AQUOMAN: An Analytic-Query Offloading
Machine

Shuotao Xu, Thomas Bourgeat, Tianhao Huang, Hojun Kim*, Sungjin Lee*, Arvind
MIT CSAIL, DGIST*
{shuotao, bthom, tianhaoh, arvind}@csail.mit.edu, {ghwns9652, sungjin.lee} @dgist.ac.kr*

Abstract—Analytic workloads on terabyte data-sets are often
run in the cloud, where application and storage servers are
separate and connected via network. In order to saturate the
storage bandwidth and to hide the long storage latency, such
a solution requires an expensive server cluster with sufficient
aggregate DRAM capacity and hardware threads. An alternative
solution is to push the query computation into storage servers.

In this paper we present an in-storage Analytics QUery
Offloading MAchiNe (AQUOMAN) to “offload” most SQL oper-
ators, including multi-way joins, to SSDs. AQUOMAN executes
Table Tasks, which apply a static dataflow graph of SQL operators
to relational tables to produce an output table. Table Tasks use a
streaming computation model, which allows AQUOMAN to process
queries with a reasonable amount of DRAM for intermediate
results. AQUOMAN is a general analytic query processor, which
can be integrated in the database software stack transparently.
We have built a prototype of AQUOMAN in FPGAs, and using
TPC-H benchmarks on 1TB data sets, shown that a single
instance of 1TB AQUOMAN disk, on average, can free up 70%
CPU cycles and reduce DRAM usage by 60%. One way to
visualize this saving is to think that if we run queries sequentially
and ignore inter-query page cache reuse, MonetDB running on a
4-core, 16GB-DRAM machine with AQUOMAN augmented SSDs
performs, on average, as well as a MonetDB running on a 32-core,
128GB-DRAM machine with standard SSDs.

Index Terms—Accelerator; SQL analytics; Near-data comput-
ing; FPGA; Flash storage; Database

I. INTRODUCTION

Multi-terabyte/petabyte datasets are now commonplace for
analytic workloads. In 2017, Uber generated 100TB of trip-
tables daily, and analysed 100PB of data for business intel-
ligence [5]]. In many cases, the data is stored in relational
format on hard drives and analyzed by SQL database software
such as Presto [2f], Vertical [1]], and MonetDB [4]. To process
an analytic query, the database software brings the input
data on demand from hard drives to DRAM, and then uses
powerful CPUs to compute with this data. In a data warehousing
architecture in the cloud, application servers and storage servers
are separate and connected via a network [6]. Application
servers initiate analytical queries, fetch data from the central
storage and then process it. Such a “disaggregated” architecture
is popular in the cloud because customers can scale the
application servers and storage servers independently. For
fast query responses, analytical software typically requires
application servers to have sufficient hardware threads (i.e.,
virtual cores) and DRAM to hold the input data to overcome
the long latency, large access granularity and limited bandwidth
of central storage accesses. In April 2020 the largest storage-

optimized Amazon EC2 server (i3.metal) can accommodate
8 1.9TB SSDs, and is equipped with 72 virtual cores and
512GB DRAM. Such large processing power and DRAM are
needed to be able to fully exploit the high-bandwidth of SSDs.
Storage throughput, because of advances in flash technology,
has improved by 13X in the past decade [42], and has greatly
outpaced CPUs ability to process data in memory [20,[37]].
As denser and faster storage devices become available in the
future, it will become increasingly difficult for storage servers
to provide sufficient CPUs and DRAM to have a cost-effective
balanced system.

An alternative solution is to push part of query process-
ing to the storage to eliminate unnecessary data movement.
Such a solution has been deployed in several commercial
systems, for example, Oracle Exadata Server [22], IBM
Netezza Machine [46|], and IDM [48]]. One of the most recent
systems is Amazon Web Services (AWS)’s “S3 Select” feature,
which pushes filter operation to the shared cloud storage
service, and can get up to 4X performance benefits for these
operations [3]. In this paper we propose an in-storage Analytic
QUery Offloading MAchiNe (AQUOMAN), which pushes this
idea of “off-loading” query processing to storage much more
aggressively.

AQUOMAN’s programming model is based on a sequence
of Table Tasks, each of which applies a static dataflow graph
of SQL operators on an input table in a streaming manner
to produce an output table. It takes inputs from flash, in a
file format used by column-oriented database like MonetDB,
because it is better suited for analytic workloads. Given the SQL
query execution plan - a tree of SQL operators - we identify
the subtrees that can be directly translated into Table Tasks. By
employing a streaming model, AQUOMAN significantly reduces
the DRAM requirement for intermediate tables.

We want to keep the memory in AQUOMAN to be small
enough, say 16GB per 1TB-SSD, so that AQUOMAN can
be embedded in an SSD. This prevents us from fully off-
loading some queries, for example, a multi-way join, whose
intermediate tables exceed the DRAM capacity of AQUOMAN.
Despite these limitations (Sec. [VI-E), AQUOMAN can profitably
execute the majority of queries in the TPC-H benchmark suite
on a 1TB dataset, giving us an opportunity to reduce both
number of hardware threads and DRAM usage in the host. We
will show, using TPC-H benchmarks on 1TB data sets, that a
single instance of ITB AQUOMAN disk, on average, can free
up 70% CPU cycles and reduce DRAM usage by 60%. Thus,

| Accel. Type [Related Work [Impl. [Supported SQL operator [Evaluated TPC-H Queries [Data Sz.(GB) ‘
In-memory Q100 [52[/53],MasterOfNone [35] ASIC All All 22 queries w/o regular expression 0.01
SmartSSD 18] ARMs Filter, Aggregate Group-By Q6, 2 custom queries 100
Summarizer |33 ’ Filter Q1,6,14, a custom query 0.1
Biscuit [23], YourSQL [28| ARMSs/ASIC Filter All (8 is partially offloaded) 100
In-storage Tbex [51] Filter, Aggregate Group-By Q13, 6 custom queries 10
Insider [42] FPGA Filter A Custom Query 60
FCAccel [50] Filter, Aggregate Group-By, Arithmetic Q1,6, and a custom query 100
AQUOMAN FPGA All All (14 are fully offloaded) 1000

TABLE I: Representative near-data SQL accelerators

replacing standard SSDs with AQUOMAN SSDs in database

systems is a sound economic proposition.

One way to visualize this saving is to think that if we run
queries sequentially and ignore inter-query page cache reuse,
MonetDB running on a 4-core, 16GB-DRAM machine with
AQUOMAN augmented SSDs performs, on average, as well as
a MonetDB running on a 32-core, 128GB-DRAM machine
with standard SSDs.

We make the following contributions in this paper:

1. AQUOMAN, a novel microarchitecture for an in-storage
accelerator capable of stream processing a Table Task which
is a static dataflow graph of operators;

2. A complete in-storage solution which can be fully integrated
into a database management software (DBMS);

3. An FPGA-based implementation of AQUOMAN, which can
process data stream at the line-rate of our flash controller;

4. An end-to-end evaluation of AQUOMAN using TPC-H
benchmarks on 1TB data-set against the baseline of an
x86 server with 16 dual-threaded cores and 128GB DRAM.
Paper Organization: We begin with related work in Section

followed by examples of translating SQL queries into

dataflow maps (Section[[T). We then give an overview of AQUO-

MAN (Section and its programming model (Section [V).

It is followed by the detailed microarchitecture (Section

and implementation of AQUOMAN (Section . We evaluate

the performance of AQUOMAN in Section followed by a

brief conclusion (Section [IX]).

II. RELATED WORK

There is a long history of attempts to use specialized
hardware to accelerate database query processing [9,|16L/17] but
it has never caught on. One reason is that the dramatic increase
in processing power and DRAM capacity of commodity
hardware over the last four decades has reduced the incentive
to use special hardware. However, with the rise of specialized
hardware in datacenters [11,[29,41,44] and the increase of
storage throughput in the last decade [42]], there is a resurgence
of interest in accelerating analytical workload using FPGAs
or ASICs.

Table |I] gives a summary of the recent work to accelerate
database operations near storage. The first family of In-Storage
Processing (ISP) architectures leverages the existing ARM cores
of the SSD controller to offload simple tasks like filtering [18]
33|]. However, the embedded cores in the SSD controller can be
100X slower than x86 cores [47]], and offloaded programs can
suffer 10X slowdowns [13]]. Biscuit [23]] and YourSQL [28]] use
embedded processors in conjunction with a pattern-matching
ASIC to offload filtering. They showed offloading filtering is
profitable only when the selectivity is sufficiently high.

Another class of ISP (e.g. Insider [42]]) uses FPGAs to
add processing power to SSDs for a variety of applications
to saturate large internal disk bandwidths. One example
application of Insider is offloading database filtering, and it
provides performance benefits similar to the one provided by
a high-end ARM-based solution. Ibex [51] and FCAccel [50]]
use FPGAs to offload more SQL operators, such as Aggregate
Group-By, but do not provide a plan to offload a join, which
is one of the most dominant operators in analytic queries such
as TPC-H.

Unlike existing ISP approaches, AQUOMAN offloads all major
types of SQL operators in storage, including the computation-
intensive join. AQUOMAN, given an SQL query plan, regroups
SQL operators as Table Tasks, which is the programming
model for AQUOMAN’s streaming architecture. This enables
a transparent integration of ISP with the existing DBMS
software. It is also important to note that previous database
accelerator research has used much smaller data sets (10MB to
100GB [[14][181[23][28][33L[50L/52]]) for evaluation (Table [[) and
has not addressed the issue of computing with large dataset. In
the rest of this section we provide a more detailed discussion
of the related work.

In-storage big data analytics framework: As early as 1980’s,
researchers looked for methods to push computation down into
mass storage to process terabytes or even petabytes of data [17].
Following are some of the in-storage frameworks that have
been proposed: DBMS [18,[28L/50], graph analytics [31}(34136],
HPC applications [47] or general workloads [[13}[1523}126}30,
33/38]142,43]].

The main difference between databases and other big data
applications is that the later usually requires running complex
programs on large data structures designed for the purpose,
while databases are more specific and focus on running
structured queries on relational tables. The shared concerns
include how to reduce DRAM requirements, reduce network
traffic, and exploit the massive internal flash bandwidth.

General database accelerators: Q100 [52,/53] and its newer
variant [35] are general query accelerators based on a pro-
grammable spatial-array architecture. Both systems assume
inputs and outputs are consumed and produced in the main
memory. In terms of executing SQL operators in a data-flow
style, AQUOMAN is similar to Q100 and its variant but it
addresses the main bottlenecks that both architectures ignored:
1. Scalability to larger dataset: Q100’s speedup over single-
thread software dropped 10X-100X on 1GB TPC-H, and it
disappeared almost completely in comparison to multi-threaded
software [52]. The functional tiles for sort and join in Q100’s
ASIC prototype can handle up to 1024 records at 315MHz

on a 256-bit datapath (10.08GB/s) [52}/53]]. This forces Q100
to divide-and-conquer large input tables to a huge number
of small partitions which causes poor scalability. We have
drastically improved the sorter and the join functional units
in AQUOMAN. Our FPGA sorter can stream-sort /GB data at
12GB/s, and 256GB data at 6GB/s if there is enough DRAM
accessible to the sorter. We ran AQUOMAN on a 1TB TPC-H
and still showed speedup over a 32-thread software baseline.

2. Routing between functional tiles: Q100 architecture [S3]]
is built around a complex 2D-mesh network-on-chip (NOC),
which takes 30-50% of the area and could be challenging to
implement in practice. In their more recent work [35], instead
of establishing arbitrary connections between heterogeneous
tiles, they chose a fixed grid of homogeneous core. The
routing simpler but now each tile needed the capabilities of
all the heterogeneous cores of [53]. If the tiles are designed
to process big workloads, its size will become too big to
be realistic. AQUOMAN addresses this issue using a hybrid
solution, which supports the common dataflow with a fixed
pipeline of three different programmable units: selection, map,
SQL swissknife(join/sort/aggregate).

Oracle’s RAPID [7,/8] has a rack-scale many-core system spe-
cialized for big data analytics. At its core sits a power-efficient
general-purpose processor aided by hardware acceleration for
data movement and data partitioning. Unlike AQUOMAN’s
streaming model, the execution model of RAPID is essentially
running map-reduce on many cores. Only very primitive SQL
operators, bit-vector load and filter, are hardware-accelerated
and exposed as special CPU instructions. Mondrian Database
Engine [19] employs a similar approach but uses general-
purpose cores with SIMD extension as a near-memory processor
(NMP) on the logic-layer of a stacked Hybrid-Memory Cube
(HMO).

Accelerators for certain database operators: Examples of
research focused on implementing specific database operators in
hardware include: selection [10,[28}/51,/54], hash join [24}32],
sort-merge join [[10}/12f], group-by aggregation [S1f], pattern
matching [40L/45]], and table histogram generation [27]. Most
of these accelerators are attached to memory while a few
operate in storage [27,28}|51]]. Operator-specific accelerators
assist host-side query execution by task offloading. Our work
may use similar operator implementation but our focus is on
entire query execution in storage.

FCAccel [50] aggregates SQL accelerators for selection,
data aggregation, and hashing on a PCle-attached FPGA. Like
AQUOMAN, FCAccel allows stream processing of selection
and aggregation, but used a different technique by dividing
tables into small data segments buffered in DRAM. FCAccel
is reported to have similar performance as MonetDB running
on RAM-disk. FCAccel proposes a collaborative solution with
the DBMS software for two-way join. Using a custom query
FCAccel shows two tables can be filtered and pre-aggregated
and later hash-joined by the host opportunistically. Unlike
AQUOMAN, it does not offer a plan to offload multi-way joins.

Query-specific reconfigurable accelerators: To avoid the
complexity of designing a general query accelerator, some
researchers propose to reconfigure FPGAs for a specific query.
SQL operators are implemented as hardware libraries in
advance, and are then called and assembled for a particular
analytical workload. For example, [14,/49L/55] provide flexible
hardware templates for common database operators, while [35]]
proposes a CGRA architecture where reconfigurable tiles are
organized in a systolic manner. The cost of this methodology
comes from both the reconfiguration overhead as well as the
requirement of using reconfigurable hardware. Baidu [39] has
a hybrid solution; certain fixed-function tiles are connected by
default in a way that is similar to Q100, but some tiles are
reconfigured on demand.

III. DATAFLOW MAP OF A QUERY

We will first discuss the anatomy of query processing on
tables and then describe how these steps are mapped on
AQUOMAN.

Single table query: First, consider the query over a single table
sales_transactions shown in Fig.[I]

| dpt I sdate | price "dis:nt” tax I
SELECT fi
department,
sum (price* (1-discount)) \ Liif"" 2 - [tax |
as netsale, — X L

sum (pricex* (1-discount) »\
(l+tax)) as revenue,

FROM sales_transactions

WHERE saledate<='2018-12-01"

GROUP BY department;

[Capt] [netsale |

|
Accumulate
Per Department achetsaleD]:’ accRevenueD]:[

Fig. 1: Dataflow of an Aggregate Query

The columns of the sales_transactions table
are <tr-ansactionID, department, saledate,
price, disc-ount, tax>. Each row corresponds to a
purchase identified by a unique transactionID, which is
the primary key for this table and the cheapest way to refer to
its rows. From a semantics perspective, the query of Fig. [I]
should return the net sale and revenue of each department
before 2018-12-01. To produce such an answer, the DBMS
typically makes what is called a query plan, for example:

1. Filter all rows of the table verifying a predicate: here the
saledate value should be smaller than 2018-12-01.

2. Produce a new intermediate table of three columns <depa-
rtment, netsale, revenue>. Each row of this in-
termediate table is computed purely from each row selected
in Step 1. The department value is directly reported from
the incoming row, while the net sale and revenue values
are simple arithmetic computation based on the price, the
tax and the discount value of the input row.

3. Produce the output table by aggregating the data in the
intermediate table, grouped by department.

Note that the first two operations are map: they apply
functions on each row independently. The last step aggregates
data coming from different rows. Those 3 steps can be thought
of as a dataflow graph which define how rows of the input table
contribute to the query’s answer (See Fig. [T). Actually, the

Table task Response

NAND Flash (1T8)

Flash Page Buffer (1MB)

Page Read Requests/Response
Inter.
Columns
11

Operator
Memory
Access

Table Tasks

)
Task | configure
Queue ‘

MaskSrc

DMA | 4 ,I i
From |
Host
Update
RowID
Sorter
T

Fig. 2: Overall Architecture of AQUOMAN

!7 sorted E

saL | -
Swiss- H
knife

Table task Output

RowVeclDs
1]

Row-Mask Vector
Circular Buffer

(256kB) | "¢

SELECT

sum(price) as shoe_sales
FROM inventory as ti,
sales_transactions as ts
WHERE

Merge when
ti.invtID=ts.invtID ti.invtID==ts.invtID
and ti.category="Shoes"
and ts.saledate>’2018-3-15";

Fig. 4: Dataflow of a join query

dataflow of this particular query illustrates a common plan of
row filtering, intermediate table generation and final reductions.
Of course the functions used for row filtering, table creation
and reductions are query specific.The commonality and high
value of this fixed but parameterized dataflow in analytics query
processing makes it possible to design a fixed accelerator to
process such queries efficiently.

Join - a multiple table query: Suppose the sales_transac—
tions table has an extra column to indicate the pur-
chased item. The purchased item is represented as
the inventoryID, which is the primary key of an-
other table, the inventory table. The inventory table
has many columns: <inventoryID, category, quan-
tity, productname, ...>, where category represents
the type of an item.

The following query (Fig. @) computes the total sale of
shoes sold after ”2018-03-15".

This query needs to compute a so-called inner equi-join
on the tables inventory and sales_transactions.
Typically, this join query would be processed as follows:

1. Select all the rows that have category “shoes” in the
inventory.

2. Produce an intermediate table <transactionID,
inve-ntoryID> from the sales_transactions ta-
ble; to get all the items (referred to by inventoryID)
that were sold after 2018-03-15.

3. Merge the two intermediate tables produced by the two
previous step: every items that are shoes (intermediate table
out of Stepl) is filtered based on if there exists a sale of
that item within the date specified (intermediate table from
Step 2).

Notice that the Step 1 and 2 are similar to the steps in the

previous example; however in this example they are working

on two different tables. In contrast, Step 3 does not seem to
fit into the fixed dataflow illustrated in the previous example:
it merges data from two intermediate tables.

AQUOMAN-enabled DBMS

[Query Compiler AQUOMAN Compiler]

User Space

[Query Executor AQUOMAN Executor]

[Filesystem (e.g. RFS, Ext4..)]AQUOMAN
programs

AQUOMAN
Results

Block Device Driver]

Linux Kernel [

Flash Controller Switch
[NAND Flash chips | DB files]

Flash Drive

Fig. 3: System Stack with AQUOMAN

If we assume that the intermediate tables are generated
sequentially and stored in the accelerator DRAM, then a
streaming sorter can be placed between the producer and the
DRAM, to make the joining easy. Typically these intermediate
data (the keys involved in the join) are small enough to be stored
in few Gigabytes for Terabytes datasets. In rare cases where
the intermediate tables is bigger than the accelerator DRAM,
AQUOMAN would relinquish processing to the host. Joins
require fast hardware sorters to keep up with the streaming
rate of the underlying storage. Two-way join generalizes to
multi-way join by iteratively storing the sorted intermediate
tables in the accelerator DRAM.

IV. OVERVIEW OF AQUOMAN ARCHITECTURE

AQUOMAN targets accelerating column-oriented databases
like MonetDB. We chose MonetDB because in our TPC-H
benchmark evaluation, on average MonetDB was 2X faster
than a commercial row-oriented database. In column-oriented
database systems, a relational table is stored as a collection
of column files. Each column file stores a sequence of
column values in ascending row order in either compressed or
uncompressed format.

A modern flash drive has huge I/O bandwidth which can
easily produce more than one column value per “data beat”.
For example, a flash hardware controller running at 125MHz
with 4GB/s bandwidth is able to produce 32 bytes - equivalent
to 8 32-bit column values - per clock cycle.

To allow line-rate data processing, AQUOMAN processes
the column data files as a collection of Row Vectors, which
consists of 32 column values of consecutive rows, indexed by
Row-Vector ID. A bit-vector that marks which rows have been
selected for processing is also stored as part of the table. The
overall architecture of AQUOMAN is shown in Figure [2}

The heart of AQUOMAN consists of 3 accelerators Row Selec-
tor, Row Transformer and a SQL Swissknife, corresponding to
accelerators for the three kind of dataflow operators identified
in the previous section. AQUOMAN also relies on one extra
Sorter to keep the intermediate streams ordered on the required
keys.

The Row Selector generates the bitvector masks used to
efficiently select the input table data (see Section [VI for more
details on the expressivity of the Row Selector). The columns
of the rows that have not been masked and are necessary to
compute the intermediate table are then streamed to the Row

Transformer. The Row Transformer is composed of a collection
of Processing Elements organized to apply a stateless function
on each row to produce a new intermediate table. Finally, the
generated rows are fed into the SQL Swissknife. The SQOL
Swissknife contains accelerators to perform the standard SQL
operators: accumulate, sort, merge, computes the biggest k
values ...

The SQL Swissknife is equipped with a direct access to
AQUOMAN’s DRAM, it can leave an intermediate reduced table
in it, or consume an intermediate table from it. We will see the
usefulness of that patterns when discussing the acceleration of
joins. The dataflow between the three accelerators of AQUOMAN
is fixed - the generality and programmability of AQUOMAN
comes from the predicates the Row Selector applies, the
functions the Row Transformer computes, and the operators
the SQL Swissknife runs.

Architecturally speaking, the Row Transformer directly
streams the intermediate table to the SQL Swissknife without
materializing it in DRAM. In the benchmark we evaluated, this
drastically reduced the need of DRAM for AQUOMAN.

V. PROGRAMMING AQUOMAN

Software Interface: As shown in Figure 3] AQUOMAN is
located inside the flash drive, so has direct data access to
the NAND flash arrays. AQUOMAN and the x86-host can both
access NAND flash simultaneously via a flash controller switch
inside the flash device, which fairly arbitrates flash commands
of page_read, page_write, block_erase. User-level applications
can access the flash drive via legacy operating I/O stack, such
as filesytem and block device drive.

In addition to legacy I/O path, AQUOMAN-enabled software
can also send AQUOMAN programs to AQUOMAN inside the
flash drive, which directly reads the required database files,
executes the program and returns their result to the host.

In general a SQL query is compiled to a graph of Table
Task(s). We first describe the structure of a Table Task:

o table specifies the input table of the Tuble Task.

« maskSrc specifies the source of the row processing masks,
which is generated by a Row Selection Program. It can
come from the Host software, or from AQUOMAN DRAM
if produced by a previous Table Task.

o rowSel specifies a Row Selection Program. This selection
mechanism can only compute single column predicates, but
it provides a fast layer of selectivity to avoid having to
stream all the data to later stages.

o rowTransf specifies a straightline Row Transformation
Program, which is mapped over all the rows to transform
each one into a row of the new intermediate table. The
columns of the intermediate table may be different from
those of the source table.

e operator specifies a reduction function in the SQL
Swissknife as an SQL operation on the output table of Row
Transformation Program. There are seven operators with self-
explanatory names: TOPK, SORT, AGGREGATE_GROUPBY,
AGGREGATE, NOP, MERGE and SORT_MERGE.

e Output specifies the output destination of the Table Task,
which can be either AQUOMAN or the Host.

For simple queries such as the Aggregate Group-By query
of Fig[T] it should be clear from the previous section that only
one table task is needed.

For more complex queries, AQUOMAN programs can have
multiple Table Tasks, each of them run sequentially using an
SQL operator in SQL Swissknife that consumes the data left
by the previous Table Task in the AQUOMAN’s DRAM (See

Sec. [VI-D).

auto tabletask_0 = TableTask{

.table = "inventory",
.maskSrc = RowSelectionProgram,
.rowSel = [predicate: category == "shoes"],
.rowTransf = [in: inventoryID] [out: inventoryID],
.operator = NOP,
.output = AQUOMAN_MEM_UO0};
auto tabletask_1 = TableTask{
.table = "sales_transactions",
.maskSrc = RowSelectionProgram,
.rowSel = [predicate: saledate> 2018-03-15"],
.rowTransf = [in: inventoryID] [out: inventoryID];
.operator = SORT_MERGE[with AQUOMAN_MEM 0],
.output = AQUOMAN_MEM_1};
auto tabletask_2 = TableTask{
.table = "lineitem",
.maskSrc = AQUOMAN_MEM_1,
.rowSel = [NOP]
.rowTransf = [in: price] [out: price];
.operator = AGGREGATE
.output = Host};

{ Table |nvent0|y Table sales_t transactlons

TabIeTask [i

<DB Table Data> <processing mask><Immediate Table> I
—_— ———————

@

TableTask 1

TubIeTask 2 !

(Aggregate /

Fig. 5: JOIN query Table Tasks and their data-flow graph

For example, to accelerate the join query (Fig. @), the user
can create the three Table Tasks and the associated dataflow
graph as shown in Fig. 3]

Since executing a single Table Task on AQUOMAN can
saturate the flash bandwidth, executing Table Tasks sequentially
is sufficient to keep up the line rate. AQUOMAN records the
intermediate results for the join in its DRAM.

VI

To execute a Table Task, AQUOMAN first configures the
Row Selector, the Row Transformer and the SQL Swissknife
using the parameters of the first Table Task in the task queue.
Before processing a Row-Vector ID, the Row Selector reserves
a Row-Mask Vector slot in the Row-Mask Vector Array in
circular order. It notifies the Row Transformer by sending it
the Row-Vector ID.

The Row Transformer collects the Row Vectors of the base
table, and applies a table transformation on it to produce the
Row Vectors of the intermediate table. The Row Transformer
then releases the slot in the Row-Mask buffer and passes the
Row Vectors of the intermediate table to the SQL Swissknife
to apply the specified SQL operation on the intermediate table.
The output is written into AQUOMAN DRAM.

AQUOMAN MICROARCHITECTURE

The AQUOMAN runs the three accelerators simultaneously
in a pipeline fashion, as long as it can reserve a slot in the
row-mask vector array. The maximum number of in-flight Row-
Vector IDs is determined by the depth of the flash command
queue, which determines the size of the Row-Mask Vector
Circular Buffer. For example, for a flash controller with a
command queue of depth of 128, the Row-Mask Vector Circular
Buffer needs to hold a maximum of 128 x 8K rows of 1-byte
elements or 32K 32-element Row Vectors.

A. Row Selector

The Row Selector is a vector unit in charge of evaluating the
predicate for selection. It accepts predicates in the form: Pr =
F(CPy,...,CP,_1), where CP; is a comparison or an equality
to a constant for the value in column i, and F is a simple
boolean function. For example (price > 25)&(data < 2019 —
11—26) is representable with F = & and CPy = price > 25 and
CP; <2019 —11—26. The maximum number of permissible
CP terms in a filter predicate is determined by the number of
Column Predicate Evaluators; 4 to 6 evaluators are enough for
most of the filter predicates in TPC-H. When the Row Selector
cannot compute a predicate, e.g. predicates which require more
than one column, or regular-expression filtering, it forwards
them to Row Transformer, the next stage in data-flow.

Column 0
Row Vector

Column n-1
Row Vector

Column 1

Row Vector
Row Vector

Physical
Page D List Flash1/0

Row Vector

Row Vector

Column
Reader
4 ColData
Predicate
Evaluator
! ColMask

{RowVecID,
. MaskAllZero}

Column
PredEval 0
Column

PredEval 1
\

{RowVeclD,
MaskAllZero}
{RowVeclD,

MaskAllZero}

}

Y
rd |wr
)
Slot Content

rd wr

Update | I
Row Mask | .~ Slot

SlotiD

Reserve
0 <andMask,orMask>
<andMask, orMask> 7 E
32767 <andMask,orMask>

Row-Mask Vector Circular Buffer

Slot Content

Fig. 6: Architecture of Row Vector Selection

B. Row Transformer

The Row Transformer has three components: the Table
Reader, the Row Transformation Systolic Array and the Mask
Reader, as shown in Figure

The Table Reader initiates reading the flash drive when
it receives a Row-Vector ID from the Row Selector. It skips
reading a flash page if all its Row-Vector IDs are marked as
zero in the bitvector mask. The Table Reader streams out Row
Vectors to the Row Transformation Systolic Array in increasing
order of Row-Vector IDs; within each Row-Vector ID, streaming
is done from the leftmost column to the rightmost one.

Inside the Table Reader there is also a Regular-Expression
Accelerator. It pre-processes variable-sized (string) columns
to a one-bit column (true/false). The accelerator has a 1IMB
memory to store the strings of the column. 1MB is sufficient
to cover many cases where the strings have a small domain,
for example, the ’country name” column.

The Row Transformation Systolic Array applies a mapping
function to each row of the input table to produce an

intermediate output table. That is, only column data of the
same row are taken together to calculate columns of a new
row.

The Row Transformation Systolic Array is a systolic ar-
chitecture where the transformation function implied by a
query is mapped to an array of PEs. Since the Table Reader
streams out Row Vectors per Row-Vector ID in a fixed order,
we can draw a data-flow graph of transformation steps from the
input columns to output columns. For example, the mapping
of the data-flow graph for the query in Fig. 0] is shown in
Fig. [I0] An AQUOMAN compiler can balance transformation
data-flow graph by inserting PASS nodes (NOPs), so that it
can be mapped to the PE. It can share common subexpressions
used in computing several output columns by inserting FORK
nodes (Copy Instruction). The compiler must maintain the
invariant that the nodes of the compiled data-flow graph can
only have data transfers to their south and/or east neighbor(s).
In particular, no cycles are allowed in the dataflow graph.

Each PE performs transformation steps for multiple output
columns in a circular schedule. It also produces new Row-
Mask Vectors for filtering (sub)predicates which have not been
processed by the Row Selector. The Mask Reader then merges
the old Row-Mask Vector (produced by the Mask Reader) and
the new Row-Mask Vector and passes it to SQL Swissknife.
Finally, it releases the slot in the Row-Mask Vector Circular
Buffer.

Each processing engine (PE) in the Row Transformation
Systolic Array is a simple 4-stage integer arithmetic vector
processor with no branch instructions or data memory (Fig. [g).
It implements a simple 32-bit instruction set described in
Table [lIl Each PE has 7 general purpose registers (r£[1],...,

71), an operand fifo (opReg). Finally it has a special fifo,
which can be accessed as a register (r£ [0]), hardwired to be
read as input fifo and written into as the output of the PE.

Opcode AluOp | Descr.

Pass rf[rd]l<=rf[rs]

Copy rf[rdl<=rf(rs]; opReg<=rf[rs]

Store opReg<=rf[rs]
Add rf[rd]<=rf[rs] + <OpReg|imm>.
Sub rf[rd]<=rf[rs] - <OpReg|imm>

ALU (Imm) Mul rf[rd]l<=rf[rs] % <OpReg|imm>
Div rf[rdl<=rf[rs] / <OpReg|imm>
EQ rf[rd]<=rf[rs] == <OpReg|imm>
LT rf[rd]l<=rf[rs] < <OpReg|imm>
GT | rflrdl<=rf[rs] > <OpReg|imm>

TABLE II: PE Instruction Set

The instruction memories of the PEs are initialized by the
Table Task. Since there are no branches, the program counter
(PC) will always increment by 1 and roll back to O at the
end of the program. The size of the instruction memory of
each PE should be bigger than the number of nodes in the
transformation diagram, which equals the number of input
columns to be transformed.

Once an instruction is fetched and decoded, the input Row
Vector is read either internally from the Register File or
externally (rs==0). The Row Vector is placed either in an
operand register waiting for the second operand, or sent to a
pipelined ALU with its other waiting operand. The Execute

Row-Mask Vector

Row Transformer

> Release Buffer

Inter. Row
Vector

Flash I/O
RowVeclD

Input Row Vector

\Row Transformer Systolic Array:
- - 1
|

Fig. 7: Row Transformer Architecture

SELECT 1_quantity as qty,
1_extendedprice as base_price,
1_extendedpricex* (1-1_discount) as disc_price,
1_extendedpricex (1-1_discount) x (1+1_tax) as charge,
FROM lineitem WHERE 1_shipdate <= date ’1998-09-01';

Fig. 9: SQL Query Example for Table Transformation

Input quantity extended_price discount 1_tax
Columns | | l l
Pass Pass x\\il) N t/ J
Pass (fork>%~\\x> Pass
I
Pass Pass *\\fork7>—>\\ X » J
2 2 2 2
Output qty base_price disc_price charge
Columns Time

Fig. 10: Data-Flow Execution Diagram of Table Transform

stage performs the operation and in the write-back stage, the
output of the ALU is either written in the register file or
streamed out (rd==0). The Register File is used only for data
passing vertically between nodes when multiple nodes of a
vertical slice of the graph are mapped to a single PE. Such
a case happens only when the number of PEs exceeds the
number of horizontal layers of the data-flow graph.

C. SQL Swissknife

The SQL Swissknife is configured by the Table Task, which
takes the intermediate table output from the Row Transformer,
and applies one of the SQL (sub)operations listed in Section [V]
Inside the SQL Swissknife is an array of accelerators, whose
connection to the external input is configured by the Table
Task (Fig. [TI). When Row Vectors are streamed in, they are
tagged with a Column ID which is needed for processing
a table of more than one columns (e.g the input table of
an Aggregate GroupBy). Each SQL operation is mapped to
its corresponding accelerator(s). SQL sub-operators of SORT,
MERGE and SORT_MERGE are mapped to two serially linked
accelerators: the Streaming Sorter and the Merger. For SORT
and MERGE, one of them is configured as a NOP.

New SQL operation accelerator can be added into SQL
Swissknife with or without DRAM access as needed. In our
current version of the SQL Swissknife, only the Streaming
Sorter and Merger are connected to the DRAM.

Aggregate GroupBy: The Aggregate GroupBy accelerator
handles grouping rows of the same group identifier into
summaries of aggregation attributes of sum, min, max, and
cnt. It does local Aggregate Group-By operation per Row-
Vector ID, and then scatters and updates the local group

Instr.
Mem

Instr 0 Instr. Instr.

Decode Execute

Instr 1

Operand

Output Row Vector

1
1
Register !
1
1
1

Fig. 8: Micro-architecture of a Row Transformer PE

aggregates to the corresponding global aggregates stored in
SRAM.

As shown in Figure [T2] the Aggregate GroupBy accelerator
separates Row Vectors of columns into two different streams
using their Column IDs. If Row Vectors are used for identifying
groups, they are sent to the Column Zipper, otherwise they are
sent to the Reduce-By-Group-Number block, waiting for their
groupIDs to be assigned.

Column Zipper zips multiple Row Vectors of the same Row-
Vector ID into a super Row Vector named the Group Identifier
Vector. The Group Number Assign component assigns it a
Group Number using a hash-table of 1024 buckets. Each bucket
can hold at most one group identifier of maximum size of 16B.
New group numbers are assigned in an increasing order from
0 to 1023. In case of a hash collision of two group identifiers,
one group is kept and the other one is marked as a spill-over
group, which is sent to x86 host for processing. (more on this
in Section 6.5)

After a Group Identifier Vector is given a Group Number,
it is sent to the Reduce By Group Number block, in which
its corresponding Row Vector(s) are reduced per group. The
reduction results of sum, min, max, cnt are scattered
into an SRAM and accumulated with the global aggregates
indexed by group number. Each aggregate slot can store
aggregates for 8 individual columns.

Since the SRAMs are expected to scatter/gather a maximum
of 32 addresses per request, we have partitioned the SRAM
into 32 partitions by striping the address space, allowing bigger
bandwidth through banking. If addresses per scatter or gather
request are uniform, we can pipeline the requests without many
memory stalls.

TopK: The TopK accelerator takes in a stream of Row Vector
from a table and keeps the biggest k rows of the stream. In
software, the TopK operation is computed using minHeap,
which cannot be easily pipelined in hardware. Instead, we use
a chain of Vector Compare-And-Swap blocks (VCAS) to store
the k biggest elements, as illustrated in Figure Each VCAS
stores n elements where n is the input vector size. When a
vector of size n is fed into a VCAS, VCAS compare-and-swaps
it with the n elements stored inside the VCAS, where the bigger
half of 2n elements are kept, and the smaller half is streamed
out. We can daisy-chain k/n VCAS to keep the top k elements.

Before sending it into the chain of VCAS, the input vector
is first sorted using a pipelined bitonic sorter. This is done
because the pipelining of VCAS operation for sorted vectors
can be done more efficiently, as shown in Figure [T3] Each
VCAS operation of two sorted vectors of size n can be divided
into n steps of compare-and-swap element-wise, as shown in

Inter. Table Row Vectors —

Inter. Table Row Vectors

A A
Aggregate Group By | powVec Distributor

K/n VCAS, (n= Row Vector Size)

Vector Compare-
And-Swap

Pipelined Bitonic N) VCAS . VCAS

SQL Swissknife ‘ c°|lb?ssign Column

2 2 2 ¥ -J Zipper
Aggregate 1GB-Block ¥

e GroupBy T Streaming Sorter ‘ LEIES] Group#

L L L T 1 Assign

Output

Fig. 11: SQL Swissknife Architecture

Algorithm[I] The ith element-wise CAS step generates a partial

Algorithm 1 Vector Compare-and-Swap
Variables: /nVec: Input Vector sorted in ascending order
TopVec: Top-n Vector sorted in ascending order
tailln = tailTop =n—1
2: for iin 0..n—1 do
if InVec|tailln] > TopVec(tailTop] then

4: swap(InVec|tailln], TopVec|tailln])
tailln = tailln — 1
6: else
tailTop = tailTop — 1
8: end if
end for

result of the top-i vector which can be consumed by the ith
step of the next input vector immediately. Therefore, a VCAS
hardware can be pipelined properly. Each ith pipeline stage
of the VCAS takes up reasonably small hardware resources
with one pair of i—-to—-1 muxes for compare, and one pair of
i-to-1 muxes for data update.

Merger: The Merger accelerator outputs the intersection of
two sorted list. The Merger accelerator first merges two sorted
list into one sorted list using 2-to-1 Merger, and then passes it
through an Intersection Engine where the non-intersected part
is dropped (Figure [14).

In case of duplicate values in the input sources, the merger
always tries to alternate the input sources. This way the
Intersection Engine only needs a look-ahead of one to decide
if it should drop a value or not. Indeed if in the final sorted
stream two consecutive values are equal but not coming from
the same source, one of them can be dropped knowing that
the same value from the other source could not arrive later.

Inside the 2-to-1 Merger, we have the Vector Compare-And-
Swap Engine which does the merging, and a Scheduler which
decides which input vectors of the two sorted streams should
be fetched. Since items of each input vector are sorted and the
input vectors per data stream are sorted, the Scheduler only
needs to compare the top items of the two input vectors and
send the input vector with the smaller top item to VCAS.

1GB-Block Streaming Sorter: The 1GB-Block Streaming
Sorter takes an unsorted stream of input vectors, and outputs a
stream of sorted 1GB blocks. The Streaming Sorter consists of
a Pipelined Bitonic Sorter which sorts 64-byte input vectors,
and merge 2>* 64 bytes vectors into a 1GB sorted stream using
three layers of 256-to-1 Mergers (Figure [15).

The first two layers of the 256-to-1 mergers merge 256 64B-
blocks to a 16KB block, and 256 16KB-blocks to 4MB-block
respectively. They store the immediate results on SRAMs. The
last layer merges 256 4MB-blocks to 1GB block using DRAM.

Reduce By o
croust | [t —

Aggregates

Fig. 12: Aggregate-GroupBy Accel.

(veas)

Results

T Vector Sorter
SRAMSs .

Aggregate

Scatter HashTable
(Group#)

| Spill-Over Groups

Sorted Input Vector
Sorted Ouput Vector

>
sep0 T\ step1 stepn-l

Fig. 13: TopK Accelerator

The SRAMs and DRAM need to be duplicated per layer to
maintain the line-rate of input stream. If the sorter had enough
DRAM, it can sort 256GB by folding the last 256-to-1 merging
step at the half of the streaming speed.

Each 256-to-1 Merger is constructed using a binary tree of
2-to-1 mergers which were introduced in Section Since
the average of utilization of 2/ 2-to-1 mergers at the same
depth i of the binary tree is only 1, we make 2-to-1 mergers
at the same depth share the same VCAS component capable
of keeping multiple contexts. In this way, we can decrease the
size of N-to-1 merger from O(2N — 1) to (O(logN)) while still
able to keep up with the input rate.

To perform sort-merge join, both join-key columns don’t
have to be totally sorted. As long as one column is totally
sorted, a partially-sorted second column can be merged with it
at the cost of re-streaming the first one for every 1GB of data
stream. This can cause more than 1GB DRAM reads per 1GB
flash reads, but is OK because DRAM is an order-of-magnitude
faster than flash. In many cases, AQUOMAN doesn’t even need
to sort the first column, since primary keys are already stored
by MonetDB in its internal representation.

D. AQUOMAN Memory Management

Because of the fixed dataflow pipeline of AQUOMAN, a
SQL query often needs to be broken into multiple Table Tasks
which are executed on AQUOMAN sequentially. AQUOMAN
stores the intermediate tables produced by each Table Task
on DRAM and merge them using subsequent Table Tasks.
AQUOMAN’s memory management system only keeps the row
indices of tables and join keys in DRAM to compute multi-
way joins, which allows us to keep the DRAM footprint small.
AQUOMAN memory management does not buffer the results
of Aggregate Group-By and TopK operators, because such
operators are typically at the end of an SQL execution plan.
When such operators are not the last operator of the query, we
cannot off-load the part of the query following the Aggregate
Group-By or TopK operator. Such cases are uncommon and
AQUOMAN can often accelerate even partially offloaded queries
(see Sec. [VIII-B).

A RowlID column provides index to rows of a table. Such a
column is implicit and does not need to be stored in DRAM
or flash. A multi-way join is decomposed into two-way joins,
where each two-way join is executed using a sort-merge join
expressed by two Table Tasks. Each data flow arc which goes
into sort and sort-merge operations carries key-value pairs,
where the key field is used for sorting and merging, and the
value field has the RowID representing where the join key is

2401 [iniers | 1GB-Block 16kB amB 168
(" Scheduler) Vector | ection Streaming | SRAM SRAM DDR4 _l
Merger Sorter . .
Pipelined 256-to-1 256-to-1 256-to-1

il

| | Vector Compare- ‘
And-Swap (VCAS)

Fig. 14: Merger Architecture

read from. The Table Tasks of each two-way join produces
two intermediate tables. The intermediate tables produced
by sort Table Tasks are consumed by their subsequent sort-
merge Table Tasks, and can be garbage collected immediately.
The intermediate tables produced by sort-merge Table Tasks
store backward pointers, i.e. RowIDs, which are needed for
constructing the final result of a multi-way join. And they are
stored for the entire lifetime of a multi-way join query.

AQUOMAN also deploys MonetDB-specific optimizations to
save memory. MonetDB uses RowIDs to represent the primary
keys of tables internally, and for each foreign key column it
materializes an additional column of RowIDs referring to the
primary keys. MonetDB uses RowIDs to perform join whenever
is possible. AQUOMAN is aware of the internal structure used by
MonetDB and avoids loading the RowIDs to DRAM whenever
possible. Such an optimization opportunity arises when all the
primary keys of a table are used for a join operation, i.e. no row
of the table has been deleted or filtered out. No join operation is
required by AQUOMAN in this case since all foreign keys of the
second table are guaranteed to find their matching primary keys.
Therefore we can avoid using DRAM and directly construct
the join result using the materialized RowIDs on flash.

E. Suspending Query Processing on AQUOMAN

There are several reasons why a query may not be completely
processed by AQUOMAN:

1. A query has an Aggregate Group-By operator in the middle
of an execution plan, which breaks references to the base
tables on flash.

2. A query does regular-expression filtering on a variable-sized
string column which requires pointer references to a string
heap file. When there are many unique strings, such string
operations cause random reads to the string heap on the
flash and is unsuitable for processing by AQUOMAN.

3. An Aggregate Group-By operator in a query generates more
groups than what AQUOMAN’s SRAM can accommodate.

4. A multi-way join operation in a query produces intermediate
tables that exceed AQUOMAN’s DRAM capacity.
Conditions 1 and 2 can be detected by examining the query

plan, and AQUOMAN can simply suspend processing the query

at the appropriate point and pass the intermediate table of
results to the host, which can resume processing the query.

Since the host will need to access the AQUOMAN SSD when

it resumes the query processing, that SSD remains essentially

unavailable to AQUOMAN until the query to AQUOMAN has
been processed completely. Conditions 3 and 4 can be detected
only during query execution. If the database system has an

estimate for the size of the intermediate data structure for a

specific dataset, it may decide not to offload a part of the query

Bitonic Sorter

Vector Merger Vector Merger Vector Merger

Fig. 15: Streaming Sorter Architecture

to AQUOMAN. Otherwise, AQUOMAN may use the suspension
strategy described next.

For large Aggregate Group-By operator, AQUOMAN computes
all the hashes but performs the accumulate operation on
some buckets in AQUOMAN, while the accumulation for the
“spillover” buckets is performed by the host. To not slow down
AQUOMAN, the host needs to keep up with the spills generated
by AQUOMAN.

For multi-way Joins, when the AQUOMAN DRAM becomes
full, it keeps sorting 1GB-data-blocks and sends them to the
host via DMA. The host completes the join operation by
merging these sorted blocks with the sorted data stored in
its DRAM.

A natural question to wonder about is how common are
these suspensions. As we will show in Sec. 14 out
of the 22 queries of TPC-H can be offloaded completely
to AQUOMAN with sufficient DRAM. Queries (11,17,18,22)
encounter Aggregate Group-By operator in the middle and
thus, had to be suspended; all except Q22 benefited by partial
offloading. There was no benefit to offload queries (9,13,16,20)
because they involved regular-expression filtering on a string
column.

Seven queries caused spillovers in the Aggregate Group-By
operation. Only Q18 caused a significant spillover (required
~1.5 billion buckets while AQUOMAN has only 1024 buckets!).
Partial offloading of Q18 was still profitable, assuming the host
could perform ~200 millions memory lookup-and-accumulates
per seconds. With 40GB DRAM in AQUOMAN there were no
suspensions due to multi-way Joins. A conservative approxi-
mation of the effect on performance of memory limitations is
discussed in the Evaluation Section

VII. AQUOMAN IMPLEMENTATION

AQUOMAN was first implemented on an FPGA, although
soon afterwards we discovered several reasons which prevented
us from evaluating most TPC-H queries on the FPGA prototype:
o Our FPGA evaluation board has only 4GB of DRAM, which

is not big enough to evaluate multi-way joins that generate

bigger intermediate tables.

e AQUOMAN with the Sorter exceeded the total area of the
FPGA in BlueDBM. Our bigger FPGA, VCU118, is not
compatible with the FMC port of the custom flash card in
BlueDBM.

o A robust regular-expression accelerator, which has been
done previously [21]], is also needed for string columns but
required significantly more implementation effort than this
project justified.

o A full-blow compiler is needed to generate Table Tasks for
FPGA evaluation; manual compilation effort is too high for

most TPC-H queries. (Investment in such a compiler would

be justified only after the efficacy of AQUOMAN has been

established.)

In order to evaluate more queries and to properly evaluate
the AQUOMAN architecture, we also developed a trace-base
AQUOMAN simulator and fully integrated it in the MonetDB’s
software stack . We validated some of our simulation results

on the FPGA proptotype (Sec.

FPGA Prototype: We implemented AQUOMAN on
BlueDBM [30], where a hardware-accelerated storage
device is plugged into the PCle bus of 12-core Xeon X5670
machine. Each storage device consists of a Xilinx Virtex
Ultrascale FPGA development board, VCU108, attached to
1TB of open-channel NAND flash array capable of 2.4GB/s
read access and 800MB/s write access. The Xilinx VCU108
FPGA also provides 4GB of DDR4 memory for a maximum
bandwidth of 36GB/s.

We synthesized the Sorter and the rest of AQUOMAN on two
different FPGAs because together their area exceeded the capac-
ity of the VCU108 FPGA. In our AQUOMAN implementation
(Table the Row Selector has 4 Column Predicate Evaluators,
and the Row Transformer has 4 processing engines each with
8 instructions. Our design meets the timing requirement for
125MHz and provides 4GB/s processing rate for AQUOMAN.

Module Name | LUTs | Flip-Flops | RAMB36 | DSP48 |
Row Selector 42023 36725 0 0
Row Transformer 47859 29660 0 256
SQL Swissknife (w/o sorter) 95077 76823 140 0
FlashPageBuffer 14087 17143 228 0
RowMask 190 41 58 0
VCU108 Total 302398 273245 448 256
(56%) (24%) (26%) (33%)

TABLE III: AQUOMAN resource usage on VCU108

1GB-Block Hardware Sorter: We synthesized the 1GB-block
streaming sorter for four data types: 32/64-bit integers, and key-
value pairs of 32/64-bit integers. All designs were synthesized
with a 512-bit data path and met the timing requirement for
200MHz on Xilinx UltrascalePlus VCU118. Flip-Flops usage
was around 40% for each configuration (see Table [[V).

Element Type | LUTs | RAMB36 | URAM |
uint32 855867 (72%) | 1133 (52%) | 256 (27%)
256-to-1 Merger to 16KB 240567 (20%) 177 (8%) 0 (0%)
256-to-1 Merger to 4MB 263610 (22%) | 291 (13%) 256 (27%)
256-to-1 Merger to 1GB 261400 (22%) | 505 (23%) 0 (0%)
uint 64 925572 (78%) | 1133 (52%) | 256 (27%)
kv<uint32,uint32> 720183(60%) 1133 (52%) | 256 (27%)
kv<uint64,uint 64> 900087(76%) 855 (40%) 256 (27%)

TABLE IV: Streaming Sorter resource usage on VCU118

The area of Sorter and AQUOMAN together exceeds the
Xilinx VCU118 capacity by 2% but we are confident that with
a few area optimization we can fit both of them on a VCU118.
Unfortunately VCU118 is incompatible with the custom flash
card in BlueDBM.

Although AQUOMAN uses 64-bit key and value pairs as the
Sorter configuration, we evaluated the streaming sorter for all
sorter configurations. As expected, all configurations have the
same throughput. Table |V| summarizes the performance of the
Sorter for different input lengths and sortedness using a traffic

generator. Hence our Sorfer meets the goal of keeping up with
AQUOMAN processing bandwidth (4GB/s).

Input Length Input Sortedness

(GB) Sorted | Reverse Sorted | Random |
1 4.4 GB/s 4.4 GB/s 6.2 GB/s
10 7.9 GB/s 7.9 GB/s 11.0 GB/s
100 8.5 GB/s 8.5 GB/s 11.9 GB/s
1000 8.6 GB/s 8.6 GB/s 12.0 GB/s

TABLE V: 1GB-Block Streaming Sorter Throughput

AQUOMAN Simulator: We implemented a trace-based AQUO-
MAN simulator which is fully integrated in MonetDB 11.27.9.
In MonetDB the software translates the SQL execution plan
into a customized middle-layer language, Monet Assembly Lan-
guage(MAL), which is then later optimized and interpreted [25].
We implemented the AQUOMAN simulator by extending MAL
to allow instrumenting traces for AQUOMAN Table Tasks.
The AQUOMAN simulator does not execute Table Tasks, but
executes the original SQL plan expressed in MAL and collects
AQUOMAN traces such as flash traffic, AQUOMAN memory
footprint, and sorter usage. The AQUOMAN simulator assumes
a flash drive of 8KB page access granularity and 2.4GB/s
flash read bandwidth, one streaming sorter and one regular
expression accelerator with IMB cache for string heap. The
specifications of flash drive and streaming sorter in AQUOMAN
simulator are the same with the ones in the AQUOMAN FPGA
prototype in Section We assume as big Row Selector
and Row Transformer as needed as their small relative sizes
compared to the sorter as shown in Section When a
multi-way join query exceeds AQUOMAN memory size, we
assume that the host processes “handed-off” sub-query at the
same speed as the baseline solution, which is a conservative
assumption.

In the SQL frontend, we modified MonetDB’s query planner
to identify Table Tasks in the query execution plan tree, and
mark relevant nodes as AQUOMAN nodes which are targets
for offloading. We also changed MonetDB’s SQL plan to
MAL compiler, such that AQUOMAN tracing instrumentation
will be automatically inserted on identified Table Tasks. The
total execution time of a query with AQUOMAN simulator is
calculated by the sum of AQUOMAN execution time based on
the traces and non-AQUOMAN nodes’ execution time processed
by MonetDB.

VIII. EVALUATION
A. Experiment Setup

Evaluation Data-set: We used the TPC-H synthetic data-set
with a scaling factor of 1000, generating 1TB of tables. We
loaded the data-set on MonetDB-11.27.9, whose column files
are the inputs for AQUOMAN.

Baseline Setup: We ran MonetDB (11.27.9) with two setups
S and L to represent two different machine sizes (Table [VI).
The baseline used five 1TB Samsung 970 EVO m.2 SSDs
capped at 2.4GB/s, to match the bandwidth of the BlueDBM
storage device. Such a setup was needed for a fair baseline
1) to mitigate side-effects of garbage collections with over-
provisioned capacity and 2) to provide 2.4GB/s average access

1520

1000 reag = SA
g 800 um = L-A
BB 600 [R
Q400 [
©E
SE 200 b e T T

(b) Max
Mem.(GB)

(c) x86 HW
Saving(%)

q01 02 q03 g04 05 06 07 q08 09 10 qgll1 gl2 ql3 ql4 ql5 gl6 ql7 qgl1l8 ql9 g20 g21 22
Fig. 16: TPC-H SF-1000 AQUOMAN Performance Profiling

bandwidth unavailable in a single off-the-shelf SSD. When
MonetDB run out of DRAM for intermediate tables, it can
still process queries effectively by using its own disk-swap
management, which exploits fast sequential SSD writes.

MonetDB does not implement a page buffer pool for caching
hot pages, instead it relies on Linux’s LRU-based page cache to
take advantage of page locality. For 1TB dataset, we observed
that Linux’s page cache on a 128GB DRAM is ineffective
for TPC-H queries. In fact, for MonetDB hot runs are slightly
slower than cold runs, even though both runs experience a
similar level of page-cache misses. We hypothesize that the
cost of finding misses in a fully populated page-cache is larger
because the operating system needs to traverse a bigger page-
cache index structure to find nothing. Therefore our evaluations
assume cold page cache.

| x86 Setup | HW Threads | x86 DRAM |

S (Small) 4 Threads 16GB
L (Large) 32 Threads 128GB

| AQUOMAN Setup | DRAM |
40GB ‘

AQUOMAN16 16GB

AQUOMAN ‘

TABLE VI: x86 Host and AQUOMAN Disk Setup

AQUOMAN Setup: All TPC-H queries are evaluated on the
AQUOMAN simulator, which has two setups: AQUOMAN
with 40GB memory and AQUOMAN16 with 16GB memory
(Table [VI). The AQUOMAN implementation on FPGA could
be used for evaluating only a few TPC-H queries because of
the reasons discussed earlier (Sec. [VII). However, the FPGA
implementation was very useful to validate the AQUOMAN

simulator (Sec. [VIII-D).

B. AQUOMAN TPC-H Evaluation

We compare the performance of MonetDB running on a
system with ordinary SSDs with a system where the ordinary
SSDs are replaced by AQUOMAN SSDs. For an extensive
coverage of the design space, two host machines S, L (Fig.
are used, each with and without AQUOMAN disks. We also
paired the small host system S with AQUOMAN16 disk, which
has 16GB of in-storage DRAM.

We first examine the runtime of each query, including the
breakdown of the time spent on AQUOMAN and the host. We
then perform a similar analysis for the memory footprint.
Run Time: The queries run time for the different systems
are presented in Fig. [I6[a), while the fraction of processing

Total

time each query spent on AQUOMAN for system (L) is shown
in Figure [T6{(c) . On average, 71% of the CPU time can be
saved by AQUOMAN when it is added to system L. Note that
AQUOMAN actually speeds up many queries, on average a
1.5X-2X speed-up over the baseline in Fig. [I6[a). Still there
are some outliers, queries (17,18) show up to 13X speed-ups
for system L, while others show none. It is important to realize
that AQUOMAN cannot speed up a query if it is IO bound in the
baseline system. In such cases it can only save host resources.
For example, we found that two queries (6,14) can be almost
completely off-loaded to AQUOMAN but show little speedup
because they are disk-bound on the baseline systems.

For 14 out of the 22 queries are off-loaded to AQUOMAN
nearly 100% of the time. Even when AQUOMAN can only do
a part of the query, its resulting benefits can be significant.
For example, the runtimes of Q17 and Q18 decrease signifi-
cantly because the part that is off-loaded happens to execute
sequentially on the host, effectively using only one hardware
thread.

The reasons for queries to be suspended early were discussed
in Sec. As we said earlier queries (17,18,22,11) corre-
sponds to cases with an early Aggregate Group-By node in the
execution plan. All of them except Q22 do enough processing
on AQUOMAN to show speedups. Queries (9,13,16,20) represent
the cases where the size of the string heap does not fit in
AQUOMAN and so have to be completely handled by the host.

Overall when a host machine replaces its SSDs with an
AQUOMAN disk, it can save on an average 71% of the CPU
time for TPC-H queries running on system L.

Memory Footprint: Figure [I6] (b) shows the maximum and
average memory resident set size (RSS) of AQUOMAN and the
system-L baseline, respectively. When a query is adequately
offloaded, AQUOMAN reduces host memory footprint signifi-
cantly except when it has to aggregate on a huge number of
groups in the host as for Q18 (See Sec. [VI-E). AQUOMAN
has 20~128GB smaller memory footprint than the baseline
even when most of the query is processed by AQUOMAN. The
memory saving is primarily because of the streaming model
of Table Tasks and only keeping row IDs in the DRAM. The
maximum memory requirement for the TPC-H benchmark by
AQUOMAN on 1TB data-set is 40GB. In fact when equipped

with 16GB DRAM, only 4 queries (4,5,8,21) are affected and
AQUOMAN can offload 12 of 22 TPC-H queries profitably. We
also note that while AQUOMAN reduces the average DRAM
used significantly (by a factor 3), the maximum DRAM needed
is left almost unchanged. Indeed an important part of Q18 has
to be processed by the host, and it requires almost 128GB of
DRAM.

C. Advantages of AQUOMAN

In the previous section we have shown significant hardware
threads and memory savings. In this section we propose a
way to visualize the benefits from those savings (70% of CPU
and 60% of the average memory). As a first approximation,
Fig. [[§(a) shows that running the entire TPC-H benchmark
on a 32-cores machine with 128GB DRAM (system L) is on
average 1.6X as fast as running the same benchmark of on
a 4-core machine with 16GB DRAM (system S). However,
replacing the SSD of the small machine by an AQUOMAN
augmented SSD (S-AQUOMANI16) bridges that gap completely!

This comparison does not evaluate the opportunity for the
system to run many queries in parallel, which may show
different results because of inter-query data locality and
parallelization. Evaluating such a parallel system requires a
very different setup than what we have presented in this paper.

D. Validating simulation results on FPGA

The AQUOMAN FPGA prototype has the key AQUOMAN
components: Row Selector, Row Transformer, and SQL Swis-
sknife with a high-performance Sorter but is limited by 4 GB
of DRAM. We evaluated a subset of TPC-H queries using the
AQUOMAN FPGA prototype to validate some of our simulation
results.

° -
2100 1 Simulator = FPGA
= 75
S 50
2 25
0
(3] - T T
@ 4 = Simulator =1 FPGA
2@
02 .
§ 1 .
= 9 ! L

qo1 q06 qo3 qlo0
Fig. 17: TPC-H queries on FPGA prototype

We picked two classes of TPC-H queries and hand-coded
them to Table Tasks to execute on the FPGA prototype. The
first type of queries (1,6) have no join operations. Those queries
are evaluated end-to-end and produce the same query results
as the MonetDB software. The second type of queries (3,10)
are multi-way join queries but need less than 4GB AQUOMAN
DRAM. Since currently we cannot fit AQUOMAN and the Sorter
on a single FPGA, we are unable to run multi-join queries
end-to-end on AQUOMAN. In the AQUOMAN design, Table
Tasks are executed sequentially, so we executed each Table
Task of a query individually and summed up the execution
times for the end-to-end query run time. For the Table Tasks
that involve Sort, we use a traffic generator instead of real
data, throttled at the same speed as AQUOMAN'’s flash card

(2.4GB/s). This is because our flash card is incompatible with
Xilinx VCU118’s newer version of the FMC+ connector. None
of the evaluated queries had regular expression selections.

For each query, we compared the run time and memory usage
of the FPGA prototype with those of AQUOMAN simulator
(Fig. [I7). We can see the FPGA prototype has similar run
times and the same memory usage as the AQUOMAN simulator,
which validates the basic performance modeling of AQUOMAN.

Compared to FCAccel [50], our FPGA evaluation used 10X
the dataset size and evaluated more queries including fully-
offloaded joins. Therefore we cannot provide direct query
run-time comparison, but we can compare in terms of rows/sec
with FCAccel’s evaluation. AQUOMAN’s FPGA performance
is competitive to that of FCAccel. For the straightforward
filter-and-aggregate with high selectivity (Q6), AQUOMAN has
similar throughput (100.5M rows/s vs. 111M rows/s). When a
query has low selectivity and requires more computation, such
as row transform and Aggregate Group-By in Q1, AQUOMAN
is 2.5X better than FCAccel (69M rows/s vs. 27M rows/s).
This is thanks to AQUOMAN ’s systolic-array design for highly-
pipelined row transformation (Sec. [VI-B), while FCAccel uses
on multi-cycle logic designs.

IX. CONCLUSION

We have presented AQUOMAN, an end-to-end DBMS system
solution for in-storage analytical SQL query acceleration.
AQUOMAN aggressively pushes the idea of “in-storage com-
puting” by offloading most of the query processing, including
multi-way Joins, for terabyte data-sets. AQUOMAN is based
on a novel stream-oriented microarchitecture to execute static
dataflow graphs of SQL operators organized as Table Tasks. We
have built a prototype of AQUOMAN using a Xilinx VCU108
FPGA development board, and shown that it computes Table
Tasks at a 4GB/s, saturating the flash-drive bandwidth. (For
power, cost and area reasons, a commercially viable version
of AQUOMAN will have to be implemented using ASICs). One
way to think of the savings provided by offloading queries
to AQUOMAN is to imagine running SQL queries on a one-
terabyte TPC-H benchmark data-set on two systems: MonetDB
running on a 4-core, 16GB-DRAM machine with AQUOMAN-
augmented SSDs and MonetDB running on a 32-core, 128GB-
DRAM machine with standard SSDs. We have shown that,
if we run queries sequentially and assume no reuse of page-
cache by different queries, the two system provide the same
performance. The future work on AQUOMAN requires (1) an
experimental setup to evaluate parallel execution of queries
and (2) distributed execution of queries whose data is spread
over multiple AQUOMAN SSDs.

ACKNOWLEDGMENT

We want to thank all anonymous reviewers for their com-
ments. This work is funded by Samsung Semiconductor (GRO
grants) and NSF (CCF-1725303). The DGIST team is supported
by the National Research Foundation (NRF) of Korea (NRF-
2018R1A5A1060031).

—
—_

[2

—

[3

[t

[4]

[5

=

[6

=

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

REFERENCES

>

“Big Data Analytics On-Premises, in the Cloud, or on Hadoop — Vertica,
https://vertica.com/, accessed: 2020-04-07.

“Presto on Amazon EMR - Amazon Web Services (AWS),” https://aws
amazon.com/emr/details/presto/, accessed: 2020-04-07.

“S3 Select and Glacier Select — Retrieving Subsets of Objects,” https:
/laws.amazon.com/blogs/aws/s3-glacier-select/, accessed: 2020-04-07.
“The column-store pioneer — MonetDB,” https://monetdb.org/home,
accessed: 2020-04-07.

“Uber’s big data platform: 100+ petabytes with minute latency,” https:
/leng.uber.com/uber-big-data-platform/, accessed: 2020-04-07.
“Amazon Redshift - Data Warehouse Solution - AWS,” https://aws|
amazon.com/redshift, May 2018.

S. R. Agrawal, S. Idicula, A. Raghavan, E. Vlachos, V. Govindaraju,
V. Varadarajan, C. Balkesen, G. Giannikis, C. Roth, N. Agarwal,
and E. Sedlar, “A many-core architecture for in-memory data
processing,” in Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO-50 *17. New York,
NY, USA: ACM, 2017, pp. 245-258. [Online]. Available: http:
//doi.acm.org/10.1145/3123939.3123985

C. Balkesen, N. Kunal, G. Giannikis, P. Fender, S. Sundara,
F. Schmidt, J. Wen, S. Agrawal, A. Raghavan, V. Varadarajan,
A. Viswanathan, B. Chandrasekaran, S. Idicula, N. Agarwal, and
E. Sedlar, “Rapid: In-memory analytical query processing engine
with extreme performance per watt,” in Proceedings of the 2018
International Conference on Management of Data, ser. SIGMOD ’18.
New York, NY, USA: ACM, 2018, pp. 1407-1419. [Online]. Available:
http://doi.acm.org/10.1145/3183713.3190655

R. H. Canaday, R. D. Harrison, E. L. Ivie, J. L. Ryder, and L. A.
Wehr, “A back-end computer for data base management,” Commun.
ACM, vol. 17, no. 10, pp. 575-582, Oct. 1974. [Online]. Available:
http://doi.acm.org/10.1145/355620.361172

J. Casper and K. Olukotun, “Hardware acceleration of database
operations,” in Proceedings of the 2014 ACM/SIGDA International
Symposium on Field-programmable Gate Arrays, ser. FPGA ’14.
New York, NY, USA: ACM, 2014, pp. 151-160. [Online]. Available:
http://doi.acm.org/10.1145/2554688.2554787

A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers,
M. Haselman, S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim, D. Lo,
T. Massengill, K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka,
D. Chiou, and D. Burger, “A cloud-scale acceleration architecture,” in The
49th Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO-49. Piscataway, NJ, USA: IEEE Press, 2016, pp. 7:1-7:13.
[Online]. Available: http://dl.acm.org/citation.cfm?id=3195638.3195647
R. Chen and V. K. Prasanna, “Accelerating equi-join on a cpu-fpga
heterogeneous platform,” in 2016 IEEE 24th Annual International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM),
May 2016, pp. 212-219.

S. Cho, C. Park, H. Oh, S. Kim, Y. Yi, and G. R. Ganger, “Active
disk meets flash: A case for intelligent ssds,” in Proceedings of the
27th International ACM Conference on International Conference on
Supercomputing, ser. ICS *13. New York, NY, USA: ACM, 2013, pp. 91—
102. [Online]. Available: http://doi.acm.org/10.1145/2464996.2465003
E. S. Chung, J. D. Davis, and J. Lee, “Linqits: Big data on little clients,”
in Proceedings of the 40th Annual International Symposium on Computer
Architecture, ser. ISCA ’13. New York, NY, USA: ACM, 2013, pp. 261-
272. [Online]. Available: jhttp://doi.acm.org/10.1145/2485922.2485945
A. De, M. Gokhale, R. Gupta, and S. Swanson, “Minerva: Accelerating
data analysis in next-generation ssds,” in Proceedings of the 2013
IEEE 21st Annual International Symposium on Field-Programmable
Custom Computing Machines, ser. FCCM ’13. Washington, DC,
USA: IEEE Computer Society, 2013, pp. 9-16. [Online]. Available:
https://doi.org/10.1109/FCCM.2013.46

D. J. DeWitt, “Direct - a multiprocessor organization for supporting
relational data base management systems,” in Proceedings of the
5th Annual Symposium on Computer Architecture, ser. ISCA ’78.
New York, NY, USA: ACM, 1978, pp. 182-189. [Online]. Available:
http://doi.acm.org/10.1145/800094.803046

D. J. DeWitt, R. H. Gerber, G. Graefe, M. L. Heytens, K. B. Kumar,
and M. Muralikrishna, “Gamma - a high performance dataflow database
machine,” in Proceedings of the 12th International Conference on Very
Large Data Bases, ser. VLDB ’86. San Francisco, CA, USA: Morgan

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

Kaufmann Publishers Inc., 1986, pp. 228-237. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645913.671463

J. Do, Y.-S. Kee, J. M. Patel, C. Park, K. Park, and D. J. DeWitt, “Query
processing on smart ssds: Opportunities and challenges,” in Proceedings
of the 2013 ACM SIGMOD International Conference on Management of
Data, ser. SIGMOD ’13. New York, NY, USA: ACM, 2013, pp. 1221-
1230. [Online]. Available: |http://doi.acm.org/10.1145/2463676.2465295
M. Drumond, A. Daglis, N. Mirzadeh, D. Ustiugov, J. Picorel, B. Falsafi,
B. Grot, and D. Pnevmatikatos, “The mondrian data engine,” SIGARCH
Comput. Archit. News, vol. 45, no. 2, p. 639-651, Jun. 2017. [Online].
Available: https://doi.org/10.1145/3140659.3080233

P. Fernando, S. Kannan, A. Gavrilovska, and K. Schwan, “phoenix:
Memory speed hpc i/o with nvm,” in 2016 IEEE 23rd International
Conference on High Performance Computing (HiPC).

V. Gogte, A. Kolli, M. J. Cafarella, L. D’Antoni, and T. F. Wenisch,
“Hare: Hardware accelerator for regular expressions,” in The 49th Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO-
49. 1IEEE Press, 2016.

R. Greenwald, M. Bhuller, R. Stackowiak, and M. Alam, Achieving
extreme performance with Oracle Exadata. McGraw-Hill, 2011.

B. Gu, A. S. Yoon, D.-H. Bae, I. Jo, J. Lee, J. Yoon, J.-U. Kang,
M. Kwon, C. Yoon, S. Cho, J. Jeong, and D. Chang, “Biscuit:
A framework for near-data processing of big data workloads,” in
Proceedings of the 43rd International Symposium on Computer
Architecture, ser. ISCA "16. Piscataway, NJ, USA: IEEE Press, 2016,
pp- 153-165. [Online]. Available: https://doi.org/10.1109/ISCA.2016.23
R. J. Halstead, B. Sukhwani, H. Min, M. Thoennes, P. Dube, S. Asaad,
and B. Iyer, “Accelerating join operation for relational databases with
fpgas,” in Proceedings of the 2013 IEEE 21st Annual International
Symposium on Field-Programmable Custom Computing Machines, ser.
FCCM ’13. Washington, DC, USA: IEEE Computer Society, 2013, pp.
17-20. [Online]. Available: https://doi.org/10.1109/FCCM.2013.17

S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S. Mullender, and M. L.
Kersten, “MonetDB: Two Decades of Research in Column-oriented
Database Architectures,” IEEE Data Engineering Bulletin, vol. 35, no. 1,
pp. 4045, 2012.

Z. Istvan, D. Sidler, and G. Alonso, “Caribou: Intelligent distributed
storage,” Proc. VLDB Endow., vol. 10, no. 11, pp. 1202-1213, Aug.
2017. [Online]. Available: https://doi.org/10.14778/3137628.3137632
Z. Istvan, L. Woods, and G. Alonso, “Histograms as a side effect of
data movement for big data,” in Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’14.
New York, NY, USA: ACM, 2014, pp. 1567-1578. [Online]. Available:
http://doi.acm.org/10.1145/2588555.2612174

I. Jo, D.-H. Bae, A. S. Yoon, J.-U. Kang, S. Cho, D. D. G. Lee, and
J. Jeong, “Yoursql: A high-performance database system leveraging in-
storage computing,” Proc. VLDB Endow., vol. 9, no. 12, pp. 924-935, Aug.
2016. [Online]. Available: https://doi.org/10.14778/2994509.2994512
N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho,
D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski,
A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy,
J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin,
G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Nagarajan,
R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani,
C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,
M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan,
R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-datacenter
performance analysis of a tensor processing unit,” in Proceedings of
the 44th Annual International Symposium on Computer Architecture,
ser. ISCA ’17. New York, NY, USA: ACM, 2017, pp. 1-12. [Online].
Available: http://doi.acm.org/10.1145/3079856.3080246

S.-W. Jun, M. Liu, S. Lee, J. Hicks, J. Ankcorn, M. King, S. Xu, and
Arvind, “Bluedbm: An appliance for big data analytics,” in Proceedings
of the 42Nd Annual International Symposium on Computer Architecture,
ser. ISCA ’15. New York, NY, USA: ACM, 2015, pp. 1-13. [Online].
Available: http://doi.acm.org/10.1145/2749469.2750412

S.-W. Jun, A. Wright, S. Zhang, S. Xu, and Arvind, “Grafboost: Using
accelerated flash storage for external graph analytics,” in Proceedings of
the 45th Annual International Symposium on Computer Architecture,

https://vertica.com/
https://aws.amazon.com/emr/details/presto/
https://aws.amazon.com/emr/details/presto/
https://aws.amazon.com/blogs/aws/s3-glacier-select/
https://aws.amazon.com/blogs/aws/s3-glacier-select/
https://monetdb.org/home
https://eng.uber.com/uber-big-data-platform/
https://eng.uber.com/uber-big-data-platform/
https://aws.amazon.com/redshift
https://aws.amazon.com/redshift
http://doi.acm.org/10.1145/3123939.3123985
http://doi.acm.org/10.1145/3123939.3123985
http://doi.acm.org/10.1145/3183713.3190655
http://doi.acm.org/10.1145/355620.361172
http://doi.acm.org/10.1145/2554688.2554787
http://dl.acm.org/citation.cfm?id=3195638.3195647
http://doi.acm.org/10.1145/2464996.2465003
http://doi.acm.org/10.1145/2485922.2485945
https://doi.org/10.1109/FCCM.2013.46
http://doi.acm.org/10.1145/800094.803046
http://dl.acm.org/citation.cfm?id=645913.671463
http://doi.acm.org/10.1145/2463676.2465295
https://doi.org/10.1145/3140659.3080233
https://doi.org/10.1109/ISCA.2016.23
https://doi.org/10.1109/FCCM.2013.17
https://doi.org/10.14778/3137628.3137632
http://doi.acm.org/10.1145/2588555.2612174
https://doi.org/10.14778/2994509.2994512
http://doi.acm.org/10.1145/3079856.3080246
http://doi.acm.org/10.1145/2749469.2750412

(32]

(33]

[34]

[35]

[36]

(37]

[38]

[39]

[40]

[41]

[42]
[44]

ser. ISCA ’18. Piscataway, NJ, USA: IEEE Press, 2018, pp. 411-424.
[Online]. Available: https://doi.org/10.1109/ISCA.2018.00042

O. Kocberber, B. Grot, J. Picorel, B. Falsafi, K. Lim, and
P. Ranganathan, “Meet the walkers: Accelerating index traversals for
in-memory databases,” in Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-46. New
York, NY, USA: ACM, 2013, pp. 468-479. [Online]. Available:
http://doi.acm.org/10.1145/2540708.2540748

G. Koo, K. K. Matam, T. I, H. V. K. G. Narra, J. Li, H.-W.
Tseng, S. Swanson, and M. Annavaram, “Summarizer: Trading
communication with computing near storage,” in Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO-50 *17. New York, NY, USA: ACM, 2017, pp. 219-231.
[Online]. Available: http://doi.acm.org/10.1145/3123939.3124553

J. Lee, H. Kim, S. Yoo, K. Choi, H. P. Hofstee, G.-J. Nam,
M. R. Nutter, and D. Jamsek, “Extrav: Boosting graph processing
near storage with a coherent accelerator,” Proc. VLDB Endow.,
vol. 10, no. 12, pp. 1706-1717, Aug. 2017. [Online]. Available:
https://doi.org/10.14778/3137765.3137776

A. Lottarini, J. a. P. Cerqueira, T. J. Repetti, S. A. Edwards, K. A. Ross,
M. Seok, and M. A. Kim, “Master of none acceleration: A comparison of
accelerator architectures for analytical query processing,” in Proceedings
of the 46th International Symposium on Computer Architecture, ser.
ISCA ’19. New York, NY, USA: ACM, 2019, pp. 762—773. [Online].
Available: http://doi.acm.org/10.1145/3307650.3322220

K. K. Matam, G. Koo, H. Zha, H.-W. Tseng, and M. Annavaram,
“Graphssd: Graph semantics aware ssd,” in Proceedings of the 46th
International Symposium on Computer Architecture, ser. ISCA ’19.
New York, NY, USA: ACM, 2019, pp. 116—128. [Online]. Available:
http://doi.acm.org/10.1145/3307650.3322275

S. Nalli, S. Haria, M. D. Hill, M. M. Swift, H. Volos, and K. Keeton,
“an analysis of persistent memory use with whisper.”

J. Ouyang, S. Lin, S. Jiang, Z. Hou, Y. Wang, and Y. Wang, “Sdf:
Software-defined flash for web-scale internet storage systems,” in
Proceedings of the 19th International Conference on Architectural
Support for Programming Languages and Operating Systems, ser.
ASPLOS ’14. New York, NY, USA: ACM, 2014, pp. 471-484.
[Online]. Available: http://doi.acm.org/10.1145/2541940.2541959

J. Ouyang, W. Qi, W. Yong, Y. Tu, J. Wang, and B. Jia, “Sda: Software-
defined accelerator for general-purpose distributed big data analysis
system,” in Hot Chips: A Symposium on High Performance chips,
Hotchips, 2016.

M. Owaida, D. Sidler, K. Kara, and G. Alonso, “Centaur: A framework
for hybrid cpu-fpga databases,” in 2017 IEEE 25th Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM), April 2017, pp. 211-218.

A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray,
M. Haselman, S. Hauck, S. Heil, A. Hormati, J.-Y. Kim, S. Lanka,
J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong, P. Y. Xiao,
and D. Burger, “A reconfigurable fabric for accelerating large-scale
datacenter services,” in Proceeding of the 41st Annual International
Symposium on Computer Architecuture, ser. ISCA *14. Piscataway,
NJ, USA: IEEE Press, 2014, pp. 13-24. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2665671.2665678

Z. Ruan, T. He, and J. Cong, “Insider: Designing in-storage computing
R. Shu, P. Cheng, G. Chen, Z. Guo, L. Qu, Y. Xiong, D. Chiou, and
T. Moscibroda, “Direct universal access: Making data center resources
available to fpga,” in Proceedings of the 16th USENIX Conference
on Networked Systems Design and Implementation, ser. NSDI’19.
Berkeley, CA, USA: USENIX Association, 2019, pp. 127-140. [Online].
Available: http://dl.acm.org/citation.cfm?1d=3323234.3323246

[43]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

system for emerging high-performance drive,” in Proceedings of the
2019 USENIX Conference on Usenix Annual Technical Conference,
ser. USENIX ATC ’19. Berkeley, CA, USA: USENIX Association,
2019, pp. 379-394. [Online]. Available: http://dl.acm.org/citation.cfm?
1d=3358807.3358840

S. Seshadri, M. Gahagan, S. Bhaskaran, T. Bunker, A. De, Y. Jin,
Y. Liu, and S. Swanson, “Willow: A user-programmable ssd,”
in Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’'14. Berkeley, CA,
USA: USENIX Association, 2014, pp. 67-80. [Online]. Available:
http://dl.acm.org/citation.cfm?1d=2685048.2685055

D. Sidler, Z. Istvan, M. Owaida, and G. Alonso, “Accelerating pattern
matching queries in hybrid cpu-fpga architectures,” in Proceedings
of the 2017 ACM International Conference on Management of Data,
ser. SIGMOD ’17. New York, NY, USA: ACM, 2017, pp. 403—415.
[Online]. Available: http://doi.acm.org/10.1145/3035918.3035954

M. Singh and B. Leonhardi, “Introduction to the ibm netezza warehouse
appliance,” in Proceedings of the 2011 Conference of the Center
for Advanced Studies on Collaborative Research, ser. CASCON ’11.
Riverton, NJ, USA: IBM Corp., 2011, pp. 385-386. [Online]. Available:
http://dl.acm.org/citation.cfm?1d=2093889.2093965

D. Tiwari, S. Boboila, S. S. Vazhkudai, Y. Kim, X. Ma, P. J. Desnoyers,
and Y. Solihin, “Active flash: Towards energy-efficient, in-situ data
analytics on extreme-scale machines,” in Proceedings of the 11th
USENIX Conference on File and Storage Technologies, ser. FAST’13.
Berkeley, CA, USA: USENIX Association, 2013, pp. 119-132. [Online].
Available: http://dl.acm.org/citation.cfm?1d=2591272.2591286

M. Ubell, The Intelligent Database Machine (IDM). Berlin, Heidelberg:
Springer Berlin Heidelberg, 1985, pp. 237-247. [Online]. Available:
https://doi.org/10.1007/978-3-642-82375-6_14

Z. Wang, J. Paul, H. Y. Cheah, B. He, and W. Zhang, “Relational query
processing on opencl-based fpgas,” in 2016 26th International Conference
on Field Programmable Logic and Applications (FPL), Aug 2016, pp.
1-10.

S. Watanabe, K. Fujimoto, Y. Saeki, Y. Fujikawa, and H. Yoshino,
“Column-oriented database acceleration using fpgas,” in 2019 IEEE 35th
International Conference on Data Engineering (ICDE), April 2019, pp.
686-697.

L. Woods, Z. Istvan, and G. Alonso, “Ibex: An intelligent storage
engine with support for advanced sql offloading,” Proc. VLDB
Endow., vol. 7, no. 11, pp. 963-974, Jul. 2014. [Online]. Available:
http://dx.doi.org/10.14778/2732967.2732972

L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross, “The q100
database processing unit,” IEEE Micro, vol. 35, no. 3, pp. 34-46, 2015.
L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross,
“Q100: The architecture and design of a database processing unit,”
in Proceedings of the 19th International Conference on Architectural
Support for Programming Languages and Operating Systems, Ser.
ASPLOS ’14. New York, NY, USA: ACM, 2014, pp. 255-268.
[Online]. Available: http://doi.acm.org/10.1145/2541940.2541961

S. L. Xi, O. Babarinsa, M. Athanassoulis, and S. Idreos, “Beyond
the wall: Near-data processing for databases,” in Proceedings of the
11th International Workshop on Data Management on New Hardware,
ser. DaMoN ’15. New York, NY, USA: ACM, 2015, pp. 2:1-2:10.
[Online]. Available: http://doi.acm.org/10.1145/2771937.2771945

D. Ziener, F. Bauer, A. Becher, C. Dennl, K. Meyer-Wegener,
U. Schiirfeld, J. Teich, J.-S. Vogt, and H. Weber, “Fpga-based
dynamically reconfigurable sql query processing,” ACM Trans.
Reconfigurable Technol. Syst., vol. 9, no. 4, pp. 25:1-25:24, Aug. 2016.
[Online]. Available: http://doi.acm.org/10.1145/2845087

https://doi.org/10.1109/ISCA.2018.00042
http://doi.acm.org/10.1145/2540708.2540748
http://doi.acm.org/10.1145/3123939.3124553
https://doi.org/10.14778/3137765.3137776
http://doi.acm.org/10.1145/3307650.3322220
http://doi.acm.org/10.1145/3307650.3322275
http://doi.acm.org/10.1145/2541940.2541959
http://dl.acm.org/citation.cfm?id=2665671.2665678
http://dl.acm.org/citation.cfm?id=3323234.3323246
http://dl.acm.org/citation.cfm?id=3358807.3358840
http://dl.acm.org/citation.cfm?id=3358807.3358840
http://dl.acm.org/citation.cfm?id=2685048.2685055
http://doi.acm.org/10.1145/3035918.3035954
http://dl.acm.org/citation.cfm?id=2093889.2093965
http://dl.acm.org/citation.cfm?id=2591272.2591286
https://doi.org/10.1007/978-3-642-82375-6_14
http://dx.doi.org/10.14778/2732967.2732972
http://doi.acm.org/10.1145/2541940.2541961
http://doi.acm.org/10.1145/2771937.2771945
http://doi.acm.org/10.1145/2845087

	Introduction
	Related Work
	Dataflow map of a query
	Overview of aquoman Architecture
	Programming aquoman
	aquoman Microarchitecture
	Row Selector
	Row Transformer
	SQL Swissknife
	aquoman Memory Management
	Suspending Query Processing on aquoman

	aquoman Implementation
	Evaluation
	Experiment Setup
	aquoman TPC-H Evaluation
	Advantages of aquoman
	Validating simulation results on FPGA

	Conclusion
	References

