
R2IM – Robust and Resilient Intersection Management of Connected

Autonomous Vehicles

Mohammad Khayatian, Rachel Dedinsky, Sarthake Choudhary, Mohammadreza Mehrabian

and Aviral Shrivastava

Arizona State University

Abstract— Intersection management of Connected Au-
tonomous Vehicles (CAVs) has the potential to significantly
improve safety and mobility. While numerous intersection man-
agement designs have been proposed in the past few decades,
most of them assume that the CAVs will precisely follow the
directions of the Intersection Manager (IM) and prove the safety
and demonstrate the efficiency based on this assumption. In real
life, however, a CAV that is crossing the intersection may break
down, accelerate out-of-control or lie about its information (e.g.
intended outgoing lane) and cause an accident. In this paper,
we first define a fault model called “rogue vehicle”, which is
essentially a CAV that either is dishonest or does not follow
the IM’s directions and then, propose a novel management
algorithm (R2IM) that will ensure safe operation, even if a CAV
becomes “rogue” at any point in time. We prove that there can
be no accidents inside the intersection, as long as there is no
more than one “rogue vehicle” at a time. We demonstrate the
safety of R2IM by performing experiments on 1/10 scale model
CAVs and in simulation. We also show that our approach can
recover after the rogue vehicle leaves/is removed.

I. INTRODUCTION

According to the American Automobile Association

(AAA), more than two people are killed every day in the

U.S. due to accidents caused by red lights runners [1]. When

vehicles become autonomous and connected, however, the

number of accidents caused by human errors can dramati-

cally be reduced. In the past few decades, many works [2],

[3] have been devoted to developing algorithms for safe

and efficient management of connected autonomous vehicles

(CAVs) at road intersections, in which CAVs do not have to

come to a complete stop at the intersection, rather, they can

just slow down a bit to pass each other safely.

Most broadly, existing algorithms for intersection manage-

ment of CAVs [4], [5] can be classified into two categories:

centralized and distributed. In centralized techniques, CAVs

interact with an intersection manager (IM), which schedules

the arrival time of CAVs while in distributed approaches,

CAVs interact with each other to determine how to cross

the intersection. Because of security concerns, centralized in-

tersection management approaches are sometimes preferred.

This is because the CAVs only have to communicate with

the IM –which is a part of the infrastructure– rather than

communicating with other CAVs. On the other hand, cen-

tralized approaches require support from the infrastructure

and therefore, their deployment at all intersections may not

be feasible.

Although various intersection management algorithms

have been proposed, almost all of them make strong as-

sumptions to ensure safety. First, it is assumed that a CAV

shares correct and accurate information with the IM, while

in reality; a CAV may unintentionally or deliberately send

wrong information. For example, a CAV may send a wrong

position, velocity, or even intended outgoing lane. Secondly,

it is assumed that a CAV behaves as the IM expects and

follows the assigned trajectory. However, a CAV may break

down and suddenly stop in the middle of the intersection

or accelerate out-of-control and enter the intersection earlier

than expected which in turn can result in an accident. We

believe that real-life intersection management techniques

need to account for such failures and use a mechanism to

avoid accidents if such scenarios happen.

This paper then presents R2IM – a robust intersection

management algorithm that is resilient against a rogue ve-

hicle that may be present. Our approach uses an external

surveillance system that can detect if a vehicle is not fol-

lowing the expected trajectory beyond a tolerance limit, and

declares it as rogue. The safety is achieved essentially by

scheduling the cross-time of approaching CAVs with enough

temporal buffer, so that an accident becomes impossible,

even if a CAV becomes “rogue” at any point of time. To

evaluate the correctness of R2IM, we built a 1/10 scale model

intersection and injected faults on vehicles by forcing them to

accelerate/decelerate and showcased the safety of the CAVs.

II. RELATED WORKS

In the past few decades, intersection management of CAVs

has extensively been studied [4]. Many researchers have

focused on distributed management techniques where CAVs

communicate with each other and decide who should cross

first [6]–[11]. On the contrary, other studies were focused

on centralized intersection management approaches where

CAVs communicate with the infrastructure to get a reser-

vation. Some centralized techniques follow a query-based

intersection management scheme where CAVs query safe

crossing from the IM and the IM either accepts or rejects the

request [12]–[15] while other centralized approaches follow

an assignment-based management technique where CAVs

share their information with the IM and the IM assigns a

reservation to them [2], [16]–[19].

Although many research studies were focused on improv-

ing the throughput of the intersection, not much research

is done on improving the safety and robustness of the

intersection management technique. Responsibility-Sensitive

Safety rules are proposed to ensure the safety of CAVs in

different scenarios [20] but they do not explicitly support

intersection scenarios.

To tackle uncertainty issues for the intersection man-

agement problem, researchers have proposed methods to

mitigate faults that can happen in the intersection manage-

ment system. In Crossroads technique [18], [19], authors

highlighted the need for having the same notion of time

between IM and CAVs and safety issues that arises due to

communication delay and IM’s processing time. In RIM [16],

authors showed that the existence of model mismatch and

external disturbances can cause an error in the eventual

arrival time of CAVs. In [21], [22], Bentjen et al. considered

a scenario where a malicious CAV blocks the intersection.

They have presented some initial thoughts on how to mitigate

such vulnerabilities. Dedinsky et al. [23] has provided some

initial thoughts on how to employ a surveillance system

to detect rogue vehicles at the intersection. In almost all

previous works, it was assumed that all CAVs share correct

information with the IM and precisely follow IM’s command.

In the next section, we first explain the interaction between

IM and CAV when no rogue vehicle is present and then

define the fault model for the rogue vehicle and discuss how

R2IM accommodates a rogue vehicle.

III. R2IM WITHOUT ROGUE VEHICLES

When a CAV is within the communication range of the

intersection, it synchronizes its internal clock with the IM

and then sends a request to the IM by sharing its position,

velocity, and corresponding timestamp as well as CAV’s

ID and the intended outgoing lane. Accordingly, the IM

calculates a safe Time of Arrival (TOA) and Velocity of

Arrival (VOA) and sends it back to the CAV. Upon receiving

the VOA and TOA, the CAV determines an optimal reference

trajectory and lets the IM know by sharing the trajectory

parameters, A0 and B0 (explained later). Next, the IM adds

CAV’s information to its list of “active CAVs” and sends

an acknowledgment (ACK) to the CAV. After receiving the

ACK from the IM, the CAV follows its reference trajectory

until it reaches the intersection where it continues at the

constant velocity of VOA. If a CAV fails to synchronize

its clock or at any stage, does not receive a response from

the IM within the set timeout, it will apply break and starts

over by synchronizing its clock as its clock may be out of

sync. IM and CAV’s algorithms are presented in Alg. 1 and

Alg. 2.

A. Reference Trajectory Calculation and Tracking

When a CAV receives the VOA and TOA values from the

IM, it needs to make a plan to arrive at the intersection

at time TOA with speed VOA. The plan is essentially

a position-vs-time graph that specifies where the vehicle

should be at any point in time. For simplicity, we consider a

double integrator model for the behavior of the CAVs before

Algorithm 1: Algorithm for CAVs

1: while True do

2: if (within the intersection range) then

3: synchronize the clock

4: if sync is not successful or timed out then

5: apply brake and goto line 3

6: end if

7: send a request to IM

8: receive the TOA and VOA from IM

9: if response is timed out then

10: apply brake and goto line 3

11: end if

12: calculate reference trajectory

13: send trajectory information to the IM

14: receive the ACK from the IM

15: if ACK is timed out then

16: apply brake and goto line 3

17: end if

18: inquiry emergency state from IM

19: if emergency state is active or timed out then

20: if (After point of no return (PONR)) then

21: follow reference trajectory and goto line 18

22: else

23: apply brake and goto line 3

24: end if

25: else

26: if (if entered the intersection) then

27: drive at a constant velocity (VOA)

28: else

29: follow reference trajectory goto line 18

30: end if

31: end if

32: end if

33: end while

entering the intersection:
{

ṗ = v

v̇ = a
(1)

where p is the longitudinal position of the vehicle, v is the

velocity and a is the input acceleration. Since acceleration

and deceleration rates of a CAV are bounded in real life,

we consider limits for the acceleration as a ∈ [amin, amax],
where amax and amin are the maximum acceleration and

deceleration rates of the CAV. Similarly, we consider an

upper bound and a lower bound for the velocity of the

CAV as v ∈ [vmin, vmax], where vmax is the maximum

velocity of the vehicle and is the same as speed limit and

vmin is the minimum velocity of the vehicle. We determine

the reference trajectory by minimizing the total amount of

acceleration/deceleration for each CAV, which is linear:

ar = A0t+B0 (2)

where A0 and B0 are constants that can be determined from

initial and final conditions similar to [16]. Each CAV utilizes

a PID (Proportional-Integral-Derivative) controller to track

Algorithm 2: Algorithm for the Intersection Manager

1: while True do

2: check emergency state

3: broadcast emergency state

4: if a request is received then

5: if emergency state is active then

6: reject the request

7: else

8: calculate the optimal TOA and VOA

9: send TOA and VOA to the vehicle

10: end if

11: end if

12: if trajectory information is received then

13: store the CAV’s trajectory information

14: send the ACK message

15: end if

16: end while

the reference position trajectory:

a = kP e+ kIeI + kDeD (3)

where a is the control input (acceleration), e is the position

error defined as e = pr − p, eI is the integral of the error

(eI =
∫

e), eD is the derivative of e (eD = vr − v) and kP ,

kI , and kD are positive constants which are referred to as

PID gains.

IV. R2IM WITH ROUGE VEHICLES

In this section, we first present the fault model and then

show the interaction of IM with CAVs to handle rogue

vehicles.

A. Fault Model – Rouge Vehicle

The Rogue vehicle is a CAV that intentionally or uninten-

tionally is lying when sharing its information to the IM, or

does not follow IM’s directions. The rogue CAV may either

accelerate or decelerates but it never drives outside the road

boundary. To generalized the rogue vehicle’s definition, we

use the following definition:

Definition 1: A CAV is deemed rogue if it deviates from

its expected position by a pre-set threshold.

This fault model covers many scenarios including following

extreme cases:

Acceleration (ACC) Fault Scenario: The rogue vehicle

suddenly accelerates with a = amax toward the intersection

and enters the intersection earlier than it was scheduled.

Deceleration (DEC) Fault Scenario: The rogue vehicle

breaks down and suddenly stops a = −∞ inside the

intersection.

Lying about outgoing Lane: The rogue vehicle lies about

its outgoing lane and takes another path once it enters the

intersection. Next, we define some of the terms that we use

in the algorithm.

Definition 2: Point of No Return (PONR) is the farthest

point from the intersection that if after passing this point a

CAV starts applying full brake (a = amin), it cannot fully

stop without entering the intersection.

The distance of the PONR from the edge of the intersection

(POA) is dPONR and can be calculated as:

dPONR =
v2
PONR

2|amin|
+

V L

2
(4)

V L is vehicle length and vPONR is the velocity of the CAV

at the PONR. Since p represents the longitudinal location of

the center of a CAV, V L

2
is added to account for the length

of the CAV.

Definition 3: Critical zone for a CAV is defined as the

area between its PONR and the point it exits the intersection.

Definition 4: Critical time window is the time it takes

for a CAV to travel through the critical zone.

The critical window (∆tcrit) can be calculated as the sum-

mation of time to reach the intersection and time to travel

inside the intersection:

∆tcrit = (TOA− tPONR) +
dI + 0.5V L

V OA
(5)

where dI is the traveled distance inside the intersection and

can be determined from the dimensions of the intersection.

For left and right turns, the dI is 3πLW

2
and πLW

2
respec-

tively and for going straight dI is 2LW where LW is the

lane width.

Definition 5: Safety Barrier (SB) is the maximum dis-

tance that a CAV may travel when the previously scheduled

CAV is in its critical zone.

Since the velocity of a CAV is bounded by vmax, the

maximum distance that a CAV can travel corresponds to the

case where its initial velocity is equal to vmax. As a result,

the size of the safety barrier is:

dSB = ∆tcritvmax (6)

For a practical design, the IM should account for the

worst-case execution time of the IM (CIM) and CAVs

(CCAV), and the period of emergency inquiry by a CAV

(T) to ensure safety. As a result, Eq. (4) and (6) is modified

as follows to account for them:

dPONR =
v2
PONR

2|amin|
+

V L

2
+ ρvmax (7)

dSB = (∆tcrit + ρ)vmax (8)

where ρ = T + CIM + CCAV is the worst-case end-to-end

delay from the moment a CAV becomes rogue to the moment

other CAVs are notified and react.

B. IM and CAV Interaction In Presence of A Rogue Vehicle

The IM periodically calculates the distance between the

estimated position of CAVs – which is determined from a

CNN-based perception system like [24] – and their expected

position. If the distance is greater than a threshold, eth, it set

the emergency state to active. Whether the emergency state

is active or not, the IM periodically broadcasts it. When a

CAV notifies that the emergency state is active, it checks if

its position is before its Point of No Return (PONR) (Eq. (4))

and can safely stop without entering the intersection. If the

CAV is after its PONR, it ignores the emergency state and

