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Abstract

We introduce the idea of Citizen Scientist Amplification ap-
plying the method to data gathered from the top 10 contribut-
ing citizen scientists on the Supernova Hunters project. We
take a novel approach to avail of the complementary strengths
of deep learning and citizen science achieving results that are
competitive with experts.

1 Introduction
Citizen scientists are enabling research only possible with
the scale offered by crowdsourcing (Lintott et al. 2008;
Swanson et al. ; Sullivan et al. 2009; Trouille, Lintott, and
Fortson 2019). In these crowdsourcing projects, we gather
multiple volunteer annotations per image that are aggregated
into a single classification. The aggregation aims to compen-
sate for individual mistakes or biases. Once aggregated, the
results are used to answer scientific questions or train ma-
chine learning to automate the process (Dieleman, Willett,
and Dambre 2015; Arteta, Lempitsky, and Zisserman 2016;
Norouzzadeh et al. 2017; Zevin et al. 2017).

But what if, instead of aggregating volunteer classifica-
tions, we trained a model to replicate each individual vol-
unteers classifications? If volunteers classifications can be
exactly predicted then we could achieve the same perfor-
mance as the citizen scientist crowd. It is unlikely that vol-
unteer votes could be exactly predicted, but that the models
as they attempt to learn a series of systematic “rules” could
learn to ignore random noise ((Reid et al. 2016); (Rolnick et
al. 2017)). The aggregation of these models might then re-
sult in even higher performance than citizen scientists alone.
This leads to the idea of “Citizen Scientist Amplification”
where, a model trained to replicate a citizen scientist, can be
applied to annotate data they have not seen and faster. Many
projects experience a surge in volunteer involvement shortly
after launch, but experience diminishing engagement after
a few days ((Spiers et al. 2019)). Classifications of long-
term contributors to a project can be amplified by combining
their votes with votes from models trained to replicate their
peers who may no longer be engaged with a project. This ap-
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Table 1: Data set structure.
Set Real Bogus Total
Training 2307 4609 6916
Test 766 1537 2303
Total 3073 6146 9219

proach differs from the “expertise amplification” of (Kesha-
van, Yeatman, and Rokem 2019) as we are not just seeking
to amplify the number of labelled training examples for ma-
chine learning, but rather we seek to amplify performance
(classification accuracy of the crowdsourcing system), ef-
ficiency (reducing time to achieve accurate classifications)
and the long-term legacy of individual citizen scientists con-
tributions to a project (developing a model of the individual
citizen scientist that can be used to classify future data and
augment the citizen science crowd).

In experiments below, we will demonstrate these benefits
with data gathered by the Supernova Hunters citizen science
project1. We find that amplifying the citizen science crowd
with models for the top ten contributors in terms of the num-
ber of classifications submitted to the project (not the top ten
performing volunteers) leads to performance gains that are
competitive with models trained on expert labels. This has
important implications for the adoption of machine learning
for citizen science platforms.

2 Methods
Data Set Our data set consists of 20×20 pixel greyscale
images extracted from Pan-STARRS1 (Kaiser et al. 2010)
difference images (see Section 2.1 of (Wright et al. 2017)
for details). We take 9219 images which have been labelled
by experts to identify real detections of astrophysical tran-
sients from image artefacts. Table 1 shows the structure of
this data set. Images are divided into two fixed partitions, the
training partition contains roughly 75% of the data with the
remaining 25% for testing. The test set partition is only used
for measuring performance metircs, where predicted test set
labels are compared against expert labels. These data were
also uploaded to the Supernova Hunters project. The top ten

1https://www.zooniverse.org/projects



contributors each submitted more than three thousand clas-
sifications with a median of 3590 across the entire data set
and a median of 867 classifications for the test set.

Volunteer vote aggregation Volunteers provide votes for
the class membership of each image (real or artefact in this
case). We use vote fractions to aggregate votes into a single
label per image. The vote fraction is calculated as the frac-
tion of votes that were assigned to each class. The vote frac-
tion can be interpreted as the probability the crowd thinks
each image has of belonging to each class. Vote fractions
can be converted to hard (real or artefact) class labels by
choosing the class with the highest vote fraction.

Modelling Citizen Scientists To model each individual
citizen scientist’s votes, we train a Convolutional Neural
Network (CNN). Throughout experiments the neural net-
work architecture was held constant. The training set was
divided into five stratified folds. Each model was trained
for five trials using four folds for training and the fifth fold
as a validation set. Trials were run to average performance
across any single training-validation split that might be cho-
sen. The loss on the validation set is monitored for model
check-pointing and early-stopping. Individual models were
trained on the images from the training partition that each
volunteer had labelled. Crucially, the targets for training are
the labels provided for each image by each individual. The
model therefore, aims to predict how the volunteer would
classify a particular image, which need not be the correct
label. The model will predict a volunteers behaviour as a
function of an image and all other images in their training
set.

Citizen Scientist Amplification We simulate amplifying
citizen scientists by augmenting the classifications made by
the top ten contributors with classifications made by the in-
dividual models. Specifically, for every image in the test
set, if all ten volunteers have not classified that image, we
add classifications from individual models corresponding to
those volunteers who have not labeled that image. The ad-
ditional machine votes are considered when calculating the
vote fractions for the test set.

3 Results
We track two performance metrics, the F1-score and the
Missed Detection Rate (MDR) at a 1% False Positive Rate
(refered to as the MDR for brevity always assuming the 1%
FPR). The former tracks the performance of the hard label
assignments, while the latter is more aligned with the scien-
tific goals of the project.

Table 2 shows the classification performance results from
our experiments. Considering only the classifications sub-
mitted by the top ten contributing citizen scientists we mea-
sure a F1-score of 0.851 using vote fractions (vote fractions
(10) in Table 2) on the test set. The MDR is measured as
1.000. Since each image has only received on average four
classifications from the top ten contributors, the vote frac-
tions result in a few discrete values. As a result the 1% FPR
condition cannot be met with any threshold. Next, we re-
port results on some machine learning benchmarks. These

Table 2: Experimental results.
method MDR F1-score
vote fractions (10) 1.000 0.851
single CNN - expert 0.200(0.016) 0.929(0.003)
single CNN - vote frac. 0.431(0.052) 0.824(0.014)
10 CNNs - individuals 0.287(0.019) 0.906(0.006)
10 CNNs - vote frac. 0.295(0.031) 0.906(0.014)
Amplified cit-sci 0.200(0.026) 0.917(0.006)
Bagging + cit-sci 0.213(0.004) 0.918(0.003)

benchmarks are designed to present alternative approaches
that could be taken for machine learning. These are namely,
an expert model trained on expert labels and an aggregated
votes model trained on vote fraction labels produced by the
top ten contributors. We find that training the model on ex-
pert labels only (denoted single CNN - expert in Table 2)
achieves a mean MDR of 0.200 across five trails. The ag-
gregated votes model (single CNN - vote frac.) performs
marginally worse (MDR=0.431) than the vote fractions (10)
F1-score. This is expected since the model is trained to repli-
cate the crowd and we anticipate it will make the same mis-
takes.

We found that training 10 models (10 CNNs - individ-
uals), one for each of the top ten contributors results in a
mean MDR of 0.287. This is an improvement of 14.4% on
the CNN trained on vote fractions and is 8.7% worse than
the CNN trained on expert labels. One possible explana-
tion for the performance improvement is bagging (Breiman
1996). To test this hypothesis, we train 10 models on boot-
strap samples drawn from the training set using vote frac-
tions as training labels. This approach achieves an MDR of
0.295, 0.8% higher than the aggregated individual models,
suggesting that most (if not all) the performance gains are
realised through the effect of bagging. It therefore appears
that aggregating volunteers classifications provides no ben-
efit.

Finally, we report the results of amplifying the citizen sci-
entist crowd with individual models as Amplified cit-sci in
Table 2) measuring a MDR of 0.200. This performs as well
as the model trained on expert labels. For these results we
amplified those volunteers who classified each image with
classifications from the models of their peers who had not
classified that image. We also tested amplifying the crowd
with ten bootstrap models (Bagging + cit-sci) which resulted
in an MDR of 0.213, performing 1.3% worse than the pro-
posed amplification approach.

4 Conclusions
We have explored the possible advantages of training mod-
els to replicate individual citizen scientists and shown how
these models can amplify the citizen science crowd. We ex-
pect it to be more challenging to model individual citizen
scientist behaviour for larger, more complex images or more
intricate tasks (such as drawing tasks). Nonetheless, since
we still expect humans to differ, our method could prove
beneficial across many tasks and data types.
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