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ABSTRACT

A major hurdle in machine learning is scalability to massive
datasets. Approaches to overcome this hurdle include com-
pression of the data matrix and distributing the computations.
Leverage score sampling provides a compressed approxima-
tion of a data matrix using an importance weighted subset.
Gradient coding has been recently proposed in distributed op-
timization to compute the gradient using multiple unreliable
worker nodes. By designing coding matrices, gradient coded
computations can be made resilient to stragglers, which are
nodes in a distributed network that degrade system perfor-
mance. We present a novel weighted leverage score approach,
that achieves improved performance for distributed gradient
coding by utilizing an importance sampling.

Index Terms— Reed-Solomon codes, distributed gradi-
ent descent, linear regression, sketching, straggler mitigation.

1. INTRODUCTION

In modern day machine learning the curse of dimensionality
has been a major impediment to solving large scale opti-
mization problems. Gradient methods are widely used in
solving such problems, but computing the gradient is often
cumbersome. A method for speeding up the gradient com-
putation is by performing the necessary computations in a
distributed manner, where a network of workers perform cer-
tain subtasks in parallel. A common issue which arises are
stragglers: workers whose task may never be received, due
to delay or outage. These straggler failures translate to era-
sures in coding theory. The authors of [1] proposed gradient
coding, a scheme for exact recovery of the gradient when
the objective loss function is additively separable. The exact
recovery of the gradient is considered in several prior works,
e.g., [1–6], while gradient coding for approximate recovery of
the gradient is studied in [6–13]. Gradient coding requires the
central server to receive the subtasks of a fixed fraction of any
of the workers. We obtain an extension based on balanced
Reed-Solomon codes [2, 14], introducing weighted gradient
coding, where the central server recovers a weighted sum of
the partial gradients of the loss function.
. Our extension also includes dimensionality reduction
via sketching, in which a matrix is sampled by row selec-
tion based on leverage scores. We adapt the leverage scores

subsampling algorithm from [15, 16] to incorporate weights,
which we refer to as weighted leverage score sampling.
. The proposed approach merges weighted gradient cod-
ing with weighted leverage score sampling, and significantly
benefits from both techniques. The introduction of weights
allows for further “compression” in our data matrix when the
leverage scores are non-uniform. Our experiments show that
the proposed approach succeeds in reducing the number of
iterations of gradient descent; without significant sacrifice in
performance.
. The paper is organized as follows. In section 2 we de-
scribe the “straggler problem” in gradient coding [1]. In
section 3 we introduce leverage score sampling, and modify
existing dimensionality reduction techniques by introduc-
ing weights. In 4 we present the weighted gradient coding
scheme, which we combine with weighted leverage score
sampling. In 5 we show equivalence of the gradients com-
puted using our proposed scheme and those obtained by
applying the leverage score sketching matrix [16]. Finally, in
6 we present experimental results. The contributions of this
paper are:
• Introduction of a weighted gradient coding scheme, that

is robust to stragglers.
• Incorporation of leverage score sampling into weighted

gradient coding.
• Theory showing that perfect gradient recovery of lever-

age score sketching occurs, under mild assumptions.
• Presentation of experiments that corroborate our theo-

retical results.

2. STRAGGLERS AND GRADIENT CODING

2.1. Straggler Problem

Consider a single central server node that has at its disposal a
datasetD = {(xi, yi)}Ni=1 ( Rp×R ofN samples, where xi
represents the features and yi the label of the ith sample. The
central server can distribute the dataset D among n workers
in order to solve the optimization problem

θ? = arg min
θ∈Rp

{
N∑
i=1

`(xi, yi; θ)

}
(1)

in an accelerated manner, where L(D; θ) =
∑N
i=1 `(xi, yi; θ)

is a predetermined loss-function. The objective function in (1)
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can also include a regularizer λR(θ) if necessary. A common
approach to solving (1), is to employ gradient descent. Even
if closed form solutions exist for (1), gradient descent can still
be advantageous for large N .

The central server is capable of distributing the dataset
appropriately, with a certain level of redundancy, in order to
recover the gradient based on the fullD. As a first step we par-
tition the D into k disjoint parts {Dj}kj=1 each of size N/k.
The quantity

g = ∇θL(D; θ) =
k∑
j=1

∇θ`(Dj ; θ) =
k∑
j=1

gj

is the gradient. We call the summands gj := ∇θ`(Dj ; θ) par-
tial gradients.

In the distributed setting each worker node completes its
task of sending back a linear combination of its assigned par-
tial gradients. There can be different types of failures that can
occur during the computation or the communication process.
These failures are what we refer to as stragglers, that are ig-
nored by the main server: specifically, the server only receives
f := n− s completed tasks (s is the number of stragglers our
scheme can tolerate). We denote by I ( [n] := {1, · · · , n}
the index set of the f fastest workers who complete their task
in time. Once any set of f tasks is received, the central server
should be able to decode the received encoded partial gradi-
ents, and therefore recover the full gradient g.

2.2. Gradient Coding

Gradient coding is a procedure comprised of an encoding ma-
trix B ∈ Cn×k, and a decoding vector aI ∈ Cf ; determined
by I. Each row of B corresponds to an encoding vector with
support w, and each column corresponds to a data partition
Dj . The columns are with support d, so every partition is sent
to d workers. By BI ∈ Cf×k we denote the submatrix of
B consisting only of the rows indexed by I. The entry Bij

is nonzero if and only if, Dj was assigned to the ith worker.
Furthermore, we have n · w = k · d; where s = d− 1.

Each worker node is assigned a number of gradients from
the partition, indexed by Ji ( [k]. The worker is tasked to
compute an encoded version of the partial gradients gj ∈ Rp
corresponding to its assignments. Denote by

g :=

 | | |
g1 g2 . . . gk
| | |

T

∈ Rk×p

the matrix whose rows constitute the transposes of the partial
gradients, and the received encoded gradients are the rows of
BIg. The full gradient of the objective (1) on D should be
recoverable by applying aI

gT = aTI (BIg) = 11×kg =
k∑
j=1

gTj .

Hence the encoding matrix BI must satisfy aTIBI = 11×k
for all of the

(
n
s

)
possible index sets I.

Every partition will be sent to an equal number of servers
d, and each server will receive a total of w distinct parti-
tions. In section 4, we introduce a procedure for recovering
a weighted sum of partial gradients, i.e. g̃ =

∑k
i=1 wigi.

Once the gradient has been recovered, the central server can
perform an iteration of its gradient based algorithm.

3. WEIGHTED LEVERAGE SCORE SAMPLING

3.1. Leverage Score Sketching

Consider a data matrix X ∈ RN×p for N > p, which is
to be compressed through an operation which preserves the
objective function in (1). Consider also

θ?ols = arg min
θ∈Rp

{
‖Xθ − y‖22

}
.

for X ∈ RN×p and y ∈ RN . In the case of the over-
constrained least squares problem; i.e. N � p, the dimension
N is to be reduced to r > p, which corresponds to the num-
ber of constraints. Define the sketching matrix S ∈ Rr×N
and consider the modified problem

θ̃ols = arg min
θ∈Rp

{
‖S(Xθ − y)‖22

}
. (2)

The leverage scores {`i}Ni=1 of matrix X are defined as
the diagonal entries of the projection PX = XX†. Specifi-
cally `i = (PX)ii. An equivalent definition of {`i}Ni=1 is via
the reduced left singular vectors matrix U ∈ RN×p, yielding
`i = ‖U(i)‖22 = ‖U(i)‖2F , for U(i) the ith row of U . A dis-
tribution is defined over the rows of X by normalizing these
scores, where each row of X has respective probability of be-
ing sampled πi = `i/

∑N
j=1 `j = `i/‖U‖2F . Other methods

for approximating the leverage scores are available [17–19],
that do not require directly computing the singular vectors.
We also note that a multitude of other efficient constructions
of sketching matrices and iterative sketching algorithms have
been studied in the literature [20–23].

The leverage score sketching matrix [15] is comprised
of two matrices, a sampling matrix SX ∈ {0, 1}N×r and a
rescaling matrix D ∈ Rr×r. The sketching matrix S̃ is con-
structed in two steps:

1. randomly sample with replacement r > p rows from
X, based on {πi}Ni=1

2. rescale each sampled row by 1√
rπi

for which S̃ = D ·STX. The modified least squares problem is
then solved to obtain an approximate solution θ̃ols.

3.2. Weighted Leverage Score Sampling

The sampling procedure described in 3 reduces the size of the
dataset. We define the compression factor as ρ := N

r ∈ Z+,
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i.e. r|N , and we require that k|r. Different from section 2.2
where k partitions were considered, here and in the sequel
we consider K = ρ · k equipotent partitions {Di}Ki=1 of size
N/K, out of which we will draw k distinct data partitions.
The sampling distribution is defined next.

The leverage score of each sampled partition is defined
as the sum of the normalized leverage scores of the sam-
ples comprising it. That is; Πi :=

∑
j:xj∈Di

πj . In a sim-
ilar manner to the definition of the leverage scores in 3.1
Πi = ‖U(Ki)‖2F /‖U‖2F , where U(Ki) denotes the submatrix
consisting only of the rows corresponding to the elements in
Di. The proposed compression matrix Sp is determined as
follows:

1. randomly sample with replacement k parts in the parti-
tion of {Di}Ki=1, based on {Πi}Ki=1

2. retain each sampled part in the partition only once, and
count how many times each part was drawn — these
counts correspond to entries in the weight vector w

3. rescale each part in the partition by 1√
rΠi

.

For the sampling matrix first construct Spart ∈ {0, 1}K×k,
which has a single 1 entry in every column, corresponding
to the distinct data partitions drawn, and then assign SXp =
Spart ⊗ IN/K ∈ {0, 1}N×r. For the rescaling matrix define
Dpart ∈ Rk×k with diagonal entries 1/

√
rΠj based on the k

drawn parts of the partition, and then Dp = Dpart ⊗ IN/K ∈
Rr×r. The final compression matrix is Sp := Dp · STXp

.
Note that Spart has no repeated columns. Note also that

in the proposed distributed computing framework, we do not
directly multiply by Sp, but simply retain the sampled parts
of the partition and rescale them before distributing the data.

4. WEIGHTED GRADIENT CODING

The objective is to recover the weighted sum of the partial gra-
dients g̃, as depicted in Figure 1, subject to at most s erasures.
This may be achieved by extending the construction proposed
in [2]. The main idea in [2] is to use balanced Reed-Solomon
codes [14], which are evaluation polynomial codes. Each col-
umn of the encoding matrix B corresponds to a partition Di
and is associated with a polynomial that evaluates to zero at
the respective workers who have not been assigned that parti-
tion part. For more details the reader is referred to [2].

Theorem 4.1. Let B and aI be an encoding matrix and de-
coding vector from [2], satisfying aTIBI = 11×k for any I.
Let B̃ := B · diag(w) for any w ∈ C1×k. Then aTI B̃I = w.

Proof. The properties of balanced Reed-Solomon codes im-
ply the decomposition BI = GIT, where GI is a Vander-
monde matrix over the subgroup Un = {a ∈ C : an = 1} of
the circle group, and the entries of T corresponds to the co-
efficients of polynomials; constructed such that their constant
term is 1, i.e. T(1) = 11×k. The vector aTI is the first row of
G−1
I , for which aTIGI = eT1 ; the first standard basis vector.

Fig. 1. Schematic representation of communication, with the
recovery of g̃ at iteration t of gradient descent.

The matrix T̃ = T · diag(w) is equal to T with its
columns each scaled by the respective entry of w, thus
T̃(1) = w. A direct consequence of this is that aTI B̃I =

eT1 T̃ = T̃(1) = w, which completes the proof.

When combined with the leverage score sampling scheme,
the expected time for computing the weighted gradient per
iteration reduces by a factor of ρ.

It is worth noting that weighted gradient coding has appli-
cations in other settings, e.g. if the partitions are drawn from
noisy sources of different variance; one could select w based
on the estimated noise variances, obtaining improved gradi-
ent resiliency. This also directly relates to scenarios where
heteroskedastic data is considered.

5. EQUIVALENCE OF GRADIENTS

In this section we show that the proposed weighted scheme
will satisfy the same properties as the matrix S̃ from section
3, when gradient based methods are used to solve (2). This
is a consequence of theorem 5.1, applied to the least squares
problem. The main reason for this equivalence property is
that the weighted gradient g̃ matches the gradient when the
leverage score sketching matrix is applied.

The pre-processing in section 3.2 which takes place on the
data matrix can be accomplished by using another compres-
sion matrix Ŝ. This matrix is defined as

Ŝ :=
√
W ·

(
Dp · STXp

)
=
√
W · Sp ∈ Rr×N

for W = diag(w)⊗IN/K ∈ Rr×r. For the objective function
of the optimization problem (2)

LS(S,X,y; θ) :=
r∑
i=1

(
(SXθ)i − (Sy)i

)2
(3)

we have the following.

Theorem 5.1. Let Di = {xi} for all i ∈ [N ] and
∑k
i=1 wi

be the total number of random draws used to construct S̃ and
Ŝ. For LS as specified by (3):

∇θLS(S̃,D; θ) = ∇θLS(Ŝ,D; θ) (4)

under any permutation of the rows of S̃ or Ŝ.
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Proof. Denote the index list of sampled parts of the partition
by S , and their index set by S̄ ⊆ [N ], i.e. S has elements with
multiplicity equal to wi and every element of S̄ is distinct. By
assumption r =

∑k
i=1 wi, and |S̄| = k ≤ |S| = r. Further

note that ŜT Ŝ = STp WSp, and for the loss function (4)

∇θLS(S̃,D; θ) = 2XT
(
S̃T S̃

)
(Xθ − y)

= 2
∑
l∈S

xl ·D2
ll ·
(
xTl θ − yl

)
= 2

∑
j∈S̄

wjxj · (Dp)2
jj ·
(
xTj θ − yj

)
= 2

∑
j∈S̄

xj ·
(√

wj · (Dp)jj
)2 · (xTj θ − yj)

= 2
∑
j∈S̄

xj ·
(√

W ·Dp

)2

jj
·
(
xTj θ − yj

)
= 2XT

(
ŜT Ŝ

)
(Xθ − y)

= ∇θLS(Ŝ,D; θ)

completing the proof.

Corollary 5.2. If S̃ and Ŝ were to be constructed by sam-
pling partitions of more than one elements based on {Πi}Ki=1,
conclusion (4) of theorem 5.1 remains valid.

The benefit of the proposed weighted procedure, is that
the weights allow further compression of the data matrix X;
without affecting the recovery of the gradient. If {πi}Ni=1 and
{Πi}Ki=1 are not close to being uniform, Ŝ(X−y) could have
significantly fewer rows than S̃(X−y). Under the conditions
of theorem 5.1, the proposed matrix Ŝ is applicable to the
sketching procedures in [15, 16, 24, 25].

A convergence result can also be established using [24]
theorem 10. In particular, under appropriate assumptions, af-
ter O(1/ε) iterations with termination criterion ‖g̃(t)‖2 ≤ ε,
the proposed weighted gradient coding procedure applied to
(3) produces an ε-approximation to θ?ols.

6. EXPERIMENTS

6.1. Binary Classification of MNIST

For dataset partitions k = 20, number of workers n = 50,
parts per worker w = 12, and allocation of each part to dis-
tinct worker d = 30, we trained a logistic regression model
by applying gradient descent with the proposed method. The
number of training samples was N = 10000 and the proce-
dure was tested on 1791 samples, for classifying images of
four and nine from MNIST, of dimension p = 784. The table
below shows averaged results over six runs while varying ρ,
when the weights were introduced and when they were not.

Fig. 2. Convergence of the gradient norm in 6.2 for ρ = 2,
with and without the weights, where the norm at each iteration
is an average of 20 different runs.

With weights
ρ Error Iter.
4 7.09% 25.5
10 7.78% 14.67
20 8.17% 12.5

Without weights
ρ Error Iter.
4 9.08% 24.67
10 8.32% 14.67
20 8.5% 12.67

Without any compression there was an average error of
4.37%. For ρ = 4, 10; w becomes non-uniform and weight-
ing results in better classification accuracy. As ρ decreases,
the distribution {Πi}Ki=1 becomes closer to uniform, leading
to reduced advantage in using weighted gradient coding.

6.2. Linear Regression

We retain the same setting of k = 20, n = 50, w = 12 and
d = 30 from 6.1, and generate random data matrices with
varying leverage scores as follows for the proposed weighted
coding procedure. For all i ∈ [20] we generate Xi ∈ Z50×20

random matrices with entries from Uni(−15i, 15i), concate-
nate them and shuffle the rows to form X ∈ Z1000×20. We
then select an arbitrary y ∈ im(X), and add standard Gaus-
sian noise ~ε. We ran experiments to compare the proposed
weighted procedure for solving (2), for a fixed gradient de-
scent step-size of αt = 10−7, with the same termination crite-
rion ‖∇θLS(Ŝ,D; θ(t))‖2 < 0.1 over 20 runs and error mea-

sure
∥∥∥θ̃ols −X† (y + ~ε)

∥∥∥2

2
.

Average Number of Iterations and Error
ρ Weighted Unweighted Error
2 107.55 145.6 O(10−5)
4 75.3 84.4 O(10−4)

As in 6.1, for lower ρ the proposed weighted gradient coding
approach achieves the same order of error as the unweighted,
in fewer gradient descent iterations (on average).

In Figure 2 we demonstrate the benefit of weighted ver-
sus unweighted. Even though the weights introduce a much
higher gradient norm at first, it drops much faster and the ter-
mination criterion is met in fewer iterations.
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