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Abstract—In this paper, a novel communication framework
that uses an unmanned aerial vehicle (UAV)-carried intelli-
gent reflector (IR) is proposed to enhance multi-user downlink
transmissions over millimeter wave (mmWave) frequencies. In
order to maximize the downlink sum-rate, the optimal precoding
matrix (at the base station) and reflection coefficient (at the
IR) are jointly derived. Next, to address the uncertainty of
mmWave channels and maintain line-of-sight links in a real-
time manner, a distributional reinforcement learning approach,
based on quantile regression optimization, is proposed to learn
the propagation environment of mmWave communications, and,
then, optimize the location of the UAV-IR so as to maximize the
long-term downlink communication capacity. Simulation results
show that the proposed learning-based deployment of the UAV-IR
yields a significant advantage, compared to a non-learning UAV-
IR, a static IR, and a direct transmission schemes, in terms of
the average data rate and the achievable line-of-sight probability
of downlink mmWave communications.

I. INTRODUCTION

Millimeter wave (mmWave) frequencies are an essential

component of next-generation cellular systems, in order to

meet the exponential increase of data demand and support a

growing number of wireless devices [1]. Due to a large avail-

able bandwidth, mmWave frequencies have a strong potential

to provide high communication rates. However, the small

wavelength of mmWave spectrum yields the high susceptibility

to blockage caused by common objects, such as buildings and

foliage, which seriously attenuate mmWave propagation [2].

In order to bypass obstacles and prolong the communication

range, signal reflectors have been considered as an energy-

efficient solution for mmWave communications. Signal reflec-

tors can establish line-of-sight (LOS) links in face of blockage,

by replacing a non-line-of-sight (NLOS) mmWave channel by

multiple connected LOS links. As a passive element, a signal

reflector costs no energy and incurs no additional receiving

noise [3]. A reflector-aided transmission enables the connected

LOS links to share the same frequency band, and, thus, yields

a high spectrum efficiency. Meanwhile, by aligning a large

number of low-cost reflective components and jointly inducing

phase shifts to incident signals, an intelligent reflector (IR)

can realize beamforming with very lower energy cost for

mmWave communications [4]. Moreover, to maintain LOS

links in a mobile scenario, an IR can be equipped onto

an unmanned aerial vehicle (UAV) platform [3], so that the

location of the IR can be adjusted intelligently, based on the

real-time communication environment, in order to improve the
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reliability of mmWave transmissions. Compared with a UAV-

aided relay station, a UAV-carried IR (UAV-IR) has a simpler

antenna structure and smaller power cost. Therefore, an IR

facilitate multiple-input-multiple-output transmissions for the

UAV platform, which has very limited onboard energy.

The use of IRs to improve the communication performance

of mmWave has been studied in [3]–[7]. In [3], we studied

the problem of using a UAV-IR to maximize downlink trans-

missions towards a single mobile user. The authors in [4]

investigated the IR-aided mmWave communications, with a

deep reinforcement learning (RL) framework, to improve the

coverage and increase the data rate in an indoor network. In

[5] and [6], the authors proposed a hybrid precoding scheme to

jointly design the transmit precoding at the base station (BS)

and the reflection parameters at the IR. However, the prior

works in [3]–[6] focus on the downlink transmission to a single

user, and they do not consider the more challenging problem of

multi-user communications. Meanwhile, the works in [7] and

[8] developed a static IR-assisted mmWave communication

framework for multiple downlink users, such that the weighted

sum-rate is maximized. However, most of the previous works

in [4]–[8] optimize the reflection transmission of the IR while

assuming a fixed location. Although a static IR establishes

LOS links between transmitters and receivers in the face of

blockage, maintaining LOS channels is challenging, especially

in a mobile communication scenario, where the movement of

each user dynamically changes the channel state. In particular,

given the high susceptibility of mmWave signals to human

body, a single body rotation can block the LOS link and render

the reflection transmission inefficient, using a static IR.

Machine learning techniques were proposed in in [4] and

[9]–[11] in order to address the wireless channel dynamics

and improve the performance of IR-aided communications.

For instance, in [9], we studied the problem of optimizing

beamforming transmissions and reconfigurable reflection of an

IR to serve multiple users, using a distributional RL method,

so as to maximize the downlink sum-rate. The authors in [10]

proposed a deep learning approach to optimize the IR phase

shift, given a limited number of active reflective elements.

The work in [11] introduced an RL-based scheme to jointly

optimize the precoding transmission and signal reflection.

However, all the prior art in [4] and [9]–[11] does not consider

a mobile IR whose location can be dynamically optimized so

as to enhance the mmWave reflection performance.

The main contribution of this paper is, thus, a novel down-

link framework using a UAV-IR to assist a mmWave BS for

multi-user communications. First, the precoding matrix at the



Fig. 1: A UAV-IR establishes LOS links between the BS and UEs
for efficient downlink transmissions over mmWave frequencies.

BS and reflection coefficient at the IR are jointly optimized

to maximize the downlink sum-rate towards multiple users.

Next, to address the uncertainty of mmWave channels and

maintain LOS links in a real-time manner, a distributional

reinforcement learning approach [12], based on quantile re-

gression optimization, is introduced to learn the mmWave

communication environment, such that the location of the

UAV-IR is optimized to maximize the communication sum-

rate over a long-term horizon. Simulation results show that

the proposed learning-based deployment of the UAV-IR yields

a significant advantage, compared to a non-learning UAV-IR,

a static IR and a direct transmission schemes, in terms of the

average data rate and the achievable downlink LOS probability.

The rest of this paper is organized as follows. Section

II presents the system model and problem formulation. The

optimal deployment of the UAV-IR for multi-user downlink

transmissions is proposed in Section III. Simulation results

are shown in Section IV. Conclusions are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a wireless BS serving a set L of K cellular user

equipment (UE) over the downlink via mmWave frequencies.

The BS has M transmit antennas, and each downlink UE has a

single antenna. As shown in Fig. 1, we assume that the direct

transmission channel between the BS and each UE is blocked,

and the received signal via the direct link is negligible. In order

to bypass the obstacle and improve the received power at each

UE, a UAV-IR with N reflective elements is deployed to assist

downlink transmissions towards NLOS UEs. By leveraging

the mobility of the UAV, the UAV-IR can potentially replace

each direct NLOS link with two connected LOS links, by

adjusting its position and reflecting mmWave signals from the

BS towards each UE. Since an IR is a passive device, it cannot

acquire the channel state information (CSI) or process received

signals. To enable information exchange, an active antenna is

embedded onto the UAV to receive a control signal from the

BS and feedback information from served UEs.

A. Communications Capacity and Power Cost

Consider a multi-user multiple-input-single-output downlink

communications, in which the BS serves downlink UEs via a

common mmWave band. The BS-IR channel is denoted as

G ∀ C
N∗M , and the IR-UE link for each UE k is given as

hk ∀ C
1∗ N . Let O be the set of N IR components. For each

component n ∀ O , the phase shift is denoted by φn ∀ [0, 2π)
and the amplitude attenuation is βn ∀ [0, 1]. Consequently, the

IR’s reflection coefficient is Φ = diag(β1e
jφ1 ,×××, βNejφN ).

In order to provide downlink communications to multiple UEs,

the BS precodes the transmit signal as an M ≤ 1 vector

a =
∑K

k=1 wksk, where wk ∀ C
M∗ 1 is the precoding vector,

and sk is the unit-power information symbol for UE k. The

received signal at UE k will thus be: yk = hkΦGa+uk, where

uk ←KO (0, σ2) is the receiver noise at UE k. In order to

separate the mmWave propagation environment with the IR’s

reflection, we rewrite the received signal at UE k equivalently

in the following form:

yk = θDka+ uk, (1)

where θ = [β1e
jφ1 ,×××, βNejφN ] ∀ C

1∗ N is a vector of

the UAV-IR reflection coefficients and Dk = diag(hk)G ∀
C

N∗M is the CSI of the connected BS-IR-UE link towards UE

k without any phase shift. The channel measurement approach

for IR-aided cellular communications has been investigated in

[9]. Here, we assume that the CSI Dk(x) of each BS-IR-UE

link only depends on the location x of the UAV-IR, and the

channel matrix Dk(x) is known to both BS and UAV-IR, as

long as x is given. Therefore, the signal-to-interference-and-

noise-ratio (SINR) of downlink communications from the BS,

reflected by the IR, to each UE k is

ηk(W ,θ,x) =
‖θDk(x)wk‖2∑

i∀=k,i � { ‖θDk(x)wi‖2 + σ2
, (2)

where W = [w1,×××,wK ] ∀ C
M∗ K is a precoding matrix

at the BS. Consequently, the total achievable rate that the IR-

assisted communication can provide to all UEs is

C(W ,θ,x) =
K∑

k=1

b log2(1 + ηk(W ,θ,x)), (3)

where b is the downlink bandwidth.

In order to maintain LOS links with both the BS and UEs,

the UAV-IR needs to frequently adjust its location, based on

the real-time CSI. Thus, the power cost of a UAV-IR includes

the UAV’s hovering power ph, mobility power pm, and the

adjustment power pr for the IR’s reflection coefficients. In

order to facilitate beamforming transmissions at the BS and

ensure a reliable reflection at the IR, we assume that downlink

communication only happens when the UAV-IR has a fixed

location. Let v be the speed of the UAV-IR, and �v=0 is an

indicator function which equals to one when the UAV is in

the hovering state with a zero speed. Therefore, the power

cost of the UAV-IR for providing downlink reflection service

is p(v) = �v=0 ×(ph + pr) + (1 �v=0)×pm.

B. Problem Formulation

As shown in Fig. 2, in order to provide efficient and reliable

mmWave communications to downlink UEs, a dynamic de-

ployment for the UAV-IR is considered, where the deployment

process is divided into two sequential and alternating stages:

communication and movement. In the communication stage,



Fig. 2: The two-stage deployment process of the UAV-IR.

the UAV-IR stays at a fixed location while reflecting mmWave

signals towards downlink UEs. However, once the average

downlink rate is lower than a threshold ρ, blockage occurs in

the downlink channels for most UEs. In this case, the current

communication stage ends, and the UAV-IR moves to a new

position, so as to establish LOS links for efficient downlink

communications. Here, we assume that the CSI Dk is constant

within each coherence time slot ΔT . Given that the duration of

a communication stage depends on the real-time CSI and the

length of a movement stage is determined by the movement

distance and the UAV’s speed, both stages can last for several

coherence time slots.

Our goal is to jointly optimize the precoding matrix at

the BS, the reflection coefficient of the IR, and the location

of the UAV, such that, before the UAV’s onboard energy is

exhausted, the total achievable data transmissions that the

UAV-IR provides to downlink UEs can be maximized, i.e.:

max
}W (t),θ(t),x(t)‖∀t

T∑
t=1

�v(t)=0 ×C (W (t),θ(t),x(t))×ΔT

(4a)

s. t.

K∑
k=1

√wk(t)√2 ≥ Pmax, (4b)

‖θn(t)‖≥ 1, Cn ∀ O , (4c)

T∑
t=1

p(v(t))×ΔT ≥ E, (4d)

where the random integer T ∀ N
+ denotes the final time slot

of the UAV’s service, v(t) = x(t 1) x(t)
ΔT is the average

speed of the UAV during the coherence time t, Pmax is the

maximal transmit power at the BS, and E is the initial onboard

energy of the UAV. Therefore, the objective function (4a) is

the summation of downlink data transmissions that the UAV-

IR provides to all UEs before the end of its service, (4b) is the

power limitation at the BS, (4c) is the reflection constraints at

the IR, and (4d) is the energy constraint of the UAV.

The optimization problem in (4) is challenging to solve

for two reasons. First, during each coherence time, the ob-

jective function (4a) is non-convex with respect to the optimal

variables W , θ and x. Second, the relationship between the

location x of the UAV-IR with the CSI Dk(x) is not explicitly

known. Meanwhile, it is impractical to apply a sweeping

search by moving the UAV-IR to all possible locations and

measuring the real-time CSI Dk for each UE k. In order to

address these challenges, in Section III-A, the beamforming

matrix W and reflection coefficient θ will be optimized, given

a fixed location and known CSI. Next, the location optimiza-

tion of the UAV-IR will be addressed using a learning-based

approach to model the mmWave communication environment.

III. OPTIMAL DEPLOYMENT OF UAV-IR

In this section, the precoding matrix at the BS, the reflection

coefficients at the IR, and the location of the UAV-IR will

be jointly optimized in a real-time manner to maximize the

downlink transmission capacity. In particular, a distributional

reinforcement learning (DRL) framework is proposed to model

the downlink CSI during each communication stage, based on

the UEs’ feedback.

A. Optimal precoding and reflection coefficients
First, we focus on the communication stage, where the

UAV-IR has a fixed location x and the downlink CSI Dk

for each UE k is known. Then, for each coherence time, (4)

is reduced to optimize the precoding matrix and the reflection

coefficients, so as to maximize the downlink sum-rate, i.e.:

max
W ,θ

C (W ,θ) (5a)

s. t.

K∑
k=1

√wk√2 ≥ Pmax, (5b)

‖θn‖≥ 1, Cn ∀ O . (5c)

To solve this non-convex problem, we apply the Lagrangian

dual transform method [13], introduce an auxiliary variable

α ∀ R
K∗ 1, and equivalently rewrite the objective function

(5a) into the following form:

Cα(W ,θ,α) = b

K∑
k=1

(
log2(1 + αk) αk +

(1 + αk)ηk
1 + ηk

)
,

(6)

By holding W and θ fixed and setting ∂Cα

∂αk
= 0, we have

the optimal value of αk as αo
k = ηk. Then, for a fixed α, the

optimization problem of W and θ is reduced to

max
W ,θ

K∑
k=1

α̂kηk
1 + ηk

(7a)

s. t. (5b), (5c), (7b)

where α̂k = b(1 + αk). Given that (7) is a multiple-ratio

fractional programming problem, we can fix the value of W
and θ alternatively, and solve the optimization problem via an

iterative approach, detailed as follows.
1) Optimal precoding matrix: For a fixed θ, the optimal

precoding problem becomes

max
W

f(W ) =
K∑

k=1

α̂k
‖θDkwk‖2∑K

i=1 ‖θDkwi‖2 + σ2
(8a)

s. t.

K∑
k=1

√wk√2 ≥ Pmax. (8b)



The multiple-ratio fractional programming function in (8a) is

equivalent to fλ(W ,λ) =
∑K

k=1 ‖λk‖2(
∑K

i=1 ‖θDkwi‖2 +
σ2) +

∑K
k=1 2 α̂kRe}λkθDkwk| , where λ ∀ R

K∗ 1 is an

auxiliary vector [13, Theorem 2]. Since fλ is a convex function

with respect to both wk and λk, Ck, an iterative approach can

be applied to optimize W and λ alternatively. First, we fix

W and set ∂fλ
∂λk

= 0. Then, the optimal value of λk is

λo
k =

α̂kθDkwk∑K
i=1 ‖θDkwi‖2 + σ2

. (9)

Then, by fixing λ, the optimal wk can be given by

wo
k =

√
α̂kλkθDk

(
κoIM +

K∑
i=1

‖λi‖2(θDi)(θDi)
H

) 1

,

(10)
where κo ∼ 0 is the minimum value such that

∑K
k=1√wo

k√2 ≥
Pmax holds. By alternating between (9) and (10), the precoding

matrix will eventually converge to the unique and optimal

value W∈, with a computational complexity of { (M4).

2) Optimal reflection coefficients: Next, we fix the value of

W and optimize the reflection coefficient θ in (7), i.e.:

max
θ

f(θ) =
K∑

k=1

α̂k
‖θDkwk‖2∑K

i=1 ‖θDkwi‖2 + σ2
(11a)

s. t. ‖θn‖≥ 1, Cn ∀ O . (11b)

Similarly, an auxiliary vector δ is introduced, so that (11a)

equivalently becomes fδ(θ, δ) =
∑K

k=1 2 α̂kRe}δkθDkwk|∑K
k=1 ‖δk‖2(

∑K
i=1 ‖θDkwi‖2 + σ2), which is convex with

respect to both θ and δ. Therefore, the unique and optimal

value of the reflection coefficients θ∈ can be obtained via

a similar alternative approach as the precoding optimization.

First, the optimal δk for a given θ is

δok =
α̂kθDkwk∑K

i=1 ‖θDkwi‖2 + σ2
. (12)

Then, the optimization of the reflection coefficient for a fixed

δk becomes

max
θ

f(θ) = θUθH + 2Re}θv| C (13a)

s. t. ‖θn‖≥ 1, Cn ∀ O , (13b)

where C =
∑K

k=1 ‖δk‖2σ2, v =
∑K

k=1 δk
HDkwk, and

U =
∑K

k=1 ‖δk‖2
∑

i∀=k Dkwi(Dkwi)
H . Given that U is a

positive-definite matrix, f(θ) is quadratic concave with respect

to θ. Meanwhile, the constraint (13b) is a convex set. Thus,

(13) is solvable using a Lagrange dual decomposition [8] with

a computational complexity of { (N6).

Therefore, given the CSI Dk of each BS-IR-UE link, the

precoding matrix W∈ and reflection coefficient θ∈ can be

optimally and uniquely determined. Next, the optimal location

of the UAV-IR will be studied to guarantee a LOS channel for

each BS-IR-UE link.

B. Optimal location of the UAV-IR

During the communication stage, at the end of each coher-

ence time t, the UAV-IR can get feedback from each UE about

the downlink transmission performance. Whenever the average

rate per UE is smaller than ρ, i,e, C(t) < Kρ, blockage occurs

in the downlink channels for most UEs. In this case, the UAV-

IR needs to move and rebuild LOS links. The optimization

problem of the UAV-IR’s location is given as

max
}x(t)‖∀t

T∑
t=1

�v(t)=0 ×C (x(t))×ΔT (14a)

s. t.

T∑
t=1

p(v(t))×ΔT ≥ E. (14b)

To determine the optimal location for each communication

stage, a DRL framework is designed to learn the dynamic com-

munication environment and model the relationship between

the UAV’s location and downlink CSI. In our DRL framework,

the downlink CSI }Dk| Kk is the communication environment,
the UAV-IR is the agent that takes action Δx to change its

location from x to x + Δx, and the communication state e
is a vector of the received signal power at each UE, where

e = [‖y1‖2,×××, ‖yK‖2]. At the end of each coherence time,

the UAV-IR receives reward r(x) = �v=0C(x)ΔT , which is

the total received data in the downlink transmission. Due to

the small-scale fading of mmWave channels, the downlink CSI

Dk(x) may vary between different time slots, even for a fixed

location x of the UAV-IR. Thus, it is more suitable to consider

the reward r as a random variable with respect to x, rather

than a determined value. Meanwhile, P (e
′‖e,Δx) is the state

transition probability from e to e
′

after taking action Δx.

To properly capture the relationship between the UAV’s

movement and downlink transmission performance, first, a

policy π(Δx‖e) is introduced to define the probability that the

UAV-IR will move by Δx, under a current state e. Meanwhile,

to quantify the potential of each action Δx for improving the

downlink rate under a state e, we define the return function

of each state-action pair for any time slot t as

Zπ(et,Δxt) =

T∑
i=t

γi tr(ei,Δxi), (15)

where Δxi ← π(×‖ei), ei+1 ← P (×‖ei,Δxi) and xi+1 =
xi + Δxi. Here, γ ∀ (0, 1) discounts the future rewards in

the current estimation for each state-action pair. If γ ∈ 1, the

return function Zπ will approximate (14a). Thus, the return

function (15) defines a cumulative discounted reward that the

UAV-IR can achieve by reflecting mmWave signals at location

xt+Δxt for the next communication stage. Meanwhile, given

that r is a random variable, it is necessary to model a distribu-

tion function of (15) to identify the return value for each state-

action pair. Once the return distribution is known, the optimal

policy π that maximizes the expectation of the cumulative re-

wards can be defined by Δx∈= argmaxΔx E(Zπ(et,Δxt)).
Thus, the optimal location of the UAV-IR for the next time

slot will be xt+1 = xt +Δx∈.



In order to model the return distribution for each state-action

pair, a quantile regression (QR) method [12] is applied. A Q-

quantile model ZQ approximates the target distribution Zπ ,

using a discrete function with variable locations of Q supports

and fixed quantile of 1
Q probabilities [9], for a fixed integer

Q ∀ N
+. Mathematically, a Q-quantile model is denoted by

ZQ(e,Δx) = [z1(e,Δx),×××, zQ(e,Δx)], with a cumulative

probability FZQ
(zq) = q

Q for q = 1,×××, Q. The objective

is to find the optimal location for each support, such that

the “distance” between the target distribution Zπ and the Q-

quantile model ZQ can be minimized. However, given that

the actual return distribution Zπ is not explicitly known, an

empirical distribution Z will be formed, based on the UEs’

feedback during each time slot, and Z is used as the target

distribution to model the return approximation ZQ. To quantify

the “distance” between two distribution functions, the quantile

regression loss is defined as [12],

NZ(ZQ) =

Q∑
q=1

EZ

[‖ωq �z<zq‖×(z zq)
2
]
, (16)

where ωq = 2q 1
2Q , ‖ωq �z<zq‖ is the weight of regression

loss penalty, and (z zq)
2 is the square of approximation

error. Thus, the problem of the return distribution modeling

becomes to minimize the quantile regression loss, i.e.,

min
z1,×××,zQ

NZ(ZQ). (17)

Since the objective function in (17) is convex with respect to

ZQ, the minimizer }z∈q | q=1,×××,Q can be found by conventional

gradient-descent approaches with a computational complexity

of { (Q2). As a result, for each state-action pair, its return

distribution ZQ(e,Δx) can be approximated by a Q-quantile

}z∈1(e,Δx),×××, z∈Q(e,Δx)| via (17).

Consequently, in the location optimization problem of the

UAV-IR, after observing a communication state et, the UAV-

IR can estimate the expected return value for each action Δx,

by computing the marginal distribution of ZQ(e,Δx), and

choose the optimal location xt+1 = xt +Δx∈ that maximize

the summation of future downlink transmissions via

Δx∈= argmax
Δx

E [ZQ(et,Δx)] = argmax
Δx

1

Q

Q∑
q=1

zq(et,Δx).

(18)

After the UAV-IR arrives at the new location xt+1 and

provides downlink service to UEs, a new state et+1 and reward

rt+1 will be updated at the end of the l + 1 time slot. Given

the downlink transmission, the empirical distribution can be

updated via a Q-learning approach, where zi(et,Δxt) →
rt+1 + γzti(et+1,Δxt+1), Ci = 1,×××, Q. As a result, the

return distribution Zt
Q is updated by minimize the distance

from the target distribution Z, based on (17). The training and

update algorithm of the DRL model for the real-time optimal

deployment of the UAV-IR is summarized in Algorithm 1.

The convergence property of this iterative algorithm has been

proved in [9, Theorem 1].

Algorithm 1 DRL-optimized deployment for the UAV-IR

Initialize the precoding matrix W 0, the reflection coefficient θ0,
the location x0, the onboard energy E0, and the DRL model
function Z0

Q(e,Δx) for each state-action pair.
For t = 1,≥≥≥, T :

A. If vt > 0, the UAV-IR continues its movement;
B .If vt = 0, the UAV-IR is in the communication stage;
Repeat:

B1. Update the auxiliary variable αk = ηk;
B2. Optimize W ∗

t by alternating between (9) and (10);
B3. Optimize θ∗

t , by alternating between (12) and (13);
Until the value of Cα in (6) converges;

B4. Receive the reward rt and the state et. If rt ←KρΔT ,
xt+1 = xt; Otherwise, the UAV-IR moves by
Δx∗ = argmaxΔx

1
Q

∑Q
q=1 z

t−1
q (et,Δx).

B5. Update the empirical distribution Z via
zi(et−1,Δxt−1) ∀ rt+γzt−1

i (et,Δxt), {i = 1,≥≥≥, Q.
B6. Update the DRL model Zt

Q via,

argmin{zq}∀q

∑Q
q=1

∑Q
i=1

2q−1
Q

�zi<zq ≥(zi zq)
2.

C. Update onboard energy via Et+1 = Et p(vt)ΔT .
Until Et = 0.

IV. SIMULATION RESULTS AND ANALYSIS

For our simulations, we consider a uniform square array

of antennas at both the BS and the UAV-IR with M = 16
and N = 16, and the number of downlink UEs is K = 4.

The BS is located at (0, 0, 20), each UE’s location follows

an i.i.d. two-dimensional Gaussian O ((20, 0), 8I2) with zero

height, and the mobility pattern of each UE follows a Markov

decision process in [3]. A building located at (10, 0, 0) with

a height of 18 meters permanently blocks direct BS-UE links.

The path loss and mmWave channel model are based on [9].

For communication parameters, we set f = 30 GHz, b = 2
MHz, Pmax = 40 dBm, and ΔT = 0.1 second. The average

speed of the UAV during the mobility stage is v = 10 m/s,

the maximal onboard energy is Emax = 20 Wh, and the power

cost are pm = 20 W, ph = 16 W, and pr = 0.16 W. In the

DRL model, we set Q = 40, and γ = 0.9. In order to have

a finite state-action space, we discretize the communication

state e to be a binary vector, where if the received power of

UE k is smaller than a threshold τ , ek = 0; otherwise ek = 1.

The discrete action space is defined as: Δx1 is “ascend by one

meter”, Δx2 is “descend by one meter”, and Δx3 to Δx2+K

are “move towards UE k by one meter” for each k ∀ L .

In Fig. 3a, we first show the empirical probability of having

a LOS downlink channel towards each UE. To evaluate the

performance of the proposed DRL approach for the UAV-IR

deployment, a direct transmission, a static IR, and a UAV-

IR without learning are introduced as baselines. The static IR

is placed at (20, 10, 20) to bypass the building and establish

LOS BS-IR-UE links. However, the bodies of human users

may block mmWave channels. For the non-learning scheme,

the UAV-IR moves towards a UE by one meter, every time

downlink blockage occurs. As shown in Fig. 3a, the static

IR scheme yields a LOS probability of around 50%. Due to

the mobility of the UAV, the proposed UAV-IR scheme can

maintain a LOS probability of over 90%, and the non-learning
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Fig. 3: (a) The achievable LOS probability of downlink mmWave channels. (b) The downlink rate increases, as the transmit power at the
BS increases. (c) The return distribution of each action under the worst-case communication state e = 0K .

UAV-IR results in a probability of over 60%. Moreover, as the

altitude of the UAV-IR increases, the LOS downlink probabil-

ity will naturally increase for both UAV-IR schemes. However,

since the DRL-based deployment can estimate the potential of

each action in improving the mmWave communication over a

long term, the proposed method always yields a higher LOS

probability than the non-learning scheme.

Fig. 3b shows the time-average data rate of mmWave

downlink communications, as the transmit power of the BS

increases. When the transmit power increases from 20 to

40 dBm, the downlink data rates of all schemes become

higher. First, compared with the direct transmission scheme,

the proposed UAV-IR approach yields a performance gain of

over two-folds in the downlink data rate, due to a higher LOS

probability. Meanwhile, the DRL-enabled deployment of the

UAV-IR improves the communication performance by over

25% and 50%, compared to the non-learning UAV-IR and the

static IR, respectively. For the non-learning scheme, its short-

sighted strategy causes a frequent movement of the UAV-IR,

thus yielding a lower downlink rate.

Fig. 3c shows how to choose the optimal action under a

worst-case state e = 0K , where the received power at each

UE is lower than the threshold. In this case, Fig. 3c shows the

return distribution and the expected return value of each action.

Since ∆x1 yields the highest expected reward, the optimal

action under the worst-case communication state e = 0K is

to increase the altitude of the UAV-IR by one meter.

V. CONCLUSION

In this paper, we have proposed a novel DRL-enabled

approach to the deploy a UAV-IR for efficient downlink trans-

missions over mmWave frequencies towards multiple UEs. To

maximize the downlink sum-rate, the optimal precoding matrix

at the BS and reflection coefficient of the IR have been derived.

In order to model the propagation environment of mmWave

communications, the DRL method has been proposed to

optimize the location of the UAV-IR, so as to maximize the

downlink communication capacity. Simulation results show

that the proposed DRL-based deployment of the UAV-IR

yields a significant advantage, compared to a non-learning

UAV-IR, a static IR, and a direct transmission schemes, in

terms of the average data rate and the achievable downlink

LOS probability. Future research will focus on multiple UAV-

IRs in outdoor communication scenarios with mobile users.
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