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ABSTRACT | Machine learning (ML) models are widely used
in many important domains. For efficiently processing these
computational- and memory-intensive applications, tensors of
these overparameterized models are compressed by lever-
aging sparsity, size reduction, and quantization of tensors.
Unstructured sparsity and tensors with varying dimensions
yield irregular computation, communication, and memory
access patterns; processing them on hardware accelerators
in a conventional manner does not inherently leverage accel-
eration opportunities. This article provides a comprehensive
survey on the efficient execution of sparse and irregular tensor
computations of ML models on hardware accelerators. In par-
ticular, it discusses enhancement modules in the architec-
ture design and the software support, categorizes different
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hardware designs and acceleration techniques, analyzes them
in terms of hardware and execution costs, analyzes achiev-
able accelerations for recent DNNs, and highlights further
opportunities in terms of hardware/software/model codesign
optimizations (inter/intramodule). The takeaways from this
article include the following: understanding the key challenges
in accelerating sparse, irregular shaped, and quantized ten-
sors; understanding enhancements in accelerator systems for
supporting their efficient computations; analyzing tradeoffs
in opting for a specific design choice for encoding, storing,
extracting, communicating, computing, and load-balancing the
nonzeros; understanding how structured sparsity can improve
storage efficiency and balance computations; understanding
how to compile and map models with sparse tensors on
the accelerators; and understanding recent design trends for
efficient accelerations and further opportunities.

KEYWORDS |
dataflow; deep learning; deep neural networks (DNNs); dimen-
sion reduction; energy efficiency; hardware/software/model
codesign; machine learning (ML); pruning; quantization; recon-
figurable computing; sparsity; spatial architecture; tensor
decomposition; VLSI.

Compact models; compiler optimizations;

I.INTRODUCTION

Machine learning (ML) models implement intelligence
in computing systems. Different ML models are
widely used in several important domains, including
computer vision (CV) (object classification [1]-[3] and
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detection [4]-[6]), natural language processing
(NLP) [7]-[9], media generation [10], recommendation
systems [11], [12], medical diagnosis [13], large-scale
scientific computing [14], embedded systems [15], mobile
and edge processing [16], [17], and even for designing
or optimizing hardware and software systems [18], [19].
Domain-customized accelerators can significantly speed up
their execution in an energy-efficient manner [20]-[23].
However, the computational and memory requirements
for processing these models have surged drastically [24].
Moreover, ML models can be deeper and larger, which
improves learning accuracy, but significant redundancy
may exist in these often overparameterized models [25],
[26]. Therefore, recent techniques for efficient learning
and inference have proposed compressing tensors of
ML models. Tensors are compressed by inducing and
leveraging: 1) sparsity (zero values in tensors) [27]-[31];
2) size reduction (tensor decomposition, dimension
reduction, and shape reduction) [3], [32]-[35]; and
3) quantization (precision lowering and leveraging
value similarity) [27], [36]. With significantly lowered
computational, storage, and communication requirements,
efficient processing of compressed tensors (sparse, size-
reduced, and quantized) offers notable acceleration and
energy efficiency opportunities [37]-[40].

Hardware accelerators can efficiently process tensor
computations of ML models. In particular, coarse-grain
spatial architectures are a common choice for hardware
accelerator designs. They contain an array of processing
elements (PEs) with local registers/memory and shared
memory. These accelerators feature interconnects, such as
mesh or multicast for communicating data to PEs and
reusing the data spatially, which reduces the access to the
memory hierarchy. With simple PE designs and effective
spatial and temporal managements of the data and com-
putations, such architectures achieve high speedups and
energy efficiency [20]-[22].

Special mechanisms are needed to exploit the accel-
eration benefits due to tensor sparsity, size reduction,
and quantization. This is because, while hardware accel-
erators for ML can process low-precision tensors, they
inherently cannot benefit from sparsity [41], [42]. They
are designed for performing structured computations with
regular memory accesses and communication patterns.
Without special support for sparse tensors, they fetch all
the data, including zero values from memory, and feed
into PEs, thereby wasting the execution time. Sparsity,
especially unstructured, induces irregularity in processing
since nonzeros (NZs) or blocks of NZs are scattered across
tensors. So, leveraging sparsity necessitates additional
mechanisms to store, extract, communicate, compute, and
load-balance the NZs and the corresponding hardware or
software support. The goal of exploiting sparsity is to
exploit all forms of sparsity possible to considerably reduce
computation, communication, and storage of zeros while
avoiding adding performance, power, and area overheads.
Exploiting sparsity effectively depends on tailoring the

data encoding and extraction, dataflow, memory banking
structure, interconnect design, and write-back mecha-
nisms. Furthermore, it requires new representations and
enables new opportunities for hardware/software/model
codesigns. In this survey, we mainly discuss different accel-
erator designs that have leveraged the sparsity of differ-
ent tensors and different opportunities for performance
gains and energy efficiency. Tensor decomposition and
dimension reduction yield tensors of various sizes and
asymmetric shapes [3], [43]. Dataflow mechanisms for
executing layers of the models are typically optimized
well for some commonly used layers (symmetric dimen-
sions). They often become ill-suited for processing tensors
with reduced dimensions [43] and different functionality.
So, we describe how configurable designs and flexible
dataflows can help to achieve efficient execution. Sparse
tensors quantized with value sharing require additional
support to index a dictionary for obtaining shared values.
The survey also discusses how accelerators leverage value
similarity across inputs, weights, or outputs and support
variable bit-widths of sparse tensors.

A. Contributions

This article provides a comprehensive survey of different
techniques for efficiently executing sparse and irregular
tensor computations of the compact ML models on hard-
ware accelerators. It describes corresponding enhance-
ments in the hardware architecture and the required
software support. Specifically, the following holds.

1) For inference and training of different ML models,
we summarize various sources of the sparsity of
tensors.

2) We highlight challenges in accelerating computa-
tions of sparse (especially unstructured) and irregular
shaped tensors (e.g., dot product, convolution, and
matrix multiplication) on spatial-architecture-based
hardware accelerators that execute with dataflow
mechanisms.

3) We present an overview of the accelerator system
along with the different hardware/software modules
for sparse and irregular computations, their interfac-
ing, and the execution flow. We provide an in-depth
discussion of the need of each module, different
design choices, and qualitative analysis of the differ-
ent choices.

4) We survey different accelerator systems and execu-
tion techniques for sparse tensors of ML models and
provide taxonomies to categorize them based on the
various hardware/software aspects of the designs.

5) We analyze how variations in sparsity and tensor
shapes of different models impact the storage effi-
ciency of different sparsity-encodings and the reuse
of tensors.

6) For designing these accelerator modules and over-
all accelerator system, we discuss recent trends and
outline further opportunities for hardware/software/
model codesigns.
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Overview of the accelerator system for processing sparse and irregular tensor computations. (Section 1V provides further

B. Article Organization

1) Section II provides a brief background on different
ML models, hardware accelerators for their tensor
computations, and the need for further efficiency by
reducing computation, storage, and communication
requirements.

Section III discusses tensor compression and oppor-
tunities due to sparse, size-reduced, and quantized
tensors and why their efficient processing requires
special support.

Section IV provides an overview of the accelera-
tor system with enhanced architectural modules and
software support for sparse and irregular tensor com-
putations (see Fig. 1). It also presents a case study
of accelerations of recent, sparse DNNs and ana-
lyzes execution bottlenecks. In-depth discussions of
individual modules follow through Sections V-XII.
Opportunities for optimizing each module further are
discussed at the end of corresponding sections or
subsections.

Section V illustrates common sparse data encod-
ings, analyzes their implications in terms of storage
and coding overheads, and describes the groupwise
encoding of tensors.

Section VI discusses techniques for extracting match-
ing NZs from tensors for computations. It analyzes
the advantages and limitations of the centralized and
in-PE extractions.

Section VII discusses managing noncoherent, multi-
banked, global scratchpads, and hiding the memory
access latency behind computations. It also discusses
data reuse of the sparse tensors and cross-layer reuse
opportunities.

Section VIII discusses interconnect designs for distrib-
uting data from memory and reducing partial outputs,
their bandwidth requirements, spatial data reuse, and
their configurability to support multiple dataflows for
execution.

Section IX describes sparsity-aware dataflows
and pipelined PE architecture, including tailoring
functional units for sparsity, bit-adaptive computing,
and leveraging value similarity.

2)

3)

4)

5)

6)

7)

8)
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9) Section X discusses sources of the inter-PE and
intra-PE imbalance due to sparsity and their impact,
software-directed balancing, and hardware structures
for dynamic balancing.

Section XI describes different write-back mechanisms
for collecting data from PEs and assembling the data
locally in PEs or on a central module. It also discusses
data layout transformations and on-the-fly encoding
of sparse outputs.

Section XII discusses compiler support for targeting
hardware accelerators, including intermediate repre-
sentations (IRs) for deep learning models, compiler
optimizations and their automation, and ISAs and
code generation for accelerators.

Section XIII describes recent trends and future direc-
tions in terms of developing tools and techniques for
systematic exploration of hardware/software/model
codesigns.

Section XIV discusses relevant surveys that describe
additional details (domain-specific models, tensor
compression techniques, and so on) and can be useful
to readers.

10)

11)

12)

13)

II. BACKGROUND: NEED FOR
EFFICIENT EXECUTION OF ML
MODELS ON HARDWARE
ACCELERATORS

A. Domain-Specific Machine Learning Models

Learning through ML models can be supervised (where
labeled data are available), unsupervised (training samples
are unlabeled), or semisupervised. We refer nonexpert
readers to surveys [44]-[46] for a detailed discussion
on different learning approaches and inference and train-
ing of various models. Discussions through this survey
mainly focus on accelerating different deep neural net-
works (DNNs) that are commonly used for supervised
learning.

Convolutional neural networks (CNNs) are used for
object classification and detection in image processing,
video analysis, and autonomous vehicle systems. CNNs
majorly consist of many convolution layers (CONV) and a
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few fully connected (FC) layers. Early CONV layers capture
low-level features from the images (e.g., edges and cor-
ners), which are used for constructing high-level features
(e.g., shapes) by subsequent layers. Finally, the classifier,
also known as the FC layer, determines the type of the
objects [44].

Sequence-to-sequence models include recurrent
neural networks (RNNs), gated recurrent units (GRUs),
long short-term memory (LSTM) [15], and attention
mechanisms [7], [8]. These models are used for
NLP and media processing tasks. They essentially use
unidirectional or bidirectional recurrent cells at their core
and process multilayer perceptrons (MLPs) also known as
FC structures.

Models for semantic segmentation and language
translation use encoder—decoder structures with convo-
lutions [5], [14], recurrent cells, or attention layers [8],
respectively.

Generative adversarial networks (GANs) [10] are
used by media generation applications. GANs use gen-
erators and discriminative networks that consist of
convolution layers.

Graph neural networks (GNNs) and other graph
learning models [47] are used for applications, such as
text classification and translation, and node classification
and link predictions in large social graphs. They learn
graph properties and infer about unforeseen informa-
tion. To achieve this objective, each node contains an
embedding feature vector with the information mixture
about own and neighborhood features. The nodes then
recurrently aggregate features of local neighbors, perform
neural network computations on aggregated data (e.g.,
MLP for down-scaling embeddings), and update their
embeddings.

Recommendation system models consist of embed-
ding layers (look-ups and matrix operations) [12], CNNs
for object detection and video understanding, and RNNs
for processing language models [11].

Primitives, such as MLP or GEMM (general matrix
multiply) and CONV, are at the core of many models
and dominate the execution. So, ML frameworks, such as
PyTorch [48], TensorFlow [49], and Intel MKL [50], pro-
vide efficient implementations of these primitives for exe-
cution on commodity hardware (CPUs, GPUs, and FPGAs)
or even specialized accelerators. So, our discussions mainly
focus on efficiently accelerating tensor computations of
MLE CONV, and RNN operators.

B. Hardware Accelerators for Machine Learning

In the “new golden age of computer architecture,” recent
research efforts and commercial solutions have exten-
sively demonstrated that domain-customized hardware
accelerators significantly speed up the execution of ML
models in an energy-efficient way [20]-[22], [51]-[54].
Typically, these specialized solutions feature spatial archi-
tectures, which are those that expose low-level aspects
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of the hardware’s interconnect and storage to the
hardware-software interface. Spatial architectures can
be coarse-grained or fine-grained. Coarse-grained archi-
tectures feature arrays of interconnected PEs, and
fine-grained designs are realized by programming FPGAs.
Coarse-grained spatial architectures are a common imple-
mentation choice for designing hardware accelerators for
ML [20]-[23], [55]. As illustrated in Fig. 2, the accelerator
comprises an array of PEs that may contain private register
files (RFs) and shared buffers or a scratchpad memory.
PEs are simple in design (functional units with little local
control), and the shared scratchpad is noncoherent with
software-directed execution. Therefore, these accelerators
are a few orders of magnitude more power-efficient than
out-of-order CPU or GPU cores [20]-[22]. They lead to
highly energy-efficient execution of ML models that are
compute-intensive and memory-intensive. Performance-
critical tensor computations of ML models are relatively
simple operations, such as elementwise or tensor additions
and multiplications. So, they can be processed efficiently
with structured computations on the PE-array. Moreover,
private and shared memories of PEs enable high temporal
reuse of the data [56], [57]; with efficient data manage-
ment, PEs can be continuously engaged in tensor computa-
tions, while the data are communicated via memories [20].
In addition, interconnects, such as mesh or multicast,
enable data communication among PEs and spatial reuse
of the data, lowering the access to off-chip memory. So,
with minimized execution time, spatial-architecture-based
hardware accelerators yield very high throughput and low
latency for processing ML models.

C. Need for Further Efficient Execution

With recent advances in the development of ML
models, their computational and memory requirements
have increased drastically [18], [24]. Fig. 3 provides an
overview of this dramatic surge. One major reason is the
rise of deeper models. For example, for processing Ima-
geNet images, AlexNet [1] contained five CONV and three
FC layers (eight parameter layers) with the model size
of 61 M parameters (weights and bias) and computation
of 724 MFLOPs. DNNs, such as ResNet-101 [2], achieved
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higher classification accuracy but contained 100+ para-
meter layers and required processing about 7.6 GFLOPs
per image. Memory requirements for NLP models have
increased massively, e.g., from 50 M-100 M parameters
(Transformer [7], 2017) to 175 billion (GPT-3 [9], 2020).

While deeper and larger models achieve high efficiency
for various tasks [44], they consume high execution time,
energy, and memory. Previous studies showed that signifi-
cant data redundancy exists in these often overparameterized
models [25], [26]. So, researchers have developed tech-
niques that compress tensors and obtain compact mod-
els, reducing computational, communication, and storage
requirements significantly.

III. ACCELERATION OPPORTUNITIES
DUE TO COMPACT MODELS AND THE
NEED FOR SPECIAL SUPPORT

The efficiency of executing ML models can be improved
further by drastically reducing computation, communica-
tion, and memory requirements. This can be achieved by
compressing tensors of ML models. Tensors are compressed
by inducing and leveraging: 1) sparsity (zero values)
[27]1-[30]; 2) size reduction (tensor decomposition,
dimension reduction, and shape reduction) [3], [30],
[32]-[35]; and 3) quantization (precision lowering and
value similarity) [27], [36]. Previous techniques have
achieved highly compact models without incurring accu-
racy loss. For example, after applying pruning, quantiza-
tion, and the Huffman encoding, deep compression [27]
reduced the model size of AlexNet and VGG-16 by 35x and
49x (e.g., from 552 to 11.3 MB), respectively. Accelerator-
aware designs can compress the model further. For AlexNet
and GoogleNet models, Yang et al. [40] pruned 91% and
66% of weights and reduced computational requirements
by 6.63x and 3.43x, respectively. ADMM-NN [38] applied
weight pruning and quantization, thereby reducing the
model size of AlexNet, VGG-16, and ResNet-50 (with
up to 0.2% accuracy loss) by 99x, 66.5x, and 25.3x,
respectively.
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This section describes various sources of tensor sparsity,
which are either inherent or induced by model architecture
or regularization. It describes how sparsity reduces compu-
tations, storage, and communication requirements. It also
discusses techniques for reducing the size and quantization
of the tensors and how they offer advantages in terms of
storage/performance/energy efficiency. Then, it describes
how compression techniques may induce irregularity in
the processing and why special support is needed for
efficiently processing the compressed tensors on hardware
accelerators.

A. Opportunities Due to Sparse Tensors

1) Sparsity Structures: Inherent sparsity is usually
unstructured (e.g., of activations, gradients, or tensors
of scientific computing applications), where NZ elements
are randomly scattered [shaded elements in Fig. 4(a)].
Applying ReLU, dropout, quantization, or fine-grain prun-
ing also induces unstructured sparsity in input activa-
tions (IAs) or weights (WW). For improving execution
efficiency, pruning techniques or model operators induce
structured sparsity. For example, weights can be pruned in
coarse-grain blocks where block shape can vary from 1-
D (vector) to n-D for an n-dimension tensor [28], [37],
[58], [59]. Fig. 4(b) shows 4 x 4 blocks for a block-
sparse tensor, where each block contains all zeros or all
NZs. With larger blocks, techniques often prune entire
dimensions (e.g., channels or filters in CNN models) [28].
The selection of block size and shape depends on task
accuracy requirements. Alternatively, tensors are sparsified
with density bounded blocks [see Fig. 4(c)], where each
n-D block contains a fixed (k) number of NZs (NNZs) [60]-
[62]. It equally scatters NZs throughout the tensor. NZs
are located arbitrarily in the whole block, or a fixed
NNZs can be induced across each dimension of the block.
Values of k can be selected based on the sensitivity of
the pruning to accuracy. For example, analysis of [60]
showed that, for VGG-16 and ResNet-50, about 12 out
of 16 elements can be pruned without any accuracy loss,
and about ten out of 16 elements for compact models,
such as MobileNetV1 and SqueezeNetV1. To preserve accu-
racy while achieving high sparsity, a mixture of blocks
(with different block sizes or sparsity) can also be intro-
duced [63]. Finally, tensors can be pruned in patterns or

fut

(a) (b) ()

Fig. 4. Common sparsity structures (e.g., for a 75% sparse 8 x

8 matrix). (a) Unstructured. (b) Block sparse (coarse-grain), block
size: 2 x 2. (c) Density-bounded (k:n) block sparse (fine-grain), block
size: 1 x 4; k = 1. (d) Conditional or patterned.
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conditionally with sophisticated rules [e.g., diagonally,
as shown in Fig. 4(d)].

2) Sources of Sparsity: Tensors of different ML models
can be sparse due to multiple reasons.

1

2)

3)

CNNs use the ReLU activation function [1] that
clamps negative values to zero. So, sparsity of IAs
(IA-sparsity) can be 40% in CNNs, on average [64]
and higher in later layers (about up to 70% [64],
[65]). Cao et al. [64] reported that max-pooling can
amplify it, e.g., up to 80% for VGG-16 layers.
Lee et al. [66] showed that IA-sparsity eliminated
about 40% and 55% of the multiply-and-accumulate
(MAC) operations during CNN training and infer-
ence, respectively. For recent compact models, such as
MobileNetV2 [32], IA-sparsity eliminates about 20%
of the MACs.

Neural networks use dropout layers to avoid over-
fitting. After applying the dropout, only partial acti-
vations are retained [26]. Dropping the activations
induces sparsity [26].

Pruning techniques remove unimportant weights and
alleviate the overfitting of the model while maintain-
ing the classification accuracy. Typically, weights with
the least significant values can be safely pruned [25],
[31] (in training or posttraining). Pruning can bring
regularity in the learning of the model and can
even increase accuracy slightly [37], [60]. Pruning
algorithms introduce significant sparsity, e.g., more
than 60% weights of CONV and more than 90%
of the weights of FC layers can be removed [25]
(W -sparsity). For recent compact models, such as
MobileNetV2 and EfficientNetBO, W-sparsity can be
from 50% to 93% [80%-85% in pointwise con-
volutions (PW-CONVs)] [67], which reduces MACs
by 2.5x—4.2x. Similarly, more than 80% weights of
RNN, GRU, or LSTMs can be pruned [39], [68],
[69], especially for medium or large models, without
significantly increasing error rate. For NLP models,
Transformers [7] and BERT [8], recent techniques
induce 80% [70] and 93% [71] W-sparsity, which
reduces total MACs by about 4.8 x and 12.3x, respec-
tively. Besides, regularization of the models (e.g.,
L1 or group-lasso-based) can induce unstructured or
structured W-sparsity [28].

Pruning of activations is also shown as effec-
tive [72]-[76]. DasNet [73] reported eliminating
about 27% and 12% MACs by activation sparsifi-
cation for AlexNet and MobileNet. It achieved 79%
IA-sparsity for AlexNet FC layers along with prun-
ing 81% weights, without dropping top-1 accuracy.
Similarly, MASR [77] refactored batch normaliza-
tion, achieving about 60% IA-sparsity for RNNs. For
attention-based NLP models, SpAtten [78] pruned
unimportant tokens and heads. It reported reducing
computations and DRAM accesses by up to 3.8x and
1.1x, respectively, without accuracy loss.

4)

5)

6)

7)

8)

9)

10)

CNNs use Atrous (dilated) convolutions where fil-
ters are upsampled by inserting zeros between
weights [5].

GANs use transposed convolution in a degenera-
tor network, where input data is upscaled first by
inserting zeros between values, and then, convolution
is applied. For transposed convolutions in different
GANs, about 60% MACs can be zero [79]. Additional
sparsity is introduced when GANSs are forced to forget
generating specific objects [80].

Input data for object detection tasks can be inher-
ently sparse, as only specific regions of frames are
valid [81]. For example, object detection models of
autonomous driving systems process 3-D LiDAR data
by constructing point clouds and projecting them
from the bird’s eye view (top view) [82], [83].
The resultant images are then fed to object detec-
tion algorithms for locating the regions of interest.
Recent techniques have reported that the sparsity of
the input data for object detection can be 80% or
more [81], [82].

For efficient communication in distributed training,
gradients (Grad) are sparsified and compressed. For
example, Grad-sparsity can be 99%-+ for CV or
language processing tasks [84] and 95%-99% for
recommendation models [85].

Input data for the tasks of recommendation systems
(e.g., user-item matrix) can be inherently highly
sparse, e.g., from 95% [86] to 99% [11]. Recommen-
dation models compute dot products on dense-sparse
or sparse-sparse data [85], [87].

GNNs process large graphs, e.g., with thousands of
vertices. Depending on the real-world interactions of
objects (vertices), data contain high (e.g., 75%-99%)
or hyper (99%-+) unstructured sparsity [88], [89].
For example, in processing large graphs with GCNs,
many features of vertices are local and lead to zeros
in adjacency matrices for remote nodes [89]. GNN
computations involve aggregation on sparse data and
multiplications of dense matrices with dense or sparse
matrices [89], [90], which are often processed on sep-
arate modules of the accelerator (e.g., in HyGCN [88]
and EnGN [91]).

Text corpus in text analytics applications leads to high
sparsity since each document contains only a fraction
of the words from the vocabulary. Such analytics
applications include PCA for dimensionality reduc-
tion of the sparse data, support vector machines and
regression for classification, collaborative filtering for
the recommendation, and k-means for clustering the
data [30]. These operations involve multiplications of
sparse matrices with dense or sparse vectors, where
the matrix sparsity can vary from 67% to 99% [30].

While we describe leveraging sparsity for ML models,

applications of many domains, including linear algebra,
graph processing, and scientific computing [92], [93], can
be accelerated by exploiting sparsity.
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3) Advantages:  Sparsity allows: 1) eliminating
ineffectual computations, i.e., reduces execution time
and energy by processing only NZs; 2) reducing storage
by encoding only NZ values, so more data fits in on-chip
memory and off-chip memory accesses (extremely energy-
consuming [42], [94]) are reduced; and 3) improving
speedup due to reduced communication requirements for
data-intensive ML models.

B. Opportunities Due to Size-Reduced Tensors

Symmetric or high-dimensional tensors have large sizes
and their processing requires more computation and mem-
ory. So, ML models are designed to reduce such require-
ments by using group or parallel operators [1], [95],
1 x 1 or PW-CONVs [33], [96], or dimensionality
reduction with PCA [30], [34]. Moreover, tensors can
be decomposed with spatial factorization [34], [97],
depthwise separation for convolutions [3], [32], or low-
rank approximations [34]. Furthermore, tensors can be
ragged [35] to eliminate the need for structured or rec-
tangular shapes. While these transformations significantly
reduce storage and computations, they make tensors irreg-
ular shaped (asymmetric).

C. Opportunities Due to Quantized Tensors

Quantization includes precision lowering [36] and
leveraging value similarity [27], [98], [99]. Precision low-
ering allows representing tensors (weights, activations,
gradients, and weight updates) at much lower bit-width
(e.g., 8 b or lower for inference and 8/16 b for learning).
Moreover, elements with similar values can be clustered
and approximated by sharing common values (centroids
of clusters). Furthermore, similar values of outputs are
reused with memoization (partially or the entire layer).
In general, significant redundancy exists in tensor elements
(particularly in the parameters of large models), and a
successfully trained model is generalized and immune
to noisy data. So, the error induced by quantization or
approximation may often be tolerated by a well-trained
model [100]. It can also obviate overfitting caused oth-
erwise by excessive precision, thereby bringing generality
in learning [101]. For compensating accuracy drop due to
quantization, learning algorithms fine-tune the model or
use quantization-aware training [36]. So, quantization or
approximation techniques typically do not degrade infer-
ence accuracy [66] or trade it off for notable execution
efficiency [64], [102], [103].

Quantization significantly reduces storage requirements
and accesses to off-chip memory. It also reduces area and
power since, for quantized tensors, functional units can
be simpler and energy-efficient (e.g., int8 multiplier con-
sumes 20x less energy than FP32 multiplier [94] for a
45-nm process). Bus sizes can be smaller as bandwidth
requirements are reduced.

So, with sparse, size-reduced, and quantized tensors,
compact models can achieve higher accuracy as models
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with uncompressed tensors while becoming amenable for
deployment at the edge, mobile, or online-learning plat-
forms [17], [27] due to scope for low latency, energy, and
storage. So, leveraging such opportunities is crucial for
further accelerations.

D. Need for Special Support to Accelerate Sparse
and Irregular Tensor Computations

Hardware accelerators efficiently process different mod-
els [21], [22], [104]. However, they inherently cannot
benefit from the sparsity because all the data, including
the zero values of activations, weights, and gradients, have
to be fetched from memory and communicated to PEs;
PEs are also unable to skip ineffectual computations, wast-
ing the execution time. Sparsity, especially unstructured,
induces irregularity in processing since NZs or blocks of
NZs are scattered across the tensor. Therefore, leverag-
ing sparsity necessitates additional mechanisms to store,
extract, communicate, compute, and load-balance the NZs,
and corresponding hardware and software support [41],
[105]. Different sparsity levels and patterns from vari-
ous sources lead to unique challenges and solutions in
hardware/software codesign. Therefore, our discussions
throughout this survey mainly focus on exploiting tensor
sparsity for accelerating compact models.

Tensor dimension reduction and tensor decomposition
make tensors irregular shaped (asymmetric), and they may
also modify the functionality of the computational primi-
tives, e.g., depthwise convolution (DW-CONV). Since exe-
cution on hardware accelerators is typically well-optimized
for processing symmetric tensors with a specific dataflow
mechanism, these shape transformations and support-
ing different functionality (e.g., DW-CONV, randomized,
or approximated matrix multiply [106]) may introduce
irregularity in processing requirements. To sustain high uti-
lization of computational resources, it requires additional
support including configurable hardware architectures and
flexible mappings of the functionality onto architectural
resources [43], [105], [107].

Hardware accelerators have supported low-precision
tensors of fixed bit-widths and, even more recently, tensors
with mixed precision [66]. However, when sparse tensors
are quantized with value sharing, it requires indexing the
codebook through indices for approximated elements [27].
Such irregular accesses are handled by implementing sep-
arate indirection tables in the pipelined hardware data-
path [37], [42]. Moreover, value similarity is leveraged
further by reusing computations with memoized outputs,
which requires additional processing. Furthermore, sup-
porting different bit-widths of various sparse tensors of
different models requires configurable architectures for
bit-adaptive computing [108]-[110].

To sum up, compressed tensors lead to sparse
and irregular computations. Their efficient accelerations
require special support, which is described in Section IV.
The appendix describes that exploiting sparsity (espe-
cially unstructured) is relatively hard for execution on
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Table 1 Accelerators for Processing Sparse Tensors

Objective Techniques

Compressed data
in off-chip
memory (storage)
Compressed data
in on-chip
memory (storage)
Skip processing
Zeros
(energy efficiency)
Reduce ineffectual
computation cycles
(performance & energy)
Load balancing
(performance)

[20], [30], [37], [41]-[43], [60], [65], [66],
[68], [93], [105], [107], [109], [111]-[124]

[30], [37], [41]-[43], [60], [65], [66],
[68], [72], [93], [105], [107], [111]-[119],
[121], [123]-[125]

(201, [301, [37], [41]-[43], [60], [65], [66],
[68], [72], [93], [105], [107], [109], [112],
[114]-[119], [121]-[134]

[30], [37], [41]-[43]. [60], [65]. [66].
[68], [72], [93], [105], [107], [112]-[119],
[121], [123]-[125], [129], [130], [134]

[37], [42], [43], [60], [65], [66], [68],
[116], [118], [123], [126], [127], [130]

CPUs and GPUs; with special support, hardware acceler-
ators can achieve notable gains.

IV.ACCELERATOR DESIGN FOR
EFFICIENT SPARSE AND IRREGULAR
TENSOR COMPUTATIONS

A. Overview

To efficiently process sparse and irregular tensor compu-
tations, designers of the accelerator systems can integrate
special hardware or software modules. It enables orches-
tration of the structured computations while processing
the tensors in compressed formats. Consequently, it can
lead to efficient utilization of the accelerator resources
and allows exploiting acceleration opportunities. Fig. 1
provides an overview of the accelerator system equipped
with such modules. This section briefly describes these
system modules.

Sparse, size-reduced, and quantized tensors of ML mod-
els offer various opportunities for storage, performance,
and energy efficiency. Hence, several accelerators have
provided marginal or comprehensive support and lever-
aged some or all the opportunities. Table 1 lists such com-
mon objectives and corresponding accelerator solutions
that meet these objectives.

Different accelerators for inference and learning
exploit W-sparsity, IA-sparsity, or both, which
impacts acceleration gains [130]. Several accelerators,
including Cambricon-X [41], exploit only static sparsity
(see Table 2), e.g., when locations of zeros in weights
are known beforehand for inference. Static sparsity
allows off-line encoding and data transformations for
arranging structured computations (e.g., for systolic
arrays [62], [126], [136]). Recent accelerators, including
ZENA [130], SNAP [107], and EyerissV2 [43], leverage
dynamic sparsity also. It requires determining locations
of intersecting NZs in both tensors at runtime to feed
functional units, on-the-fly decoding (encoding) NZs,
and often balancing computations on PEs. Table 2 lists
different accelerators that support static and dynamic
sparsity of tensors. Now, we describe different hardware
and software aspects of the accelerator system that helps
in leveraging sparsity effectively.

1) Sparsity Encodings: Sparse tensors are compressed
using encodings, where only NZ values are stored in a
“data” tensor and one or more “metadata” tensors encode
locations of NZs. Section V discusses different formats and
associated costs for encoding and decoding. For different
sparsity levels, it analyzes their effectiveness in terms of
storage efficiency. For example, tensors can be compressed
by 1.8x and 2.8x for 50% and 70% sparsities (bitmap
or RLC-2) and 7.6x and 55x-60x for 90% (RLC-4)
and 99% sparsities (CSC or RLC-7). Structured sparsity
(coarse-grain block-sparse) can alleviate the overheads
of metadata and fine-grained data extraction by encod-
ing indices for only large dense blocks. For accelerating
ML models, sparse tensors are also quantized, i.e., their
precisions are lowered (typically int8 or int16 for infer-
ence [43], [115], [130] and FP16 for learning [66], [105])
and often approximated by clustering data of similar val-
ues [37], [42], [111]. Therefore, encoded sparse data
contain quantized values of NZs.

2) NZ Detection and Data Extraction: In processing
sparse tensors of different primitives, corresponding ele-
ments of the weight and activation tensors are multiplied
and accumulated. Depending on the sparsity, accelerators
need to use data extraction logic that decodes compressed
tensors, search within a window of NZs or index the
buffer, and obtain matching pairs of NZs to feed the
functional units for computation. Section VI provides a
taxonomy of different data extraction mechanisms and
analyzes their implications for various sparsity levels. Up to
moderate [A-sparsity and high W-sparsity, these index-
ing or intersection-based mechanisms efficiently extract
sufficient NZs at every cycle for keeping functional units
engaged. For efficient compute-bounded executions at
such sparsity, accelerators reported achieving near-ideal
speedups (e.g., about 80%-97% of the speedup cor-
responding to reduced operations, i.e., sparsity-speedup
ratio) [41], [42], [130]. However, extraction becomes
challenging at high (e.g., 90%-+) or hypersparsity as NZs
are scattered at distant locations [89], and execution is
usually memory-bounded with low arithmetic intensity.
Section VI also discusses sharing of the data extraction
mechanism among PEs or employing in PEs. Then, it dis-
cusses opportunities for further optimizations.

3) Memory Management: Compressed tensors are often
stored in the shared on-chip memory that is noncoher-
ent, multibanked, and often nonunified. For a predeter-
mined sequence of execution, a controller or PEs initiates
the accesses between off-chip and on-chip memory; their
latency needs to be hidden behind computations on PEs.
Section VII discusses corresponding memory architectures
and techniques for hiding miss penalty for sparse tensors
via double-buffering or asynchronous computation and
memory accesses. It describes the data reuse opportunities
for various sparsities and dimensions of tensors of common
DNNs and how sparsity lowers the reuse. It also discusses
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Table 2 Accelerator Systems Leveraging Sparsity of Different Tensors for Different ML Models

Dynamicit Static [41], [60], [62], [68], [113], [119], [122]-[124], [126], [127]
zs .ty - - [207, [301, [37], [42], [437, [65], [66], [72], (78], [93], [105], [107], [109], [T117], [112], (TT4]=[118], [121],
of sparsity ynamic [125], [128]-[133], [131], [135]
S Unstructured | [417, [113], [122]-[1247, [127], [136]
Tensors Treated g Structured \ [37], [58], [60]-[62], [68], [118], [126], [137]
as Sparse Activation [20], [66], [72], [78], [111], [121], [125], [128], [133], [131], [135]
Both [301], [37], [42], [43], [65], [93], [105], [107], [T109], [112], [114]-[119], [129], [130], [132], [134]
Matrix-Vector Multiply [301, [37], [41]-[43], [60], [66], [93], [107], [114], [116], [119], [129], [133]
e Matrix-Matrix Multiply [4T], [93], [105], [116], [126], [127], [132], [134]
Operation Convolution [201, [37], [41], [43], [60], [63], [66], [72], [107], [109], [111]-[118], [121]-[124], [129]
Recurrent / Attention Layer [68], [771, [78], [125], [128], [131], [135], [137]
Accelerators for Learning [66], [105]

techniques that leverage cross-layer reuse of intermediate
output layers and reduce latency.

4) Communication Networks: Once tensor blocks are
fetched from memory, they are distributed to appropriate
PEs via interconnect networks (often one per operand).
Efficient designs ensure that sufficient data can be fed
to PEs, while they perform computations. Reuse is lever-
aged spatially by multicast or mesh networks that com-
municate common data blocks to multiple PEs. It lowers
access to memory hierarchy and communication latency.
However, spatial reuse opportunities vary depending on
the sparsity, NZ extraction mechanism, and mapping of
the functionality on the accelerator. Section VIII discusses
different designs for distributing sparse and quantized
tensors and reducing partial outputs. It also describes
challenges in executing inter-PE communications that may
become unstructured due to sparsity and the temporal and
spatial mechanisms for reduction/collection of the out-
puts. It describes how configurable designs support various
communication patterns for different sparsity, reuse, and
functionality.

5) PE Architecture: Several accelerators consist of scalar
PEs with fused MAC units (e.g., EIE [42], LNPU [66],
and Envision [109]). Others contain SIMD PEs (mul-
tiple functional units) (e.g., EyerissV2 [43]) or vector
PEs consisting of multiplier-arrays and adder trees (e.g.,
Cambricon-X [41] and SNAP [107]). PE architectures
either directly process pairs of matching NZs extracted
from tensors or use hardware logic for data extraction
or coordinate computation (see Fig. 2). Effectively utiliz-
ing functional units can be challenging for variations in
sparsity, precisions, and functionality, and it may require
configurable designs. Section IX provides corresponding
discussions and describes sparsity-aware dataflow mech-
anisms (mapping of tensor computations on accelera-
tor resources) used by different accelerators. It also
describes how accelerators have leveraged value similarity
of tensors and the corresponding modifications in the
PE architecture.

6) Load Balancing: Depending on the distribution of
zeros, the execution may end up with processing a dif-
ferent amount of NZs on different PEs or their functional
units, which creates inter-PE or intra-PE load imbalance.
Section X analyzes such sources of the imbalance and intro-
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duces a taxonomy of different load balancing techniques.
Accelerators achieve load balance through either software
techniques (e.g., structured pruning or data reorganiza-
tion) or by providing a hardware module for dynamic
work balance (through asynchronous execution or work
sharing), which provides further accelerations. For exam-
ple, ZENA [130] leveraged the sparsity of both activa-
tion and weight tensors for AlexNet and VGG-16 models
and reported about 32% additional performance gains
through load balancing. Dynamic load balancing can pro-
vide notable speedups for high, unstructured sparsity [89].

7) Write-Back and Postprocessing: Tensor elements pro-
duced by PEs need to be collected, postprocessed for
further operations, and written back to the memory. PEs
in different accelerators either write back sequentially
or asynchronously through a shared bus or via point-to-
point links. In addition, accelerators usually contain a
postprocessing unit that reorganizes the data (as per the
dataflow mechanism of the current and next layer of the
model) and encodes sparse output on the fly. Section XI
discusses such mechanisms.

8) Compilation Support: It is important to support the
execution of various ML models on accelerators and easier
programming of models from ML libraries. Section XII
discusses compiler support for sparse models and hard-
ware accelerators. It discusses polyhedral and nonpolyhe-
dral IRs and their implications on the compiler’s ability
to represent the code and apply code transformations.
It describes challenges in supporting sparse tensors and
DNN compilers that facilitate sparse tensor computations.
Then, it discusses compiler optimizations, including com-
mon loop optimizations and those specific to hardware
intrinsics. It also describes semiautomatic optimizations
for transforming the loops, data layout, and automatic
optimizations using cost models. Finally, it discusses ISAs
used by accelerators and their code generation by using
libraries of high-level primitives.

B. Case Study: Acceleration of DNNs and
Bottleneck Analysis

This section analyzes the sparsity of recent DNN models
(for NLP and CV) and the acceleration that can be achieved
with some of the popular accelerator-alike architectures.
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Table 3 Sparsity of Some Popular DNNs

. GOps | Sparsity % | Sparse

Model Domain Dataset ( denls)e) I Ap W | Ops Ni)o del
MobileNetV2 [32] CV ImageNet 0.3 341521 81 [67]
EfficientNetBO [124] CV TmageNet 0.5 0 68| 60 [67]
Transformer [7] NLP | WMT En-De| 4.6 0179 79 [70]
BERT-base-uncased [8] | NLP SQuAD 9.3 0192 92 [71]

1) DNN Models: Table 3 summarizes analyzed DNN
models and their overall sparsity across all CONV, GEMM,
and DW-CONV operations. For each of these DNN opera-
tions, W-sparsity was obtained from sparse DNN models
(listed in the last column). IA-sparsity was obtained by
performing inference with sample data (images and text
sequences).

2) Accelerators:  Table 4 summarizes analyzed
accelerators and their sparsity-centered features. Their
architectures targeted unstructured or block-sparse
sparsity of activations and/or weights. Their features
represent variations across data encoding, data extraction,
vector processing, memory hierarchy, NoC, and load
balancing.

3) Methodology: To determine the impact of sparsity
on achievable acceleration, we performed a data-driven
analysis of the execution latency. For each DNN layer, zeros
(or blocks of zeros) were induced randomly according to
the sparsity of its tensors. The overall execution time was
determined from the latency of processing on functional
units, data decoding, extraction of NZs, work synchroniza-
tion, and off-chip memory transfers, which were calculated
based on analytical modeling of the microarchitectural fea-
tures. The speedups were calculated over oracle processing
of dense tensors at the accelerator’s peak utilization of
computational resources and off-chip bandwidth. In this
study, we do not consider the processing of DW-CONV on
these accelerators since they are often not pruned, and
their execution needs to be groupwise, which is extremely
inefficient. Such unsupported performance-critical opera-
tors were assumed to be processed with dense tensors at
peak utilization of hardware resources.

4) Analysis: Fig. 5(a) shows speedups of accelerators
for targeted DNN models, for leveraging the sparsity
of supported DNN operators. It illustrates speedups for:
1) reduction in the operations due to sparsity (desired);

13

Al A2 A3 % Al A2 A3 % A2 A3 A4 % A2 A3 Ad %
Transformer ! BERT ' MobileNetv2 ' EfficientNetBO '
W obtained O peak_resources Mreduced_Ops Mreduced_Ops_w_d/w_CONV

(a)

100%

g 80%
E
c 60%
2
3 40%
%
. 20%
0% I I I I
Al A2 A3 | Al A2 A3 | A2 A3 Ad | A2 A3 A4 |
(b) Transformer | BERT | MobileNetv2 | EfficientNetB0 |
B Compute OExtraction M Load Imbalance ODMA
Fig. 5. (a) Obtained speedups for accelerators listed in Table 4.

(b) Analysis of execution time overheads for obtained accelerations.

and off-chip bandwidth while leveraging sparsity, over
such oracle processing of dense tensors (potential); and
3) actual processing on accelerator over oracle processing
of dense tensors (obtained). For understanding implica-
tions of execution overheads including those incurred by
metadata processing and load imbalance, Fig. 5(b) illus-
trates fractions for desired computation time and execu-
tion overheads in a stacked format. The overheads were
extracted for layerwise processing and then accumulated
to determine the overall impact. Fractions include the
following.

1) Computation time: Minimum execution time required
for processing at peak on accelerator’s functional
units.

2) NZ extraction: Time required for decoding NZs from
communicated operands and extracting matching
operands for feeding the functional units. It also
corresponds to balanced computations.

3) Load imbalance: Time required for on-chip processing
on the accelerator, considering the imbalanced com-
putations subjected to the accelerator’s work synchro-
nization and work-sharing schemes.

DMA time: Time required for off-chip data commu-
nication via DMA transfers, in addition to on-chip

4)

2) peak utilization of accelerator’s computational resources processing.
Table 4 Architectural Features of Analyzed Accelerators for Sparse DNNs
Reference | Supported Sparsity Non-zero Data PE Work Fre DRAM Bit-width
D Architecture | O lzga ors Leveraged Extraction Architecture Synch- (Gqu.) BW data metadata
P ‘ IA T W Encoding | Discovery | Loc. FU ronization (GBPS) [IA/O|W | IA | W
Al EIE [42] GEMM unstructured CSR . in-PE Scalar Prefetch 0.8 256 16 4 |IN/A| 4
Cambricon-X unstru- | COO- Linstzetoy central
A2 CONYV, dense Vector (16 Every 1 256 16 16 |N/A| 8
[41] ctured 1D (per PE) .
- GEMM multipliers & | Output
Cambricon-S unstru- | block- central, N
A3 ) ] Inter- adder tree) | Activation 1 256 16 8 1 1
[37] ctured | sparse | Bitmap . shared
ZENA- section = Tntra-
A4 IA-W [130] CONV unstructured in-PE Scalar Workgroup 0.2 12 16 16| 1 1
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Fig. 5(a) shows that accelerators efficiently exploited
moderate sparsity. For example, for 4.8x reductions in
operations of Transformer due to W -sparsity, they achieved
about 4x-4.2x speedups. The exploitation of speedup
lowers when activations are dense and weights are highly
or hypersparse. This is because accelerators, such as
EIE and Cambricon-X, broadcast activations to PEs and
extract matching pairs corresponding to NZ weights. So,
communication of activations and extraction of matching
NZ operands consume significant execution time, while
there are fewer operations to feed the functional units
[see Fig. 5(b)]. For example, for BERT-base-uncased [8]
(92% sparse weights [71]) on SQuUAD [138], they achieved
about 7.7x-8.9x speedups out of 12.2x speedup for
processing at peak. Due to block-sparse weights, com-
putations on PEs of Cambricon-S are always balanced.
Therefore, it achieved higher speedups. By using blocks
of 16 x 16 or even 1 x 16 (across input and output chan-
nels) for pruning, inducing similar sparsity is not possible
sometimes. So, the reduction in operations and potential
for the speedup was slightly lower for Cambricon-S (e.g.,
for EfficientNetBO0). In general, due to high DRAM band-
width, overheads incurred by DMA transfers were hid-
den (for Cambricon-X/S) or negligible for noninterleaved
transfers (e.g., for EIE).

Fig. 5(a) also shows that Cambricon-S and ZENA-IA-W
achieved higher speedups for CV models by leverag-
ing unstructured sparsity of activations. High IA-sparsity
amplified total sparsity during processing several lay-
ers (e.g., MobileNetV2), incurring considerable excess
processing in data extraction for Cambricon-X/S and in
load imbalance for ZENA-IA-W. With zero-aware static
sorting of filters and dynamic load balance, ZENA [130]
could overcome such imbalance. However, it would suffer
through high on-chip communication time since it used
only one shared bus for multicast via NoC and collecting
outputs. We disregarded such communication overhead for
ZENA-TA-W in this study, as most accelerators use separate
NoCs or buses for alleviating communication overheads.
Also, due to low DRAM bandwidth, overheads incurred
by DMA transfers were higher for ZENA-IA-W, mainly for
executing DW-CONVs with dense tensors.

V.ENCODINGS FOR COMPRESSING
SPARSE TENSORS

A sparse tensor is compressed with an encoding format.
An encoded tensor contains actual data (NZ values) and
metadata (information about positions of NZs). Later,
metadata are used by an accelerator’s data indexing logic
to locate and extract NZs. This section discusses commonly
used encodings through an example (see Fig. 7) and their
implications on the storage and processing requirements.
For different formats, Fig. 6 introduces a taxonomy for
processing metadata during data extraction, and Table 5
lists the corresponding storage overhead. Depending on
the mapping of a layer onto the accelerator, tensors are
divided into blocks (per PE-wise work) that are encoded
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Metadata Processing

Direct Step

« CO0
. COO-M\*

Single-Step Double-Step Triple-Step  2n-Step
* RLC * CSR * Double CSR  « CSF
* Bitmap * CSC * Double CSC

« CSR/CSC + Relative indexing

Fig. 6.
during data extraction when a sparse tensor is encoded using
different formats.

Taxonomy for the required processing on the metadata

separately. We refer to such processing as a groupwise
encoding, which is discussed later. Finally, this section
briefly describes encoding on the fly and further opportu-
nities.

A. Encoding Formats and Implications

1) Coordinate (COO): It stores absolute positions of NZs.
As shown in Fig. 7(b), all NZs of an uncompressed tensor 7'
are stored in a data vector val, and vectors coord_y and
coord_z indicate the coordinates of each NZ value. So,
COO is a natural way to express sparse tensors and is
used commonly (e.g., in PyTorch). Formats adopted by
FROSTT [140] and matrix market [141] closely resemble
COO.

The COO format stores all coordinates in the uncom-
pressed format. For example, as shown in Fig. 7(b),
the metadata for values “2” and “3” (same row) or “2” and
“5” (same column) are not compressed, i.e., duplicate val-
ues of row and column indices exist in coordinate vectors.
So, the overhead of storing n coordinates per NZ value
is about ) 7 [log, d;] bits (vector d contains the tensor’s
dimensions). It makes COO inefficient for storing tensors
with low or moderate sparsity.

Fig. 8 shows storage benefits for encoding 2-MB matri-
ces of various sparsities in different formats. We calculated
storage requirements with the analysis presented in Table 5
and normalized them to the matrix’s size in dense format.
We used the Scipy library [142] to generate matrices of
various sparsities and encode them in COO, CSR, and CSC.
Fig. 8 shows that, for a 2-MB matrix, COO achieves storage
efficiency for 70%+ sparsity. However, COO may yield
simple indexing logic, as both the data and metadata can
be directly extracted.

Table 5 Storage Overhead for Common Encodings. Vector d Stores n
Dimensions of a Tensor That Contains NNZ NZ Elements

Format Storage Overhead (bits)
COO NNZ x 5T [logy di]
COO-1D NNZ x [logy [17 di]
RLC NNZ x B
Bitmap 17 ds
CSR NNZ x [loggdi] + (do + 1) X [logg NNZ + 1]
CSC NNZ x [logy do] + (di + 1) X [logg NNZ + 1]
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2) COO-1D: For tilewise processing of an encoded tensor,
accelerators often process only a block of NZs at a time,
where block elements vary across only a single dimension.
For example, Cnvlutin [72] processes the IAs and weights
across the channel direction. Therefore, the data block is
encoded with COO-1D, which is just like COO, but there
is only one pos vector for storing coordinates of NZs in the
flattened block. For instance, if we flatten 7' and consider
it a block, then the value “5” is indexed by position “3.”

3) Run-Length Coding (RLC): It compresses a sequence
of values by replacing consecutive duplicate values with a
single value and the number of repetitions (also known
as run). For RLC-encoded sparse tensor, “run” indicates
a total number of zeros before (after) an NZ. Fig. 7(d)
shows RLC encoding of 7. Run values for “2” and “3”
are “0” and “1,” respectively. A few accelerators, including
Eyeriss [20], encode both the NZs and run altogether in

100.0

10.0

dense tensor

1.0 o

N

10% 30%

Normalized Storage Savings

50% 70%

Sparsity
RLC-4 [ Bitmap

90% 99%

B NZs ERLC-B mRLC-2 CSC #ZCSR mCOO

Fig. 8. Storage benefits for encoding a sparse tensor (512 x
2048 matrix with 16b elements) in different formats, normalized to
the size of the fully dense tensor. (Figure inspired from [105].)

the same vector val. For example, T' can be encoded as
val: (0,2,1,3,0,5,4,7).

RLC requires a step processing on metadata, as run
length needs to be calculated by accumulating runs and
preceding NNZs, for determining the position of an NZ.
The storage overhead for RLC-B is NNZ x B bits, where
B is the bit-width of the run. If a vector d contains tensor
dimensions, then B can be set as up to [log, ([]} di)]
bits for accommodating the number of leading zeros in
a highly sparse tensor. When B is set lower, it cannot
always capture the number of zeros as run. Fig. 7(d) shows
RLC-2b encoding, where leading zeros before “7” are four.
This cannot be expressed in 2 bits. As a work-around,
padding zeros [42] are inserted and treated as NZs. In this
example, a padding zero is inserted between “5” and “7”;
run values corresponding to the padding zero and “7” are
“3” and “0,” which contributes to the total run of four.

To accelerate CNNs with 30%-90% sparsity of tensors,
designers have set B as two or four bits. In general, setting
the B as |log, (sparsity/density) | + 1 bits can effectively
compress tensors and provide a feasible bit-width to indi-
cate leading zeros. Here, sparsity and density are fractional
numbers indicating the actual or anticipated number of
zeros and NZs in the tensor, respectively. So, setting the
Bas1,1,1, 2,4, and 7 efficiently encodes tensors with
sparsity of 10%, 30%, 50%, 70%, 90%, and 99%, which is
depicted in Fig. 8.

As RLC requires step processing on metadata, the index-
ing logic needs an accumulator to determine the position of
an NZ. When an encoded tensor is not processed blockwise
but rather indexed by n-dimensions, the indexing logic
may require performing division and modulo operations on
the metadata. Alternatively, a multidimension representa-
tion can be used, where run for the coordinates of each
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dimension can be calculated separately and stored. The
overall computational cost (arithmetic and logical opera-
tions realized in hardware) for such step processing can
be low. Therefore, several accelerator designs, including
Eyeriss [20] and SCNN [115], used RLC or its variant.
As run indicates repetition of a value, CompAct [111] used
an enhanced RLC format for encoding both the sparse and
similar-value activations.

4) Bitmap: It stores all NZs in a tensor val along with
a tensor flag that contains 1-bit flags for all elements
of an uncompressed tensor 7. As shown in Fig. 7(e),
a flag indicates whether an element is NZ or not. Storage
overhead for the bitmap (also known as bit-mask) is [} d;
bits (where vector d stores n dimensions of T) [121].
Since bitmap stores metadata for all elements, it is effec-
tive for compressing the tensors of low or moderate
sparsity. Like RLC, decoding or indexing bitmap also
requires step processing. The indexing logic to locate an
NZ typically consists of at least an adder and a com-
parator [41]. Due to moderate storage overhead and
low encoding/decoding cost, several accelerators used
bitmap, including Cambricon-X [41], SparTen [116], and
SIGMA [105], as shown in Table 6.

5) Compressed Sparse Row (CSR): It compresses a matrix
by processing each row as a sparse vector. In a CSR-coded
tensor, an array val contains all NZ values (ordered row-
wise), and an array idx stores their column indices [143].
Array ptr stores information about total NZs in each row i,
which is obtained by calculating ptr[i + 1] - ptr[i]. The
last element of ptr contains the total NNZs in 7'. Rowwise
compression enables random accesses to any row.

While COO redundantly stores row coordinates of NZs
in the same row, CSR compresses such metadata by storing
NZs rowwise [139]. For example, in Fig. 7(b) (COO),
coord-y stores row indices “0” and “0” for NZs “2” and “3.”
This redundancy is removed in the CSR coding of Fig. 7(f),
as ptr stores only total NZs in each row. For compressing
an M x N matrix using CSR, the total storage overhead
is NNZ x [log, N (for idx) + (M + 1) x |logs NNZ + 1]
(for ptr). Due to high storage overhead (proportional to
NNZs and size of the row), CSR coding is efficient at high
sparsity [41], [105], e.g., 90% or higher (see Fig. 8).

Decoding a CSR-encoded tensor can require a two-step
processing of metadata. The first step locates NZs of a
row by iterating over ptr, and the next step locates an
NZ element in the NZs of the row through the column
index. Accelerators efficiently process CSR-coded matrices
rowwise such that ptr is accessed once for fetching each
row, and then, the decoder iterates through idx (to locate
column positions).

CSR variants can improve efficiency further. For exam-
ple, ptr stores duplicate values when consecutive rows are
zero. Doubly CSR (DCSR) [144] eliminates this redun-
dancy and achieves additional compression for hyper-
sparse matrices. Block CSR (BCSR) [145] stores a block
of elements in val if the block contains at least one NZ.
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As shown in Fig. 7(k), in BCSR, idx indicates the column
index of a block, and ptr informs about the number of dense
blocks located in the same rows. BCSR avoids storing
blocks of all zeros and populates dense regions, hence
suitable for encoding block-sparse structured weight ten-
sors. So, BCSR-coded tensors can be efficiently executed
not only on conventional processors but also on hardware
accelerators (with additional support for appropriately
indexing dense regions, e.g., [126]).

6) Compressed Sparse Column (CSC): CSC is similar
to CSR, except that NZs are stored columnwise [143].
As shown in Fig. 7(g), an array val contains NZs (organized
columnwise); idx stores their row indices; and ptr informs
about the total NZs in each column. The storage overhead
and hardware costs for encoding/decoding tensors in CSC
format are similar to those for CSR. Accelerators, including
EIE [42] and Sticker [117], processed high-sparsity tensors
with CSC format.

For alleviating the high storage overhead of CSR or CSC
formats due to storing idx and ptr arrays, a few accelera-
tors further encode the metadata idx or ptr. For example,
EIE [42] and EyerissV2 [43] encode idx in RLC such that
elements in idx indicate zeros between column indices of
NZs (similar to run in RLC for NZ values). Fig. 7(h) shows
CSC encoding with such an RLC-encoded row index array.
Values “2” and “5” have column indices “0” and “1,” respec-
tively, which can be encoded as “0” and “0” since there are
no leading zeros before NZs “2” and “5.” Similarly, if the
first column of 7" is (0, 2, 0, 0, 5), then the row indices
for “2” and “5” can be encoded as “1” and “2.” ptr can
also be encoded likewise (store NZs per column instead of
a cumulative number). However, encoding positions rela-
tively requires additional step processing on the metadata.
Therefore, decoding a CSR or CSC encoded matrix with
RLC-encoded metadata can require triple-step processing
on metadata (additional hardware cost).

7) Compressed Sparse Fiber (CSF): CSF [146] provides
a generalization of CSR for higher-order (n-dimensional)
tensors by forming a tree (with n levels). Nodes at level [
contain indices for the /th mode (dimension) of an uncom-
pressed tensor 7. The path from a root to a leaf node
encodes different coordinates of an NZ, which are stored
in the nodes throughout the path; each leaf node stores an
NZ value. So, the height of the tree is the total dimensions
of T'; the width is NNZs in T'.

Fig. 7(i) illustrates a mode-0 tree and corresponding
arrays of index pointers. Root nodes represent the major
mode (0 or y), and their child nodes represent the con-
secutive dimension (1 or z). Like in CSR, ptr informs
about a group of indices corresponding to a dimension.
For instance, ptr array at the beginning informs that one
group of three coordinates corresponds to the mode 0 (idx
stores coordinates). Similarly, the next ptr array informs
about three different groups of coordinates for the next
mode (dimension 1). The corresponding idx array stores
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Table 6 Commonly Used Sparsity Encodings by Accelerators

COO [931, [117]
COO-1D | [60], [72], [107], [1147, [124T, [1251, (1297, [132]

RLC [201, 651, 661, [781, (1111, (1131, (1151, [149]

. [371, [411, [62], [105], (1091, [111], [112], [116]-
Bitmap |87 [120], [121], [130]

CSR [30]

CSC [301, [42], [43], [68], [119], (1231, [150]

CSF [93]

the coordinates for mode 1, separated into three groups
(marked by thick outer vertical borders).

Layering the arrays of index pointers reduces duplica-
tion of indices [147]. Each time when a node directs to
children, it eliminates duplicating indices for the corre-
sponding mode. Storage benefits increase with the increase
in dimensions and redundancy among coordinates of NZs.
The organization of the data also impacts storage effi-
ciency. For example, Fig. 7(j) shows another ordering,
which eliminates storing redundant coordinates of column
(mode 1), achieving fewer nodes. For an n-mode CSF ten-
sor, the storage overhead corresponds to more than NNZ +
n — 1 coordinates and typically much less than n x NNZ
coordinates. Works [146], [147] provide further details
about managing higher order tensors with CSF format.
Processing metadata at each dimension requires two-step
processing (just like processing ptr and idx in CSR), thereby
up to 2n-step processing for an n-dimensional tensor.
So, accelerator designers may opt for CSF format when
processing high-dimensional tensors with high sparsity.

8) Huffman Coding: It typically is applied for compress-
ing sparse tensors once they are quantized using precision
lowering or value sharing. After quantization, values of the
reduced range appear with different frequencies and can
be compressed further with the Huffman encoding [27],
for example, deep compression [27] pruned and quantized
weights of AlexNet [1] and VGG-16 [148], achieving 8/5-b
indices with a codebook of 256/32 weights for CONV/FC
layers. With the Huffman encoding, it compressed the
models further by 22% and 36% (total compression
of 35x and 49x).

9) Encodings for Tensors With Structured Sparsity:
Density-bounded blocks [see Fig. 4(c)] can be encoded
similarly as blocks with unstructured sparsity, e.g., with
bitmap [62], COO-1D [60], or RLC. So, for the same
sparsity and block size, the overhead is similar to tilewise
processing of a tensor with unstructured sparsity. It is
usually low for small block sizes (e.g., 8 x 1 [62] and
1 x 4 in NVIDIA A100 Tensor Core GPU [61]) since the
position of each NZ is indicated by a few bits. Coarse-
grain block-sparse tensors [see Fig. 4(b)] can be encoded
at block-granularity, which can significantly reduce the
metadata size (almost eliminated for dimensional prun-
ing [151]). Cambricon-S [37] used bitmap to indicate
the presence of each 1 x 16 dense block with a single
bit. Similarly, ERIDANUS [126] used few bytes to process

each 8 x 8 dense block on systolic arrays. Such encodings
require indicating the position of a dense block across rows
or columns and additional indices for higher dimensions
that indicate dense blocks packed per dimension, e.g.,
in BCSR [see Fig. 7(k)].

10) Other Formats: Various encoding formats have been
proposed, which improves the compression or efficiently
access sparse tensors during execution on CPUs/GPUs (for
high-performance and scientific computing). It includes
compressed sparse blocks (CSBs) [152], libsvm [153],
ELLPACK [154], diagonal (DIA) [155], dynamic
CSR [156], delta-coded CSR [157], and mode-generic and
mode-specific formats [158]. Prior works, including [139],
SPARSKIT [143], and [147] and [159]-[161], surveyed
them along with additional formats and discussed their
implications. Different libraries that provide support for
encoding the tensors and sparse tensor computations on
CPUs or GPUs include MATLAB tensor toolbox [162], Intel
MKL [50], SciPy [142], and cuSPARSE [163].

B. Groupwise Encoding

One way of processing sparse tensors is to encode the
whole tensor. Then, the accelerator’s data management
logic extracts an appropriate tile (optionally decodes it)
and communicates to the PEs. In contrast, for groupwise
encoding, tensor tiles are encoded separately, based on
predetermined per-PE work. Depending on the mapping,
each tile is typically communicated to a unique PE (or a
PE-group) during execution. So, the encoding considers
the dataflow, i.e., mapping of the tensor computations
onto PEs. It can make the decoding and data extraction
easier, as each group corresponds to execution on a distinct
PE (or a PE-group). EIE [42], Cambricon-X [41], and
CompAct [111] used groupwise encoding.

C. On-the-Fly Encoding

Accelerator designers often target only static sparsity
of weights and encode them off-line, e.g., DNN infer-
ence accelerators, including EIE [42], Cambricon-X [41],
and [113]. However, on-the-fly encoding is required
for efficiently processing dynamically sparsified tensors
(sparse activations in the inference and tensors in train-
ing the models). Therefore, accelerators, such as Com-
pAct [111], SCNN [115], NullHop [121], Cnvlutin [72],
and Sticker [164], employ an on-the-fly encoder. Typically,
before encoding a tensor, the data are reorganized as
per requirements of the groupwise encoding and dataflow
mechanism for processing the subsequent layer. So, on-the-
fly encoding is often combined with assembling the outputs
from PEs (Section XI-D provides further details).

D. Optimization Opportunities

Tailoring encoding formats for sparsity levels and pat-
terns: Various layers of deep learning models exhibit
a wide range of sparsity (interlayer and intratensor
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Table 7 Classification of NZ Data Extraction Techniques

Target PE Arch- | Functional Unit
. . . Accelerators
Sparsity itecture Operation
One Scalar MAC [30], [68], [113], [121]
Sl SIMD/ Sc-Vec-Mul [601, [66], [72]
Vector Vec-Vec-Mul [41], [60], [123]
[30], [42], [93], [114],
Both | Ocdlar MAC [116]. [119], [130]
Tensors SIMD/ Sc-Vec-Mul [43], [112]
Vector Vec-Vec-Mul [37], [105], [107]
Location of
Extraction Units LI
Centralized/ [30], [37], [41], [42], [65], [66], [105], [107],
Shared [112], [119], [121]
In-PE [42], [43], [60], [68], [72], [93], [113]-[116],
[118], [123], [130], [134]

sparsity variation). Moreover, even within a DNN layer,
sparsity among tensors can be different (intralayer and
intertensor sparsity variation). Accelerators need to support
such sparsity variations effectively without incurring signif-
icant overheads for storage, encoding, and indexing. When
the sparsity range or pattern of multiple tensors is diverse,
designers can opt for the separate encoding of different
tensors (e.g., [117]). These different sparsity-encodings
can be utilized for off-chip storage, zero-guarding the PEs,
or reducing the latency of on-chip extraction to locate
intersecting NZs. When different formats are used for per-
formance gains, the accelerator should provide hardware
logic for decoding different tensors that are stored in
different formats (and support for any on-the-fly encod-
ing). Such decoding logic may use existing data extrac-
tion mechanisms, but it will require separate/configurable
decoding logic for supporting multiple formats.

VI. EXTRACTION OF MATCHING DATA
FOR COMPUTATIONS ON NONZEROS
Tensors are typically stored in the compressed format in
the accelerator’s memory. Therefore, locations of NZs that
need to be processed are determined from the metadata.
Once a matching pair is extracted (elements of two tensors
that need to be added or multiplied), a PE can proceed
for computations. Identifying effective NZs is the primary
step toward eliminating ineffectual computations due to
the sparsity of weights and/or activations. This section
describes different data extraction mechanisms (Table 7
provides a taxonomy), their management in PEs or cen-
trally, and their tradeoffs. Then, it discusses further accel-
eration opportunities to exploit various sparsity levels.

A. Nonzero Detection and Extraction Mechanisms

A data extraction mechanism needs to feed functional
units of PEs every cycle. So, based on their processing of
scalars or vectors of NZs, Table 7 categorizes extraction
mechanisms for: 1) MAC operation on scalars; 2) scalar—
vector multiplication; and 3) vector—vector multiplication.

1) Indexing Dense Tensors by Indices of NZs of a Sparse
Tensor: Depending on sparsity, only one tensor may be
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Fig. 9. Data extraction in subunits of Cnvlutin PE. (Figure adopted
from [72].)

treated as sparse and compressed (e.g., activations for
Cnvlutin [72] or weights for Cambricon-X [41] and NVIDIA
A100 [61]). So, the position of an NZ can be used for
indexing the other (i.e., dense) tensor to extract the cor-
responding value.

a) MAC: Consider the activation lane and filter lane 0
of subunit 0 in Fig. 9, which can be visualized as processing
on a scalar PE. For an NZ streaming from the activation
lane, matching weight can be looked up and provided to
the multiplier or MAC unit. For COO-1D encoded blocks,
absolute positions of NZs can be obtained directly from
metadata. Otherwise, absolute positions of NZs need to be
computed explicitly by decoding metadata (e.g., bitmap or
RLC) through simple combinational logic consisting of AND
gates, multiplexers, and adders (e.g., in [41] and [113]).

b) Sc-Vec Mul: For SIMD processing, multiple arrays
are indexed with the position of an NZ. Fig. 9 shows such
mechanism used in Cnvlutin PEs [72]. Each of 16 subunits
in Cnvlutin PE featured an activation lane (streamed an
input channel vector), 16 multipliers, and 16 filter lanes.
A common NZ activation was fetched from the activation
lane, and its position was used for looking up in all 16 filter
lanes to obtain corresponding weights for multiplication.

¢) Vec-Vec Mul: PEs of some accelerators spatially
process vectors at every cycle (e.g., with 16 multipliers and
an adder tree in Cambricon-X). As illustrated in Fig. 10,

[6[5To[2o[7]4To]s]

M
U Extracted

X activations

NZ weights

activations \

Metadata 0
for weights
compressed in
step-indexed

X
gy S output
X activation

(relative index
of NZs)

Absolute
Positions

Fig. 10. Data extraction via central indexing module in
Cambricon-X [41] accelerator. The indexing module decodes weights
encoded in step-indexed COO-1D format to obtain the absolute
positions of NZs. Then, it extracts the activations via a parallel
look-up, which are later communicated to a PE via fat-tree NoC for a
vector-vector multiplication. (Figure adopted from [41].)
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based on positions of NZs of a vector, a combinational logic
with multiplexers can select matching data elements to
feed the arithmetic units (e.g., in [41], [60], and [61]).
An associated challenge is overheads of parallel look-up.
To exploit high sparsity, larger multiplexers need to be
used for indexing the dense tensor, as positions of scattered
NZs are likely distant. With the search length set as 256
(supports 93.75% sparsity for fetching 16 NZ elements),
a central indexing module in Cambricon-X occupied about
31% and 35% of total on-chip area and power, respectively
(exceeded total power of all 16 PEs) [41].

2) Compare Metadata of Sparse Tensors for Extracting
Matching Pairs of NZs: For effectual computations over mul-
tiple compressed tensors, the extraction logic determines
pairs of NZs (intersections) by comparing indices either
from metadata streams or in multistage indexing.

a) MAC: Circuitry for extracting NZ scalars can
consist of one or more comparators (or AND gates for
comparing bitmaps) and an additional indexing logic (e.g.,
in ZENA [130] and SparTen [116]). The comparators
match positions of NZs, and the indexing logic uses their
outputs to extract the leading pair. Due to the diverse
sparsity of tensors, positions of NZs may not match during
comparison. Therefore, the detection logic uses several
comparators to search within a large window, which usu-
ally can provide at least one pair at every cycle. Priority
encoders provide the leading n-pairs for feeding n compu-
tational units (n = 1 for scalar PEs). The data extraction
unit can use skip mechanisms (e.g., in ExTensor [93]) to
quickly navigate through the lanes.

Alternatively, multistage indexing logic is used for
extracting the pair. The first stage obtains a position of
an NZ from one tensor for indexing another tensor. The
later stage checks if there is a corresponding NZ in another
tensor and extracts it upon matching the positions. For
example, in EIE [42], each PE loads an NZ activation
from a queue; when it does not have any matching
weights, it fetches the next activation from the queue in
the next cycle. Depending on the sparsity level and pattern,
the indexing-based design occasionally may not find the
matching data, wasting the execution cycles, i.e., func-
tional units in the pipeline are not utilized.

b) Sc-Vec Mul: PEs in EyerissV2 [43] use multistage
extraction. Each SIMD PE fetches a CSC-coded activation
and its position, and checks positions of NZ weights. Upon
a match, it forwards the activation and weights to two MAC
units.

¢) Vec-Vec Mul: The data extraction logic to feed
multiple arithmetic units of a vector PE requires multiple
comparators followed by priority encoders or multiplexers.
For example, in SNAP architecture [107], an associate
index matching module (AIM; see Fig. 11) determines the
positions of NZs in case of valid matches. Each PE of a
row is interfaced with a shared AIM. Using comparison
outcomes from AIM, a sequencer in each PE determines
leading pairs of matching data, which are then fed to three
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activations } } } } } }Enc?cdiers
i 1 2 4 8 valid +
o) @O 1
R P ’ PO
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] ) &
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82 &G [x
0000 0O
data index Comparator Array

Fig. 11. Associative index matching in SNAP. (Figure adopted
from [107].)

multipliers within the PE. Cambricon-S [37] uses similar
extraction logic, but its comparator array is just ANDing of
the bits due to bitmap encoding.

3) Eliminating Extraction of Intersecting NZs: Some accel-
erators do not require extracting unstructured NZs.

a) Orchestrating structured computations: A few tech-
niques targeted high sparsity of single tensor (DNN
weights). With data pruning or transformations, they
achieved coarse-grain sparsity so that each PE can process
a dense region of NZs. ERIDANUS [126] proposed a
pruning algorithm to cluster the weights [see Fig. 12(a)].
Blocks of NZ weights are streamed to PEs of systolic
arrays for conventional processing [see Fig. 12(c)]. Corre-
sponding activations are kept stationary. Partial products
computed by each row of PEs are added on a separate
adder tree. When block width for structured pruning can
be set as the height/width of the systolic array, dot prod-
ucts can be accumulated linearly over the systolic array
itself. So, structured sparsity allows executing denser blocks
conventionally on accelerators while requiring additional
support to index and communicate the blocks. Adaptive
tiling [127] used a column-combining approach. For a
sparse GEMM, NZ weights were statically combined such
that each column of the systolic array could process multi-
ple columns of IAs. So, it obviated the runtime data extrac-
tion and reduced total invocations of the systolic array
by 2x-3x for processing pointwise CONVs of MobileNet.
CirCNN [165] and C-LSTM [166] proposed executing DNN

T Submatrices Partial outputs
i accumulated on
streaming 2x2 adder tree
stationary SX?:;SC
1]
— X
Wy (a) (b)

Fig. 12. Computation of locally dense regions in ERIDANUS
(Figure adopted from [126].) (a) Matrix multiplication with
block-sparse weights. (b) Submatrices for processing on a 2 x

2 systolic array. (c) Multiplication of streaming blocks (NZs) with
stationary data.
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operators as fast Fourier transform (FFT) on smaller block-
circulant matrices.

b) Coordinate computation unit: SCNN [115] and
SqueezeFlow [65] perform unit-strided convolutions as a
Cartesian product where all elements of two blocks of
tensors should be multiplied together. Due to all-to-all
multiplication, no special support is required for extracting
matching pairs of NZs. However, index computation is
still required to determine which partial-sums should be
accumulated with partial products. This calculation is per-
formed in a “coordinate computation unit” that processes
metadata (indices of NZs) and determines indices of out-
puts. These approaches require conflict detection in hard-
ware since it cannot be predetermined which accumulators
would be accessed in any cycle. Since coordinate com-
putation unit facilitates direct processing on compressed
tensors, it may also be used for computing block-level
indices for processing a coarse-grain block-sparse tensor.

B. Centralized Versus Distributed Management

1) Centralized: The data extraction unit can be either
centralized (and shared among PEs) or within pipelines of
PEs. The advantages of central mechanisms are given as
follows.

1) PEs can be directly provided effective NZs for useful
computations [41]. It can also be used as a pre-
processing unit for a PE-array that processes struc-
tured computations, e.g., systolic arrays or near-data
accelerators.

2) Centralized extraction in some architectures (e.g.,
Cambricon-X [41]) duplicates hardware for concur-
rent extractions for PEs. However, the module can be
time-shared by multiple PEs (e.g., in SNAP [107]),
which can reduce area and power. In fact, by leverag-
ing structured W -sparsity, the module in Cambricon-S
shares extracted indices among all PEs.

3) Centralized logic extracts work for multiple PEs, and
often, it is coupled with a controller that allocates
data to PEs. So, it can enable runtime load balancing.
However, a major challenge is to maintain spatial
data reuse. This is because the centralized unit mostly
extracts data on a per-PE basis for communication to
a unique PE. So, the common data for multiple PEs
cannot be multicast. SNAP overcomes this limitation
by sharing a module with a row of PEs and multicast-
ing data to PEs. The multicast occurs first, followed by
PEs communicating their metadata to the extraction
unit. Then, extracted indices are streamed back to a
PE, which uses them to obtain data from its local RF
for computations.

2) In-PE: PEs of several accelerators, such as
Cnvlutin [72], ZENA [130], and EyerissV2 [43], extract
appropriate data.lt allows a controller to multicast or
broadcast tensor elements for spatial reuse. Then, in-PE
logic extracts the data. However, challenges are given
as follows: 1) in-PE logic may incur ineffectual cycles
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for extraction that cannot be hidden and 2) employing
inter-PE load-balancing in the hardware may be infeasible
or costlier, as the actual work carried out by different PEs
is unknown while offloading compressed tensors to PEs
(until extraction in PE datapath).

C. Optimization Opportunities

1) Sparsity-Adaptive Low-Cost Data Extraction Mecha-
nisms: Encodings of sparse tensors are often selected with
a focus on storage benefits. However, the computational
overhead and hardware cost for encoding and decod-
ing tensors should be also reduced since they affect the
performance and energy consumption. When the data
extraction cannot feed n pairs of NZs to n computational
units of a PE at every cycle, achieved speedup can be
lower from the peak. Sustaining the acceleration across
various sparsities of tensors can be challenging, as dif-
ferent extraction schemes may be cost-effective for only
a certain sparsity range and patterns. For example, for
similar sparsity, extraction logic with a few comparators
may easily locate a pair of NZs. However, an indexing-
based mechanism may be more effective when one tensor
is highly sparse and another is dense. Moreover, when
positions of NZs in the two tensors are considerably distant
(e.g., for diverse sparsity levels or for hypersparse tensors),
the extraction logic needs to use several comparators or
multiplexers for parallel lookup so that it can extract at
least one pair to feed each computational unit. Therefore,
the extraction module needs to be configurable or consists
of (and select among) multiple mechanisms so that it can
exploit a variety of sparsity at a modest hardware cost. For
the latter, it can dynamically use partial features for desired
sparsity levels/patterns (power-gated otherwise).

2) Tightening Integration With Load Balance Mech-
anism: The central data extraction module can enable
dynamic load balancing of work among PEs (e.g., data-
driven dynamic work dispatch in GraphDynS [167]).
As discussed in Section X, the inter-PE imbalance can
be severe due to the irregular distribution of NZs in
tensor blocks that are allocated to PEs. Its mitigation by
structuring the data may not always be possible (e.g., for
activations/weights of some models or applications beyond
deep learning). Consequently, accelerators may attain inef-
fective utilization of PEs and low speedup. Although some
accelerators used hardware modules for dynamic balanc-
ing, further efficiency may be achieved by enhancing the
centralized extraction module with additional low-cost
logic. This is because it already keeps the track of the data
provided to PEs, which can lead to information about the
number of operations performed by different PEs.

VI. MEMORY MANAGEMENT OF
COMPRESSED TENSORS

Accelerators contain multibanked scratchpads that are usu-
ally shared among PEs. Either a scratchpad is unified [23]
or separate buffers store different tensors [111], [130].
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(a) Reuse of IAs. (b) Reuse of weights (batch size — 1). (c) Reuse of partial summations.

Their sizes vary from several tens of kBs [37], [43] to
several MBs [22], [72]. Effective management of shared
and local memory highly reuses data and hides memory
access latency behind computations on PEs. This section
discusses how sparsity and reduced shapes of tensors lower
reuse. However, compressed tensors help to achieve better
speedups and energy efficiency, as more data fit in on-
chip memory, reducing off-chip accesses. This section also
describes how irregular accesses (e.g., arbitrating output
activations) make management of the banks challeng-
ing. Then, it discusses reusing intermediate outputs via
fused-layer executions and how sparsity affects it.

A. Leveraging Data Reuse Opportunities

1) Reuse Characteristics: Depending on the functional-
ity of layers, there can be significant reuse of tensors.
Figs. 13 and 14 depict reuse opportunities for different
layers (early CONV layers, later CONV layers, MLPs, DW-
CONVs, PW-CONVs, expand or reduce layers, and attention
mechanism). For each tensor, the data reuse is calculated
as the total number of MACs per data element. For better
visualization, reuse factors and layers are plotted on a
logarithmic scale.

Input Activations: Reuse of IAs increases with going
deeper in CNNs since the number of filters increases signif-
icantly. It is also high for “expansion” layers in bottleneck
blocks (see Fig. 14). DW-CONVs are an exception and
present very low reuse as there is only one filter. “Squeeze”
or “reduce” layers present moderate reuse for dense ten-
sors. Reuse in FC layers or MLPs (e.g., in encoder/decoder

layers of Transformers [7]) depends on the sizes of weight
matrices (i.e., sizes of output tensors).

Weights: Since 2-D feature maps in CNNs are usually
much larger than 2-D weights, weight reuse can be higher
by an order of magnitude. With going deeper in CNNs,
feature maps shrink spatially, which lowers the reuse.
There is no weight reuse for MLPs, but increasing the batch
size linearly improves the weight reuse. Video processing
applications use 3-D CNNs (e.g., ¢3d [6]), which can
further increase the reuse opportunities [168] for IAs and
weights due to additional processing steps on consecutive
frames. For NLP models, such as Transformer [7] and
BERT [8], Fig. 14 illustrates weight reuse for executing
a sequence of 24 and 107 tokens, respectively. MatMuls
in the attention-based calculation are shown for a single
head.

Partial summations: Input channels are increased as
we go deeper into CNNs. Similarly, “reduction” layers
in bottleneck blocks involve more input channels. Both
improve the reuse of partial summations. MLPs also usually
provide high reuse due to larger input vectors. DW-CONVs
show very low reuse because partial summations are not
accumulated across input channels.

2) Impact of Sparsity on Reuse: Increase in sparsity can
lead to lower reuse. To determine the impact of sparsity,
we considered evaluations by Han et al. [25] for pruned
AlexNet and VGG-16 models. For recent DNNs, such as
MobileNetV2 or BERT models, we considered sparse mod-
els, as listed in Table 3. Then, we calculated the reuse
as NZ MACs per NZ of a tensor. Fig. 14 plots the reuse
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opportunities for both dense and sparse tensors of CNNs
and NLP models. Since execution in encoder/decoder
modules of NLP models is repetitive, unique layers of a
single module are only shown (sparsity averaged across
all encoder/decoder modules). The figure shows that, for
sparse models, reuse characteristics are preserved, but the
reuse factor decreases for almost all layers and tensors
compared to processing dense tensors. Primarily, this is due
to the reduced number of effectual MACs. For example,
for MLPs without batching, weight reuse can drop below
one. It means that, even if a weight matrix consists of NZs,
some of them are never used due to the unavailability of
matching NZs in IAs. As an exception, reuse of weights
remains the same when activation sparsity is absent (e.g.,
EfficientNetBO [124] and BERT [8]). Similarly, with dense
weights, low or moderate reuse of activations remains the
same for DW-CONV or “excite” layers, respectively.

The reuse of partial summations also decreases since
effectual MACs per partial summation decrease with spar-
sity. Note that each output activation element still needs
to be populated or assembled before ReLU/encoding. Due
to sparsity and fewer input channels, the reuse is low or
moderate in “expansion” layers. Similarly, small matrices
in processing individual attention heads exhibit low reuse.
The reuse remains high for “reduce” layers in CNNs or
query and value processing and FC layers in NLP mod-
els. To sum up, although sparsity reduces the reuse of
tensors, there can be high data reuse for many layers
(up to 1E + 04), which should be exploited for efficient
accelerations.

3) Temporally Reusing Data Through Shared On-Chip
Memory: Like CPUs, accelerators have memory hierarchies
because applications have different working set sizes. Data
reuse can be leveraged temporally (repeatedly accessing
data from memory without accessing lower level memory)
and spatially (providing the same data to multiple PEs
without repeatedly accessing memory). After exploiting
high temporal reuse, the highest energy is spent in upper
buffers [23], [44].

B. Hiding Miss Latency Behind Computations

1) Management of Tiled Data in Double-Buffered Mem-
ory: On-chip buffers are typically not large enough to
accommodate all tensors. Therefore, loops are tiled for
reusing some tensors from buffers while repeatedly access-
ing other tensors from the off-chip memory [20], [115].
Since scratchpads are noncoherent and their management
is software-directed, data are transferred by direct memory
accesses (DMAs) [22], [56]. PEs are kept engaged in useful
computations by interleaving computations with memory
accesses. Such an objective is usually achieved by double-
buffering (also known as ping-pong buffers) [37], [130].
Loop optimization techniques, such as loop tiling and
ordering, can determine the sizes of tensor blocks to be
managed in memories and sequence of memory accesses
for high reuse and reduced data transfers [23], [56].
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2) Asynchronous Communication: Some accelerators
hide the latency of communicating data to the shared/local
memory with an asynchronous mechanism that refills
the memory after some data have been consumed (e.g.,
in Cambricon-X [41]). For such execution, PEs and a
DMA controller may simultaneously produce/consume
data either through different banks or at the granular-
ity of small blocks in the same bank. Similarly, when
accessing shared memories via configurable communica-
tion networks [43], PEs can execute in a dataflow fashion
and request partial refilling of their memory with new
data. Such mechanisms for asynchronous communication
and computations can alleviate work imbalance among PEs
that are caused by leveraging unstructured sparsity.

3) Impact of Sparsity on the Latency of Memory Accesses
and Speedup: For memory-bounded execution (e.g., MLPs),
even with effective prefetching, miss penalty may be
significant. It restricts accelerators from achieving peak
performance [22]. When tensors are sparse, the amount
of data that need to be transferred from off-chip reduces
significantly, leading to substantial performance gains.
For example, Cambricon-S reported up to 59.6x speedup
of FC layers for hypersparse weights. However, higher
IA-sparsity did not provide such gains (speedup saturated
at about 14x) since the latency of accessing weights dom-
inated total execution time. For processing high sparsity
(e.g., 90%+) and low reuse, it becomes challenging to
engage functional units into effectual computations. This
is because, with low arithmetic intensity, required data may
not be prefetched at available bandwidth.

C. Management of Multibank Memory

1) Concurrent Accesses to Memory Banks: While
single-bank memory can be easier to manage, it is
infeasible to provide multiple ports for the PE-array with
just one bank [169]. Moreover, multiport unified memory
consumes very high power and longer latency [170]. So,
on-chip memories are partitioned into smaller banks [43],
[115], [171]. For mapping a layer onto the accelerator,
each bank is usually allocated to only one tensor (e.g.,
in EyerissV2 [43]). Banked buffers provide multiple
read and write ports, allowing simultaneous accesses to
different tensors stored in different banks [20], [172].
Sometimes, a data layout reorganization is required before
loading into memory banks. Such a transformation is done
after loading it from DRAM or before writing outputs to
DRAM, which consumes additional execution time and
energy. For compressed tensors, such transformation can
be done along with the data encoding [111] at alleviated
overheads.

2) Arbitration and Conflict Management: Depending on
the indexing logic and interconnect between memory and
PEs, managing application data may require additional
compilation support or hardware logic for data arbitration
and conflict management [115], [164]. For regular mem-
ory accesses (e.g., dense or block-sparse data), allocation
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and accesses to banks can be determined for mappings
of layers. However, computations on unstructured sparse
data can lead to accessing arbitrary banks and require spe-
cial support. For example, outputs from PEs may need to be
written to different banks. Moreover, accelerators contain
accumulator buffers [115], where PEs or their functional
units are connected with memory banks via a crossbar. The
crossbar arbitrates write-back of outputs to the appropriate
bank [65], [115]. Since these partial outcomes can cor-
respond to noncontiguous elements in an output tensor,
bank conflicts are possible during arbitration, i.e., multiple
outputs need to be simultaneously handled by the same
bank [115], [164]. To obviate conflicts, the buffer contains
more banks (e.g., 2 x N banks for storing outputs from N
sources in SCNN [115]). It alleviates collisions in hashing
irregular outputs into different memory banks. Conse-
quently, the crossbar may require higher bandwidth and
significant on-chip area (e.g., 21% for a 16 x 32 crossbar
in each SCNN'’s PE).

D. Reusing Intermediate Tensors

1) Reusing Intermediate Tensors From Large On-Chip
Memory: Intermediate feature map in DNNs is an output
of a layer that serves as input to later layers. It can be
kept stationary and reused from on-chip memory to reduce
off-chip traffic. Such reuse is amplified when input is the
same for multiple layers due to residual connections [2]
or high cardinality (e.g., ResNeXt [95]). Leveraging it can
be important for latency-bounded real-time applications.
Sparsity-encoding and quantization significantly make such
reuse opportunities more feasible due to reduced storage
requirements. Accelerators with large memories (hundreds
of kBs), such as SCNN [115] and Cnvlutin [72], can
leverage such reuse.

2) Overcoming Static Bank Assignment: Many accelera-
tors process models layer-by-layer and do not leverage
cross-layer reuse, i.e., write outputs for layer I in DRAM
and load them back later as inputs for layer L + 1. It is
more prevalent among accelerators with small memories.
Moreover, bank assignment for each tensor is often fixed
at design time [172], which enforces write-back of outputs
and reloading them later in other banks as inputs while
processing next layers. So, in both cases, output activations
are not reused on-chip, causing excessive off-chip memory
traffic. To address this problem and exploit cross-layer
reuse, shortcut-mining [172] used a flexible architecture
with decoupled physical-logical buffers.

For preknown sparsity, prior techniques for statically
determining the data allocation to memory banks may
work well by estimating sizes of encoded tensors. However,
for dynamic sparsity, conservative estimations may lead to
inefficient utilization of banks, and efficient banking for
nonconflicting accesses can also be challenging.

3) Fused-Layer Execution: Fused-layer CNNs [173] lever-
aged cross-layer reuse by processing a small tile of activa-
tions such that outputs for few layers can be computed
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Fig. 15.
intermediate activations [173]. (Figure adopted from [173].)

Fusing the execution of layers can significantly reuse

alongside while retaining the corresponding data in the
on-chip memory. Fig. 15 shows an example for processing
an input tile of 5 x 5 activations (C_L input channels)
for layer L and, finally, obtaining 1 x 1 output activa-
tions (M_L + 1 output channels) for layer L + 1. Apart
from reusing intermediate outputs for obtaining the output
tile, corresponding tiles of intermediate activations and
filters are maintained in the memory and reused partially
for processing the next tiles (striding execution in the
spatial direction). Alwani et al. [173] reported reducing
off-chip transfers of input feature maps by 28% for the
first two layers of AlexNet and 95% for the first five
layers of VGG-19. Since the cascading by storing all the
filters and input channels (dense tensors) requires high
memory, Alwani et al. [173] applied it to only early layers.
However, encoded sparse tensors and further tiling across
filters/channels allow fitting tensors for multiple layers in
the small memory, making such reuse opportunities more
feasible. The tile size and number of layers that can be
fused are bounded by memory capacity. So, fusion parame-
ters depend on the actual/anticipated sparsity levels. For
efficient executions, fusion parameters need to be explored
systematically with sparsity-aware dataflows.

E. Techniques for Further Energy Efficiency

1) Look-Ahead Snoozing: Depending on the sparsity,
encoding of tensors, and mapping of the layer, several
banks can be unused or inactive for certain time intervals.
Accelerators achieve further energy efficiency by power
gating unused or inactive banks. For example, look-ahead
snoozing in CompAct [111] targeted reducing the leakage
power of large on-chip SRAMs. Each bank of its activation
SRAM can be power-gated. Banks unutilized during the
execution of a layer were put in the deep sleep mode (max-
imal savings in leakage power, while not preserving any
data in unused banks). Furthermore, the period of active
cycles for each bank was determined based on the data
movement schedule. Then, inactive banks were snoozed
during execution (i.e., connecting to the data retention
voltage for consuming lower leakage power).

2) Skipping Memory Hierarchy: Some layers do not pro-
vide significant reuse. Data reuse is also lowered due to
sparsity and architectural choice for extracting or commu-
nicating NZs. Therefore, a few accelerators (e.g., EIE [42]
and Cambricon-X [41]) obviate storing nonreusable data
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in the shared memory and directly feed it to appropriate
PEs (weights for MLPs).

E Optimization Opportunities

Managing both data and metadata in unified memory:
Accelerators often contain separate buffers for metadata
(positions of NZs and indirection tables for shared values).
Although such designs are easy to manage for processing
tensors of some models encoded in a specific format, they
may not work well across different levels of sparsity and
value similarity, as storage requirements vary significantly.
So, designers can explore unified memory architectures
for managing both data and metadata (including memory
partitioning and bank management) and their tradeoffs.
It can also be leveraged to tailor efficient designs for
programming FPGAs.

VII. INTERCONNECTS FOR
DISTRIBUTING NONZEROS AND
REDUCING PARTIAL OUTPUTS
Network-on-chip (NoC) is required to efficiently distribute
data to PEs, exchange data between PEs (for reducing
partial outputs), and collect distinct outputs back from
PEs. To process data-intensive ML models, accelerators
employ multiple high-bandwidth interconnects for simul-
taneous communication of different tensors between PEs
and buffers. First, this section describes NoCs for the dis-
tribution of operands, which varies in terms of bandwidth
and spatial reuse of the data. With efficient NoC design,
PEs can be engaged in processing data from input FIFOs or
local memory, which gets interleaved with communication
of another set of data via NoC. This section also discusses
configurable NoC designs that can support various band-
width requirements and spatial reuse opportunities due
to variations in sparsity and tensor shapes. In processing
sparse tensors, unstructured reduction of partial outputs
among PEs can be challenging. This section describes differ-
ent mechanisms for accumulating the outputs temporally
or spatially at PE level and PE-array level. It also discusses
configurable mechanisms for asymmetric accumulation of
variable-sized partial outputs.

A. Mechanisms for Distribution of Operands

Fig. 16 shows some common NoC designs for distribut-
ing the operands, their bandwidth, and achievable spatial
reuse [43]. Data can be reused spatially by distributing it to
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multiple PEs or functional units. For layers with high reuse
opportunities (see Fig. 13), it lowers communication and
helps to hide the communication latency. Most accelerators
leverage spatial reuse with multicast or broadcast NoC.
They consist of configurable buses or trees that multicast
the data to PEs (often in a single cycle) [20], [105]. In con-
trast, the mesh interconnect (e.g., in systolic arrays [22])
or 1-D buses communicate the data and reuse spatially
with a store-and-forward mechanism. Low-reuse tensors
are distributed with unicast NoCs. Table 8 lists common
interconnect topologies used by previous accelerators for
data distribution.

Communication requirements vary significantly depend-
ing on the sparsity of tensors, available reuse, and adopted
dataflow mechanism. Prior work [174] provides a detailed
analysis of different NoC topologies, and the work [175]
characterizes the NoC bandwidth required for different
dataflows. Similarly, analytical tools, including [57], model
implications of different dataflows on communication
requirements and execution time.

1) Broadcast: Accelerators, including Cnvlutin [72],
EIE [42], and Cambricon-S [37], use broadcast NoC to
reuse activations for processing CONVs or MLPs. Similarly,
in SCNN [115], weights are broadcast to PEs for executing
unit-strided convolutions with input stationary dataflow.
For sparsity-encoded tensors, their NZs (and positions)
can be broadcast for spatial reuse, as long as the NZs
are indexed or extracted afterward (e.g., in-PE extraction
in Cnvlutin and EIE). In Cambricon-S, positions of inter-
secting NZs are extracted centrally before broadcast, but,
due to structured sparsity, the same extracted positions are
used by all PEs. So, NZ activations are broadcast to all PEs.

2) Multicast:  Eyeriss [20], ZENA [130], and
SNAP [107] use multicast NoC to reuse multiple operands
spatially. For example, Eyeriss processed tensors with
row-stationary dataflow where PEs of a row processed the
same spatial rows of filters, and diagonal PEs processed
the same spatial row of feature maps. Eyeriss facilitated
such multicasting through its configurable NoCs, which
consisted of rowwise and columnwise controllers for
2-D PE-array. Each controller could be configured with
a predetermined tag value, which was compared with
the row or column tag of a packet. Upon matching
the tags, a rowwise controller forwarded the packet to
associated columnwise controllers, and a columnwise

Table 8 NoC Designs for Distribution of Sparse Tensors

Unicast | [411, (651, [721, [931, (11311151, [1211-[123]
Tono. |_Multicast | [93], [T07, [121]
lp Broadcast [37], [42], [60], [65], [66], [68], [72], [107],
ogy roadeast 1 1 121-[117], [122], [123], [130]
Mesh [TT1T, [126], (1271, [134]
Configurable | [43], [105], [175]
[37], [42], [43], [60], [66], [68], [72], [105],
Spatial | Activations | [107], [112]-[114], [116]-[118], [121]-[123],
Reuse [130], [164]
Weights | [43], [65], [105], [107], [115], [117], [130], [164]
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controller forwarded it to the associated PE. Similarly, for
processing bitmap-coded tensors in ZENA [130], a block
of activations was broadcast to a row of PEs, and a block
of weights was multicast to PEs of the same column.

3) Mesh: A few accelerators, including Compact [111],
ERIDANUS [126], and [127], use systolic arrays with mesh
interconnects. Since the same data are forwarded among
PEs in the same row or column, such NoCs achieve the
same amount of spatial reuse as multicast NoCs. How-
ever, for sparse tensors, efficient and correct processing
becomes challenging. Hence, preprocessing is needed to
cluster appropriate NZs or index appropriate block of
structured-sparse tensor before feeding PEs of the systolic
array [105], [126], [136].

4) Unicast: SCNN [115], Cambricon-X [41], and
SqueezeFlow [65] use unicast NoC or point-to-point links.
Such NoCs concurrently feed different elements to various
PEs. They are used when spatial reuse of a tensor is
infeasible (e.g., weights in MLPs and NZs are extracted
beforehand due to dataflow requirements), or outputs are
collected simultaneously (see Section XI-A). With high
bandwidth, they reduce communication latency [41] but
can incur high area and power.

5) Configurable: Communication requirements vary with
different dataflows that are effective for only some DNN
layers (see Section IX-B and Table 25). Furthermore, while
communication may consist of gather, scatter, forward,
or reduction patterns [175], [176], efficient execution may
demand their combination or even nonuniform patterns,
including multihop communications among PEs [23].
Therefore, configurable NoC designs are required, which
can support various communication patterns that are
amenable to different reuse and sparsity. Recent designs
including EyerissV2 [43], microswitch-NoC [175], and
SIGMA [105] address some of these challenges.

EyerissV2 [43] uses a novel hierarchical-mesh NoC,
which is illustrated in Fig. 17. EyerissV2 contains 16 clus-
ters (8 x 2 array) of PEs and global buffers (GLBs). Each
PE-cluster contains 3 x 4 PEs, and each 12-kB GLB-cluster

Hardware Acceleration of Sparse and Irregular Tensor Computations of ML Models
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Fig. 18. Different configuration modes of hierarchical mesh
network in the EyerissV2 architecture [43]. (Figure adopted
from [43].) (a) High BW. (b) High reuse. (c) Grouped-multicast.
(d) Interleaved-multicast.

contains seven banks for input and output activations.
At the top level, router clusters are connected through a
2-D mesh, and they enable communication among differ-
ent PE-clusters and GLB-clusters. For local communication
among each PE-cluster and GLB-cluster, a router-cluster
with ten routers is used. Each router connects PEs with a
port of the GLB cluster for accessing GLB bank or off-chip
memory (three, three, and four routers for managing IAs,
weights, and partial summations). Locally, an all-to-all
NoC connects all PEs of a PE-cluster to the routers for
each data type. As illustrated in Fig. 18(a)-(d), it facil-
itates multiple communication patterns, including multi-
cast, broadcast, and unicast of the tensors. The 2-D mesh
topology enables intercluster communications, allowing an
interleaved-multicast or broadcast to all clusters.

For an N-PE accelerator, an array of microswitches
[see Fig. 19(a)] contains log, N + 1 levels with N
microswitches at each level. Each microswitch contains a
small combinational logic for configuration and up to two
FIFOs for buffering the data during routing conflict. With
small logic and storage, data traverses through several
microswitches within each cycle [175]. All microswitches
contain gather and scatter units, and bottom microswitches
(level log, N) also contain local units for inter-PE commu-
nication. In top microswitches (level 0), the scatter unit
connects to memory banks, and the gather unit uses round-
robin-based priority logic for arbitrating the incoming data
in a pipelined manner. In middle microswitches, scatter
units forward data to desired lower level links, and gather
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Fig. 19.
(b) multicast, (c) gather, and (d) local communication.
(Figure adopted from [175].)

(a) Microswich network [175]. NoC configurations:
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accelerator [105] features a data distribution NoC with configurable
switches interconnected via Benes topology. (b) and

(c) Configuration of the interconnect facilitates different unicast and
multicast communication patterns. (Figure adopted from [105].)

units stream the data back. In bottom microswitches,
scatter and gather units stream the data, and local units
connect adjacent PEs. Fig. 19(b)-(d) shows how config-
urable microswitches can enable various communication
patterns.

SIGMA [105] used Benes topology with configurable
switches [see Fig. 20(a)]. For N source and destinations,
the interconnect contains 2log, N + 1 levels, each with
N number of 2 x 2 switches. Each switch receives two
control signals to determine whether to forward data ver-
tically and/or diagonally. After combining communication
requirements for distributing all elements to desired mul-
tipliers, switches can be configured to forward the data,
as shown in Fig. 20(b) and (c).

B. Mechanisms for Reduction of Partial Outputs

Computation primitives of ML models require reduc-
tion (accumulation) of partial outputs from PEs or their
functional units. It can be done temporally and/or spatially
(see Table 9).

1) Temporal: All the reductions for computing an output
scalar are performed on a single PE (or a functional unit)
during different cycles. Accumulations are done temporally
when different PEs compute distinct outputs, e.g., for
output stationary dataflow. The temporal reduction makes
the processing of sparse tensors simple since PEs update
partial outputs in their private memory or registers without
communicating to other PEs via an additional interconnect.
Therefore, it is adopted by many accelerators, including
EIE [42], ZENA [130], and SparTen [116]. However,
temporal accumulation requires indexing the buffer for
reading/writing partial outputs or accumulating computa-
tions in the output register (of MAC unit). So, it involves
register/memory read and write operations that consume
higher energy than integer arithmetic [23], [44]. Besides,
using local accumulator buffers for vector/SIMD functional
units (e.g., in SCNN [115]) requires support for arbitration
of partial outputs.
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2) Spatial: Partial outputs can be reduced spatially for
an output scalar. It can be either done by functional
units within a PE (e.g., adder trees in Cambricon-X/S to
sum up partial products) or inter-PE communication via a
separate interconnect (e.g., forwarding in systolic arrays).
Inter-PE spatial reduction usually requires communication
among neighboring PEs and is typically achieved through
a mesh or similar topology [20], [127]. Spatial reduction
obviates buffer accesses and improves energy efficiency
(e.g., by 2x-3x [129] compared to the temporal reduction
on scalar PEs). These linear or tree-based reductions are
typically symmetric. However, a major challenge is to
enable asymmetric and asynchronous reductions of a vari-
able number of partial outputs, for adapting to high spar-
sity, tensor shape, or target functionality (e.g., DW-CONV).
This is because an efficient dataflow may require some
of the interconnected functional units or PEs to process
partial outputs for distinct output elements (e.g., different
depthwise groups); all partial outputs cannot be reduced
altogether. Hence, configurable interconnects are needed.
Otherwise, for high sparsity or hypersparsity, functional
units cannot be fed enough NZs and are poorly utilized.
Note that structured sparsity can alleviate imbalance by
inducing patterns such that all PEs process the same NNZs.
However, configurable mechanisms are still required to
support different dataflows for the variations in function-
alities or tensor shapes.

3) Spatiotemporal: Partial outputs can be reduced
spatially and temporally and locally (within PEs) and
globally (across PEs). Spatial and temporal reductions of
outputs depend on the mapping of computation graph
onto PEs [56]. In spatiotemporal reduction, different PEs
or their functional units compute partial outputs at every
cycle or a few, which are, at first, reduced spatially. The
resultant partial output is then reduced temporally by
updating the previous partial output in the memory. For
example, when data stream through PEs of a systolic array,
there is an inter-PE spatial reduction of partial outputs
(via PEs of each column). Then, the bottom PE-row pro-
vides the reduced partial outputs to accumulator buffers
(CompAct [111] and TPU [22]). PEs of SNAP [107] per-
form spatiotemporal accumulation locally, where partial
products are first spatially accumulated through a config-
urable adder tree and then accumulated in PE’s memory
over time.

4) Temporospatial: In temporospatial reduction, PEs
compute partial outputs and reduce them locally over time.

Table 9 Mechanisms for Accumulations of Partial Outputs

[42], [66], [68], [93], [113], [114], [116],
[118], [121]-[123], [130], [133], [134]
[37], [41], [105]

[65], [66], [105], [177]

[107], [111], [129]

[20], [43], [107], [115]

[105], [107], [177]

Temporal

Spatial (intra-PE)
Spatial (inter-PE)
Spatio-temporal
Temporo-spatial
Configurable
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Then, they are collected later and accumulated spatially
via interconnect before further processing (e.g., write-
back, encoding). For example, PEs of a cluster in Eye-
rissV2 [43] first locally accumulate partial summations.
Then, partial outputs can be accumulated across vertically
connected clusters. SCNN [115] PEs compute output tiles
corresponding to distinct input feature maps stored in
their buffers. Outputs are temporally reduced by indexing
the accumulator buffers. Then, overlapping fractions of
incomplete outputs are exchanged among neighboring PEs
for reduction. SNAP [107] also performs temporospatial
reduction at PE-array (core) level. Its PEs accumulate out-
puts locally over time, which are reduced spatially across
horizontal/diagonal PEs by a core-level reducer.

5) Configurable: MAERI [177] and SIGMA [105]
employ configurable reduction trees for efficient and asym-
metric spatial reduction of partial outputs. So, it can
be useful for spatial processing of unstructured sparsity
and variable-sized vectors for dot products. The aug-
mented reduction tree in MAERI [see Fig. 21(a)] allows an
asymmetric reduction of partial outputs with configurable
adder switches and bidirectional forwarding links. Each
three-input adder switch can receive two partial outputs
from the previous level and one via a forwarding link,
and it can add and forward them. Plus, upper levels
of the tree (near root) have double bandwidths than
lower levels, allowing simultaneous collection of multiple
reduced outputs. The forwarding adder network in SIGMA
[see Fig. 21(b)] enables similar configurable reduction but
at reduced area and power. Instead of three-input adders,
it uses two-input adders and N : 2 mux for selecting the
inputs. Also, adders at the zeroth level allow bypassing of
partial products to the next level.

C. Optimization Opportunities

1) Low-Cost Flexible Interconnects for Accommodat-
ing Spatial Reuse Opportunities, Dynamic Communication
Requirements,  Various  Sparsities, and Different Pre-
cision: Variations in data reuse (see Fig. 14) are caused
by the tensor size, functionality (e.g., stride and sepa-
rable convolution), batch size, and sparsity of tensors.
The communication mechanism needs to leverage avail-
able reuse by supporting various multicast and unicast
patterns [43], [175]. Moreover, the distribution, inter-
PE communication, and collection of the outputs can be

done asynchronously and concurrently. These require the
interconnect switches to support dynamic management
(priority arbitration and congestion) at a low cost. Further-
more, communication among distant PEs may be required
(e.g., for store-and-forward or exchanging outputs during
sparse computations). Finally, depending on sparsity and
precision, the bit-width of the metadata and NZ value
can differ significantly. Communicating different sizes of
data and metadata can be facilitated by configurable
interconnect buses and their interfacing with PEs and
memory. For instance, in EyerissV2 [43], a 24-bit bus
can supply PEs either three 8-b uncompressed values or
two pairs of 8-b NZ and 4-b metadata. So, configurable
interconnect topologies should be explored for effectively
serving various communication requirements. FPGAs can
also be leveraged for designing accelerators with tailored
interconnects.

2) Programming of Configurable Interconnects and Design
Exploration: Configurable interconnections can support
various communication patterns and dynamic data
movement for sparse computations. However, compila-
tion support is needed to program them as they often
contain parameterized multilevel switches and switches
with many-to-many links between source and destination
(e.g., [105] and [175]). Depending on the interconnect
topology and optimized dataflow, the compiler may need
to select efficient paths for distributing data from source
to destination switches. In addition, the underlying topol-
ogy (e.g., lack of multihop connectivity) may not support
some dataflows (e.g., spatiotemporal accumulation of par-
tial outputs from distant PEs in the absence of multihop
connectivity). Furthermore, a systematic methodology for
mapping communication onto interconnect topology can
enable design space exploration of interconnects needed
for accelerating target ML models, allowing minimum
overhead of runtime reconfiguration of the interconnect to
support various dataflows.

IX. PE ARCHITECTURE DESIGN

PE architecture consists of functional units, local memory
(RFs or SRAMs), and local control [instruction buffer or
finite state machine (FSM)]. Fig. 22 shows pipeline stages
for processing sparse and value-approximated tensors.
Depending upon PE’s interface, it either gets data from the
interconnect (typical) or directly accesses off-chip memory
via DMA transfer. At every cycle or few, a PE: 1) processes
an instruction or events based on its state [128], [164],
[178]; 2) fetches data from local memory or interconnect;

Fetch Discover Execute Writeback
c'g;gé’ﬁ::%g: o Function Units Write to local
N (fused MACs or buffer or
?rzt;%qm??ﬂ;aé: r:iitgrllcgs multiplier array output FIFO +
or local buffers P and adders) Post-processing

Fig. 22. oOverview of the PE pipeline for proc ing sparse and
value-approximated tensors. (Figure adopted from [107].)
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Table 10 PE Architectures for Sparse Tensor Computations

Scalar | 120% 301, [421, [65T, [661, [68], [93], [109], [T13], [114],

(1161, [117], [119], [121], [122], [128], [130], [133]
SIMD 7 | [37], [41], [43], [60], [72], [105], [107], [112], (1151,
Vector | [118], [123], [125], [129]

3) computes tensor elements via functional unit; and
4) writes the intermediate result to local memory or
interconnect. PEs may contain special-function modules
(e.g., for ReLU or sigmoid computations [68], [115]).

Processing compressed tensors can impose significant
maneuvering efforts for PE design. For example,
reusing tensors temporally through local memory
(e.g., in EyerissV2 [43] and SNAP [107]) alleviates
overheads of repeatedly accessing compressed tensors
via memory hierarchy and decoding them. However,
it requires communicating data to PEs before extracting
NZs. So, the PE may require additional hardware for
extracting or correctly indexing NZs (see Section VI).
In addition, the selection of functional units is affected
by the NNZs that can be fed for various sparsities of
tensors, support for mixed-precision, and functionality of
the layers. In such various scenarios, a single dataflow
may not always be effective [43], [179] and can lead to
significant acceleration loss. So, PE datapath needs to
be adaptive for supporting multiple dataflows optimized
for different layers and sparsity. Furthermore, techniques
for leveraging computation reuse due to value similarity
often require enhancements in the design. PEs may also
postprocess outputs or generate additional metadata for
communicating outputs. So, an efficient pipeline needs to
hide preprocessing and postprocessing latency.

A. Functional Units

1) Scalar PEs: Table 10 lists accelerators based on their
functional units for scalar, SIMD, or vector processing.
Many architectures contain an array of scalar PEs; PE
datapath contains a pipelined MAC unit (e.g., EIE [42] and
SparTen [116]).

2) SIMD/Vector PEs: PEs of Cnvlutin [72] and
Cambricon-S [37] contain multiplier arrays and adder
trees. By performing dot products at every cycle, they can
deliver high throughput. Moreover, accumulation through
adder trees reuses data spatially, which lowers energy
consumption (by 2x-3x [129]) compared to temporal
accumulation on scalar PEs by reading and writing partial
summations via local memory. However, a major challenge
is the inefficient utilization of multipliers and adders,
which often leads to ineffectual computation cycles
and acceleration loss. This is because, for high sparsity,
enough NZs may not be extracted to feed all multipliers
at every cycle. For example, a sensitivity analysis for
Cambricon-X [41] determined that, for hyper-W -sparsity,
it accelerated CONVs by about 8x (out of 16x peak
speedup). The utilization may be improved by employing
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larger indexing or extraction modules (increased on-chip
area and power). Alternatively, PEs can be designed with
fewer multipliers to sustain the scalability and efficiency
over a wide sparsity range.

While SIMD or vector PEs achieve spatial reuse, due
to fixed designs, they are utilized poorly when executing
some functionalities, such as DW-CONV. The efficiency of
SIMD PEs is further affected by high sparsity, as functional
units of the PE require synchronization, and there may not
be enough effectual NZs to feed all of them. Configurable
functional units can overcome such limitations. For exam-
ple, PEs of SNAP architecture [107] use a configurable
adder tree. It processes inputs from three multipliers and
computes different combinations of partial summations.
With multiple adders and multiplexers, the PE can concur-
rently process different partial summations (versus gather
in adder tree) without high-bandwidth crossbars. Such
configurable designs can support different DNN operators
(e.g., DW-CONVs).

3) Multiplier-Free  PEs: Accelerators, such as
ZENA [113], [130], use multiplier-free PEs for high energy
efficiency. These PEs process tensors of very low-precision
(binary or ternary values) or logarithmic quantization. So,
they replace multipliers with simpler arithmetic, such as 2’s
complement (inverters and adders or subtractors) [113],
[180] or bitwise shift and additions [103], [181].
However, one challenge is to maintain the accuracy of
DNNs, as aggressive quantization often drops top-1 and
top-5 accuracy, e.g., by 0.1% [181]-5% [103]. By trading
off the flexibility with simple hardware, supporting various
models can be challenging.

4) Bit-Adaptive Computing: Precision requirements for
targeted accuracy can vary for different models [108],
[182], which can be supported by PEs with bit-adaptive
computing.

a) Bit-serial computing: Albericio et al. [108] showed
that zero bits in NZ activations (8- or 16-b precision) can be
more than 50% and proposed the Pragmatic accelerator
to leverage sparsity of activation bits. Fig. 23(b) shows
the bit-serial computation of an inner product with AND
gates, adder tree, and bitwise shift of partial output. AND
gates are serially fed 1-b activations (variable precision)
and bit-parallel 16-b weights (fixed precision). Fig. 23(c)
shows the processing of only NZ activations in Pragmatic

offsets
s0 on0

(b) s1

Fig. 23.
Pragmatic [108]. (a) Bit-parallel unit. (b) Bit-serial unit. (c) Bit-serial
ing only tial bits. (Figure adopted

Bit-serial processing of sparse activations in

unit in Pragmatic for proc
from [108].)
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Table 11 Precision of Sparse Tensors Supported by Accelerators

binary/ternary [113], [134]
int8 [111], [116]
intl6 [20], [37], [41], [42], [65], [68], [72], [107], [112],
m [114], [115], [121], [123], [125], [127], [133]

logarithmic [130], [132]

bit-adaptive [108]-[110], [183], [185]
FP8 [66]
FP16 [66], [122], [134]
FP32 [30], [105], [134]
FP64 [93], [119]

(essential bits indicated by their positions). Laconic [183]
achieved further accelerations by processing only NZ bits
of both activations and weights.

b) Bit-composable computing:  Bit-fusion [184]
employed fusion units consisting of an array of BitBricks.
The fusion units can be configured for processing
multiplications of 2-, 4-, 8-, or 16-b operands. For
processing NZs, PEs of CNN accelerator Envision [109]
used a single-cycle N-subword-parallel multiplier,
followed by an N x 48-b/N reconfigurable adder. The
subword-parallel design allowed the configuration of
MAC units for processing the data of 4, 8, or 16 b. SPU
architecture [110] employed DGRA, a decomposable
CGRA, for efficiently processing stream-join accesses. The
DGRA PE and interconnect switches enabled decomposing
up to four 16-b subword operands. DGRA also supported
accessing subword data from the scratchpad. For DNN
training with mixed-precision and sparse tensors, PEs
of LNPU contained configurable MAC units that can
process FP8 or FP16 tensors. Table 11 lists precisions
of sparse tensors that are supported by different
accelerators. The precision indicates the bit-width of
input operands (activations and weights). For MAC
operations, accumulators usually produce high-precision
output, which can be down-scaled or truncated afterward.

5) Clock-Gated PEs: PEs can be clock-gated when not
used for executing a layer and for ineffectual compu-
tations. For example, Eyeriss [20], Thinker [128], and
Minerva [74] use zero detection for clock gating the data-
path in the PE pipeline. PEs check whether the value being
read is zero (or compare with a threshold, e.g., in MNN-
Fast [131]). Based on the comparator output, their clock
gating logic prevent the MAC datapath from switching in
the consecutive cycle, which reduces energy (e.g., it saved
power consumption of Eyeriss PE by 45%). Zero-skipping
through flags in Envision [109] and Sticker [164] achieved
similar savings.

6) Optimization Opportunities: Exploring efficient designs
of functional units for various sparsity ranges/patterns and
functionality: The utilization of vector/SIMD units can drop
significantly due to unstructured sparsity [107] and func-
tionality beyond structured dot products (e.g., DW-CONV).
So, for exploring design hyperparameters, such as the
number of functional units, designers need to consider the

impacts of sparsity, data extraction mechanism, required
synchronization among computational units, and configu-
rations required to support various functionalities. More-
over, for low sparsity, designs should deliver performance
at par with a sparsity-oblivious design. For example, for
processing dense tensors, SCNN [115] achieved 79% of
the performance and consumed 33% higher energy com-
pared to the baseline accelerator for processing dense
tensors. So, designers may ensure that additional features
for exploiting sparsity and configurable components do
not increase the critical path latency and are power-gated
if not used.

B. Dataflow Mechanisms

1) Background: The efficiency of executing a layer onto
a hardware accelerator depends on the computational,
communication, and memory access patterns, which are
commonly referred to as dataflow mechanisms [44],
[56]. A dataflow refers to the spatiotemporal execu-
tion of a model layer (nested loop) on architectural
resources [23], [56]. Here, spatial execution corresponds
to how PEs exploits parallelism in the computation
graph and processes different subsets of tensors. Tempo-
ral execution drives the data accessed throughout mem-
ory hierarchy and data communication via interconnects.
So, depending on the functionality and tensor dimen-
sions, dataflow can significantly impact the utilization
of resources, data reuse, and latency hiding for mem-
ory accesses and data communication, and, consequently,
the execution time and energy consumption [43], [44],
[561, [571, [186].

One way to classify dataflows is by what data are kept
“stationary” in registers or local memory of PEs (and
reused fully before eviction), while other data are being
iterated over. Some commonly used dataflow mechanisms
are output stationary, weight stationary, input stationary,
row stationary, and no local reuse. Fig. 24 shows an
example of convolution and the layout of the stationary
data for mapping the convolution with these dataflows.
In weight stationary dataflow, each weight (of a 2-D filter)

Input feature map

! [C][lz][lxl

B
i

Output feature map
o[m][oy][0x]

Filters
WIM][C][FY][Fx]

Coarse Weight Stationary Output Stationary

Fig. 24. Commonly used dataflow mechanisms for executing
convolution layers on hardware accelerators.
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remains stationary on a unique PE, and reused many times,
during processing activations (corresponding to the same
input channel C). By processing a unique weight, each PE
produces partial summations for output activations, which
are communicated by PEs and accumulated before outputs
are written back to the memory hierarchy. So, input and
output activations are accessed from off-chip memory (via
shared scratchpad and PE’s local memory) several times,
while weights are continuously reused. After reuse, a new
set of weights is loaded from memory, and the execution
repeats. Weight reuse is higher in processing larger feature
maps (CNNs) and multifolded for processing data in a
batch (e.g., images for CNNs and tokens of sentences for
NLP models). Fig. 25 lists such characteristics of different
layers.

Dataflows can be applied at a coarser level, where
PEs process a data block or plane (1-D/2-D/3-D). In a
coarse weight stationary approach [23], each PE processes
weights of an entire 2-D filter (dimensions C' and/or M
are laid out spatially on PEs). Rows and columns of PEs
process the data corresponding to unique input and output
channels, respectively. So, activations need to be multicast
to the PEs of a row, different weights need to be provided
to each PE, and partial summations for output channels
can be accumulated vertically [23]. Similarly, in an input
stationary dataflow, unique activations (or blocks of input
feature maps) remain stationary and are reused. In an out-
put stationary dataflow, each PE produces a unique output
activation (corresponding to the same or different output
channel) [44]. By processing spatial data and input chan-
nels first, partial summations are accumulated and reused
in the memory of each PE. With the temporal accumulation
of outputs on PEs, the output stationary dataflow does not
need to reduce partial outputs spatially by collecting them
from appropriate PEs, which is otherwise challenging for
unstructured sparse data (see Section VIII-B). Therefore,
many accelerators opt for such dataflow. In no local reuse
dataflow, input operands are streamed to PEs, but they are
not stored in PE’s memory [22], [44]. In row stationary
dataflow, PEs of the same row process the same weights (a
row of a filter), diagonal PEs process the same row of IAs,
and partial summations for rows of the output feature map
are accumulated through vertically connected PEs [20].
So, different dataflows uniquely exploit the spatial paral-
lelism and reuse of different tensors.

Dataflow optimization: As dimensions of tensors are
often large, many ways exist for spatiotemporally execut-
ing a layer onto the computational and memory resources
of an accelerator. The optimization of the dataflow is
important as it can significantly impact the performance
and energy consumption [23], [56], [57]. For instance,
mappings with similar performance can consume an order
of magnitude higher energy [186] or vice versa. Further-
more, as shown in Fig. 25, reuse characteristics, tensor
dimensions, functionality, and sparsity can vary signifi-
cantly for different DNN layers. Hence, a single dataflow
may not always be effective for acceleration. Fig. 26
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Layers Characteristics Implications on Execution
Large spatial feature maps High weight reuse
AlexNet / £€ 5p - P e - £
Early X Less filters Low input reuse
MobileNet :
CONV CONV1 Less channels Low reuse of partial sums
Low W and IA sparsity Higher data movement
Small spatial feature maps Low weight reuse
Last ResNet-50 More filters High input reuse
CONV CONV4/5_x More channels High reuse of partial sums
High/Moderate W/IA sparsity| Usually compute-bounded
VGG-16 FC, Smaller activation vectors |No weight reuse w/o batching|
MLP  |FCOin encoders Large weight matrix Memory/comm. bounded
of BERT High/low W/IA sparsity Reduced data movement
. . Low reuse of inputs
Single filter
MobileNets E Low reuse of partial sums
Depth- . . n 5
e d/w, No channel-wise reduction Low computation, high
CONV Xception, communication req.
EfficientNetBO | Unpruned, fewer parameters ||nefficient PE-array utilization
w/o group-parallel processing
Point- | MobileNet s/1, . Reduced reuse of W, IA
. Fi dule i 1x1 convolution kernel
WIES I3 TS 1) structured sparsity limited to
@Oy || Sepecrellt Moderate sparsity channel and filter direction
C ion of itional off-chi
Residual | ResNet-50, oncatenation of outputs | additional off-chip accesses
Layers U-Net additional inputs from opportunity for reusing
previous layers intermediate feature maps
Group |ResNeXt Aggre- Parallel paths opportunity for input reuse
CONV_| -gation Blocks due to cardinality with fused executions
3D CNN 30 Temporal processing heavy computations,
across frames increased data reuse
Encoders in | Highly/hyper sparse weights | Reduced computations and
Attention Pruned in query, value processing data movement
Transformer, Multiplications of dense, High collective data
BERT small matrices for each head movement for all heads
Fig. 25. Characteristics of different DNN layers pertaining to

hardware execution. (Figure inspired from [43] and [57].)

provides two such examples that lead to low PE-array uti-
lization. The coarse weight stationary dataflow processes
different 2-D filters on different PEs. So, it is inefficient for
DW-CONV. Similarly, output-stationary or input-stationary
dataflows can result in low utilization of PEs for process-
ing later layers of deep CNNs. With the vast space of
execution methods and the growing development of new
models (with variations in tensor dimensions), it becomes
hard for nonexperts to figure out optimized execution
methods and designs. Therefore, many optimization tools
have been proposed recently including Timeloop [186],
dMazeRunner [56], MAESTRO [57], and Interstellar [23].
They analytically model the execution of accelerators to
estimate execution metrics and evaluate a set of mappings
from the pruned space of various dataflows.

2) Sparsity-Aware Dataflows: Dataflows for processing
sparse tensors are typically similar to those for dense ten-
sors while processing the data in compressed format. For
correct functionality, dataflow executions are facilitated
by extraction/orchestration of NZs, which is done either
in PEs [43], [115], on a different module [37], or by a
separate controller. For example, SCNN [115] used PT-IS-
CP dataflow. It processed planar tiles of feature maps with
input stationary dataflow. SCNN’s PT-IS-CP-sparse dataflow
extended the PT-IS-CP It processed only NZ activations
and weights in the compressed format while accessing
them from memory and performing computations. The
coordinate computation module in each PE ensured that
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Fig. 26. Low utilization of a 16 x 16 PE-array in (a) coarse weight
stationary dataflow when executing depthwise layers and (b) input
stationary dataflow for executing later layers of deep CNN models.
(Figure inspired from [43].)

partial products generated by all-to-all multiplications of
NZ inputs and weights were accumulated correctly and
stored in appropriate buffers. Table 12 lists sparsity-aware
dataflow mechanisms used by accelerators.

EyerissV2 [43] used an enhanced row-stationary
dataflow. By using statically known sparsity of weights,
more NZ weights were allocated in local memories and
global scratchpads. For example, each PE can store up
to 192 NZ weights. Mappings of CONV and FC layers of
AlexNet with row-stationary dataflow allocated 64-174 NZ
weights, which corresponded to a total of 132-480 weights
in the dense format. With in-PE data extraction logic,
each PE only processed NZ values from CSC-encoded
data. So, sparsity-aware dataflow can be optimized with
the preknown (or expected bounds of) sparsity and value
similarity.

3) Optimization Opportunities:

a) Dataflow optimizations accounting for storage and
computational overheads for metadata and codebooks:
Sparse and value-shared tensors are processed along with
metadata (indicates positions of NZs) and codebook (com-
mon values shared among tensor elements), respectively.
It requires additional processing, e.g., buffer management,
communication via interconnects, and indexing the appro-
priate values. Depending on the dataflow, such process-
ing can amplify the execution costs, which needs to be
optimized. Existing tools for optimizing dataflows target
dense tensor computations. Accelerators EIE, SCNN, and
Cambricon-S process sparse tensor computations but with
customized dataflows. Hence, frameworks for mapping
and design explorations need to consider the sparsity
and value similarity of tensors and their variations across
layers/models. Such tools can include additional costs cor-
responding to storage, communication, and extraction in

Table 12 Dataflow Mechanisms of Accelerators

Input Stationary [105], [113], [115]

[30], [37], [41], [42], [60], [65], [66],
[68], [72], [93], [107], [109], [112],
[116]-[118], [122], [123], [133], [134]
[105], [126], [127]

[72], [114]

[20], [43]

Output Stationary

Weight Stationary
Coarse Weight Stationary
Row Stationary

Table 13 Techniques for Leveraging Value Similarity

Weights [371, [42], [98], [117], [189]
Activations [99], [190]
Computation reuse Partial [98], [99], [125], [189]-[192]
and memoization Full [149], [188], [193]

Early termination of computations [194]-[196]

Value sharing

their analytical models. Explorations supporting multiple
dataflows can help to achieve efficient designs for handling
different functionality and variations in sparsity, shapes,
and quantizations of tensors.

b) Sparsity-aware resource partitioning: Acceleration
of deep learning models is scaled by simultaneously
processing multiple layers. It is done either by partitioning
resources [171] of a scaled-up accelerator or on multi-
ple accelerators (scale-out) by leveraging model- or data-
parallelism [187]. Techniques for resource partitioning
aim to highly reuse data from the on-chip memory of
accelerators. It involves evaluating many-to-many map-
pings between layers and accelerators. Such optimizations
can be crucial for several applications that require low
latency, real-time processing, or high frame rates (e.g.,
processing the frames for multiple object detection models
of an autonomous vehicle’s perception system). Exploiting
sparsity can provide further opportunities due to fewer
computations, communications, and storages.

C. Leveraging Value Similarity

Several techniques have leveraged value similarity for
accelerating DNNs by value sharing and computation reuse
(see Table 13). Video frames exhibit high similarity spa-
tially (among neighboring pixels) and temporally (over
consecutive frames) [99], [188]. After precision lower-
ing, values of limited range repeat frequently [27], [98],
which are further compressed by maintaining a codebook
of unique values [42]. With repetition of values, com-
putation (outputs) can be reused, either partially during
processing a layer [98], [99] or by skipping processing of
a whole layer [149]. This section describes such techniques
and corresponding hardware enhancements.

1) Weight Similarity: Prior studies have shown that
weights can be approximated with a small set of values.
Hegde et al. [98] showed that, for 8-b weights of DNNs,
each NZ value mostly repeated more than ten times and
even more than 100 times in later layers of AlexNet
and ResNet-50 models. Han et al. [27] pruned weights of
DNNs with k-means clustering for value sharing. Shared
unique values were represented with 4 or 5 bits with-
out dropping classification accuracy. Local quantization
(applying clustering separately over different subtensors)
can achieve even smaller codebooks [37]. Leveraging the
weight similarity can compress pruned models further by
up to an order of magnitude [27], [37].

Value-shared weights are processed by augmenting the
PE datapath with a weight decoder (e.g., in EIE [42]). For
processing NZ weights, the PE provides the encoded index
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Fig. 27. (a) Leveraging weight similarity and reuse of partial
outputs [98]. (b) Modifications in UCNN PE architecture (shaded
blocks) for buffering indirection tables, partial summations of
activation groups, and memoization of partial outputs.
(Figure adopted from [98].)

of the weight to the decoder and obtains shared value.
Depending on the lookup mechanism and total bits to be
extracted at every cycle, the decoder can incur consid-
erable area and power costs (e.g., for Cambricon-S [37],
32.56% and 3.98% of the total on-chip area and power,
respectively).

2) Input Similarity: Audio or video frames can contain
high similarity spatially or temporally. This is because a
speech signal can be quasi-stationary for a short interval.
Also, successive executions of DNNs process overlapping
windows of audio frames for context extraction [99]. Fea-
ture maps for CNNs exhibit high spatial correlation [190].
High input similarity enables only storing unique values
and reusing computations by differential computing over
nonsimilar data.

Riera et al. [99] showed that, after uniform linear quan-
tization of inputs of DNNs (e.g., C3D [6], EESEN [197],
and CNN for self-driving cars [198]), about 61% of IAs are
the same as previous execution, and 66% computations
can be avoided. Their accelerator maintains centroids of
quantized inputs and the index corresponding to each
input element. Then, consecutive frames are processed
layerwise with differential computing. For example, for
each activation of an FC layer (of a new frame), the accel-
erator calculates centroid and index, and then, it compares
calculated centroid to memoized centroid. If the difference
is zero, then the output from the previous execution is
reused, and the next activation is processed. Otherwise,
a new value of the index is updated in the buffer, and new
values for output activations are computed by accumulat-
ing multiplications of weights with the difference.

3) Computation Reuse (Partial During Processing a Layer):
UCNN [98] leverages the repetition of weights by form-
ing activation groups (summations of activations) that
share the same weight. It also reuses activation subgroups,
i.e., memoizes partial summations of activations that can
repeatedly appear across different filters. Fig. 27(a) illus-
trates an example. Weights A and C can be shared among
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corresponding activation groups. For producing activation
groups, subgroups, such as (r + s), can be reused with
memoization. So, an output activation is calculated by
indexing a unique weight value and corresponding acti-
vation groups. Indirection tables provide indices of the
unique weight and grouped activations. Fig. 27(b) shows
corresponding modifications in the PE datapath. UCNN
reported up to 24% area overhead for a PE and 1.8x
speedup for CNNs compared to execution on a baseline
accelerator without exploiting weight repetition.

Silfa et al. [191] showed that, for RNNs (e.g., Deep-
Speech2 [199] and EESEN [197]), the relative difference
between the output activations over consecutive frames
was about 23%. Leveraging temporal similarity of outputs
saved about 24% computations with negligible accuracy
loss. For predicting whether an output activation leads
to a value similar to the previous output, their technique
extended each RNN layer with a binary neural network
(BNN). With BNN outputs correlating to actual outputs,
execution of much smaller BNN layers led to an efficient
prediction of the temporal output similarity.

4) Computation Reuse (Skip  Processing of Entire
Layer): A few techniques predict outputs based on previ-
ous computations and skip heavy computations of some
layers. Gongalves et al. [188] showed that 18%-81% of
computations in AlexNet CONV layers could be reused
due to spatial (intraframe) and temporal (interframe)
redundancy of the inputs. They leveraged such reuse
with memory look-ups and avoided executing CONVs. For
YOLO-v3 [4], it processed only 22%-32% frames while
incurring negligible accuracy loss. Buckler et al. [149] pro-
posed skipping heavy processing of some CNN layers for
several frames (predicted) and executing precise compu-
tations periodically for remaining (key) frames. For pre-
dicted frames, their algorithm estimated motion in the
input frame. It used results for incrementally updating
the output saved from the last key frame. Unlike other
value similarity techniques that incur changes in PE data-
path, such techniques can be efficiently executed on a
separate module (e.g., EVA? [149]) or coprocessor, while
other modules of the same or different accelerator process
sparse tensors of DNN layers. EVA? identified 78%-96%
of the frames for AlexNet and 40%-71% of the frames
for Faster-RCNN as predicted frames while processing the
YouTube-BoundingBoxes dataset [200].

5) Early Termination of Computations by Predicting
Outputs: SnaPEA [194], SparseNN [195], and Com-
PEND [196] reduce ineffectual computations by early pre-
diction of the usefulness of outputs. They check whether
computations contribute to the effective inputs for the
subsequent layer (e.g., ReLU or max-pooling). If not, their
PEs terminate such computations. To reduce computations
corresponding to output sparsity, Akhlaghi et al. [194] sta-
tically reordered weights based on their signs. PEs of its
SnaPEA architecture contained prediction activation units
(with each MAC), which checked the sign-bit of the partial
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summation and raised a termination signal to notify the
controller as the sign-bit was set.

6) Optimization Opportunities:

a) Joint exploration of spatial and temporal similarity
of inputs, weights, and outputs: Depending on the model’s
configurations (depth, layer dimensions, and cardinality)
and domain-specific data, opportunities for value sharing
and computation reuse (at both fine-grain and coarse-
grain levels) in processing activations and weights can vary
considerably. A joint exploration for different tensors can
help to identify storage-Ops-accuracy tradeoffs for efficient
acceleration.

b) Leveraging value similarity through separate process-
ing: Determining value similarity and leveraging com-
putation reuse often demands modifications in PE-array,
increasing the accelerator’s area, latency, or power. Design-
ers may obviate it by providing a separate and compact
module for differential computing that handles necessary
preprocessing or postprocessing and can be interfaced
with the PE-array and on-chip memory. Upon requirement,
it can trigger execution on PE-array for structured com-
putations. Furthermore, algorithms expressing the func-
tionality of ML layers/models may be defined in terms of
differential computing (i.e., execution is conditional to the
input mismatch, reused otherwise). With efficient accelera-
tor/model codesigns for differential computing of tensors,
accelerators may attain structured effectual computations
with fewer overheads of metadata or memoization.

X. LOAD BALANCING OF EFFECTUAL
COMPUTATIONS

Depending on the distribution of zeros, the inter-PE or
intra-PE imbalance can cause low utilization of PEs or
their functional units, which increases execution time
and energy consumption. This section summarizes sources
of such imbalance, and then, it discusses different
software-directed techniques or hardware designs for bal-
ancing the computations. Table 14 categorizes these tech-
niques. Software-based techniques facilitate structured
computations by forming local regions of dense elements,
sorting the data by combining same-sparsity tensor blocks,
or regularizing models with structured pruning. Although
requiring low/no additional hardware, they are often lim-
ited to static W -sparsity. Accelerators dynamically balance
computations by prefetching work in FIFOs or memory,
obviating fine-grained synchronization of computations on
PEs. Some accelerators achieve further runtime balance
across PEs by a central hardware module for work sharing.

A. Sources and Impact of Imbalance

1) Inter-PE Imbalance: Zeros in different tensors can
be scattered, and their positions may not be deter-
mined statically (e.g., unstructured IA-sparsity). For most
accelerators, work to be performed concurrently by PEs
is fixed statically. Also, executions with conventional
dataflows usually require synchronization among PEs

Table 14 Classification of Load Balancing Techniques

Data Clustering [65], [126], [127], [136]
]S)‘:fg‘z’fgg Data Reorganization | [L16], [123], [130]
Model Regularization [37], [60]-[62], [68], [118], [137]
Hardware Work Prefetching [41], [42], [68]
Module Work Sharing [66], [89], [130], [137]

(e.g., in SCNN [115] and Cnvlutin [72]), which is achieved
by barriers implemented in software via instructions or in
hardware via PE architecture or controller logic. Conse-
quently, computations per PE during each execution pass
can vary drastically (inter-PE load imbalance). So, many
PEs may finish their computations early, get stalled, and
wait for the next set of data due to synchronized execu-
tion, while other PEs still process the previously allocated
data. It increases execution time and energy consumption.
Kim et al. [130] analyzed the distribution of NZ weights
in AlexNet CONV3 filters and showed that, in an execution
pass, NZs processed by the leading and trailing PEs differed
by up to 6.5x. Similarly, up to 40% cycles were idle
for executions of PEs in SCNN architecture [115]. The
sensitivity analysis for EIE showed that, without any load
balance, about 47% of the cycles were idle for the 64-PE
accelerator [42].

2) Intra-PE Imbalance: For SIMD or vector PEs, intra-
PE load imbalance can also contribute to a significant
acceleration loss. With unstructured sparsity of one or
more tensors, enough NZs may not be extracted to feed all
the functional units within PEs, which causes intra-PE load
imbalance. The sensitivity analysis for the SNAP acceler-
ator showed that, with moderate sparsity, the utilization
of multipliers falls below 80% and up to 20% for 90%
sparsity [107]. Similarly, SCNN [115] reported below 80%
utilization of multipliers for all GoogLeNet [96] layers
and 20% for the last two inception modules. Moreover,
a few architectures use PE designs with multiple subunits
in each PE. For SIMD processing, a subunit works in
synchronization with other subunits of the same PE, e.g.,
in Cnvlutin [60], [72], [112]. With unstructured sparsity,
multipliers and accumulators in some subunits can often
be idle, while trailing subunits process computations.

B. Software Directed Load Balance

1) Clustering of NZs for Populating Dense Data Regions: As
described in Section VI-A, a few techniques targeted high
W -sparsity. They used structured pruning or data combin-
ing approaches for clustering the tensor elements in locally
dense regions that can be dispatched to PEs for processing
in a conventional manner [126], [127]. So, they achieve
high PE utilization and lower invocations to accelerator
resources. However, such techniques may not be effective
when algorithms cannot generate or pack structured sparse
data (e.g., dynamic unstructured sparsity).

Concise convolution rules (CCRs) [65] partitioned
sparse convolutions into effective and ineffective subcon-
volutions for processing locally dense regions of filters and
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Fig. 28. Distribution of NZ weights for executing CONV1 of
AlexNet [201] with coarse weight stationary dataflow on a 4 x

3 PE-array. Distribution shows NZ weights in different workgroups
(each workgroup contains NZs for 12 PEs): (a) without load balance
and (b) after sorting. (Figure inspired from [130].)

input feature maps. It eliminated a majority of ineffectual
computations and their storage (for VGG-16, achieving
the reduction of about 79% and 51%, respectively) [65].
Subconvolutions after CCR transformation were executed
on the SqueezeFlow accelerator [65]. However, with PEs
performing only all-to-all multiplications, it may not sup-
port generic tensor operations; it can be challenging to
extend CCR methodology for other algorithms.

2) Data Reorganization Before Work Allocation: In
ZENA [130], each PE processed a different set of filters
for processing a subworkgroup. For balancing computa-
tions among these PEs, filters were sorted by sparsity and
allocated to PEs such that all PEs executed filters of similar
sparsity.

To determine the efficacy of such sorting, we considered
AlexNet [201] for ImageNet classification. We obtained the
pruned model through the neural network distiller [202]
with a pruning algorithm similar to [25]. For accelerating
AlexNet [201] CONV1 layer with coarse weight stationary
dataflow, Fig. 28 presents distributions of NZs in filters
before and after reorganization. For processing 64 filters
of size 3 x 11 x 11 on 4 x 3 PEs, we consider execu-
tion through 16 different workgroups. Each workgroup
contains NZ weights for concurrent processing of four
filters and three channels on 12 PEs (up to 11 x 11 on
a PE). The next workgroup is initiated once all PEs entirely
use previously allocated weights. Fig. 28(a) shows that,
before data reorganization, the total NZ weights allocated
to PEs within workgroups differed by up to 21.4x (5 versus
107 for 11 x 11 filters) and 6.09x on average. Fig. 28(b)
shows that, after sorting the weights (both filterwise and
input channelwise), it leads to an almost equal NNZs for
computations onto 12 PEs during each workgroup. The
total allocated NZ weights differed by only 1.36x.

After static sorting, ZENA achieved about 20%-32%
more acceleration for CONV layers of AlexNet and
VGG-16 [130]. Depending on the sparsity, distribution of
NZs, and achievable sorting granularity, the work allo-
cated to PEs may differ considerably even after sorting.
Moreover, such transformations are usually feasible only
statically. So, ZENA also used dynamic work sharing, which
we discuss in Section X-C.
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3) Accelerator-Aware Regularization of the Model: Recent
accelerators, including [60] Sparse Tensor Cores in NVIDIA
Ampere architecture [61], [118], execute models pruned
with k:n block-sparsity (e.g., 2:4 sparsity supported by
Ampere [61]). Their PEs contain multiplexers that use
indices of k NZ weights to select k out of n dense acti-
vations. Then, functional units process extracted values.
Like k:n block-sparsity, ESE [68] used a load-balance
aware pruning for RNNs. It considered submatrices to be
processed by different PEs and induced the same sparsity
into all submatrices.

In some architectures, all PEs receive the same set of NZ
activations. They process them with their unique weights
and produce distinct output activations. One such archi-
tecture is Cambricon-S [37] that used a coarse-grained
pruning of weights. The block size for pruning depends
on the total number of PEs (16). Over local regions,
the pruning removed all connections between an IA and
all (16) output activations. So, when PEs processed output
neurons, they processed the same NNZ IAs and weights for
computing MACs.

C. Load Balancing With Hardware Structures

1) Facilitating Asynchronous Computations by Prefetch-
ing Allocated Work: One way to improve PE utilization
(in the presence of load imbalance) is to prefetch the
allocated work for PEs and avoid their fine-grain synchro-
nization. So, even if there is a different amount of work
(e.g., MACs per IA), all the PEs may perform effectual
computations at the same time (e.g., work on different
activations). So, each PE can be engaged in performing
some computations, before it runs out of the available
data. This can be achieved by offloading more data into
the FIFO or memory of each PE. For example, in EIE [42],
activations are broadcast to FIFOs of all PEs. Once a PE
finishes multiplying an activation to corresponding NZ
weights or does not find any matching weights, it processes
the next activation from its queue. The FIFO size of 8 or
higher ensured each PE almost having an NZ activation
to process (during 87%-91% of computation cycles) and
lowered idle time of PEs from about 47% to 13% [42].

Cambricon-X [41] allows asynchronous communication
of weights to PEs. A centralized data extraction mechanism
provides NZ activations to each PE via a unicast network,
and compressed weights are loaded in the memory of
each PE (2 kB). The memory access port is assigned
to each PE for a short period, where it fetches several
chunks of weights via DMA transfer. Depending on the
prefetching interval and unstructured sparsity, each PE
may asynchronously work on useful computations in most
of the execution cycles.

While asynchronous execution improves the utilization
of PEs, the work allocated to PEs is still fixed. Plus, in-PE
data fetching mechanisms may restrict PEs from finding
the pending work in other PEs and sharing it. For highly
imbalanced computations, straggling PEs can still be the
bottleneck.
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2) Centralized Load Balance: In some accelerators, data
are multicast to one or more rows (or columns) of PEs.
A central logic processes the metadata (indices) of the
tensor tiles to be distributed along with control signals
from PE-rows and finds out work distribution. Then,
it feeds the fast-acting rows/lanes of PEs and facilitates
work sharing. For instance, ZENA [130] allocates work
dynamically through down counters. Different PE-groups
(e.g., PE-rows) process the same filters with different acti-
vation tiles. A central distribution mechanism contains
down counters that store the number of remaining acti-
vation tiles for each PE-group. When a leading PE-group
finishes its work (counter is zero), it obtains an activation
tile from a straggling group (has the biggest count value)
and then continues processing output activations. The
work sharing improved the acceleration by about 10%
for CONV layers of AlexNet and VGG-16 [130]. Memory
port contention may occur when multiple leading groups
simultaneously attempt to fetch the same set of IA tiles.
ZENAs execution mechanism overcomes this problem by
reassigning only one activation tile at a time (to the leading
group) and performing reassignments only during bus idle
time.

LNPU [66] uses an input load balancer (ILB), which is
shared among PE-rows. As shown in Fig. 29, ILB contains
address generator units to determine the indices of the
compressed elements that need to be fetched. Once ILB
fetches them, the skip-index decoder unit determines the
appropriate indices for data extraction. It pushes them
along with the NZ values into the FIFO of a PE-row. It also
calculates bitmaps, which are used for pushing the data
(indices and NZs) selectively into FIFOs of PE-rows at run
time. Due to ILB, PE utilization in LNPU was increased by
2%-26% for 10%-90% sparsity of the inputs (activations
or their gradients) [66]. So, centralized load balancing
mechanisms can leverage the information about data allo-
cation for PEs and provide equal work to PEs or feed the
fast-acting PEs during runtime

D. Optimization Opportunities

Software-level or hardware/software/model codesign opti-
mizations for low-cost load balance: Most accelerators lack
special support to balance computations among PEs, e.g.,
to avoid area and power overheads due to special hard-
ware logic.

1) One technique is to reorganize the data [116], [130].
However, it can mostly exploit only static W-sparsity
for inference at no/low hardware cost. So, we may
require additional codesign optimizations for regular-
izing dynamic sparsity.

2) For preknown or estimated sparsity, sparsity-aware
mapping optimizations for accelerators may identify
efficient dataflows that sustain high PE utilization.

3) When sparsity may be regularized at modest accuracy
loss (e.g., for several DNNs), accelerator/model code-
signs can induce the balance. It can be either done
via structured pruning of activations or refactoring
the operators (nonlinear activations, batch normaliza-
tion [77], or quantization of outputs). Consequently,
the codesigns may achieve structured computations
over both activations and weights to an extent, lead-
ing to further accelerations.

XI. WRITE-BACK AND
POSTPROCESSING

Once PEs process allocated data, they write (partial) out-
puts back via interconnect. For unstructured sparsity, man-
aging write-backs (WBs) can be challenging because differ-
ent PEs can produce outputs of different sizes at different
times. Moreover, operations, such as ReLU, pooling, and
batch-normalization, need to be performed on outputs.
They are usually not performance-critical, such as CONV or
MLP So, they can be either executed on PEs before WBs of
outputs (in SCNN [115], Cambricon-S [37], and EIE [42])
or postprocessed on central modules (in MAERI [177],
ZENA [130], and SqueezeFlow [65]). Central modules
often assemble the outputs collected from PEs, transform
data for the next layer, and encode sparse outputs on the
fly.

A. Write-Back From PEs

1) Simultaneous  WB: Cambricon-X [41] and
SCNN [115] use fat-tree networks or point-to-point
links, which allows simultaneous WBs from multiple PEs.
Whenever ready, PEs can execute in a dataflow manner
and immediately write outputs back after computations.
This is important for processing unstructured sparsity
because different PEs may process different NNZs and
produce different amounts of output values for WB
at different time intervals. With such high bandwidth,
communication time can be reduced and interleaved with
computations, which is important for processing models
with low arithmetic intensity. These PEs write to a central
module for postprocessing (e.g., in Cambricon-X [41]),
the on-chip memory [41], or off-chip memory (e.g.,
in SCNN [115]). Although simultaneous WBs are faster,
such a fat-tree network can incur considerable overhead
due to increased bandwidth and inefficient bandwidth
utilization in some scenarios. So, accelerator designs can
instead use a common bus that is time-shared among
multiple PEs; PEs can write the data back turnwise or
asynchronously.
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2) Sequential WB: PEs in several accelerator designs
operate in a lock-stepped manner, where data blocks com-
mon to PEs are broadcast to them, and all PEs synchronize
for processing the outputs (idle when done). Synchronized
execution can allow WB in a specific sequence (e.g., a PE
with the lowest PE-index writes the data first and so forth).
It makes the programming of the accelerator easier. It also
obviates overheads of specialized hardware/software sup-
port, which is required otherwise for asynchronous WB.

3) Asynchronous WB: With unstructured sparsity, PEs
process a different amount of data and can asynchro-
nously request WB during the execution. For facilitating
such support, accelerator designs can employ additional
hardware logic. For example, ZENA [130] used a common
bus for multicasting blocks of filters and feature maps
to PEs and collecting the output. Output buffers of PEs
were flushed to the memory during the idle period of the
bus, which avoided bus contention between broadcasting
activations from memory and WB of partial summations.
For prioritizing the requests from PEs to access the bus for
WB, it determined the PE groups with a high number of
pending output tiles.

B. Data Assembling

PEs often process large output tiles. So, they perform
fine-grained assembling of outputs locally. For exam-
ple, SCNN [115] PEs use a coordinate computation
unit that determines appropriate indices for arbitrat-
ing partial outputs to the local accumulator buffer.
In other accelerators, PEs produce metadata and supplies
it with outputs for correctly indexing the memory (e.g.,
in ZENA [130]) or assembling outputs on a central module
(e.g., in Cambricon-X [41] and CoNNA [114]). The central
module uses the metadata (e.g., output coordinates) from
PEs or preknown indices of PEs to assemble collected out-
puts before WB or postprocessing. In some designs, data
assembling is done by global accumulators that reduce
partial summations and update outputs into appropriate
memory banks (e.g., SNAP [107]). The data assembling
logic typically also handles data layout transformation
(e.g.,in [111] and [114]), which is required for processing
the subsequent layer.

C. Data Layout Transformations

1) Data Reorganization: Accelerators are often designed
for efficient vector or matrix multiplications. So, for
processing convolutions, they (e.g., [72] and [111])
require data layout in NHWC (channel-first) format [203],
which is also used for processing on CPUs and GPUs.
Fig. 30(b) shows data reorganization for striding execu-
tion of the convolution of Fig. 30(a). It shows iterative
processing of the spatial data with channel-first processing.
For example, an output activation 1A can be processed
by fetching a block containing all channels of the first
filter and ifmap. Vectors corresponding to channels can be
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Fig. 30. Data layout transformation for executing convolution.
(a) Convolution of two 2 x 3 x 3 feature maps with two 2 x 2 x
2 filters. (b) Reorganizing data for striding execution.

(c) Transforming feature maps into the Toeplitz matrix.

processed iteratively. Sparse data blocks are also processed
similarly but with computations on appropriate NZs.

2) Transformations to Toeplitz Matrix: Processing with
NHWC format allows executing CONVs as iterative
vector-vector multiplications, but it requires hardware
support to fetch appropriate blocks. So, for processing
CONVs as sparse GEMMs, a few accelerators, including
ERIDANUS [126] and [127], transform sparse fea-
ture maps into Toeplitz matrix with im2col transforma-
tion [204]. Once transformed matrices are obtained and
sparsity-encoded, accelerators compute sparse matrix mul-
tiplication. Fig. 30(c) illustrates the transformation for
tensors of Fig. 30(a). It shows that neighborhood values
for computing an output with a 2-D CONV are combined
as a vector. For multiple input channels of ifmaps or filters,
corresponding elements are stacked in column-vectors or
row-vectors. However, transforming ifmap into Toeplitz
matrix duplicates neighborhood data and yields storage
overhead (FyxFx times higher memory for unit-strided
CONV).

D. On-the-Fly Encoding

Several accelerators, such as SparTen [116], Squeeze-
Flow [65], Eyeriss [20], and CompAct [111], use an
encoding module. Such a module encodes blocks of output
tensor on the fly and typically before WB. It reduces access
to off-chip memory significantly [20], [65]. On-the-fly
encoding allows efficient processing of dynamically spar-
sified tensors, i.e., sparse activations for DNN inference
and tensors in the training of models. It typically consumes
low on-chip area and power, e.g., 2.5% and 3.06% for the
RLC encoder-decoder unit in SqueezeFlow [65] and 0.3%
of the total on-chip area for the RLC unit in Eyeriss. The
complexity of the hardware logic required for encoding
depends on the coding format (see Section V). For exam-
ple, single-step processing for bitmap, RLC, or COO-1D
incurs low overhead. A central bitmap-encoder in SparTen
consisted of comparators (XNOR gates) for determining
NZs and additional logic for shifting NZs to populate data
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vector. The encoding overhead may be lowered for block-
sparse tensors, which requires indicating only positions of
blocks of NZs.

Sticker [117] facilitates sparsity-aware encoding. It uses
three modes to encode DNN tensors of high, medium,
or low sparsity with COO, bitmap, and dense format. The
three modes are controlled by two threshold values. Since
weights can be processed offline for DNN inference, they
are preencoded in appropriate formats. To encode activa-
tions online, Sticker uses a sparsity adaptor module. It con-
sists of a sparsity detector, a 4-kB buffer, an encoder, and
a controller. The sparsity detector contains counters that
count zeros in activations of consecutive 16 channels. After
the detector processes output activations (obtained after
ReLU), they are stored in the buffer. Then, the controller
determines the encoding mode with which the encoder can
encode the data in the buffer.

XIIl. COMPILER SUPPORT

This section provides an overview of the compiler support
for sparse deep learning accelerators. It focuses on the
following.

1) IRs: They determine what type of code the compiler
can support and what kind of compiler transforma-
tions it can perform.

2) Support for sparse tensors: This section discusses com-
pilation challenges in supporting sparse deep learning
and compilers developed to overcome these chal-
lenges.

3) Compiler optimizations: This section provides an
overview of state-of-the-art techniques that allow the
compiler to apply advanced optimizations and gen-
erate the most efficient code from high-level neural
network descriptions.

4) Accelerator ISAs and code generation: This section
focuses on accelerator ISAs (e.g., instruction set for
high-level tensor operations) and the compiler sup-
port for machine code generation for accelerators.

A. Intermediate Representations

IR determines which types of code can be represented
by the compiler, whether it can support sparse tensor
computations, the types of code transformations that can
be done, and even the scalability of the compiler.

1) Need for High-Level Representations: A common exam-
ple of low-level IR is LIVM IR, which is well suited
for low-level code optimizations, such as register allo-
cation, but not for many high-level code optimizations
needed for optimizing sparse deep learning. This is mainly
because low-level IRs do not preserve information about
loop structures and data layouts, and reconstructing such
information is not trivial [205]. That is why many deep
learning compilers, such as TVM [206], Tiramisu [205],
and Halide [207] apply many code optimizations on a
high-level IR (an IR that has loops and represents multi-
dimensional tensors). This is also one of the motivations

for creating MLIR [208], which serves as a high-level IR
for low-level compilers like LLVM.

2) Mathematical Abstractions of Code: While previous IRs
have focused on representing program statements and pro-
gram structure, many compilers use an additional mathe-
matical representation (abstraction) to represent iteration
domains' and array accesses of statements. These math-
ematical representations are usually used in conjunction
with the IR to simplify iteration domain and array access
transformations. This subsection presents two major fam-
ilies of mathematical representations and compares their
strengths and weaknesses.

a) Polyhedral representation: It is a unified mathemat-
ical representation for the iteration domains of statements,
code transformations, and dependencies. It relies on two
main concepts: integer sets and maps. Integer sets represent
iteration domains. Maps are used for representing memory
accesses and transforming iteration domains and memory
accesses.

An integer set is a set of integer tuples described using
affine constraints. An example of a set of integer tuples is

{(1,1);(2,1);(1,2);(2,2); (1,3); (2,3)}.

Instead of listing all the tuples, we can describe the set
by using affine constraints over loop iterators and symbolic
constants as follows:

{8(5,7) 11 <i<2A1<;5 <3},
where ¢ and j are the dimensions of the tuples in the set.

A map is a relation between two integer sets. For
example,

{S1(i,7) > S2(i+1,j+1): 1<i<2A1<j <3}
is a map between tuples in the set S1 and tuples in the set
S2. More details about the polyhedral model and formal
definitions can be found in [209]-[211].

Polyhedral compilers: Notable polyhedral compil-
ers for deep learning include Tiramisu [205], Tensor
Comprehensions [212], Diesel [213], and TensorFlow
XLA [214] (through affine MLIR dialect [208]). General-
purpose compilers that support deep learning include
PENCIL [211], Pluto [215], Polly [216], PolyMage [217],
AlphaZ [218], and CHiLL [219].

Strengths of the polyhedral representation are as follows.

1) Unified representation: It eliminates friction within
compiler IRs and greatly simplifies design of code
transformations.

2) Instancewise representation: The representation gran-
ularity is instances of statement executions where
each instance is a single execution of a statement dur-
ing one loop iteration. Instancewise representation
includes iteration domains, data dependencies, data
accesses, and code transformations, which allows the
compiler to have a precise representation.

3) Support for the whole class of affine transformations: It
allows applying any affine transformation on iteration

IThe iteration domain of loop iterators in a loop is all possible values
that loop iterators can take.
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domain and data accesses. An example of a com-
plex affine transformation is iteration space skewing,
which allows extracting parallelism from multilayer
RNNs to increase hardware occupancy.

4) Nonrectangular iteration domains: The representation
allows compilers to naturally express nonrectangular
iteration domains (i.e., iteration domains with an
affine conditional).

Weaknesses of the polyhedral representation are as
follows.

1) Limited support for nonaffine code: The polyhedral
model mainly represents code and transformations
using sets and maps described using affine con-
straints. So, it does not naturally support code that
leads to nonaffine constraints. This includes code with
nonaffine loop bounds, nonaffine array accesses, and
nonaffine conditional. While the classical polyhedral
model does not support nonaffine constraints, recent
work has extended the polyhedral representation
to support nonaffine array accesses, nonaffine loop
bounds, nonaffine conditionals [220], and parametric
tiling [221]. The efficiency of these techniques has
been demonstrated in practice by PENCIL [222] and
Tiramisu [205].

Slower compilation: While polyhedral operations are
precise, they are computationally expensive. So,
polyhedral compilers are slower than nonpolyhedral
compilers. Recent techniques reduce the number of
statements by clustering groups of statements into
macrostatements and scheduling macrostatements
instead of individual statements [223], reducing the
compilation time notably.

2)

b) Nonpolyhedral representation: A common nonpoly-
hedral representation used in deep learning compilers is
interval-based representation. It uses intervals and interval
arithmetic to represent iteration domain and code transfor-
mations, respectively. Using intervals, N-dimensional loops
are represented with N-dimensional boxes, e.g., iteration
domain of a loop nest can be represented as (i,j) €
([0, N1,[2, M-2]).

Nonpolyhedral DNN compilers: Their examples include
TVM [206], Halide [207], DLVM [224], and Latte [225].

Strengths
follows.

of interval-based representations are as

1) Better support for nonaffine code: Nonpolyhedral com-
pilers can naturally support nonaffine code trans-
formations, such as parametric tiling (loop tiling
with parametric tile size). This is because the
interval-based representation does not rely on using
affine sets and affine relations to represent the code
or dependencies. However, nonpolyhedral compilers
also have limited support for nonaffine code (e.g.,
indirect memory accesses) and code transformations.

2) Faster compilation: Operations on intervals are
computationally less expensive than polyhedral
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equivalent operations on sets of integer points, which
yields faster compilation.

Weaknesses of interval-based representations are as
follows.

1) Limited expressiveness: Interval-based nonpolyhedral
compilers cannot naturally represent nonrectangular
iteration spaces (e.g., when bounds of loop iterators
depend on a condition). It is also hard to perform cer-
tain complex affine transformations, such as iteration
space skewing.

Lack of support for programs with cyclic data-flow
graphs: To simplify checking the legality of a sched-
ule, many interval-based compilers assume that the
program has an acyclic dataflow graph. This prevents
users from expressing many programs with cyclic
dataflow. For example, when a value produced by a
loop is read by another loop, Halide [207] does not
allow fusion of the two loops (with compute_with
command). While it avoids illegal fusion, it prevents
legal loop fusions in common cases. Polyhedral com-
pilers avoid these overconservative constraints by
using dependence analysis [226] to check for the
correctness of code transformations, which enables
more schedules. While interval-based compilers can
also implement nonpolyhedral dependence analysis
(by computing dependence distance vectors [227]),
it is not as precise as polyhedral dependence
analysis [226].

2)

B. Support for Sparse Tensors

1) Challenges in Supporting Sparse Tensors: While
compiler support is needed in general for targeting ML
hardware accelerators with diverse features, sparse ten-
sor computations with various dataflows especially need
further support. The code for manipulating sparse tensors
exhibits nonstatic loop bounds, nonstatic array accesses, and
conditionals, which are difficult to analyze at compile time.
The following pseudocode shows one example of a direct
convolution with sparse tensors (bounds of j and accesses
of in are nonstatic).
for each output channel c_o

for j in

+ 171)

{

(W.row_ptr[c_o], W.row_ptr[c_o

W.valuel[j]
W.col_idx[j]
(0, out_H)

for x in (0, out_W)
out[c_o] [y] [x]
+x+offset]

coeff =
offset =
for y in

+= coeff*in[y*out_W

}

2) DNN Compilers Supporting Sparsity: Their examples
include Tiramisu [205], Acorns [81], and Taichi [228].

Tiramisu supports W-sparsity by extending the poly-
hedral model in a way similar to [220]. For example,
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a nonaffine conditional is transformed into a predicate
that is attached to computation. The list of accesses of
the computation is the union of the accesses of the com-
putation in the two branches of the conditional, which
is an overapproximation. During code generation, a pre-
processing step inserts the conditional back into generated
code. Nonstatic loop bounds and tensor accesses are repre-
sented as parameters in the polyhedral model. Statements
that define those parameters are inserted just before the
original statements that have nonstatic code. These tech-
niques introduce approximations in the compiler. Their
efficiency was demonstrated by [220] and confirmed by
PENCIL [222] and Tiramisu [205].

Acorns [81] optimizes the CNNs with IA-sparsity. It fuses
operators in a computation graph of a deep CNN, fol-
lowed by sparse layout conversion (which ensures that
dense/sparse tensors produced by each operator are com-
patible with the next operation), followed by code opti-
mization and code generation. Acorns introduces a data
layout for exploiting the sparsity structure of input data in
certain domains (face detection, LiDAR, and so on) where
only certain data regions are NZs. For code optimization
and generation, the compiler processes a set of template
codes for CNN operators (e.g., convolution and pooling)
and applies optimizations, such as loop tiling, vectoriza-
tion, and weight packing. It does not implement advanced
loop-nest optimizations, such as iteration space skewing.

TACO [229] uses a specific representation (iteration
graphs) to generate code for sparse tensor operations and
uses a scheduling language to guide the code optimization.

C. Compiler Optimizations

To generate efficient code for NN operators, a compiler
has to apply a large set of complex code optimizations.
It includes operator fusion; multilevel tiling, and regis-
ter blocking that improve data reuse; loop reordering,
array packing [230], and data prefetching; loop skewing
that enables the extraction of wavefront parallelism from
multilayer RNNs; parallelization; loop unrolling; vectoriza-
tion; full/partial tile separation; and tuning optimization
parameters to the target architecture (e.g., tile sizes or
loop unrolling factors). There are two major families of
optimizing compilers: compilers that allow semiautomatic
code optimization and fully automatic compilers.

1) Compilers With Semiautomatic Code Optimization
(Scheduling Languages): The main idea in these com-
pilers is to separate the algorithm from optimizations.
A program, in this case, has two parts. The first part
specifies the algorithm without specifying how it is opti-
mized. The second part specifies how the algorithm is
optimized (transformed). This is done through a set of
high-level scheduling commands for common optimiza-
tions. Halide [207], Tiramisu [205], and TVM [206] are
examples of compilers that allow semiautomatic optimiza-
tion. The main advantage of this approach is it allows
a user to have full control over how code should be

optimized. This is important because fully automatic opti-
mization techniques do not always succeed in providing
the best performance.

Semiautomatic deep learning compilers usually provide
a library of highly optimized deep learning operators.
The compiler then only needs to decide automatically
whether to apply certain optimizations, such as operator
fusion. All other optimizations are encoded manually in
the library using scheduling commands. This minimizes
the number of decisions that the compiler needs to make
and, thus, guarantees the best possible performance. Note
that semiautomatic compilers usually also have automatic
optimization modules, but such modules can be disabled if
necessary.

2) Fully Automatic Compilers: Tensor Comprehen-
sions [212] and Diesel [213] are examples of fully auto-
matic compilers for deep learning. Other examples of
fully automatic compilers include PENCIL [211], [222],
Pluto [215], and Polly [216]. All of them use Pluto [215]
algorithm to automatically optimize code (choosing the
schedule of statements). The main idea of the Pluto algo-
rithm is to use integer linear programming to model the
problem of automatic code optimization where constraints
are dependencies of the program, and the objective func-
tion is the minimization of the distance between pro-
ducer and consumer statements. Other compilers, such as
PolyMage [217], use a custom algorithm for automatic
optimization.

All these compilers do not have a scheduling language
and, therefore, do not allow the user to have fine-grain
control over optimizations. Although fully automatic com-
pilers provide productivity, they may not always obtain the
best performance. Performance can be suboptimal because
they do not have a precise cost model to decide which
optimizations are profitable. For instance, the Pluto [215]
algorithm does not consider the redundant computations,
data layout, or the complexity of the control flow of
generated code.

Cost models for automatic code optimization: The goal
of an automatic code optimization pass in a compiler is
to find the best combination of code optimizations that
minimize the execution time. This can be modeled as
a search problem where the search space is a set of
combinations of code optimizations. Then, the compiler
needs a search technique and a cost model to evaluate
each combination. Classical compilers use hand-tuned cost
models [231], while others use ML to build cost mod-
els [232]. Both of these models do not precisely capture
hardware complexity (different memory hierarchies, out-
of-order execution, hardware prefetching, communication
latency, and so on). Instead, state-of-the-art models are
built using deep learning for better accuracy [233], [234].
For example, Ithemal [234] is a cost model that predicts
the throughput of a basic block of x86 instructions and
gets less than half the error of state-of-the-art hand-tuned
models (llvm-mca in LLVM [235] and Intel’s IACA).
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D. Accelerator ISAs and Code Generation

Accelerators, such as Cambricon-X [41],
Scaledeep [236], Thinker [128], and DnnWeaver [184],
expose a high-level ISA where some instructions perform
tensor operations (e.g., dot product, matrix—-matrix
multiplication, convolution, pooling, and sigmoid). They
simplify the compiler’s mission because it can invoke
high-level operations instead of generating and optimizing
a low-level code. However, it still has to manage data
copies automatically. This section describes such high-level
ISAs used by accelerators and machine code generation.

1) Instruction Sets: For tensor computations on hard-
ware accelerators, ISAs typically feature instructions for
arithmetic, logical, and data transfer operations with
matrix, vector, and scalar data. Layers of ML models fea-
ture loops iterating thousands of times; dynamic instances
of repetitive instructions can significantly increase the
bandwidth requirements for delivering them to PEs at each
cycle and the energy consumption. To mitigate such over-
heads, accelerators are designed with an array of vector or
SIMD PEs. It allows PEs to process a single instruction for
performing multiple computations on the blocks of tensors.
Alternatively, PEs contain additional control logic such that
they process an instruction once but repeatedly perform
the sequence of execution for a certain interval.

Cambricon ISA for ML [237] contains instructions for
matrix and vector processing with arithmetic and logic
operations, control (conditional branch and jump), and
data transfer. Each operand of the instruction is either an
immediate value or one of the 64 32-b general-purpose
registers. The registers are used for temporarily stor-
ing scalars or register-indirect addressing of the on-chip
scratchpad memory. The tensor blocks are communicated
between computational units from the on-chip scratchpad
that is transparent to the compiler and programmers. The
instructions support commonly used primitives in vari-
ous ML models, e.g., multiplication, addition, subtraction,
and division operations on matrices and vectors. It also
supports max-pooling with a vector-greater-than-merge
instruction and provides dedicated instruction for ran-
dom vector generation with uniform distribution of values
within [0, 1]. For supporting weight update during the
training of DNNs, Cambricon provides additional instruc-
tions such as outer product, scalar-matrix multiplication,
and matrix-matrix addition. However, it lacks support for
managing data in the local memory of PEs and configuring
NoC for communication in various dataflows. Moreover,
it does not provide specific instructions for handling spar-
sity, e.g., predicated execution of encoded sparse data.

The instruction set for Sticker [164] consists of instruc-
tions for high-level operations. For processing each layer,
one of the instructions is executed only once. It config-
ures instruction registers and common control signals that
correspond to the sparsity levels and tensor dimensions.
Then, at a certain time interval, a dynamic 32-b instruction
executes for computing convolution over data blocks on
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PE-array. Meanwhile, the accelerator controller distributes
the next instruction if there is no collision between the cur-
rent and the next instruction. It allows hiding the execution
of other dynamic instructions including the write-back and
encoding of outputs and transferring data between on-chip
and off-chip memories.

2) FSMs: Some accelerators use FSMs for PE executions.
The parameters of FSMs or PE’s control logic correspond
to tensor shapes and target functionality, and they are con-
figured once (e.g., through bit-streams [20]) before exe-
cuting a model or a layer. Accelerator controllers (which
usually initiate the data movement between on-chip and
off-chip memories and configure PEs and NoC) can also
contain FSMs. For example, in Thinker architecture [128],
a finite-state controller is used for configuring the acceler-
ator at three levels, i.e., the PE-array level, the model layer
level, and the PE level. Configuration word for PE-array
level handles partitioning of the PE-array, and it points to
the memory address of configurations for model layers.
Each configuration word for a layer contains information
about tensor dimensions and their memory addresses.
Finally, layer configurations for PEs correspond to PE func-
tionality and the interval (loop iterations) of computations
and idle time.

3) Library Support and Code Generation: The instruc-
tions for cycle-level executions or primitives are usually
obtained offline. Accelerator system designers often pro-
vide users a template library that defines high-level primi-
tives, such as model layers, or low-level primitives, such as
vector/matrix operations. Using these primitives, users can
construct the model of their interest. Then, the low-level
code is obtained automatically by the compiler or using
the predefined optimized code [236], [238]. For example,
Zhang et al. [41] programed Cambricon-X accelerator with
a set of library functions (written in C/C++) for primi-
tives, such as convolution and matrix/vector multiplication
and addition. Chen et al. [237] proposed a programming
framework consisting of assembly language, an assem-
bler, and runtime support for executing ML models with
their Cambricon ISA. For executing common layers, it also
replaced the primitives with predefined code blocks.

TVM [206] supports defining custom back ends for
accelerators, which was demonstrated using a vanilla
accelerator with a matrix-multiply engine. For executing
primitives on accelerators, TVM enables Tensoriza-
tion [206], i.e., decoupling the target hardware intrin-
sic from the schedule while mapping ML operators.
To demonstrate code generation for the vanilla acceler-
ator, TVM enabled a driver library and runtime support
that constructs the instructions and offloads them to the
accelerator. Its code generation module translated the pro-
gram into appropriate function calls of the runtime API.
Moreau et al. [239] leveraged the TVM stack and proposed
a JIT compiler and a runtime system to generate code for
a programmable VTA accelerator.
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It is important that the accelerator can support multiple
front ends corresponding to different ML frameworks, such
as TensorFlow [49], PyTorch [48], and MXNet [240].
Integration of the programming, compilation, and runtime
environment with the common frameworks for ML appli-
cation development is necessary for supporting different
compact ML models. Leveraging the existing system stack
(e.g., TVM) can provide such opportunities to accelera-
tor system developers. Note that, although TVM supports
defining custom accelerator back ends and can lower opti-
mized mappings to accelerator-specific code, it currently
does not provide support for sparse tensors.

XIII. TRENDS AND FUTURE
DIRECTIONS
A. Hardware/Software/Model Codesigns

1) Hardware-Aware Compression Techniques: The frame-
work for exploring efficient model compression (either
of quantization, pruning, and size reduction) should be
aware of hardware features and provide directed search
accordingly. For example, bit-widths of tensors that can
be efficiently processed by different hardware platforms
vary considerably (e.g., from multiples of 8-bits to arbitrary
bit-widths). Accelerators typically support only uniform
widths of tensors (activations and weights), and many
accelerators do not support value sharing. Also, when
hardware only supports widths that are multiple of 4 or
8 bits, quantization with other bit-widths requires zero
paddings, which incurs inefficient storage and processing.
Instead, the compression algorithm can opt for improv-
ing the accuracy, increasing sparsity, or trading off the
bit-widths among layers for achieving higher compression
and acceleration. Similarly, depending on the hardware
support for fine-grained or block-sparsity, hardware-aware
pruning can better achieve the compression objectives
(model exploration time, performance, and energy effi-
ciency while meeting target accuracy). Efficiency can be
further improved when compression techniques leverage
execution models of hardware accelerators (e.g., energy-
aware pruning [40]). Relatively simple logic modules of
hardware accelerators have enabled recent techniques to
estimate execution metrics through analytical cost mod-
els. Accommodating such cost models (including for dif-
ferent sparsity levels/patterns and precisions) enables
the compression algorithms to select effective pruning
ratios/structures, tensor shapes, and tensor precisions,
which can help to achieve desired accelerations.

2) Joint and Automated Exploration of Sparsity, Preci-
sion, and Value Similarity: Recent compression techniques
typically employ structured or fine-grained data pruning
during training with a fixed precision of tensors. Tech-
niques for adaptive quantization often do not explore
pruning. Joint explorations of pruning and quantization
may achieve high compression due to the interplay of these
compression mechanisms. For instance, quantization can
increase sparsity considerably [121], as more values can be

represented as zero after compressing the range [31]. Like-
wise, pruning may reduce bit-widths further since fewer
NZ values in the pruned model may be expressed with a
much lower numeric range and precision. Moreover, such
compression techniques do not leverage temporal and spa-
tial value similarity in inputs, outputs, or weights. So, joint
exploration algorithms may be developed that use multiple
compression strategies during training and automatically
explore combinations that compress the model further.
Recent techniques for automated explorations include
CLIP-Q [58], [241], [242]. Exploring a wide range of
compression combinations during the training may not be
feasible. Therefore, model designers may reduce the space
of compression choices by limiting effective options before
beginning resource-extensive training and, if required, fur-
ther limiting the search space by quick evaluations with a
pretrained model and fine-tuning.

Compression benefits achieved through joint explo-
rations need to be translated into efficient hardware accel-
erations. So, the exploration heuristic should not preclude
experts from expressing a directed search for hardware-
friendly executions, e.g., specifying pruning with 1-D or
k:n block-sparsity, constraints for bit-widths, and tolerable
accuracy loss. Moreover, the heuristic should also provide
automated optimization/exploration of hyperparameters
(including using cost models of accelerators). This is
because the compression algorithm needs to adjust the
strategy of pruning or quantization and its hyperparame-
ters. For instance, the pruning algorithm needs to find
out the pruning ratio for each iteration (epoch); pruning
mechanism (which values to prune, e.g., below a certain
threshold); pruning pattern (fine-grain, block size); and
bit-widths of tensors (quantization). All such hyperpara-
meters or strategies need to be adjusted automatically (to
an extent) such that the memory footprint or computations
are greatly reduced, with no or tolerable accuracy loss.

3) Value-Aware Neural Architecture Search (NAS) and
Accelerator/Model Codesigns: Techniques for NAS or
AutoML can automatically obtain efficient models that sur-
pass the accuracy of models devised by human developers.
However, there remains scope for considerably improv-
ing NAS for obtaining highly compact models. Recent
techniques [243]-[246] have explored accelerator/model
codesigns that support quantized models and layers of
different shapes. However, the efficiency can be further
amplified by including the sparsity and adaptive bit-widths
of model layers and analytically considering their implica-
tions on hardware accelerators.

A major challenge faced by the model search techniques
and automated accelerator/model codesigns is the vast
search space. As shown in Fig. 31, explorations can be
performed for: 1) ML models (i.e., NAS) [31]; 2) com-
pression strategies (e.g., automated pruning and quantiza-
tion) [247]; 3) mappings of models on accelerators [179],
[186]; and 4) specifications of hardware accelerators [57],
[179]. The explorations of 1) and 2) directly impact
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compression and accuracy, while search optimizations for
3) and 4) affect the performance and energy efficiency of
the accelerator for given models. Among these exploration
spaces, NAS can be significantly time-consuming (several
GPU days [31]), followed by automated model compres-
sion (e.g., [247]). Therefore, the resultant joint space
for value-aware NAS and accelerator/model codesigns is
many-folded. So, it may require notable efforts for devel-
oping automated exploration of codesigns that can obtain
extremely efficient and accelerator-friendly compact
models.

4) Facilitating Structured Computations of Sparse Tensors:
Designers may opt for accelerators that are effective for
structured computations of dense tensors, e.g., systolic
arrays (as near-data accelerators or coupled to processor
cores) and in-memory processing with resistive crossbars.
While sparsity or size reduction of tensors may need to
be leveraged, significant design modifications are often
infeasible due to design requirements (area/power bud-
gets) or the increase in complexity of the system stack.
So, techniques for preprocessing can be developed, which
can arrange structured dense regions for feeding underly-
ing engines or achieve structured data through sparsifica-
tion/reorganization at almost no accuracy loss. Such pre-
processing can be done on additional hardware modules
or the host processor that handles the nonperformance-
critical tasks. Such disjoint mechanisms can obviate heavy
design modifications in systolic arrays (e.g., [127]) or in-
memory/near-data processing engines (e.g., ReCom [248]
and SNNrram [249]) while leveraging various sparsities
and value similarity opportunities across different models.

B. Design Tools and Frameworks

1) Framework for Analyzing Performance Gains of Accel-
erators Due to Sparsity: Given that tensors of several ML
models are sparse, it is important to design accelerator
systems that can exploit performance gains for multiple
models through low-cost hardware modules and enhanced
software support. As we discussed in Sections V-XII, each
enhancement presents multiple implementation choices
at the hardware or software level. Although crafting a
cycle-level simulation infrastructure for such a wide design
space may be infeasible, a data-driven quantitative model
can be significantly helpful for design explorations. It can
process the actual data (or discover distributions of zeros),
provide high-level modeling of common choices, and esti-
mate the performance gains for each combination of the
implementation choices. For newer models or functionality,
hardware designers can run through a set of implementa-
tion choices in an early design phase. They can explore the
implications of sparsity for the desired choice of encoding,
data extraction logic, functional units, NoC, load balanc-
ing, and dataflow mechanism.

2) Accelerator Design Frameworks for Compact Mod-
els: Several frameworks for developing and simulating
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Fig. 31.
models.

Codesigns can enable efficient accelerations of compact

FPGA- or ASIC-based accelerators have recently been pro-
posed, including DNNWeaver [184], DNNBuilder [250],
T2S-Tensor [251], and HeteroCL [252] for FPGAs and
NVDLA [120], VTA [239], MAGNet [253], MAERI [177],
and AutoDNNChip [176] for specialized accelerators. Sim-
ilarly, hardware construction languages or representations,
such as Chisel [254] and pIR [255], enable expressing
microarchitectural features through high-level primitives.
Such infrastructures are key for the community since they
can serve as a good learning resource for training the
new professionals and provide a kick-starter baseline for
developing new design features.

However, most frameworks support designs for dense
tensors of fixed bit-widths and lack support for sparsity-
tailoring features. Such frameworks can provide some
prebuilt modules for encoding/extracting sparse data (e.g.,
with common formats, such as RLC, bitmap, or for block-
sparsity), dynamic load balancing or data reorganization,
configurable functional units, configurable interconnects
for sparse and bit-adaptive computing, and so on. Even
with limited features, they may serve as reusable logic
that can be leveraged by designers for quick prototyping
and design explorations. Furthermore, abstractions and
specifications for constructing sparsity-tailored hardware
and dataflows can enable automated and efficient design
explorations and easier programming of accelerators.

C. Accelerating Training of ML Models

While there have been significant advances in per-
forming inference on hardware accelerators, efficient
training of the models on hardware accelerators has
received relatively little attention. Training has been done
in high-performance computing environments containing
CPU and GPU platforms and recently on FPGAs and
TPU accelerators. Hardware accelerators can offer sig-
nificant benefits to the model training in both edge
and datacenter-scale computing environments, and they
can notably improve performance and energy effi-
ciency, respectively. In particular, they are promising for
enabling online learning on edge devices through compact
models.

Accelerators, such as [21], ScaleDeep [236], and
HyPar [187], have been proposed for efficiently training
the models. However, they either do not leverage sparsity
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or may not be efficiently utilized for irregular shaped
tensors or lack support for various precisions of weights,
activations, gradients, and weight updates. This presents
further opportunities for performance gains and energy
efficiency. In addition, designers can leverage cross-layer
optimizations (e.g., by reusing the data of gradients during
backpropagation) and support mixed-precision of tensors
during the training of compact models.

D. Applying Techniques for Sparsity to Other
Domains

In this work, we considered a wide variety of techniques
that leverage sparsity for the ML domain, which represents
an enormous research effort. Many other domains face
similar challenges in exploiting sparsity, and accelerators
have been proposed for some of the more processing-
intensive domains; this includes graph processing [256],
[257], database operations [258], genomics [259], [260],
and compression [261]. In some cases, computation prim-
itives even extend across domains. For example, finding
intersecting NZs is analogous to joins in a database con-
text [110]. Applying the lessons learned from extensive
research on sparsity in an ML context can likely speed
innovation in a broader context.

XIV. RELATED WORK
A. Deep Learning Models and Their Applications

Surveys [45], [46] described different deep learning
models along with different frameworks and datasets.
Gu et al. [262] discussed applications of CNNs in CV
and language processing. Recent surveys have also dis-
cussed applications of deep learning in medical image
analysis [13], biomedical applications [263], wireless
and networking [16], and embedded systems [15].
Elsken et al. [264] surveyed techniques for NAS.

B. Compact Models

Cheng et al. [265] surveyed techniques for parameter
pruning and low-rank factorization. Wang et al. [266] sur-
veyed techniques for pruning, precision lowering, weight
sharing, low-rank factorization, and knowledge distilla-
tion. Deng et al. [31] described techniques to obtain com-
pact models, including sparsification, quantization, tensor
decomposition, and joint-way compression.

C. Hardware Accelerators for Dense ML Models

Shawahna et al. [267] surveyed FPGA accelerators for
processing dense tensor computations of deep learning
applications. Venieris et al. [268] discussed different CNN-
to-FPGA toolchains and described their hardware architec-
tures, design space exploration techniques, and support
for different precisions of tensors. They also compared
execution metrics of the designs obtained with various
toolchains and those with the previously proposed FPGA
accelerators for CNNs. Sze et al. [44] presented a survey

about efficiently executing DNNs on hardware accelera-
tors. It described different DNNs, different compression
techniques for compact models, and optimized dataflows
for spatial architectures. Reuther et al. [269] benchmarked
executions of different ML accelerators. Li et al. [270]
discussed different ML frameworks and compilers for deep
learning models.

D. Hardware Accelerators for Compact ML Models

Mittal [271] surveyed executing compact models,
including BNNs, on FPGAs. It also discussed processing
convolutions with the Winograd algorithm and execu-
tions on multiple FPGAs. Deng et al. [31] surveyed hard-
ware accelerators that support bit-adaptive computing and
the data extraction modules for leveraging the sparsity
of inputs, weights, or outputs. Du et al. [272] recently
proposed MinMaxNN system for dynamically switching
NN models. They surveyed techniques for designing
self-aware NN systems (which can continuously sense
information from the environment and dynamically react),
including leveraging sparsity and tensor quantization.
Wang et al. [266] surveyed hardware implementations for
processing tensors of lower precisions (binary, ternary, and
logarithmic quantizations). Ignatov et al. [273] bench-
marked executions of quantized deep learning models on
mobile Al accelerators.

In contrast to the above surveys, this work highlights
sources of sparsity and size reduction of tensors in ML
models and challenges in efficiently executing them on
hardware accelerators. Then, it surveys and discusses the
corresponding hardware and software support, including
encodings and extraction of sparse data, sparsity-aware
dataflows, memory management, and on-chip communi-
cation of sparse tensors while leveraging data reuse, load
balancing of computations, and compiler support. It also
discusses techniques for computations of mixed-precision
and value-shared sparse tensors.

XV. SUMMARY
For efficient and hardware-friendly processing, compact
deep learning models have been designed. They con-
sume less storage and computations and consist of
tensors with considerable sparsity, asymmetric shapes,
and variable precisions. While these compact mod-
els can be accelerated on hardware accelerators effi-
ciently, it requires special hardware and software support.
We have highlighted challenges in efficiently accelerating
their sparse and irregular tensor computations. Leverag-
ing sparsity, especially unstructured, requires a signifi-
cant redesign to store, extract, communicate, compute,
and load-balance only NZs. Moreover, the sparsity lev-
els and patterns due to various sources lead to unique
challenges and solutions in hardware/software/model
codesigns.

In this article, we have discussed how exploiting spar-
sity effectively depends on tailoring the data encoding
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and extraction, dataflow, memory bank structure, inter-
connect design, and write-back mechanisms. We provided
an overview of corresponding enhancements in accelera-
tor designs and their effectiveness in exploiting sparsity.
Categorization of different techniques informs how they
leveraged structured or unstructured sparsity of weight
or activations during learning or inference of ML models
(see Tables 1 and 2). For recent DNNs, we analyzed
achievable accelerations for a few popular accelerators
(see Section IV-B). The analysis showed that accelerators
exploit moderate sparsity and achieve high speedups as
sparsity increases. However, exploiting high sparsity or
hypersparsity can further provide considerable opportuni-
ties, which would also need efficient mechanisms for data
extraction and load balancing. Also, configurable architec-
tures for NoCs, functional units, and buffers are required
for catering to various functionalities and metadata man-
agement.

Our analysis of sparsity-encodings describes their stor-
age efficiency for various sparsities and the decoding
requirements. While bitmaps and RLC/CSC formats are
commonly used for moderate and high sparsity, respec-
tively, storage efficiency can be improved with block-sparse
tensors (especially at hypersparsity). We have introduced
a taxonomy for NZ extraction techniques that are used
for feeding the functional units of PEs. Existing data
extraction mechanisms (e.g., in EIE [42], EyerissV2 [43],
and Cambricon-X/S [37], [41]) exploit moderate spar-
sity. However, they may not extract enough NZs at high
sparsity or hypersparsity of large tensors (e.g., sparse
BERT [71]), achieving lower speedups. We also discuss
how block-sparsity can simplify data extraction and facili-
tate balanced computations. For exploiting diverse sparsity
across tensors of different models, designers can explore
multiple or configurable mechanisms for decoding and
extraction of NZs.

Data reuse opportunities in processing common DNNs
vary significantly and sparsity lower the reuse due to
fewer effectual computations. However, compressed ten-
sors allow fitting and reusing more data in on-chip
memory, which reduces access to off-chip memory and
overall latency. We have discussed techniques for mem-
ory bank management to support unstructured accesses
for sparse computations and hiding the memory access
latency. At high sparsity or hypersparsity, execution may
become bandwidth-bounded, as enough data may not be
prefetched always. Hence, techniques for efficient data
management (e.g., cross-layer and on-chip data reuse) and
exploiting high bandwidths need to be explored. Different
accelerator designs have used various interconnects for
the distribution of operands, reduction of partial outputs,
and collecting the outputs. They vary in terms of the
bandwidth requirement and exploiting spatial data reuse.
Configurable interconnects (e.g., in EyerissV2 [43] and
SIGMA [105]) are required for accelerating different DNNs
of diverse sparsity, functionality, and tensor shapes since
they can support a mix of communication patterns. They

1746 PROCEEDINGS OF THE IEEE | Vol. 109, No. 10, October 2021

are important for enabling asymmetric spatial accumula-
tions of partial outputs (for sparse tensor computations)
and concurrent spatial processing of different groups, e.g.,
for DW-CONV.

Processing compressed tensors can impose signifi-
cant maneuvering efforts in the PE architecture design.
We discuss further opportunities including configurable
designs of functional units for efficient vector process-
ing and flexible sparsity-aware dataflows for high uti-
lization across variations in sparsity and functionality of
different layers. We also surveyed techniques for approx-
imated computing through multiplier-free PEs and lever-
aging temporal and spatial similarity of values, which
improves execution efficiency further. Sparse tensor com-
putations over different PEs can be highly imbalanced.
We have surveyed different techniques that sustain the
acceleration by balancing the work through hardware
modules for asynchronous computations or work sharing
(e.g., EIE [42] and ZENA [130]). Software-directed reg-
ularization, such as structured sparsity, eliminates load
imbalance, e.g., in leveraging weight/activation sparsity
for Cambricon-S [37] and 50% weight sparsity for NVIDIA
A100 [61]. Techniques including data transformations and
refactoring of DNN operators may achieve low-cost load
balance, including for dynamic sparsity. We have also
surveyed mechanisms for asynchronous write-backs of out-
puts and sparsity-aware encodings on the fly. Compila-
tion for the accelerators requires the ability to efficiently
express sparsity in IRs, flexibly apply different compiler
optimizations, and emit efficient accelerator-specific code.
The survey has discussed techniques that can enable such
support and open challenges.

Accelerator/model codesigns can efficiently leverage
various precision and value similarities of different tensors
and induce sparsity for accelerator-friendly executions.
Automated and joint explorations of accelerator-aware
compression algorithms can advance acceleration
opportunities further. We have highlighted future
directions for such codesigns and the system stack
development (see Section XIII). In individual sections,
we have also discussed further opportunities for tailoring
different hardware or software enhancements for sparsity.
While our discussions focused on leveraging sparsity
for ML models, exploiting diverse sparsity can also
aid the efficient processing of applications of other
domains [92], [93].

In conclusion, while different accelerators and compres-
sion algorithms have been proposed for efficiently process-
ing compact ML models, it remains an active research
frontier. In particular, hardware/software/model codesigns
and automated and joint explorations of tensor sparsity,
adaptive quantization, shape reductions, and dataflow will
likely provide further opportunities for innovations across
the system. With a boost in energy-efficient accelerations
of the learning and inference at the cloud and edge, they
can be anticipated to further improve the intelligence of
various systems or applications.
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APPENDIX

HARDWARE ACCELERATORS CAN
EXPLOIT SPARSITY BETTER

Exploiting acceleration opportunities due to sparsity
(especially unstructured) is relatively hard for execution
on CPUs and GPUs [37], [41], [105]. The performance
of ML models can even degrade compared to the execu-
tion with dense data (e.g., for a GEMM, when unstruc-
tured W-sparsity is below 70% [274]). For executing
AlexNet layers on GPUs, Wen et al. [28] analyzed speedup
for processing CSR-encoded matrices with cuSPARSE and
dense matrices with cuBLAS. Their experiments showed
obtaining limited speedups (below 1.4x) or even slow-
downs for high sparsity. This is because unstructured spar-
sity may yield poor data locality for scattered effectual
NZs. Plus, it is challenging to skip ineffectual computations
and equally distribute the work among multiple threads or
computational units of processor cores. Zhang et al. [41]
analyzed performance benefits of executing sparse mod-
els (LeNet, AlexNet, and VGG-16) on CPU (with sparse
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