e + w−
e log(f 0 +Cx ′)e

)
=

1 + δ

µ
⟨c, f +Cx̃ ⟩

−
∑
e∈E

(
w+

e log(1− f −Cx̃)e + w−
e log(f +Cx̃)e

)
.

We can equivalently rewrite this optimization procedure,
after adding a constant term to it, as

min
x̃

Ψw ,f
µ/(1+δ)(x̃) ,

where

Ψw ,f
µ/(1+δ)(x̃) : = Fw

µ/(1+δ)(x + x̃)− 1 + δ

µ
⟨c, f ⟩

+
∑
e∈E

(
w+

e log(1− fe) + w−
e log fe

)
=

1 + δ

µ
⟨c,Cx̃ ⟩

−
∑
e∈E

(
w+

e log

(
1− Cx̃

1− f

)
e

+ w−
e log

(
1+

Cx̃

f

)
e

)
.

Optimizing this function is hard to do in general. However,
assuming its optimal augmenting circulation Cx̃ satisfies Cx̃

min{f ,1− f }


∞

≤ 1

10
, (30)

which in other words, says that augmenting f with Cx̃
will not come close to breaking the feasibility constraints,
we can instead solve a well-conditioned objective obtained
by replacing the log’s with a better behaved function l̃og
satisfying log(1 + t) = l̃og(1 + t) whenever |t| ≤ 1/10.

More precisely, we use the definition from [15] which we
reproduce below:

• If t ∈ [−θ, θ], then l̃og(1 + t) = log(1 + t)
• if t > θ, then

l̃og(1 + t) = log(1 + θ) + (t− θ) · log′(1 + θ)

+ (t− θ)2 · 1
2
log′′(1 + θ) ,

• if t < −θ, then

l̃og(1 + t) = log(1− θ) + (t+ θ) · log′(1− θ)

+ (t+ θ)2 · 1
2
log′′(1− θ) .

where we set θ = 1/10. We can also easily verify that on the
boundary of the interval [−θ, θ] the first and second order
derivatives exactly match those of log(1 + t). The essential
feature is that outside this range, the second derivative stays
constant, whereas in the case of log(1 + t) it changes very
fast.

Using this, we can define the minimization problem

min
x̃

Ψ̃w ,f
µ/(1+δ)(x̃) ,

where

Ψ̃w ,f
µ/(1+δ)(x̃) : =

1 + δ

µ
⟨c,Cx̃ ⟩

−
∑
e∈E

(
w+

e l̃og

(
1− Cx̃

1− f

)
e

+ w−
e l̃og

(
1+

Cx̃

f

)
e

)
.

(31)

Observation 5.1: If the minimizer x̃ of Ψ̃w ,f
µ/(1+δ)(x̃) sat-

isfies the low-congestion condition from (30), then it also
minimizes Ψw ,f

µ/(1+δ)(x̃).

Due to the fact that the second order derivatives of l̃og are
bounded, Ψ̃w ,f

µ/(1+δ)(x̃) is well-conditioned and, as a matter
of fact can easily be minimized by using a small number
of calls to a routine which minimizes quadratics over the
set of circulations. As specified in [15] this can be easily
done by using fast Laplacian system solvers. However, the
main difficulty that arises is ensuring that the minimizer x̃
satisfies the confition from (30).

Enforcing this property is non-trivial, and requires reg-
ularizing the function Ψ̃w ,f

µ/(1+δ) in an identical manner to
the way we did it in the analysis from Section IV. Most of
the results we used there carry over, after performing some
minor modifications in the analysis.

Regularizing the Objective: In order to enforce the
required property, we add two regularization terms to our
optimization step. Just like in Section IV-A we augment the
graph G to G⋆, which has a cycle basis C⋆, and in this
graph we write down the equivalent concave maximization
problem for (31), which we regularize with two extra terms.
We slightly abuse notation by making Ψ̃w ,f

µ/(1+δ) act on an
element in the circulation space of G⋆, with the meaning
that the linear and logarithmic terms only act on edges in
E:

max
f̃⋆=C⋆x̃

−Ψ̃w ,f
µ/(1+δ)(x̃)−

R⋆

2

∑
e∈E′

(f̃⋆)
2
e −

Rp

p

∑
e∈E∪E′

(f̃⋆)
p
e .

(32)

Writing f̃⋆ = f̃ + f̃
′

where f̃ is the restriction of f̃⋆ to the
edges E of G, and f̃

′
is the restriction to the augmenting

edges E′, and using the centrality condition (29), we can

further write this as

max
f̃⋆=C⋆x̃

(1 + δ)

⟨
w+

1− f
− w−

f
, f̃

⟩
+
∑
e∈E

(
w+

e l̃og

(
1− f̃e

1− fe

)
+ w−

e l̃og

(
1 +

f̃e
fe

))

− R⋆

2

∑
e∈E′

(f̃ ′
e)

2 − Rp

p

∑
e∈E∪E′

(f̃⋆)
p
e . (33)

This optimization problem can be solved efficiently by
slightly extending the results of [19]. The key reason is
that all the terms except for the one involving p powers of
the flow f̃ have a second order derivative which is either
constant, or which stays bounded within a small multi-
plicative factor from the one at 0. Similarly to before, the
solver yields a high-accuracy, yet inexact solution. We can,
however, assume we obtain an exact solution by performing
minor perturbations to our problem.

We can now write the first order optimality condition
for the objective in (32), thus providing an analogue of
Lemma 4.6. Before doing so, we give the following helper
lemma, which will be the main driver of the results in
this section. It intuitively states that the optimal solution
to (33) can be thought of as the solution to a regularized
Newton step as the one in (11), but where the coefficients of
the quadratic 1

2

∑
e∈E

f̃2
e ·
(

w+
e

(s+e)2
+

w−
e

(s−e)2

)
have been slightly

perturbed by a small multiplicative constant.
Lemma 5.2 (Optimality with average Hessian): Let f̃⋆ =

C⋆x̃⋆ be the optimizer of (33), and let f̃⋆ = f̃ + f̃
′
, where the

two components are supported on E and E′, respectively.
Then there exists a vector α = (α+;α−), (1 + θ)−2 · 1 ≤
α ≤ (1− θ)−2 · 1, which can be explicitly computed, such
that for any circulation g in C⋆,⟨

g ,

[
v

−R⋆ · f̃
′
−Rp · (f̃

′
)p−1

]⟩
= 0 ,

where v = δ
(

w+

1−f − w−

f

)
− f̃

(
α+w+

(1−f)2 + α−w−

f 2

)
− Rp ·

(f̃)p−1.
Lemma 5.2 enables us to use an optimality condition

very similar to the one we had before in Section IV. As
a matter of fact, all the remaining statements are nothing
but "robust" versions of those we previously used. Essential
here are new versions of Lemma 4.6 and Lemma 4.7 which
accommodate the extra multiplicative factors on resistances.
Roughly, our goal is to provide upper bounds on ∥f̃ ∥∞ and
∥f̃ /min{1− f , f }2∥∞, which together will imply that the
condition from (30) is satisfied.

After proving that this is the case, we will show how
to advance to the next point on the central path – the
regularization terms on (33) will require us to increase
the weights w in order to obtain optimality for the non-
regularized objective i.e. ∇Ψ̃w ,f

µ/(1+δ)(x̃) = 0. Nevertheless,

this procedure is essentially identical to the one we used in
the previous section.

A. Bounding Congestion

Here we show that the congestion condition from (30) is
satisfied, and hence the minimizer of (33) also minimizes
the expression after replacing l̃og with log. For consistency
we will use the slack notation

s− = f , s+ = 1− f ,

and use the shorthand notation for the residual

h = δ

(
w+

s+
− w−

s−

)
.

We first give a short lemma providing an optimality
condition for the restriction of the flow f̃⋆ computed by (33)
to the edges E of the original graph G.

Lemma 5.3 (Optimality in the non-augmented graph):
Let f̃⋆ = C⋆x̃⋆ be the optimizer of (32) and let f̃ be its
restriction to the edges of G. Let d̃ be the demand routed by
f̃ in G. Then there exists a vector α = (α+;α−) ∈ R2m,

1
(1+θ)2 · 1 ≤ α ≤ 1

(1−θ)2 · 1, which can be explicitly
computed, such that

C⊤ ·
(
α+w+

(s+)2
+

α−w−

(s−)2

)
· f̃ = C⊤(h +∆h) (34)

where ∆h = −Rp(f̃)
p−1 , and

∥d̃∥1 ≤ 3

(
∥w∥1 · Emax(h ,w , s)

R⋆

)1/2

,

∥f̃⋆∥p ≤
(
p · 3

2E
max(h ,w , s)

Rp

)1/p

.

Next we provide a guarantee enforced by the component
of the regularizer involving augmenting edges.

Lemma 5.4: Let f̃⋆ be the solution of the regularized
objective and f̃ its restriction on G, and suppose that
∥w∥1 ≥ 3. Then there exists a vector α = (α+;α−) ∈ R2m

such that for all edges e ∈ E:⏐⏐⏐⏐(α+
e w

+
e

(s+e)2
+

α−
e w

−
e

(s−e)2
+Rp · f̃p−2

e

)
f̃e − he

⏐⏐⏐⏐ ≤ γ̂ , (35)

where

γ̂ =
(
R⋆ +Rp · ∥f̃⋆∥p−2

∞

)1/2
·


h√

(w+ +w−)
(

α+w+

(s+)2 + α−w−

(s−)2

)

∞

· 32 log ∥w∥1 .

Furthermore, this implies that(
α+
e w

+
e

(s+e)2
+

α−
e w

−
e

(s−e)2

)
·
⏐⏐⏐f̃e⏐⏐⏐ ≤ |he|+ γ̂ . (36)

Combining Lemmas 5.3 and 5.4 we can finally prove the
main statement of this section.

In order to obtain the desired congestion bound, we set
our regularization parameters to

p = min
{
k ∈ 2Z : k ≥ (logm)1/3

}
,

Rp = p ·
(
106 · δ2∥w∥1 · log ∥w∥1

)p+1
,

R⋆ = 3 · δ2∥w∥21 .

Lemma 5.5 (Congestion bound): Suppose that all edges
e ∈ E are balanced, per Definition 4.9, and δ > 10 ·
∥w∥−1/2

1 . Then the restriction f̃ of the flow f̃⋆ computed
via (33) satisfies the low-congestion condition (30).

B. Making Progress

Here we show how to use the flow obtained from optimiz-
ing (33) in order to achieve centrality for a new parameter
µ/(1+δ), at the expense of slightly increasing weights from
w to some w ′.

Lemma 5.6 (Almost-centrality after executing step): Let
f̃⋆ be the optimizer of (33) and let f̃ be its restriction to
the edges of G. Then

C⊤
(
(1 + δ)

(
w+

1− f
− w−

f

)
−
(

w+

1− f − f̃
− w−

f + f̃

))
= C⊤ ·Rp · (f̃)p−1 .

As we can see, the regularization terms have two effects.
One is that the update f̃ is not exactly a circulation, so this
will account for some change in the routed demand. The
other effect is that after augmenting the current flow f with f̃
we do not obtain a central solution, as shown in Lemma 5.6.
We proceed to fix this manually by slightly increasing the
weights w , thus correcting the residual ∆h = −Rp(f̃)

p−1

as we did in the previous section, which produces a central
solution with a new set of weights w ′ ≥ w such that ∥w ′−
w∥1 ≤ Rp ·

∑
e∈E

⏐⏐⏐f̃e⏐⏐⏐p−1

.

We are now ready to characterize the amount of progress
we make in a single iteration of the method previously
described.

Lemma 5.7 (Progress lemma): Given a µ-central in-
stance, i.e. a flow f and balanced weights w such that

C⊤
(

w+

1− f
− w−

f

)
= −C⊤c

µ
,

in the time require to solve (33) we can obtain a µ/(1+ δ)-
central instance, i.e. a flow f + f̃ and weights w ′ ≥ w , such
that

C⊤
(

w+

1− f − f̃
− w−

f + f̃

)
= −(1 + δ)

C⊤c

µ
,

where

∥w ′ −w∥1 ≤ p · 1012 · δ4∥w∥2+1/p
1 · log2 ∥w∥1 ,

and f̃ routes a demand d̃ such that

∥d̃∥1 ≤ 3/2 .

C. Wrapping Up

We can now give the main statement of this section, which
follows from running the interior point method, based on the
guarantee provided by Lemma 5.7.

Lemma 5.8: Suppose we have a µ-central instance with
weights w ≥ 1, where ∥w∥1 ≤ 2m + 1 and µ = mO(1).
Let ε = m−O(1), and let δ = m−(1/3+o(1)). In time
dominated by Õ(δ−1) iterations of the procedure described
in Lemma 5.7 we obtain an instance with duality gap at
most ε with a total demand perturbation of Õ(δ−1).

This enables us to obtain a running time of m4/3+o(1)

for minimum cost flow in unit-capacity graphs. The proof is
identical to that of Theorem 4.12, we use scaling to obtain
a logarithmic dependence in W , and resort to the fixing
procedure from [11] to repair the demand perturbation. The
time required to implement each iteration of the interior
point method is dominated by the time required by one call
to the solver of (33), which is m1+o(1) by our choice of
parameters.

Theorem 5.9: Given a directed graph G(V,E, c) with m
arcs and n vertices, such that ∥c∥∞ ≤ W , and a demand
vector d ∈ Zn, in m4/3+o(1) logW time we can obtain a
flow f which routes d in G while satisfying the capacity
constraints 0 ≤ f ≤ 1 and minimizing the cost

∑
e∈E cefe,

or certifies that no such flow exists.

ACKNOWLEDGMENT

KA and AM were supported in part by the NSF grants
CCF-1553428 and CNS-1815221. AV was supported by
NSF grant CCF-1718342. AV acknowledges Alina Ene for
providing funding and useful discussions throughout this
project.

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, “Network
flows,” Alfred P. Sloan School of Management, Cambridge,
MA, Tech. Rep., 1988.

[2] J. B. Orlin, “A polynomial time primal network simplex algo-
rithm for minimum cost flows,” Mathematical Programming,
vol. 78, no. 2, pp. 109–129, 1997.

[3] S. I. Daitch and D. A. Spielman, “Faster approximate lossy
generalized flow via interior point algorithms,” in Proceedings
of the 40th Annual ACM Symposium on Theory of computing,
2008, pp. 451–460.

[4] P. Christiano, J. A. Kelner, A. Mądry, D. A. Spielman, and
S.-H. Teng, “Electrical flows, Laplacian systems, and faster
approximation of maximum flow in undirected graphs,” in
Proceedings of the 43rd Annual ACM Symposium on Theory
of computing, 2011, pp. 273–282.

[5] A. Mądry, “Navigating central path with electrical flows:
From flows to matchings, and back,” in 54th Annual Sym-
posium on Foundations of Computer Science. IEEE, 2013,
pp. 253–262.

[6] Y. T. Lee, S. Rao, and N. Srivastava, “A new approach
to computing maximum flows using electrical flows,” in
Proceedings of the 45th Annual ACM Symposium on Theory
of Computing, 2013, pp. 755–764.

[7] J. Sherman, “Nearly maximum flows in nearly linear time,” in
54th Annual Symposium on Foundations of Computer Science.
IEEE, 2013, pp. 263–269.

[8] J. A. Kelner, Y. T. Lee, L. Orecchia, and A. Sidford, “An
almost-linear-time algorithm for approximate max flow in
undirected graphs, and its multicommodity generalizations,”
in Proceedings of the 25th Annual ACM-SIAM Symposium on
Discrete algorithms. SIAM, 2014, pp. 217–226.

[9] A. Mądry, “Computing maximum flow with augmenting
electrical flows,” in 57th Annual Symposium on Foundations
of Computer Science. IEEE, 2016, pp. 593–602.

[10] R. Peng, “Approximate undirected maximum flows in
O(m polylog n) time,” in Proceedings of the 27th Annual
ACM-SIAM Symposium on Discrete algorithms. SIAM,
2016, pp. 1862–1867.

[11] M. B. Cohen, A. Mądry, P. Sankowski, and A. Vladu,
“Negative-weight shortest paths and unit capacity minimum
cost flow in Õ(m10/7 logW) time,” in Proceedings of the
28th Annual ACM-SIAM Symposium on Discrete Algorithms.
SIAM, 2017, pp. 752–771.

[12] J. Sherman, “Area-convexity, ℓ∞ regularization, and undi-
rected multicommodity flow,” in Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing,
2017, pp. 452–460.

[13] A. Sidford and K. Tian, “Coordinate methods for accelerating
ℓ∞ regression and faster approximate maximum flow,” in
59th Annual Symposium on Foundations of Computer Science.
IEEE, 2018, pp. 922–933.

[14] Y. P. Liu and A. Sidford, “Faster energy maximization for
faster maximum flow,” in Proceedings of the 52nd Annual
ACM SIGACT Symposium on Theory of Computing, 2020.

[15] ——, “Faster divergence maximization for faster maximum
flow,” arXiv:2003.08929, 2020.

[16] K. Axiotis, A. Mądry, and A. Vladu, “Circulation con-
trol for faster minimum cost flow in unit-capacity graphs,”
arXiv:2003.04863, 2020.

[17] J. H. Wilkinson, Rounding errors in algebraic processes.
Courier Corporation, 1994.

[18] N. J. Higham, Accuracy and stability of numerical algorithms.
SIAM, 2002, vol. 80.

[19] R. Kyng, R. Peng, S. Sachdeva, and D. Wang, “Flows in
almost linear time via adaptive preconditioning,” in Proceed-
ings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, 2019, pp. 902–913.

[20] A. V. Goldberg, S. Hed, H. Kaplan, and R. E. Tarjan,
“Minimum-cost flows in unit-capacity networks,” Theory of
Computing Systems, vol. 61, no. 4, pp. 987–1010, 2017.

[21] D. Durfee, K. A. Lai, and S. Sawlani, “ℓ1 regression us-
ing lewis weights preconditioning and stochastic gradient
descent,” in Conference on Learning Theory, 2018, pp. 1626–
1656.

[22] S. Bubeck, M. B. Cohen, Y. T. Lee, and Y. Li, “An homotopy
method for ℓp regression provably beyond self-concordance
and in input-sparsity time,” in Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, 2018, pp.
1130–1137.

[23] D. Adil, R. Kyng, R. Peng, and S. Sachdeva, “Iterative
refinement for ℓp-norm regression,” in Proceedings of the
30th Annual ACM-SIAM Symposium on Discrete Algorithms.
SIAM, 2019, pp. 1405–1424.

[24] D. Adil and S. Sachdeva, “Faster p-norm minimizing flows,
via smoothed q-norm problems,” in Proceedings of the
31st Annual ACM-SIAM Symposium on Discrete Algorithms.
SIAM, 2020, pp. 892–910.

[25] J. A. Kelner, L. Orecchia, A. Sidford, and Z. A. Zhu, “A
simple, combinatorial algorithm for solving SDD systems in
nearly-linear time,” in Proceedings of the 45th Annual ACM
Symposium on Theory of Computing, 2013, pp. 911–920.

	Introduction
	Our Contributions
	Previous Work
	Organization of the Paper

	Preliminaries
	Basic Notation
	Minimum Cost Flow

	Minimum Cost Flow by Circulation Improvement
	LP Formulation and Interior Point Method
	Optimality and Duality Gap
	Initialization
	Vanilla Interior Point Method

	A Faster Algorithm for Minimum Cost Flow
	Regularized Newton Step
	Executing the Interior Point Method

	Improving the Running Time to m4/3+o(1)logW
	Bounding Congestion
	Making Progress
	Wrapping Up

	References

