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Abstract—In this paper, the problem of minimizing the weighted
sum of age of information (AoI) and total energy consumption of
Internet of Things (IoT) devices is studied. In particular, each
IoT device monitors a physical process that follows nonlinear
dynamics. As the dynamic of the physical process varies over
time, each device must sample the real-time status of the physical
system and send the status information to a base station (BS) so
as to monitor the physical process. The dynamics of the realistic
physical process will influence the sampling frequency and status
update scheme of each device. In particular, as the physical process
varies rapidly, the sampling frequency of each device must be
increased to capture these physical dynamics. Meanwhile, changes
in the sampling frequency will also impact the energy usage of the
device. Thus, it is necessary to determine a subset of devices to
sample the physical process at each time slot so as to accurately
monitor the dynamics of the physical process using minimum
energy. This problem is formulated as an optimization problem
whose goal is to minimize the weighted sum of AoI and total
device energy consumption. To solve this problem, a machine
learning framework based on the repeated update Q-learning
(RUQL) algorithm is proposed. The proposed method enables the
BS to overcome the biased action selection problem (e.g., an agent
always takes a subset of actions while ignoring other actions), and
hence, dynamically and quickly finding a device sampling and
status update policy so as to minimize the sum of AoI and energy
consumption of all devices. Simulations with real data of PM 2.5
pollution in Beijing from the Center for Statistical Science at
Peking University show that the proposed algorithm can reduce
the sum of AoI by up to 26.9% compared to the conventional
Q-learning method.

Index Terms—Internet of things, adaptive sampling frequency,
age of information, reinforcement learning.

I. INTRODUCTION

The Internet of Things (IoT) will be a key enabler of various
cyber-physical systems and networked monitoring applications
[1], such as environment monitoring and vehicle tracking. For
these IoT applications, the freshness of the status information of
the physical process at the operation devices is of fundamental
importance for accurate monitoring and control. To quantify
the freshness of the status information of the physical process,
the age of information (AoI) has recently been proposed as
a useful performance metric [2]. The AoI is defined as the
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duration between the current time and the generation time of
the most recently received status update. Compared to con-
ventional delay metrics that measure queuing or transmission
latency, AoI considers the generation time of each packet, thus,
characterizing the freshness of the status information from the
perspective of the destination. Therefore, optimizing the AoI in
IoT leads to distinctively different system designs from those
used for conventional delay optimization.

A number of existing works have studied important problems
related to AoI such as in [3]–[6]. In [3], the authors optimized
the AoI of each IoT device for both first-come first-serve
and last-come first-serve systems. The authors in [4] proposed
optimal status update schemes for an energy harvesting source
to minimize the average AoI of IoT devices. The sum AoI
of IoT devices is minimized under throughput constraints in
[5]. The authors in [6] introduced an optimal status update
scheme to minimize the average AoI of all devices. However,
the existing works in [3]–[6] only investigated the optimization
of the sampling policy without considering the dynamics of the
physical process. In fact, the dynamics of a realistic physical
process will strongly influence the optimization of the status
sampling and updating schemes. For example, as the physical
process varies rapidly, an IoT device must increase the sampling
frequency so as to capture these physical dynamics. In contrast,
the IoT device can save energy by reducing its sampling fre-
quency when the physical process is varying slowly. Therefore,
it is necessary to analyze the dynamics of the realistic physical
process so as to dynamically adjust the sampling frequency and
optimize the status sampling and updating schemes. However,
the physical process dynamics are time-dependent, and hence,
a Markov decision process that satisfies the non-aftereffect
property as done in [3]–[6] cannot be used to optimize the
sampling policy for the physical process.

The main contribution of this paper is a novel framework that
enables a BS to adapt the sampling policy for IoT devices so as
to dynamically minimize AoI and device energy consumption.
In particular, we study a real-time IoT system, in which each
device is used to sample the status of a realistic physical process
that is modeled using a nonlinear dynamical equation. The
relationship between the dynamics of the physical process and
the sampling frequency of the device is analyzed to enable
the BS to optimize the sampling policy of each device and
capture the variation of the physical process. This problem
is formulated as an optimization problem whose goal is to
minimize the weighted sum of AoI and energy consumption of
all devices. To solve this problem, a repeated update Q-learning
(RUQL) algorithm is proposed to optimize the sampling policy.



Fig. 1. An illustration of the considered IoT network.

Compared to a traditional reinforcement learning (RL) algorith-
m with a fixed learning rate, the proposed method enables the
BS to adjust the learning rate based on each specific action
in order to avoid the policy-bias problem. Simulations with
real data of PM 2.5 pollution in Beijing from the Center for
Statistical Science at Peking University show that the proposed
algorithm can reduce the sum of AoI by up to 26.9% compared
to the conventional Q-learning (QL) method. To the best of our
knowledge, this is the first work that considers the optimization
of the sampling policy for a real-time IoT system consisting of
a realistic physical process.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a real-time IoT system that consists of a BS and a
setM of M IoT devices. In the studied model, each IoT device
is equipped with a sensor that monitors the real-time status of a
physical system (e.g., an atmospheric sampler that monitors the
variation of the atmospheric environment) and a transmitter that
sends the monitored information to the BS through a wireless
channel. Here, the process of monitoring the physical system is
called status sampling while the process of sending the sampled
information to the BS is called status update. After receiving
the status information related to the state of the physical system,
the BS selects a subset of IoT devices to sample the physical
process at next time slot, as illustrated in Fig. 1. Next, we first
introduce the model of the physical process. Then, we explain
the AoI model to measure the freshness of status information
of the physical process at IoT device and BS, respectively.
A. Model of Physical Process

We consider heterogeneous nonlinear time-varying dynamics
to describe the variation of the physical process monitored by
the IoT devices. These heterogeneous nonlinear dynamics of
the physical process over discrete time t can be written as [7]

xm,t+1 = Amxm,t +Bmfm(xm,t) + εm,t, (1)

where xm,t ∈ RZm is the system state vector sampled by
device m at time slot t with Zm representing the data size of
status information of device m and εm,t is a random process
independent of the system state. fm(·) : RZm → RZm is a
nonlinear function satisfying fm(0) = 0. Am and Bm are
constant matrices. Note that, (1) has been widely used to model
the physical process of nonlinear dynamic systems such as
wide-area irrigation systems, electric power grids, automated
highway systems, and environmental detection systems. For
example, the dynamics of the atmospheric environment quality
can be captured by (1) with xm,t being the current air pollution
index and xm,t+1 being the dynamics of the air pollution index
while Amxm,t and Bmfm(xm,t) represent the linear and non-
linear function to capture the effects of wind and precipitation.
Using (1), the current system state can be estimated based on
the latest observed state, which is given by [8]

x̂m,t =A
δ(t)
m xm,t−δ(t)+

δ(t)∑
q=1

Aq−1
m Bmfm(xm,t−q), (2)

where xm,t−δ(t) is the latest status information generated at
time slot t−δ(t) with δ(t) being the duration of the generation
time between xm,t and xm,t−δ(t). Given the estimation of the
system state vector at time slot t, the state estimation error can
be expressed as

ym,t = x̂m,t− xm,t. (3)

In fact, ym,t measures the estimation error of the dynamics
and can be used to determine the sampling frequency of device
m at each time slot. To obtain the sampling frequency, we
first need to calculate the maximum variation frequency of
the physical process by analyzing the nonlinear dynamics of
the physical system. For this purpose, (3) can be linearly
approximated by [9]

dym,t
dt

= Jfm(xm,t) · ym,t + o(‖ym,t‖), (4)

where Jfm(xm,t) · ym,t is the first-order approximation with
Jfm(xm,t) being the Jacobian matrix of function fm and
o(‖ym,t‖) a high-order approximation that can be neglected
compared to Jfm(xm,t)·ym,t. Then, we diagonalize Jfm(xm,t)
to obtain the maximum variation frequency of the physical
process at time slot t with respect to Jfm(xm,t), which is given
by

Jfm(xm,t) = U · diag(µ1,t, · · · , µZm,t) ·U−1, (5)

where diag(µ1,t,· · ·, µZm,t) is a diagonal matrix with (µ1,t,· · ·,
µZm,t) being the eigenvalues of the Jacobian matrix and U =
[u1, · · · ,uZm ] is a non-singular matrix with uzm ∈ RZm being
the corresponding eigenvectors of Jfm(xm,t). Based on (5),
the time-domain maximum variation frequency of the physical
process can be computed as [10]

Ωm,t= max
zm,t∈Zm,t

∣∣Im[µzm,t ]
∣∣+√‖ym,t‖2

ξ2m
− min
zm,t∈Zm,t

Re[µzm,t ]
2, (6)

where ξm is a minimum frequency that device m can distin-
guish, Im[µzm,t ] and Re[µzm,t ] is the imaginary part and real
part of µzm,t , respectively. By assigning the sampling frequency
Fm,t = Ωm,t/π based on Nyquist theory, the maximum
sampling interval of the dynamic physical process ∆m,t can
be written as

∆m,t = 1/Fm,t = π/Ωm,t. (7)

From (6) and (7), we can see that, the maximum sampling
interval ∆m,t depends on the state estimation error ym,t.
As ym,t increases, the maximum variation frequency Ωm,t
increases and hence, ∆m,t decreases. This is because, as the
state estimation error increases, (1) cannot describe the physical
process accurately, thus, device m must increase the sampling
frequency so as to collect more status information to capture
the variation of the physical process and correct (1).

B. AoI Model of IoT Device
Different from existing literature [3]–[6] where the AoI at

each device m only depends on the time interval δ(t) between
the current sampling status and the latest historical sampling
status, in this model, we consider the dynamic sampling fre-
quency of a real-time physical system and hence, the AoI at



each device m will be affected by the maximum sampling
interval ∆m,t and δ(t), which is given by

φm,t(am,t) =

{
max{0, δ(t)−∆m,t}, if am,t = 1,
min{φm,t−1+τ, φmax}, otherwise,

(8)

where τ is the duration of each time slot and am,t ∈ {0, 1} is
the sampling action of device m at time slot t with am,t = 1
indicating that device m samples the physical process and
generates a new status packet xm,t at time slot t, and am,t=0,
otherwise. φmax is the upper limit of the maximum sampling
interval to generate that the value of φm,t(am,t) is finite.
This is due to that, for time-critical IoT applications, it is
not meaningful for the destination node to receive a status
information with an infinite age. Such highly outdated status
information will not be of any use to the system or underlying
application. From (8), we can see that, if device m samples
a status at time slot t and the time interval δ(t) between
the current sampling status (at time slot t) and the latest
historical sampling status (at time slot t − δ(t)) is less than
the maximal sampling interval ∆m,t, then the AoI at device
m decreases to zero. This implies that, if δ(t) is smaller
than ∆m,t, the sampling frequency of device m will satisfy
the constraint of Nyquist theory and thus, the sampled status
can be used to capture the variation of the dynamic physical
process accurately. Otherwise, the AoI at device m decreases
to δ(t)−∆m,t which implies the latency of the sampling action
beyond the maximum sampling interval. On the other hand, if
device m does not sample at time slot t, the AoI at device m
is increased by τ .

C. AoI Model of Base Station
After generating a status packet at time slot t, device m must

transmit the status packet to the BS immediately. We assume
that the BS adopts an orthogonal frequency division multiple
access (OFDMA) transmission scheme. Let I be the set of
I 6M uplink orthogonal resource blocks (RBs). The BS must
select a subset of IoT devices to sample the physical process
under the constraint that each RB can be allocated to at most
one device. The data rate of the uplink transmission between
device m and the BS over each RB is given by (in bits/s) [11]

rm,t (am,t) = am,tW log2

(
1+

PThm,t
σ2

N

)
, (9)

where W is the RB bandwidth and PT is the transmit power of
each device m. hm,t = gm,td

−β
m is the channel gain between

device m and the BS where gm,t is a Rayleigh fading channel
gain, dm is the distance between user m and the BS, and β is
the path loss exponent. σ2

N represents variance of the additive
white Gaussian noise. Here, we assume that each device can
only occupy one RB for status packet transmission over uplink

and hence,
M∑
m=1

am,t6I . Based on (9), the uplink transmission

delay between device m and the BS is given by

lm,t (am,t) =
Zm

rm,t (am,t)
. (10)

Given the uplink transmission delay, the AoI at the BS for
device m can be determined, which is given by

Φm,t(am,t)=

{
φm,t(am,t)+lm,t(am,t), if am,t=1,
Φm,t−1+τ, otherwise.

(11)

From (11), we can see that, if device m sends the status packet
to the BS at time slot t, then the AoI at BS will be updated to
φm,t+ lm,t otherwise, the AoI increases by τ . For broadcasting
the sampling message over downlink subcarriers, we assume
that the transmit power of the BS is sufficiently large and the
data size of the sampling message is quite small, thus the delay
of broadcasting the sampling message can be ignored [12].

D. Energy Consumption Model

In our model, the energy consumption of each IoT device
consists of status sampling energy consumption and status
update energy consumption, which is given by

em(am,t) = am,tCS + lm,t(am,t)PT , (12)

where am,tCS is the energy consumption for status sampling
with CS being the sampling cost for generating the status packet
and lm,t(am,t)PT is the energy consumption for updating the
status information.. Moveover, since the BS can have continu-
ous power supply, we do not consider the energy consumption
of the BS in our model.

E. Problem Formulation

Having defined the system model, next, we formulate an
optimization problem whose goal is to minimize weighted sum
of the AoI and energy consumption of all devices. The variable
in this optimization problem for the BS is the sampling action
indicator at. The optimization problem is given by

min
at

T∑
t=1

M∑
m=1

(γAΦm,t(am,t) + γEem(am,t)) (13)

s. t. am,t ∈ {0, 1} ,∀m ∈M,∀i ∈ I, (13a)∑
m∈M

am,t 6 I, ∀i ∈ I, (13b)

where at=[a1,t, . . . , aM,t]. γA and γE are weighting parameters
that combine the value of AoI and energy consumption into an
integrated cost function. (13a) guarantees that each device can
only occupy at most one RB for status update. (13b) ensures
that each uplink RB can be allocated to at most one device.
The problem in (13) is challenging to solve by conventional
optimization algorithms due to the following reasons. First, as
the physical process monitored by each IoT device varies, the
BS must dynamically determine a subset of IoT devices for
status sampling and update. Since the changes in the physical
process xm,t are correlated in time, the BS must consider
this temporal correlation for the optimization of the sampling
policies at at different slots. However, traditional optimization
methods, such as dynamic programming, can only deal with the
temporal correlation without the time-varying variables [13].
To overcome this limitation, we propose an RUQL algorithm
to analyze the temporal features of physical process so as to
optimize the sampling policy at and minimize the sum of
AoI and energy consumption of all devices. Different from
traditional learning algorithms, such as Q-learning with a fixed
learning rate, the proposed method can dynamically adjust the
learning rate. For instance, as the environment changes, the BS
can increase the learning rate to obtain the dynamics of the
varying environment, thereby improving the performance for
optimization of the sampling policy.



III. REPEATED UPDATE Q-LEARNING METHOD FOR
OPTIMIZATION OF SAMPLING POLICY

In this section, we introduce the proposed approach to solve
problem (13). We first introduce the components of the learning
algorithm. Then, we explain how to use it to solve the problem.

A. Components of Repeated Update Q-learning Method
The proposed RUQL algorithm consists of four basic com-

ponents: a) agent, b) state, c) action, and d) reward function.
Let S be the discrete set of environment states and A be the
discrete set of actions available to the BS at each time slot. The
components of the proposed algorithm are specified as follows:
• Agent: Our agent is the BS that selects a subset of devices

to sample the physical process and collects the sampled
packet so as to minimize the weighted sum of the AoI and
energy consumption of all devices.

• State: Each environment state st ∈ S at time slot t
represents the AoI at each device st = [φ1,t, . . . , φM,t].
In this time-slotted model with unit slot length τ , the
value of φm,t is a positive integer that satisfies φm,t ∈
[0, τ, 2τ, . . . , φmax] and hence, the environment states that
are discrete and finite can be recorded in Q-table.

• Action: The actions of the BS represent the subset of
devices selected to sample the physical process. An ac-
tion of the BS at time slot t can be defined as at =

[a1,t, . . . , aM,t] with at ∈ A satisfying
M∑
m=1

am,t6I .

• Reward: Based on state st and chosen action at, the
reward function is given by

R(st,at)=−

(
M∑
m=1

(γAΦm,t(am,t)+γEem(am,t))

)
, (14)

where
M∑
m=1

(γAΦm,t(am,t) + γEem(am,t)) is the objective

function. Note that, R(st,at) increases as the weighted
sum of the AoI and energy consumption of all devices
decreases, which implies that the agent will maximize the
reward so as to minimize the weighted sum of the AoI
and energy consumption.

B. Repeated Update Q-learning for Optimization of Sampling
Policy

Given the components of the proposed RL algorithm, next,
we introduce how to use the proposed algorithm to solve
problem in (13). At each time slot, the BS chooses an action
at from A. After executing the selected action at, the BS
collects the sampled packet related to the dynamics of the
physical process and then, observe the environment state st.
To record the current state and actions, we define a Q-table
which is represented by Q(st,at).

The proposed algorithm adopts the Boltzmann based action
selection policy to prevent the BS only selecting the action with
the highest initialized value rather than the optimal action. The
Boltzmann exploration strategy π(st,at) is given by [14]

π(st,at) =
e
Q(st,at)

θ∑
a′
t

e
Q(st,a

′
t)

θ

, (15)

where parameter θ determines the probability of exploration.
With a fixed learning rate, the BS always learn the rewards

from the actions with high probability to be chosen, and as

a result, being stuck in the policy-bias problem in dynamic
environments. To enable the BS to learn from all sampling
policies, the update rule of the proposed RUQL method is given
by
Q(st+1,at+1)=ζQ(st,at)+(1−ζ)(R(st,at)+γmax

a′
t

Q(s′t,a
′
t))

(16)
where s′t and a′t are the state and action after the BS performs
action at under state st. ζ = (1 − α)

1
π(st,at) is the adaptive

learning rate that controls the speed of learning with α ∈ (0, 1)
being a constant. γ ∈ (0, 1) is the discount factor that controls
the relative value of future rewards. To show how the learning
rate ζ affects the update of the Q-table, we state the following
theorem.
Theorem 1. The RUQL update rule can be approximated with
an error of O(α2) as an instance of QL that repeatedly updates
the reward for b 1

π(st,at)
c times with α being a constant denoting

the learning rate of the underlying QL update equation.
Proof: See Appendix A.

From Theorem 1, we can see that, the influence of the
learning rate in RUQL can be regarded as a simple modification
where the BS updates Q-table multiple times in traditional QL
algorithm. In this way, the BS can balance the rates of the
update among the actions with different probabilities to be
chosen and hence, effectively learning from all feasible actions
and updating all actions so as to avoid resulting in a policy-bias
problem. Theorem 1 also shows that, as the BS updates the Q-
table multiple times, Q(st,at) will approach to the maximum
reward with an error of O(α2) and hence, the convergence of
RUQL is guaranteed.

The training process of the proposed algorithm can be
divided into two stages: offline training and online training. For
offline training, the BS can use the historical dataset that con-
sists of the dynamics of realistic physical process in different
time slots to generate a trained Q-table, and hence, avoiding
a poor performance at the beginning of online training. In
particular, for each step, the BS chooses a random environment
state st from its historical dataset, and then selects an action
at based on (15) to determine the subset of devices for status
sampling and update. After that, the BS can compute the
sum of the AoI and energy consumption of devices so as to
obtain the reward according to (14). Based on the state st,
the selected action at, and the obtained reward R(st,at), the
BS can update its Q-table using (16). The BS will perform
this training step repeatedly until convergence. Different from
choosing an environment state from historical dataset for offline
training, at online training process, the BS must observe the
actual environment state at current time slot and then use the
trained Q-table to choose an action. As the dynamics of physical
process changes, the BS can update the Q-table dynamically
and adjust the learning rate to obtain more information from
the time-varying environment.

From the training process, we can see that, the delay and
energy consumption for updating the Q-table can be negligi-
ble. This is because the BS that is equipped with powerful
computational ability and continuous power supply only needs
to calculate the reward once at each time slot. The training
process also show that the solution obtained by the proposed
method might not be the optimal solution. This is because, as
the dynamics of the environment changes, the BS can only use



Algorithm 1 Repeated Update Q-learning method
Input: The environment state S, the action space A.
Output: The resource allocation strategy.
1: Initialize Q(st,at).
2: Observe the current state st.
3: for each time step do
4: Compute the policy π(st,at) using (15).
5: Choose an action at according to agent policy π(st,at).
6: Perform action at and observe reward R(st,at) and next state

s′.
7: Update Q(st+1,at+1) using (16).
8: Set st+1=s′

t+1.
9: end for

TABLE I
SIMULATION PARAMETERS [16]

Parameters Values Parameters Values
M 11 τ 1 s
I 4 σ2

N -95 dBm
W 180 kHz ξm 10 Hz
PT 0.5 W γA 0.001
CS 0.3 mJ γE 1
Zm 10 bit β 4

the trained Q-table to determine the sample policy in a new
environment at each time slot. Without sufficient iterations in
testing process, the BS cannot obtain the optimal solution. The
proposed RUQL approach is shown in Algorithm 1.

IV. SIMULATION RESULTS AND ANALYSIS

In our simulations, a circular network area having a radius
r = 100 m is considered with M = 11 uniformly distributed
IoT devices (unless stated otherwise) and one BS that is located
centrally. Without loss of generality, the channel gain follows
a Rayleigh distribution with unit variance. The values of other
parameters are defined in Table I. Real data of the physical
process that is sampled by each IoT device is obtained from
the Center for Statistical Science at Peking University [15]. We
compare our approach with the traditional QL method applied
to the same system. All statistical results are averaged over
5000 independent runs.

Fig. 2 shows an example of the estimation of the physical
process. In this figure, we can see that, as the index of the
PM 2.5 changes, the proposed RUQL approach achieves better
estimation accuracy compared to QL. This is due to the fact
that the varying learning rate enables the BS to avoid policy-
bias. Fig. 2 also shows that, as the physical process varies
rapidly, the sampling frequency increases. This is because, as
the index of the PM 2.5 changes rapidly, the estimation error
of the proposed approach increases and hence, each device
must increase the sampling frequency so as to collect more
status information to capture the variation of the physical
process. From Fig. 2, we can also see that, RUQL achieves
an improvement in terms of the estimation accuracy compared
to QL in non-stationary environments. This is because, as the
environment dynamic changes over time, the proposed method
enables the BS to update Q-table multiple times when executing
an action under a new environment. Thus, the BS can learn
more information from the dynamics of the environment and
improve the estimation accuracy.

In Fig. 3, we show how the sum of AoI and the total energy
consumption of all devices will vary as the number of IoT
devices changes. From Fig. 3, we can see that, as the number of
devices increases, the total energy consumption increases. This
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stems from the fact that, as the number of devices increases,
the number of devices that must sample the physical process
and transmit the sampled information to the BS increases, and,
hence, the total energy consumption for status sampling and
update increases. Fig. 3 also shows that, when the number of
devices is larger than 11, the total energy consumption of all
algorithms almost remains unchanged. This is due to the fact
that the number of RBs is limited in our system. As the number
of devices continues to increase, the number of devices that
are selected by all algorithms for status sampling and update
will be equal to the number of RBs, therefore, the total energy
consumption of all algorithms almost remains unchanged. From
Fig. 3, we can see that the proposed algorithm can reduce the
total energy consumption by up to 11.5% compared to QL
for the case with 4 RBs and 5 devices. This gain stems from
the fact that the proposed algorithm enables the BS to adjust
the learning rate to obtain more information from the executed
actions as the dynamics change, thus capturing the variation of
the physical process using less energy. Fig. 3 also shows that,
as the number of devices increases, the sum of AoI increases.
This is because the number of RBs is limited and, hence, with
an increase of the number of devices, some devices may not
be able to transmit the fresh updates to the BS immediately,
which results in an increase of the sum of AoI. Moveover, as
the number of devices continues to increase, the sum of AoI
increases rapidly. This stems from the fact, as the number of
devices is much larger than the number of RBs, most of the
devices must wait until being allocated the RB so as to update
the status which results in a great growth in terms of AoI. From



Fig. 3, we can see that the proposed algorithm can reduce the
sum of AoI by up to 26.9% compared to QL for the case with
4 RBs and 15 devices. This gain stems from the fact that the
proposed algorithm enables the BS to adjust the learning rate
and avoid policy-bias to obtain a better performance.

V. CONCLUSION

In this paper, we have considered a real-time IoT system
to capture the variation of a physical process. In the consid-
ered system, the physical process is modeled as a nonlinear
dynamical equation which affects the sampling frequency of
each device. Based on the proposed model, we have formulated
an optimization problem that seeks to select a subset of IoT
devices to sample the physical process so as to minimize the
weighted sum of the AoI and total device energy consumption.
To solve this problem, we have developed an RUQL algorithm
that enables the BS to adjust the learning rate based on the
chosen sampling policy to avoid the policy-bias problem, and
hence, minimizing the objective in dynamic environments.
Simulation results have shown that the proposed approach
yields significant gains compared to conventional approaches.

APPENDIX

A. Proof of Theorem 1
To prove Theorem 1, we first show the update rule of

traditional QL
Q1(st+1,at+1)=Q0(st,at)+α(R(st,at)+γmax

a′
t

Q0(s
′
t,a
′
t)),

(17)
where α is learning rate. Then, we trace the update of
Qt+1(st,at) for b 1

π(st,at)
c times. The first iteration result is

given in (17). The second iteration result is

Q2(st+1,at+1)=Q1(st,at)+α(R(st,at) + γmax
a′
t

Q1(s
′
t,a
′
t)).

Using the enumeration method, b 1
π(st,at)

c iteration result is

Qb 1
π(st,at)

c(st+1,at+1)= (1− α)b
1

π(st,at)
cQ0(st,at) (18)

+ (1− α)b
1

π(st,at)
c−1(R(st,at) + γmax

a′
t

Q0(s
′
t,a
′
t))

+ ...

+ α(R(st,at) + γmax
a′
t

Qb 1
π(st,at)

c−1(s
′
t,a
′
t)).

We consider the following two cases:
a) When the BS chooses the optimal action, i.e., at =
max
a′
t

Q(s′t,a
′
t), (18) can be rewritten as

Q(st+1,at+1)= (19)

(1− α(1− γ))
1

π(st,at)

(
Q(st,at)−

R(st,at)

1− γ

)
+
R(st,at)

1− γ
.

b) Otherwise, substituting ζ=(1−α)
1

π(st,at) into (18), we have

Q(st+1,at+1)=(1− α)
1

π(st,at)Q(st,at) (20)

+(1−(1− α)
1

π(st,at) )(R(st,at)+γmax
a′
t

Q(s′t,a
′
t)).

Consider the Taylor series expansion of both equations at
α = 0, and (1− α)c = 1− cα+O(α2), (19) can be rewritten
as

Q(st+1,at+1)

=

(
1− α

π(st,at)

)
Q(st,at)+

α(R(st,at)+γQ(st,at))

π(st,at)
+O(α2)

=

(
1− α(1−γ)

π(st,at)

)
Q(st,at)+

αR(st,at)

π(st,at)
+O(α2). (21)

Similarly, (20) can be rewritten as
Q(st+1,at+1)

=

(
1−α(1− γ)

π(st,at)

)
Q(st,at)+

αR(st,at)

π(st,at)
+O(α2). (22)

From (21) and (22), we can see that, the RUQL update rule
can be approximated with an error of O(α2) as an instance of
QL updating b 1

π(st,at)
c times. This completes the proof.
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