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Abstract—In this paper, a novel communication framework
that uses an unmanned aerial vehicle (UAV)-carried intelli-
gent reflector (IR) is proposed to enhance multi-user downlink
transmissions over millimeter wave (mmWave) frequencies. In
order to maximize the downlink sum-rate, the optimal precoding
matrix (at the base station) and reflection coefficient (at the
IR) are jointly derived. Next, to address the uncertainty of
mmWave channels and maintain line-of-sight links in a real-
time manner, a distributional reinforcement learning approach,
based on quantile regression optimization, is proposed to learn
the propagation environment of mmWave communications, and,
then, optimize the location of the UAV-IR so as to maximize the
long-term downlink communication capacity. Simulation results
show that the proposed learning-based deployment of the UAV-IR
yields a significant advantage, compared to a non-learning UAV-
IR, a static IR, and a direct transmission schemes, in terms of
the average data rate and the achievable line-of-sight probability
of downlink mmWave communications.

I. INTRODUCTION

Millimeter wave (mmWave) frequencies are an essential
component of next-generation cellular systems, in order to
meet the exponential increase of data demand and support a
growing number of wireless devices [1]. Due to a large avail-
able bandwidth, mmWave frequencies have a strong potential
to provide high communication rates. However, the small
wavelength of mmWave spectrum yields the high susceptibility
to blockage caused by common objects, such as buildings and
foliage, which seriously attenuate mmWave propagation [2].

In order to bypass obstacles and prolong the communication
range, signal reflectors have been considered as an energy-
efficient solution for mmWave communications. Signal reflec-
tors can establish line-of-sight (LOS) links in face of blockage,
by replacing a non-line-of-sight (NLOS) mmWave channel by
multiple connected LOS links. As a passive element, a signal
reflector costs no energy and incurs no additional receiving
noise [3]. A reflector-aided transmission enables the connected
LOS links to share the same frequency band, and, thus, yields
a high spectrum efficiency. Meanwhile, by aligning a large
number of low-cost reflective components and jointly inducing
phase shifts to incident signals, an intelligent reflector (IR)
can realize beamforming with very lower energy cost for
mmWave communications [4]. Moreover, to maintain LOS
links in a mobile scenario, an IR can be equipped onto
an unmanned aerial vehicle (UAV) platform [3], so that the
location of the IR can be adjusted intelligently, based on the
real-time communication environment, in order to improve the
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reliability of mmWave transmissions. Compared with a UAV-
aided relay station, a UAV-carried IR (UAV-IR) has a simpler
antenna structure and smaller power cost. Therefore, an IR
facilitate multiple-input-multiple-output transmissions for the
UAV platform, which has very limited onboard energy.

The use of IRs to improve the communication performance
of mmWave has been studied in [3]-[7]. In [3], we studied
the problem of using a UAV-IR to maximize downlink trans-
missions towards a single mobile user. The authors in [4]
investigated the IR-aided mmWave communications, with a
deep reinforcement learning (RL) framework, to improve the
coverage and increase the data rate in an indoor network. In
[5] and [6], the authors proposed a hybrid precoding scheme to
jointly design the transmit precoding at the base station (BS)
and the reflection parameters at the IR. However, the prior
works in [3]-[6] focus on the downlink transmission to a single
user, and they do not consider the more challenging problem of
multi-user communications. Meanwhile, the works in [7] and
[8] developed a static IR-assisted mmWave communication
framework for multiple downlink users, such that the weighted
sum-rate is maximized. However, most of the previous works
in [4]-[8] optimize the reflection transmission of the IR while
assuming a fixed location. Although a static IR establishes
LOS links between transmitters and receivers in the face of
blockage, maintaining LOS channels is challenging, especially
in a mobile communication scenario, where the movement of
each user dynamically changes the channel state. In particular,
given the high susceptibility of mmWave signals to human
body, a single body rotation can block the LOS link and render
the reflection transmission inefficient, using a static IR.

Machine learning techniques were proposed in in [4] and
[9]-[11] in order to address the wireless channel dynamics
and improve the performance of IR-aided communications.
For instance, in [9], we studied the problem of optimizing
beamforming transmissions and reconfigurable reflection of an
IR to serve multiple users, using a distributional RL method,
so as to maximize the downlink sum-rate. The authors in [10]
proposed a deep learning approach to optimize the IR phase
shift, given a limited number of active reflective elements.
The work in [11] introduced an RL-based scheme to jointly
optimize the precoding transmission and signal reflection.
However, all the prior art in [4] and [9]-[11] does not consider
a mobile IR whose location can be dynamically optimized so
as to enhance the mmWave reflection performance.

The main contribution of this paper is, thus, a novel down-
link framework using a UAV-IR to assist a mmWave BS for
multi-user communications. First, the precoding matrix at the
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Fig. 1: A UAV-IR establishes LOS links between the BS and UEs
for efficient downlink transmissions over mmWave frequencies.

BS and reflection coefficient at the IR are jointly optimized
to maximize the downlink sum-rate towards multiple users.
Next, to address the uncertainty of mmWave channels and
maintain LOS links in a real-time manner, a distributional
reinforcement learning approach [12], based on quantile re-
gression optimization, is introduced to learn the mmWave
communication environment, such that the location of the
UAV-IR is optimized to maximize the communication sum-
rate over a long-term horizon. Simulation results show that
the proposed learning-based deployment of the UAV-IR yields
a significant advantage, compared to a non-learning UAV-IR,
a static IR and a direct transmission schemes, in terms of the
average data rate and the achievable downlink LOS probability.

The rest of this paper is organized as follows. Section
Il presents the system model and problem formulation. The
optimal deployment of the UAV-IR for multi-user downlink
transmissions is proposed in Section III. Simulation results
are shown in Section I'V. Conclusions are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a wireless BS serving a set £ of K cellular user
equipment (UE) over the downlink via mmWave frequencies.
The BS has M transmit antennas, and each downlink UE has a
single antenna. As shown in Fig. 1, we assume that the direct
transmission channel between the BS and each UE is blocked,
and the received signal via the direct link is negligible. In order
to bypass the obstacle and improve the received power at each
UE, a UAV-IR with N reflective elements is deployed to assist
downlink transmissions towards NLOS UEs. By leveraging
the mobility of the UAV, the UAV-IR can potentially replace
each direct NLOS link with two connected LOS links, by
adjusting its position and reflecting mmWave signals from the
BS towards each UE. Since an IR is a passive device, it cannot
acquire the channel state information (CSI) or process received
signals. To enable information exchange, an active antenna is
embedded onto the UAV to receive a control signal from the
BS and feedback information from served UEs.

A. Communications Capacity and Power Cost

Consider a multi-user multiple-input-single-output downlink
communications, in which the BS serves downlink UEs via a
common mmWave band. The BS-IR channel is denoted as
G YV CN*M and the IR-UE link for each UE k is given as

hy V C™* V. Let O be the set of N IR components. For each
component n V O, the phase shift is denoted by ¢,, ¥ [0, 27)
and the amplitude attenuation is 3,, V [0, 1]. Consequently, the
IR’s reflection coefficient is ® = diag(e7?1, xxx, Byel?N).
In order to provide downlink communications to multiple UEs,
the BS precodes the transmit signal as an M < 1 vector
a=>,_, wgsy, where wy, ¥ CM*1 s the precoding vector,
and sy is the unit-power information symbol for UE k. The
received signal at UE k will thus be: y;, = hy ®Ga-+uy, where
up, + KO (0,0?) is the receiver noise at UE k. In order to
separate the mmWave propagation environment with the IR’s
reflection, we rewrite the received signal at UE k equivalently
in the following form:

yr = 0Dga + uyg, (1)
where 8 = [B1e791, xxx, fnel?N] ¥V C¥ N is a vector of
the UAV-IR reflection coefficients and D, = diag(hg)G ¥
CN* M i the CSI of the connected BS-IR-UE link towards UE
k without any phase shift. The channel measurement approach
for IR-aided cellular communications has been investigated in
[9]. Here, we assume that the CSI Dy (x) of each BS-IR-UE
link only depends on the location = of the UAV-IR, and the
channel matrix Dy (x) is known to both BS and UAV-IR, as
long as x is given. Therefore, the signal-to-interference-and-
noise-ratio (SINR) of downlink communications from the BS,
reflected by the IR, to each UE k& is

[PD (z)wy|f
Y ierisg PDr(@)wilf + 02’
where W = [wy, xx, wi] ¥V CM* K is a precoding matrix

at the BS. Consequently, the total achievable rate that the IR-
assisted communication can provide to all UEs is

(W, 0,x) = 2

K
C(W,0,x) = blogy(1+mx(W,0,x)), 3)
k=1
where b is the downlink bandwidth.

In order to maintain LOS links with both the BS and UEs,
the UAV-IR needs to frequently adjust its location, based on
the real-time CSI. Thus, the power cost of a UAV-IR includes
the UAV’s hovering power pj, mobility power p,,, and the
adjustment power p, for the IR’s reflection coefficients. In
order to facilitate beamforming transmissions at the BS and
ensure a reliable reflection at the IR, we assume that downlink
communication only happens when the UAV-IR has a fixed
location. Let v be the speed of the UAV-IR, and 1,—¢ is an
indicator function which equals to one when the UAV is in
the hovering state with a zero speed. Therefore, the power
cost of the UAV-IR for providing downlink reflection service
is p(U) = ]]-’U:O ><(ph +pr) + (1 lv:O) Pm -

B. Problem Formulation

As shown in Fig. 2, in order to provide efficient and reliable
mmWave communications to downlink UEs, a dynamic de-
ployment for the UAV-IR is considered, where the deployment
process is divided into two sequential and alternating stages:
communication and movement. In the communication stage,
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Fig. 2: The two-stage deployment process of the UAV-IR.

the UAV-IR stays at a fixed location while reflecting mmWave
signals towards downlink UEs. However, once the average
downlink rate is lower than a threshold p, blockage occurs in
the downlink channels for most UEs. In this case, the current
communication stage ends, and the UAV-IR moves to a new
position, so as to establish LOS links for efficient downlink
communications. Here, we assume that the CSI Dy, is constant
within each coherence time slot AT'. Given that the duration of
a communication stage depends on the real-time CSI and the
length of a movement stage is determined by the movement
distance and the UAV’s speed, both stages can last for several
coherence time slots.

Our goal is to jointly optimize the precoding matrix at
the BS, the reflection coefficient of the IR, and the location
of the UAV, such that, before the UAV’s onboard energy is
exhausted, the total achievable data transmissions that the
UAV-IR provides to downlink UEs can be maximized, i.e.:

T
max Tyy=0 XC (W (1),0(t),z(t)) XAT
o B, 2 Lm0 °C (W(0.000).2(0)

(4a)

K
.t t) 2> Poa, 4b
s I;\}Uk( )\/ > (4b)
P.(®)]|>1, CnV O, (4¢)

T
(4d)

S p(u(t)) AT > E,

where the random integer 7'V NT denotes the final time slot
of the UAV’s service, v(t) = W is the average
speed of the UAV during the coherence time ¢, Py, is the
maximal transmit power at the BS, and F is the initial onboard
energy of the UAV. Therefore, the objective function (4a) is
the summation of downlink data transmissions that the UAV-
IR provides to all UEs before the end of its service, (4b) is the
power limitation at the BS, (4c) is the reflection constraints at
the IR, and (4d) is the energy constraint of the UAV.

The optimization problem in (4) is challenging to solve
for two reasons. First, during each coherence time, the ob-
jective function (4a) is non-convex with respect to the optimal
variables W, 6 and x. Second, the relationship between the
location & of the UAV-IR with the CSI D, () is not explicitly
known. Meanwhile, it is impractical to apply a sweeping

search by moving the UAV-IR to all possible locations and
measuring the real-time CSI Dj, for each UE k. In order to
address these challenges, in Section III-A, the beamforming
matrix W and reflection coefficient 8 will be optimized, given
a fixed location and known CSI. Next, the location optimiza-
tion of the UAV-IR will be addressed using a learning-based
approach to model the mmWave communication environment.

III. OPTIMAL DEPLOYMENT OF UAV-IR

In this section, the precoding matrix at the BS, the reflection
coefficients at the IR, and the location of the UAV-IR will
be jointly optimized in a real-time manner to maximize the
downlink transmission capacity. In particular, a distributional
reinforcement learning (DRL) framework is proposed to model
the downlink CSI during each communication stage, based on
the UEs’ feedback.

A. Optimal precoding and reflection coefficients

First, we focus on the communication stage, where the
UAV-IR has a fixed location @ and the downlink CSI Dy
for each UE k is known. Then, for each coherence time, (4)
is reduced to optimize the precoding matrix and the reflection
coefficients, so as to maximize the downlink sum-rate, i.e.:

rélva:g( C(W,0) (5a)
K

L) w2 > P, (5b)
=V
poll> 1, CnVO. (50)

To solve this non-convex problem, we apply the Lagrangian
dual transform method [13], introduce an auxiliary variable
a V RE*1 and equivalently rewrite the objective function
(5a) into the following form:

. (1 + o)
C,(W.,0,a)=b log, (1 + 4o DR
W0, =03 (tomalron) e R )
(6)
By holding W and 6 fixed and setting gg: = 0, we have

the optimal value of ay, as af = ;. Then, for a fixed o, the
optimization problem of W and 0 is reduced to

K .
Z ATk
1+

max (72)
k=1
s. . (5b), (5¢), (7b)

where & = b(1 + ay). Given that (7) is a multiple-ratio
fractional programming problem, we can fix the value of W
and O alternatively, and solve the optimization problem via an
iterative approach, detailed as follows.

1) Optimal precoding matrix: For a fixed 6, the optimal
precoding problem becomes

K

A P Dy wy|f
max f(W) = a (83)
v lcz::I ' Zf; [PDyw;|f + o2
K
st > Wk 52 P (8b)

k=1



The multiple-ratio fractional programming function in (8a) is
equivalent to f\(W,3) = 37, PulP (52, [PDswif +
02) + S0 12 @rRe}A\,0Dywy|, where AV RE* 1 is an
auxiliary vector [13, Theorem 2]. Since f is a convex function
with respect to both wy, and \g, Ck, an iterative approach can
be applied to optimize W and A alternatively. First, we fix
W and set %2 = 0. Then, the optimal value of )\ is

a0 Djw
= ek ©)
> iz [PDywilf + o

Then, by fixing A, the optimal wy can be given by

1

K
w = /6 A\ 0D <K‘OIM +) |P\1|F(9Dz‘)(9Dz‘)H> )
i=1
. - . (10)
where k, ~ 0 is the minimum value such that ) ;" | w$ ° >
Prax holds. By alternating between (9) and (10), the [)Zcuco\{ing
matrix will eventually converge to the unique and optimal
value W<, with a computational complexity of { (M*).
2) Optimal reflection coefficients: Next, we fix the value of
W and optimize the reflection coefficient 0 in (7), i.e.:

K

F0) =" ay

k=1
Pnll> 1,

P Dyw|f
S, [0Dw; P + 02
CnV O.

(11a)

max
[

s. t. (11b)
Similarly, an auxiliary vector § is introduced, so that (11a)
equivalently becomes f5(6,8) = Z,{,{:l 2 &gRe}dr0Djwy|

Zszl ||§k|F(Zf(=1 |PDsw;|F + o2), which is convex with
respect to both @ and §. Therefore, the unique and optimal
value of the reflection coefficients @< can be obtained via
a similar alternative approach as the precoding optimization.
First, the optimal §; for a given 6 is

a0 Djwy,
S PDyw;lf + o2

Then, the optimization of the reflection coefficient for a fixed
01 becomes

max f(e) =

[Pnll= 1,

o7 (12)

OUO" + 2Re}Ov| C
CnV O,

(13a)

S. t. (13b)
where C = S5 Pelfo v = Sr 6.7 Djwy, and
U= Zle Br|B Y- perx Diwi(Dyw;)™. Given that U is a
positive-definite matrix, f (@) is quadratic concave with respect
to 6. Meanwhile, the constraint (13b) is a convex set. Thus,
(13) is solvable using a Lagrange dual decomposition [8] with
a computational complexity of { (N©).

Therefore, given the CSI Dy, of each BS-IR-UE link, the
precoding matrix W and reflection coefficient € can be
optimally and uniquely determined. Next, the optimal location
of the UAV-IR will be studied to guarantee a LOS channel for
each BS-IR-UE link.

B. Optimal location of the UAV-IR

During the communication stage, at the end of each coher-
ence time ¢, the UAV-IR can get feedback from each UE about
the downlink transmission performance. Whenever the average
rate per UE is smaller than p, i,e, C'(t) < K p, blockage occurs
in the downlink channels for most UEs. In this case, the UAV-
IR needs to move and rebuild LOS links. The optimization
problem of the UAV-IR’s location is given as

T

}mm(ta)tﬁiw ; Lyy=0 XC (x(t)) XAT (14a)
T

st Y p(u(t) AT > E. (14b)
t=1

To determine the optimal location for each communication
stage, a DRL framework is designed to learn the dynamic com-
munication environment and model the relationship between
the UAV’s location and downlink CSI. In our DRL framework,
the downlink CSI } Dy | i, is the communication environment,
the UAV-IR is the agent that takes action Ax to change its
location from x to  + Az, and the communication state e
is a vector of the received signal power at each UE, where
e = [|1|F, %, lyx|P]. At the end of each coherence time,
the UAV-IR receives reward r(x) = 1,-oC(x)AT, which is
the total received data in the downlink transmission. Due to
the small-scale fading of mmWave channels, the downlink CSI
Dy, (x) may vary between different time slots, even for a fixed
location x of the UAV-IR. Thus, it is more suitable to consider
the reward r as a random variable with respect to «, rather
than a determined value. Meanwhile, P(e’ |e, Az) is the state
transition probability from e to e’ after taking action Ax.

To properly capture the relationship between the UAV’s
movement and downlink transmission performance, first, a
policy w(Az|e) is introduced to define the probability that the
UAV-IR will move by Az, under a current state e. Meanwhile,
to quantify the potential of each action Az for improving the
downlink rate under a state e, we define the return function
of each state-action pair for any time slot ¢ as

T
Z™(er, Axy) = Zvl r(e;, Ax;), (15)

i=t
where AQZZ — 7r(>Hei), €11 P()HEZ,sz) and Tipr1 =
x; + Axz,;. Here, v V (0,1) discounts the future rewards in
the current estimation for each state-action pair. If v € 1, the
return function Z7 will approximate (14a). Thus, the return
function (15) defines a cumulative discounted reward that the
UAV-IR can achieve by reflecting mmWave signals at location
x¢+ Az, for the next communication stage. Meanwhile, given
that r is a random variable, it is necessary to model a distribu-
tion function of (15) to identify the return value for each state-
action pair. Once the return distribution is known, the optimal
policy 7 that maximizes the expectation of the cumulative re-
wards can be defined by Az = arg maxa, E(Z7 (e, Axy)).
Thus, the optimal location of the UAV-IR for the next time
slot will be ;11 = z; + AzxS.



In order to model the return distribution for each state-action
pair, a quantile regression (QR) method [12] is applied. A Q-
quantile model Z¢ approximates the target distribution Z™,
using a discrete function with variable locations of ) supports
and fixed quantile of % probabilities [9], for a fixed integer
Q@ V NT. Mathematically, a Q-quantile model is denoted by
Zg (e, Ax) = [z1(e, Az), xxx, zg (e, Ax)], with a cumulative
probability Fz,(z,) = % for ¢ = 1, xxx, Q. The objective
is to find the optimal location for each support, such that
the “distance” between the target distribution Z™ and the Q-
quantile model Zg can be minimized. However, given that
the actual return distribution Z™ is not explicitly known, an
empirical distribution Z will be formed, based on the UEs’
feedback during each time slot, and Z is used as the target
distribution to model the return approximation Z¢. To quantify
the “distance” between two distribution functions, the quantile
regression loss is defined as [12],

Q
Nz(Zq) = ZEZ [H’Jq Loz IX(2 zq)ﬂ ) (16)
q=1

23Q1’ g 1., | is the weight of regression

loss penalty, and (2  z,)? is the square of approximation
error. Thus, the problem of the return distribution modeling
becomes to minimize the quantile regression loss, i.e.,

where w, =

min Nz (Zo).
Juin 72(Zq)

7)

Since the objective function in (17) is convex with respect to
Zq, the minimizer } 25| =1, q can be found by conventional
gradient-descent approaches with a computational complexity
of { (Q?). As a result, for each state-action pair, its return
distribution Zg (e, Azx) can be approximated by a Q-quantile
}2t(e, Az), 0, 265 (e, Az)| via (17).

Consequently, in the location optimization problem of the
UAV-IR, after observing a communication state e;, the UAV-
IR can estimate the expected return value for each action Az,
by computing the marginal distribution of Zg(e, Ax), and
choose the optimal location @;,1 = x; + Az that maximize
the summation of future downlink transmissions via

Q

1
Az€ = arg niixE [Zg(e, Az)] = arg max 0 Z zq(er, Ax).

q=1
(18)
After the UAV-IR arrives at the new location z;;; and
provides downlink service to UEs, a new state e;; and reward
r¢+1 Wwill be updated at the end of the [ + 1 time slot. Given
the downlink transmission, the empirical distribution can be
updated via a Q-learning approach, where z;(e;, Ax;) —
rir1 + v2i(err1, Axyyq),Ci = 1, xxx,Q. As a result, the
return distribution Z&) is updated by minimize the distance
from the target distribution Z, based on (17). The training and
update algorithm of the DRL model for the real-time optimal
deployment of the UAV-IR is summarized in Algorithm 1.
The convergence property of this iterative algorithm has been
proved in [9, Theorem 1].

Algorithm 1 DRL-optimized deployment for the UAV-IR

Initialize the precoding matrix W, the reflection coefficient 8o,
the location «o, the onboard energy Fo, and the DRL model
function Z¢ (e, Az) for each state-action pair.
Fort=1,=2>>1T:
A. If vy > 0, the UAV-IR continues its movement;
B .If vy = 0, the UAV-IR is in the communication stage;
Repeat:
B1. Update the auxiliary variable ax = ng;
B2. Optimize W} by alternating between (9) and (10);
B3. Optimize 0 , by alternating between (12) and (13);
Until the value of Cy in (6) converges;
B4. Receive the reward 7, and the state e;. If r, < KpAT,
xi4+1 = a¢; Otherwise, the UAV-IR moves by
Ax* = argmaxag 5 Zqul zf;l(et, Az).
BS. Update the empirical distribution Z via
zi(et_l, A:Et_l) V Tt +’YZ#71(815, Amt), {Z = 1, 27 Q
B6. Update the DRL model Z, via,

. 2g—1
argming,, .. Zqul Z?:l Yo

C. Update onboard energy via Eyy1 = E;
Until £, = 0.

24)%

]lzi <zq azz
p(ve)AT.

IV. SIMULATION RESULTS AND ANALYSIS

For our simulations, we consider a uniform square array
of antennas at both the BS and the UAV-IR with M = 16
and N = 16, and the number of downlink UEs is K = 4.
The BS is located at (0,0,20), each UE’s location follows
an i.i.d. two-dimensional Gaussian O ((20,0),8I5) with zero
height, and the mobility pattern of each UE follows a Markov
decision process in [3]. A building located at (10,0, 0) with
a height of 18 meters permanently blocks direct BS-UE links.
The path loss and mmWave channel model are based on [9].
For communication parameters, we set f = 30 GHz, b = 2
MHz, P,.x = 40 dBm, and AT = 0.1 second. The average
speed of the UAV during the mobility stage is v = 10 m/s,
the maximal onboard energy is En.x = 20 Wh, and the power
cost are p,, = 20 W, p;, = 16 W, and p, = 0.16 W. In the
DRL model, we set @ = 40, and v = 0.9. In order to have
a finite state-action space, we discretize the communication
state e to be a binary vector, where if the received power of
UE £k is smaller than a threshold 7, e, = 0; otherwise e, = 1.
The discrete action space is defined as: Az is “ascend by one
meter”, Az, is “descend by one meter”, and Axs to Axoy i
are “move towards UE k by one meter” for each £V L.

In Fig. 3a, we first show the empirical probability of having
a LOS downlink channel towards each UE. To evaluate the
performance of the proposed DRL approach for the UAV-IR
deployment, a direct transmission, a static IR, and a UAV-
IR without learning are introduced as baselines. The static IR
is placed at (20,10,20) to bypass the building and establish
LOS BS-IR-UE links. However, the bodies of human users
may block mmWave channels. For the non-learning scheme,
the UAV-IR moves towards a UE by one meter, every time
downlink blockage occurs. As shown in Fig. 3a, the static
IR scheme yields a LOS probability of around 50%. Due to
the mobility of the UAV, the proposed UAV-IR scheme can
maintain a LOS probability of over 90%, and the non-learning
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Fig. 3: (a) The achievable LOS probability of downlink mmWave channels. (b) The downlink rate increases, as the transmit power at the
BS increases. (c) The return distribution of each action under the worst-case communication state e = Of.

UAV-IR results in a probability of over 60%. Moreover, as the
altitude of the UAV-IR increases, the LOS downlink probabil-
ity will naturally increase for both UAV-IR schemes. However,
since the DRL-based deployment can estimate the potential of
each action in improving the mmWave communication over a
long term, the proposed method always yields a higher LOS
probability than the non-learning scheme.

Fig. 3b shows the time-average data rate of mmWave
downlink communications, as the transmit power of the BS
increases. When the transmit power increases from 20 to
40 dBm, the downlink data rates of all schemes become
higher. First, compared with the direct transmission scheme,
the proposed UAV-IR approach yields a performance gain of
over two-folds in the downlink data rate, due to a higher LOS
probability. Meanwhile, the DRL-enabled deployment of the
UAV-IR improves the communication performance by over
25% and 50%, compared to the non-learning UAV-IR and the
static IR, respectively. For the non-learning scheme, its short-
sighted strategy causes a frequent movement of the UAV-IR,
thus yielding a lower downlink rate.

Fig. 3c shows how to choose the optimal action under a
worst-case state e = O, where the received power at each
UE is lower than the threshold. In this case, Fig. 3c shows the
return distribution and the expected return value of each action.
Since Ax, yields the highest expected reward, the optimal
action under the worst-case communication state € = Qg is
to increase the altitude of the UAV-IR by one meter.

V. CONCLUSION

In this paper, we have proposed a novel DRL-enabled
approach to the deploy a UAV-IR for efficient downlink trans-
missions over mmWave frequencies towards multiple UEs. To
maximize the downlink sum-rate, the optimal precoding matrix
at the BS and reflection coefficient of the IR have been derived.
In order to model the propagation environment of mmWave
communications, the DRL method has been proposed to
optimize the location of the UAV-IR, so as to maximize the
downlink communication capacity. Simulation results show
that the proposed DRL-based deployment of the UAV-IR
yields a significant advantage, compared to a non-learning

UAV-IR, a static IR, and a direct transmission schemes, in
terms of the average data rate and the achievable downlink
LOS probability. Future research will focus on multiple UAV-
IRs in outdoor communication scenarios with mobile users.
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