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Abstract
In the task abstraction phase of the visualization design pro-
cess, including in “design studies”, a practitioner maps the
observed domain goals to generalizable abstract tasks using
visualization theory in order to better understand and address
the user’s needs. We argue that this manual task abstraction
process is prone to errors due to designer biases and a lack
of domain background and knowledge. Under these circum-
stances, a collaborator can help validate and provide sanity
checks to visualization practitioners during this important task
abstraction stage. However, having a human collaborator is
not always feasible and may be subject to the same biases
and pitfalls. In this paper, we first describe the challenges as-
sociated with task abstraction. We then propose a conceptual
Digital Collaborator—an artificial intelligence system that aims
to help visualization practitioners by augmenting their ability to
validate and reason about the output of task abstraction. We
also discuss several practical design challenges of designing
and implementing such systems.
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CCS Concepts
•Human-centered computing → Visualization; •Computing
methodologies → Artificial intelligence; NLP;
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Introduction
Artificial intelligence (AI) has been used in the data information
community to help improve design of visualizations [5, 10]. A
visualization practitioner can get help from a variety of tools
(e.g., Tableau, QlikView, SAS) [3] to select proper visual en-
codings. However this step must be carefully considered in
the context of user goals and tasks. The visualization design
process can be broadly divided into phases [6], including the
design study process model [9], performing task analysis to
understand domain problems, and task abstraction that aims to
recast user goals from domain-specific languages to a gener-
alized terminology for better understanding and readability [6].
Conducting task abstraction is an important but rigorous man-
ual process that requires in-depth understanding of domain
knowledge and familiarity with visualization literature [1, 4, 11].
For example, a biologist may be interested in results for tissue
samples treated with LL-37 matching up with the ones without
the peptide. A visualization researcher may translate this task
to compare values between two groups [6]. However, to accu-
rately perform task abstraction, a visualization practitioner must
first choose the best abstraction framework and then the appro-
priate abstraction. A practitioner has to keep up with the ever-
growing task abstraction literature [1, 4, 11] and ensure that
their personal biases that might come from previous work ex-
periences do not affect their ability to perform task abstraction.

Task-Abstraction Frame-
works

To highlight the variation in
task-abstraction method-
ologies, we present some
distinguishing characteristics
of three common frameworks:

A Multi-Level Typology of Ab-
stract Visualization Tasks [1]: A
generic task abstraction frame-
work that works well across
disciplines and data-set types.

Task Taxonomy for Graph
Visualization [4]: A descriptive
framework for tasks in the field
specific to graph visualizations.
This taxonomy provides more
descriptive identification of
visualization goals than a
generalized framework [8].

Hierarchical Task Abstrac-
tion (HTA) [11]: HTA highlights
the importance of integrating
context and leverages existing
task abstraction frameworks in
combination with a systematic
analysis of user tasks, goals,
and processes.

As task abstraction is a manual and subjective phase of the
visualization design process, we argue that it may be prone to
human-judgment errors. For example, domain experts often
serve as project collaborators to help visualization researchers
and practitioners validate the task analysis and abstraction in
human-centered studies. However, it is challenging to have
collaborators’ involvement in many situations. Furthermore,
human collaborators are still prone to pitfalls like keeping pace
with recent development of task-abstraction theories and prim-
ing biases. Therefore, we propose an AI-enabled Digital Col-

laborator (DC) that can serve as a feasible alternative to a
human collaborator. We envision that a DC can assist visual-
ization researchers by being up-to-date with task-abstraction
frameworks to help identify the most appropriate framework for
abstraction and can help validate the task analysis and abstrac-
tion process to identify judgment errors or biases. With this
paper we hope to open a discussion on the advantages and
challenges of building a DC for the visualization community.

Challenges of Performing Task Abstraction
We first discuss the main challenges associated with the task
abstraction process.

A Wide Range of Task Abstraction Approaches: Visual-
ization researchers have proposed various task abstraction
approaches (e.g., [1, 4, 11]). On page 2 (side-bar), we discuss
three common visualization task abstraction frameworks and
explain how they differ. Adopting an appropriate task abstrac-
tion approach is pivotal for visualization design as it impacts
the choice of visualization design and interaction idioms. How-
ever, selecting a proper task abstraction framework requires an
extensive comparison of existing literature.

Interpretation of a Task Abstraction Framework: Task ab-
straction is a subjective evaluation of the domain experts’
needs. Subjective assessments are prone to errors arising
from variability in the practitioner’s understanding of an abstrac-
tion framework or an innate bias such as recency bias where
the task-abstraction may be influenced by recent work. Such
abstraction biases can lead to a “domino” effect of errors that
can only be objectively verified after prototyping [9]. Addition-
ally, the analytic-task focused taxonomies require mastery of
the terminology and definitions [4]. For example, in network
abstraction, it is common to use the term Topology for prop-
erties related to the structure of the network. Topology is a



mathematical term, and practitioners coming from design back-
grounds may be unfamiliar with its meaning.

Automate Task Abstraction using AI
We have discussed some challenges of performing task ab-
straction with human effort involved. Drawing inspiration from
the idiom of an Intelligent Personal Assistant (IPA) [2], we pro-
pose a Digital Collaborator (DC)—a conceptual AI-enabled
system to support task abstraction for visualization research.
Figure 1 shows an example of how AI can be used to facilitate
task abstraction.

An Example Task/ Goal (Input):  

Task abstraction (Output):

D a y 5

Identify tasks through 
observations, interviews, and 
field studies 

Visualization Designers’ Roles

“How many days did the patient 
have only high blood glucose levels 
within the 2 hours BEFORE lunch?” 

Identify cooccurrence of events
BEFORE the aligned event  

AI-enabled system

A Task Abstraction Process Example: 
Diabetes Management

Figure 1: Example
process to use AI to facilitate task
abstractions in visualization research.

Input and Output: Similar to the IPA system, our proposed
DC will adopt a question-and-answer-based interface. The
questions (input) will be domain goals identified by visualiza-
tion practitioners through interviews and observations with
domain experts. The DC should generate a translation of a
domain goal to a generalized task description by applying an
appropriate task-abstraction framework (output). To improve
communication transparency, the DC should aim to provide the
rationale for their output and a set of alternative translations.

AI System: We believe system goals should include identifying
the right abstraction framework and recommending the appro-
priate analytical conversion of the tasks. Note that we do not
intend to suggest replacing the human-centered approaches
when conducting task analysis (e.g., field studies, interviews,
and observations). Instead, we propose to leverage AI in de-
signing systems to help ease the process of task abstraction.

Challenges of Our Proposed AI-enabled System
In order to develop an AI to help automate task abstraction we
acknowledge that there will be challenges to design such an
AI-enabled DC system.

Framework Characterization: Task-Abstraction frameworks
are well established. However, there is little guidance on how

to select the “right” framework. Therefore, the first challenge
of building a DC will be to develop parameters to distinguish
between these abstraction frameworks.

Training Data: For automating the task-abstraction process,
we need to train machine learning models with task data and
their labeled outputs. One way to acquire training data is by
parsing domain goals and their abstractions from existing lit-
erature. Smart data crawling tools may facilitate the process
of extracting tasks from research papers with little manual ef-
fort. However, even after deploying web-crawlers, there might
be problems with data quality. For instance, there might be
conflicting abstractions where similar tasks have different ab-
stractions. To counter the problem, we can think of human-in-
the-loop methodology where visualization researchers working
on the project can address quality issues.

Recommendation Validation: Task abstraction involves sub-
jective evaluation and characterization of domain problems.
Practitioners may disagree with the suggested results gener-
ated by the DC. Therefore, an open question is how to instill
confidence in visualization practitioners to consider the sug-
gested results before discarding them. For example, extending
the recommendation list with confidence scores may increase
transparency. Future research should examine design rec-
ommendations that can boost confidence in communicating
results.

Equity Issues with AI: There has been an increasing body
of research on equity issues in AI research, such as biased
datasets and algorithm transparency [7]. An open research
question is how can an AI-based DC system promote equity?
There is a vital need for future research to examine how such
systems can be made more accessible for a wide audience.
For example, how a variety of voices and experiences can
be captured using such systems? How nuanced aspects of
these experiences contribute to different design requirements



and task abstractions, which will ultimately influence the de-
sign choices? Therefore, more research is needed to further
explore these issues.

Conclusion
In this paper we propose a conceptual AI-enabled digital col-
laborator to assist in performing visualization task abstrac-
tion. We discuss the advantages as well as the challenges of
designing such AI-enabled systems, including training data,
designing for transparent communication, as well as equity is-
sues with AI. Through this workshop paper, we want to initiate
a discussion on the topic of how AI can assist task abstraction
in visualization research and how to address these challenges.
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