
On the Design of Generalized LDPC Codes with
Component BCJR Decoding
Yanfang Liu†, Pablo M. Olmos∗, and David G. M. Mitchell†

†Klipsch School of Electrical and Computer Engineering, New Mexico State University, Las Cruces, USA
{viviliu,dgmm@nmsu.edu}

∗Universidad Carlos III de Madrid & Gregorio Marañón Health Research Institute, Madrid, Spain
{olmos@tsc.uc3m.es}

Abstract—Generalized low-density parity-check (GLDPC)
codes, where the single parity-check (SPC) nodes are replaced
by generalized constraint (GC) nodes, are known to offer a
reduced gap to capacity when compared with conventional
LDPC codes, while also maintaining linear growth of minimum
distance. However, for certain classes of practical GLDPC codes,
there remains a gap to capacity even when utilizing blockwise
decoding algorithm at GC nodes. In this work, we propose
to optimize the design of GLDPC codes where the GC nodes
are decoded with a trellis-based bit-wise Bahl-Cocke-Jelinek-
Raviv (BCJR) component decoding algorithm. We analyze the
asymptotic threshold behavior of GLDPC codes and determine
the optimal proportion of the GC nodes in the GLDPC Tanner
graph. We show significant performance improvements compared
to existing designs with the same order of decoding complexity.

Index Terms—Generalized low-density parity-check codes,
BCJR decoding, trellis of linear block codes

I. INTRODUCTION

As first proposed by Tanner in 1980’s [1], generalized
low-density parity check (GLDPC) codes have been shown
to provide both good minimum distance and low decoding
complexity [2], [3], [5]. In contrast to conventional low-
density parity-check (LDPC) codes, the single parity-check
(SPC) nodes in the GLDPC Tanner graph are replaced with
generalized constraint (GC) nodes. The code associated with
each GC node is called a component code. In the GLDPC
literature, Hamming codes, Hadamard codes, BCH codes,
convolutional codes, and expurgated random codes have been
used as component codes [2]–[5]. With careful selection of
the component codes, GLDPC codes have been shown to be
asymptotically good [2], [6] and possess excellent iterative
decoding thresholds [3], [5]. Consequently, many advantages,
e.g., improved performance in noisy channels, low error floor
and fast convergence speed, are promised [3], [7].

In a recent paper [8], it was shown that upon selecting
a specific class of component codes, the degree distribution
(DD) of a GLDPC code ensemble can be optimized for
good thresholds while maintaining linear growth of minimum
distance. Moreover, by employing a probabilistic description
of the decoding capabilities at GC nodes, the authors managed
to analyze the trade-off between coding rate and iterative
decoding threshold as they increase the proportion ν of GC
nodes in the GLDPC Tanner graph. Although the thresholds
of designed GLDPC code ensembles are improved when
compared to conventional LDPC code ensembles, a gap to

capacity remains even with the optimal proportion of GC
nodes and blockwise decoding of component codes.

In order to improve the decoding performance and decrease
this threshold gap, we propose to optimize GLDPC code
design where component GC nodes are decoded with the Bahl-
Cocke-Jelinek-Raviv (BCJR) decoding algorithm. The BCJR
decoding at GC nodes allows component decoders to correct
errors that are otherwise uncorrectable with the blockwise
decoding algorithm of [8]; however, the proportion, type, and
location of GC nodes must be optimized accordingly.

Using exemplary (2, 6)- and (2, 7)-regular GLDPC codes,
which have (6, 3) shortened Hamming and (7, 4) Hamming
as constraint codes, respectively, we begin by examining
the asymptotic threshold behavior of GLDPC codes and de-
termining the optimal proportion of the GC nodes in the
GLDPC Tanner graph. Significant threshold improvements are
observed when compared to the results of [8], [9]. We then
expand the approaches of [10] and [11] to derive a suitable
trellis and BCJR rules for the constraint Hamming codes,
and present simulation results confirming the robust error
control performance predicted by the asymptotic analysis. We
also compare the decoding performance of a (2, 6)-regular
GLDPC code with an optimized proportion of GC nodes,
BCJR component decoding, and an outer code to match the
rates of the 5G candidates proposed in [12], [13]. Finally, we
investigate the decoding complexity of the proposed schemes
and show the same order of complexity compared to the
technique of [9].

II. ASYMPTOTIC ANALYSIS OF BCJR DECODED GC
NODES IN GLDPC CODES

In this section, we determine the optimal proportion of GC
nodes in GLDPC code ensembles via an asymptotic analysis
over the binary erasure channel (BEC).

A. GLDPC Codes and Code Ensembles

We represent a GLDPC code ensemble as shown in Fig.
1, where the Tanner graph has n variable nodes (coded bits),
illustrated by white circles, that are connected by edges to
c constraint nodes, illustrated by plus squares. Among the c
parity-check nodes, a proportion ν ∈ [0, 1] correspond to GC
nodes (shaded plus squares) while the rest correspond to SPC
nodes (white plus squares).

+

+
...

...

...
n

variable nodes

(1−ν)c
SPC nodes

νc
GC nodes

Fig. 1. Tanner graph of a GLDPC code.

An ensemble of GLDPC codes of length n is defined by a
DD and proportion of GC nodes ν.1 Note that the ensemble
contains all codes of length n where the fraction ν of GC
nodes are randomly placed, the edges are randomly assigned
(according to the given DD), and the edge ordering (ordering
code bits for a component code) is randomly assigned. The
design rate of the GLDPC code ensemble is R(ν) = R−ν(1−
R)(1 − m), where m is the number of linearly independent
parity-check in the component code, and R is the original
LDPC code rate [8].
B. Peeling Decoding Analysis

For the BEC, peeling decoding (PD) algorithms are em-
ployed to iteratively decode graph-based codes (such as LDPC
codes and GLDPC codes) [19]. For LDPC codes, PD is
initialized by removing all known variable nodes and attached
edges from the Tanner graph and then the algorithm iteratively
removes any remaining degree 1 check nodes (the degree of
a node is the number of edges connected with this node), the
edges adjacent with the removed check nodes, and connected
variable nodes (now known). If all of the variable nodes
are removed from the graph, it corresponds to a decoding
success, otherwise it is a decoding failure. A sequence of
residual graphs whose evolution can be predicted by a set
of differential equations is produced by this decoding process
[19]. The threshold of the LDPC code ensemble is given by
the biggest channel parameter ε of the BEC which ensures a
decoding success.

For GLDPC codes, the initialization of PD is same as
the LDPC codes; however, the PD of GLDPC codes will
then iteratively remove any degree 1 SPC nodes as well as
GC nodes with input erasure patterns that are correctable,
the edges adjacent with the removed check nodes (SPC or
GC), and the connected variable nodes. Given the minimum
distance, decoding capability, the proportion of GC nodes and
DD of the GLDPC graph, the differential equation method
was extended in [8] to predict the asymptotic evolution and
the corresponding thresholds of GLDPC code ensembles when
applying decoding algorithm for the GC nodes. In the remain-
der of this section, the asymptotic evolution of GLDPC codes

1The DD of an LDPC (or a GLDPC) code ensemble is characterized
by polynomials λ(x) and ρ(x), where the coefficients of the polynomials
correspond to the fraction of edges in the graph connected to nodes of a
certain degree, see [21].

is analyzed when applying bit-wise BCJR decoding to the GC
nodes.
C. BCJR Component Decoding

To illustrate the difference between the technique in [8] and
BCJR2 decoding of GC nodes, we give a specific example
where the component codes are chosen to be the (7, 4, dmin =
3) Hamming code, which has generator matrix

G74 =

1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 1 0
1 1 0 1 0 0 1

 =

g1

g2

g3

g4

, (1)

where dmin represents the minimum distance of the component
code. Assume that the all zero codeword is transmitted, then
any pattern of one erasure or two erasures and 80% of the
three erasure patterns can be corrected by both BCJR and the
decoding technique in [8]. However, for a received erasure
pattern with four erasures, such as [? ? ? 0 0 0 ?], the technique
of [8] would decide this GC node is “uncorrectable” but BCJR
decoders can infer that the second bit must be a 0 given that
there are only two codewords of the (7, 4) Hamming code that
has three 0s in the 4th, 5th, and 6th positions ([0 0 0 0 0 0 0]
and [1 0 1 0 0 0 1]), both of which have the second bit equal
to 0. We refer to this capability of the GC node as single bit
decodable.

Although BCJR component decoding can not correct the
whole block (at this time), this improved error correcting
capability can increase the thresholds of designed GLDPC
code ensembles via the iterative procedure. For this component
code, we calculate that the fraction of single bit decodable
dmin + 1 erasure patterns is 0.75 (BCJR can not partially
or completely decode any erasure pattern beyond dmin + 1
erasures). Following [8], we incorporate this extra decoding
capability of the BCJR algorithm compared to the technique
of [8] into the asymptotic analysis by using a probabilistic
description of the peeling decoder in which, every time a
degree (dmin+1) GC node is created, then it is tagged as single
bit decodable with probability 0.75. This description becomes
accurate for large block lengths, as long as we assume code
bits are labeled at random at every GC node, and it allows one
to incorporate the BCJR decoding model into the differential
equation method. A similar probabilistic description of BCJR
decoding can be suitably obtained for any GC node (code)
based on correctable or partially correctable error patterns and
incorporated into the analysis of [8].

In the following, we note the modifications that must be
made to incoporate the improved decoding capability of BCJR
decoding to the method of [8].3 In order to characterize
the DD evolution of the residual Tanner graph of (2, 7)-
regular GLDPC codes with BCJR component decoding, we
first introduce the notations needed for the differential equation

2For a BEC, we implement BCJR by exact bit marginalization (bit-wise
MAP decoding).

3Due to space constraints, we refer the reader to [8] for full details of
the analysis.

method. We say any edge connected to a degree i variable node
has left degree i, i ∈ {1, . . . , J}, where J is the maximum
degree of any variable node in the Tanner graph. Similarly,
any edge connected to a degree j SPC (resp. GC) node has
right SPC (resp. GC) degree j, j ∈ {1, . . . ,K}, where K is
the maximum degree of any check node in the Tanner graph.
Let L(`)

i represent the number of edges that have left degree
i at iteration `, let R(`)

pj represent the number of edges have
right SPC degree j, and let R(`)

cj represent the number of edges
with right GC degree j at iteration `. For j = dmin (respectively
dmin + 1), we split R(`)

cj into two terms, R̂(`)
cj and R̄(`)

cj , where
R̂

(`)
cj denotes the number of edges with right GC degree j

connected to GC nodes tagged as decodable (resp. single bit
decodable), and R̄(`)

cj denotes the number of edges with right
GC degree j connected to GC nodes tagged as not-decodable
(both values of j). Clearly, we have R

(`)
cj = R̂

(`)
cj + R̄

(`)
cj .

The main difference to the method in [8] is that, when the
decoder selects, at random, a degree-4 check node, there is
0% probability this check node can be decoded with the
decoding technique in [8]; however, even though the BCJR
decoder cannot decode the GC node either, we now have a
75% probability that one of the edges will be removed from
the residual graph (correcting the variable node adjacent to the
edge).4 By structure of the (7, 4, 3) Hamming code if, during
an iteration, a not-decodable degree 4 check node has one edge
removed (via some other decodable check node), it becomes a
decodable degree 3 check node for the next iteration, however,
if a single bit decodable degree 4 check node has one edge
removed, we compute that there is a probability of 75% that
it becomes a decodable degree 3 check node.
D. Threshold Results for Optimized GLDPC Code Ensembles

To compare the performance of the decoding technique in
[8] and BCJR decoding of GC nodes, we plot the threshold
vs. coding rate of (2, 6)-regular GLDPC and (2, 7)-regular
GLDPC code ensembles as a function of the fraction ν of GC
nodes in Fig. 2, where the channel capacity is indicated by
the black line.5 For each code ensemble, the leftmost point is
the original (2, 6)-regular LDPC or (2, 7)-regular LDPC code.
As the proportion ν of GC nodes increases, the thresholds
of the designed GLDPC codes increase and the coding rate
decreases. When ν is small, the improved thresholds do not
compensate for the rate loss, which causes the additive gap to
capacity to be worse (larger) than the original LDPC codes. As
ν increases, the gap to capacity (“Gap” in Fig. 2) decreases,
but the thresholds of the BCJR and the decoding technique
in [8] are approximately the same because there are too few
GC nodes that can combine during the iterative process to
collectively correct block errors. As the proportion ν of the

4We remind the reader that, in PD, as edges are removed the “degree”
of the check node reduces. This is equivalent to more inputs being known.
For example, a GC node with 7 inputs, 4 of which corresponds to erasures,
would be referred to as a degree 4 GC node.

5The probabilistic description for the decoding technique in [8] and BCJR
component decoding of shortened (6, 3) Hamming codes was obtained in a
similar way to the (7, 4) Hamming codes.

0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

Threshold ε*(ν)

R
at

e
R

(ν
)

Capacity
(2,6)-regular ([6])
(2,6)-regular (BCJR)
(2,7)-regular ([6])
(2,7)-regular (BCJR)

Rate=0.1667, Gap=0.0258

Rate=0.1667, Gap=0.0823

Rate=0.2857, Gap=0.0313

Rate=0.2857, Gap=0.0762

Fig. 2. Threshold ε∗ vs. coding rate R as a function of the proportion ν of
GC nodes for (J,K)-regular GLDPC codes with the decoding technique in
[8] and BCJR decoding at GC nodes.

GC nodes becomes sufficiently large the thresholds obtained
by component BCJR decoding exceed the thresholds obtained
by [8] and approach capacity. Note that the gap to capacity
is greatly reduced. The optimal proportion of GC nodes was
determined to be ν∗ = 0.75 for both (2, 6)-regular GLDPC
and (2, 7)-regular GLDPC code ensembles.6 As ν increases
beyond ν∗, the additional error correcting capability again
does not compensate for the rate loss and the gap to capacity
increases, but the improvement over the decoding technique
in [8] is maintained.

III. GLDPC CODES WITH COMPONENT HAMMING CODE
TRELLISES

In order to adopt BCJR decoding at the GC nodes for an
additive white gaussian noise (AWGN) channel, we require an
appropriate trellis representation of the component code.
A. A Trellis-Oriented Generator Matrix

The BCJR algorithm enables MAP decoding of codes de-
fined on trellises [14]. This decoding technique was extended
to linear block codes in [10]. Forney introduced another con-
struction of a trellis for linear block codes in [15] and showed
that it is most convenient to construct trellises from a generator
matrix in “trellis-oriented” form. This was subsequently shown
to minimize the number of vertices [16], and as such, the
Forney trellis is also called the minimal trellis of the code and
the corresponding generator matrix is said to have minimal-
span [17].

We transform the generator matrix of Hamming codes to
be trellis-oriented by performing elementary row operations in

6We remind the reader that this technique can similarly be applied to
determine ν∗ for other code ensembles and component codes.

order to minimize the complexity of a trellis given particular
linear block code, measured as the number of branches per
section [15]. To determine the minimal-span matrix, we begin
with the definitions and notations of index and span that
are used to draw the trellis of linear block codes. Define a
nonzero binary n-tuple x = [x1, x2, . . . , xn]. Let L(x) denote
the left index of x, the smallest integer i for xi 6= 0, and
let R(x) denote the right index of x, the largest integer i
for xi 6= 0. Let span(x) denote the span of x, span(x) =
[L(x), L(x) + 1, . . . , R(x)]. The corresponding span-length
of x is computed as the number of elements in span(x). A
nonzero vector x = [x1, x2, . . . , xn] is active at coordinate i
if L(x) < i and R(x) > i. With these definitions in hand, we
can now define the minimal-span matrix such that the span-
length of every row in the matrix has the possible smallest
value.

Example 1: We demonstrate our approach using the (7, 4)
Hamming code with generator matrix (1) as the component
codes in a GLDPC code ensemble. The span of row 1 is
span(g1) = [1, 2, 3], with L(g1) = 1, R(g1) = 3, and span-
length 3. The span-length of the rows of G74 are 3, 5, 5 and
7, respectively. By applying elementary row operations on (1),
the transformed trellis7-oriented generator matrix of the (7, 4)
Hamming code is

G′74 =

1 1 1 0 0 0 0
0 1 1 1 1 0 0
0 0 1 0 1 1 0
0 0 0 1 1 1 1

. (2)

The span-length of the rows of G′74 are 3, 4, 4, and 4,
respectively. G′74 is a minimal-span matrix. �

Let G be a minimal-span k × n generator matrix with
rows x1, . . . ,xk and let S = {S1, . . . , Sk} represent a set
of row covers of G. Here, each Sj is a discrete interval
[Lj , Lj+1, . . . , Rj] containing the span of xj . Also let λ(u)
be the span of the ith column of G′74. For a given set of
row covers S, the sets Ai are defined as Ai = {j|i ∈ Sj},
where i = 1, 2, . . . , n. In other words, Ai denotes which
rows of G are “S-active” at coordinate i. Similarly, let Bi
represent which rows of G are “S-active” at depth i, where
B0 = Bn = ∅, Bi = Ai ∩ Ai+1, for i = 1, 2, . . . , i − 1.
The cardinalities of Ai and Bi are denoted by αi and βi,
respectively. Now let u = [u1, u2, . . . , uk] be a binary k-tuple,
where k = 2αi . We define init(u) and fin(u) as the vector of
length |Bi−1| (respectively |Bi|) containing the ordered entries
of u with indices in Bi−1 (respectively Bi). Given these
definitions, to describe the edge sets Ei−1,i, i = 1, 2, . . . , 7, a
sequence of tables can be obtained and pieced together into a
graphical representation of the trellis.

Example 1 (cont.): Table I gives the values of Ai, Bi, αi,
and βi computed for generator matrix G′74 of the (7, 4) Ham-
ming code (2) which is minimal-span. Using the technique
proposed in [10], we obtain edge sets Ei−1,i, for i = 1, . . . , 7,

7Any generator matrix can used, but G′74 is desirable since it has
minimal-span.

TABLE I
VALUES OF Ai , Bi , αi , AND βi FOR THE (7, 4) HAMMING CODE (2)

i Ai Bi αi βi
0 ∅ ∅ 0 0
1 {1} {1} 1 1
2 {1,2} {1,2} 2 2
3 {1,2,3} {2,3} 3 2
4 {2,3,4} {2,3,4} 3 3
5 {2,3,4} {3,4} 3 2
6 {3,4} {4} 2 1
7 {4} ∅ 1 0

S000 S000

S010

S000

S011

S001

S010

S000

S001

S010

S011

S000

S100

S001

S101

S110

S010

S111

S011

S000

S010

S111

S101

S000

S101

S000

Fig. 3. Trellis of the (7, 4) Hamming code derived from G′74.

which for completeness and reproducibility of results are given
in the sequence of tables in Appendix A.

The corresponding trellis is shown in Fig. 3, where the
paths through the tree correspond to codewords in the com-
ponent code. Solid and dashes lines correspond to 0 and 1
outputs, respectively. The states S are labeled with subscripts
corresponding to the outputs. Based on the trellis, we derive
a branch metric, forward metric, and backward metric of
the (7, 4) Hamming code on AWGN channel under BPSK
modulation following the standard BCJR rules [18]. This
provides soft a posteriori probability (APP) outputs for the
GC nodes in GLDPC codes.

IV. NUMERICAL RESULTS AND DISCUSSION

A. Simulation Results

Using the optimal proportion ν∗ of GC nodes that was
determined using the asymptotic analysis outlined in Sec-
tion II, we compare the BER performance on the BPSK
modulated AWGN channel with BCJR and decoding technique
[8] component decoding of the rate R = 1/12 (2, 6)-regular
and (2, 7)-regular GLDPC coding schemes proposed in [9].
The location of GC nodes were selected randomly in the code
construction. These rate R = 1/12 codes have 40 information
bits and block length 480 bits (typical parameters proposed
for ultra-reliable low-latency communication (URLLC)). Like
[9], we also apply an (79, 40) outer code that corrects up to
15 errors for comparison. From Fig. 4, we observe that the
simulation results shows that gains of approximately 2dB at
a BER of 10−6 when using BCJR for component GC nodes

−10 −8 −6 −4 −2 0
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

SNR [dB]

B
it

E
rr

or
R

at
e

(B
E

R
)

(2,6)-regular
([6])
(2,6)-regular
(BCJR)
(2,7)-regular
([6])
(2,7)-regular
(BCJR)

Fig. 4. BER performance of the GLDPC codes has R = 1/12, 40 information
bits and outer code proposed in [9] on AWGN channel with BPSK modulation
and BCJR or decoding technique [8] component decoding of GC nodes.

decoding of the (2,6)-regular GLDPC when compared to the
decoding technique [8] component decoded code. For the case
of the (2,7)-regular GLDPC code, approximately 3dB is gained
at a BER of 10−6.

Fig. 5 shows the block error rate (BLER) decoding perfor-
mance of some 5G URLLC candidates under QPSK modu-
lation [12], [13], including turbo codes with BCJR decoding,
LDPC codes with MSA decoding and offset MSA decoding,
polar codes with successive cancellation list (SCL) decoding
and a CRC outer code, and convolutional codes with BCJR
decoding. Also shown is the BLER performance of the (2,6)-
regular GLDPC code with BCJR component decoding, opti-
mized proportion ν of GC nodes, and the outer code to rate
match. We observe that approximately 2dB is gained at a BER
of 10−6 compared to the polar codes with SCL decoding and
a CRC outer code, at the cost of some additional decoding
complexity.

B. Decoding Complexity

Component BCJR decoding of the GC nodes requires
computation of the branch metric, forward metric, backward
metric, and log-likelihood ratio (LLR) values. The decoding
complexity will also depend on the trellis realization. The
numbers given in this section are determined for the minimal-
span matrices of shortened (6, 3) Hamming code and (7, 4)
Hamming code, respectively. Following a standard BCJR
implementation [11], we require 4K operations to determine
the branch metric for a (2,K)-regular GLDPC code. The
computation of the forward metric and the backward metric for
a (2, 6)-regular GLDPC code both require 25 multiplications
and 7 additions, and the computation of the LLR values
for variable node requires 66 additions/subtractions. Hence,
to update every GC node for a (2, 6)-regular GLDPC code

−8 −7 −6 −5 −4 −3 −2
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

SNR [dB]

B
lo

ck
E

rr
or

R
at

e
(B

L
E

R
)

af
te

r
D

ec
od

in
g

Turbo code with BCJR decoding [9]
LDPC with MSA decoding [9]
Polar code with SCL decoding and CRC outer code [9]
Convolutional code with BCJR decoding [9]
(2, 6)-regular GLDPC code with outer code

Fig. 5. BLER over an AWGN channel with QPSK modulation for the the
(2, 6)-regular GLDPC code with outer code correct up to 15 errors and
different decoding algorithms.

requires 4K + 32 × 2 + 66 = 134 additions/subtractions
(or 4K + 48 × 2 + 101 = 225 additions/subtractions for a
(2, 7)-regular GLDPC code). There are also K+2 exponential
and K log computations for a (2,K)-regular code. In total,
the BCJR component decoding complexity for the (2, 6)-
regular GLDPC code simulated in Section IV-A is 21567 ad-
ditions/subtractions + 14 exponential/log operations (or 26420
additions/subtractions + 16 exponential/log operations for the
(2, 7)-regular GLDPC code), whereas the others’ decoding
complexity is 16287 and 37520 additions/subtractions, respec-
tively [9]. Therefore, BCJR component decoding can be seen
to have the same order of complexity as [8] for these codes,
yet results in significantly improved performance.

V. CONCLUSION

In this paper, we presented an asymptotic analysis of
GLDPC code ensembles with component BCJR decoding
on the BEC and determined the optimal proportion of GC
nodes to minimize the threshold gap to capacity. The obtained
thresholds were shown to be close to capacity and significantly
improved over the component decoding method of [8]. We
then designed the minimal-span trellis for component BCJR
decoding of Hamming codes and constructed GLDPC codes
suitable for URLLC. Simulation results were shown to confirm
the expected performance improvement from the asymptotic
analysis over the component decoding method of [8] with

similar overall decoding complexity. The results also show
competitive performance versus alternative schemes proposed
for URLLC.

VI. ACKNOWLEDGMENT

This work has been funded in part by the National Sci-
ence Foundation under Grant Nos. ECCS-1710920 and OIA-
1757207.This work has been funded in part by the Spanish
Government under Grant TEC2016-78434-C3-3-R, in part
by Comunidad de Madrid under Grants IND2017/TIC-7618,
IND2018/TIC-9649, and Y2018/TCS-4705, and in part by
the European Research Council (ERC) through the European
Union Horizon 2020 research and innovation program under
Grant 714161. APPENDIX

The sequence of tables used to generate the trellis of the
(7, 4) Hamming code are given as follows:

E0,1

u init(u) fin(u) λ(u)
[0] ∅ [0] [0]
[1] ∅ [1] [1]

E1,2

u init(u) fin(u) λ(u)
[0, 0] [0] [0, 0] [0]
[0, 1] [0] [0, 1] [1]
[1, 0] [1] [1, 0] [1]
[1, 1] [1] [1, 1] [0]

E2,3

u init(u) fin(u) λ(u)
[0, 0, 0] [0, 0] [0, 0] [0]
[0, 0, 1] [0, 0] [0, 1] [1]
[0, 1, 0] [0, 1] [1, 0] [1]
[0, 1, 1] [0, 1] [1, 1] [0]
[1, 0, 0] [1, 0] [0, 0] [1]
[1, 0, 1] [1, 0] [0, 1] [0]
[1, 1, 0] [1, 1] [1, 0] [0]
[1, 1, 1] [1, 1] [1, 1] [1]

E4,5

u init(u) fin(u) λ(u)
[0, 0, 0] [0, 0, 0] [0, 0] [0]
[0, 0, 1] [0, 0, 1] [0, 1] [1]
[0, 1, 0] [0, 1, 0] [1, 0] [1]
[0, 1, 1] [0, 1, 1] [1, 1] [0]
[1, 0, 0] [1, 0, 0] [0, 0] [1]
[1, 0, 1] [1, 0, 1] [0, 1] [0]
[1, 1, 0] [1, 1, 0] [1, 0] [0]
[1, 1, 1] [1, 1, 1] [1, 1] [1]

E5,6

u init(u) fin(u) λ(u)
[0, 0] [0, 0] [0] [0]
[0, 1] [0, 1] [1] [1]
[1, 0] [1, 0] [0] [1]
[1, 1] [1, 1] [1] [0]

E6,7

u init(u) fin(u) λ(u)
[0] [0] ∅ [0]
[1] [1] ∅ [1]

E3,4

u init(u) fin(u) λ(u)
[0, 0, 0] [0, 0] [0, 0, 0] [0]
[0, 0, 1] [0, 0] [0, 0, 1] [1]
[0, 1, 0] [0, 1] [0, 1, 0] [0]
[0, 1, 1] [0, 1] [0, 1, 1] [1]
[1, 0, 0] [1, 0] [1, 0, 0] [1]
[1, 0, 1] [1, 0] [1, 0, 1] [0]
[1, 1, 0] [1, 1] [1, 1, 0] [1]
[1, 1, 1] [1, 1] [1, 1, 1] [0]

REFERENCES

[1] R. Tanner, “A recursive approach to low complexity codes,” IEEE Trans.
Inf. Theory, vol. 27, no. 5, pp. 533–547, 1981.

[2] N. Miladinovic and M. Fossorier, “Generalized LDPC codes and gen-
eralized stopping sets,” IEEE Trans. Comm., vol. 56, no. 2, Feb. 2008.

[3] G. Liva, W. Ryan, and M. Chiani, “Quasi-cyclic generalized LDPC codes
with low error floors,” IEEE Trans. Comm., vol. 56, no. 1, pp. 49–57,
Feb. 2008.

[4] M.U. Farooq, M. Saeedeh, L. Michael, “Generalized LDPC Codes with
Convolutional Code Constraints” IEEE Int. Sym. on Inf. Theory (ISIT),
Los Angeles, USA, June 2020, pp. 479-484.

[5] E. Paolini, M. P. C. Fossorier and M. Chiani, “Generalized and doubly
generalized LDPC codes with random component codes for the binary
erasure channel,” IEEE Trans. Inf. Theory, vol. 56, no. 4, pp. 1651–1672,
Apr. 2010.

[6] M.F. Flanagan, E. Paolini, M. Chiani, M.P. C. Fossorier, “On the growth
rate of the weight distribution of irregular doubly generalized LDPC
codes,” IEEE Trans. Inf. Theory, vol. 57, no. 6, pp.3721–3737, 2011.

[7] D. Mitchell, M. Lentmaier, and D. J. Costello, “On the minimum
distance of generalized spatially coupled LDPC codes,” in Proc. IEEE
Int. Symp. on Inf. Theory, Istanbul, Turkey, July 2013, pp. 1874–1878.

[8] Y. Liu, P. M. Olmos, and T. Koch, “A probabilistic peeling decoder to
efficiently analyze generalized LDPC codes over the BEC,” IEEE Trans.
Inf. Theory, vol. 65, no. 8, pp. 4831–4853, 2019.

[9] Y. Liu, P. M. Olmos, and D. G. Mitchell, “Generalized LDPC Codes for
Ultra Reliable Low Latency Communication in 5G and Beyond,” IEEE
Access, vol. 6, pp. 72 002–72 014, 2018.

[10] R. J. McEliece, “On the BCJR trellis for linear block codes,” IEEE
Trans. Inf. Theory, vol. 42, no. 4, pp. 1072–1092, 1996.

[11] A. Banerjee. (2016) BCJR on AWGN. [Online]. Available:
https://nptel.ac.in/courses/117104120/9

[12] Gamage, Heshani and Rajatheva, Nandana and Latva-Aho, Matti,
“Channel coding for enhanced mobile broadband communication in 5G
systems”, IEEE European conference on networks and communications
(EuCNC), Oulu, Finland, June, pp 1–6, 2017.

[13] Sybis, Michal and Wesolowski, Krzysztof and Jayasinghe, Keeth and
Venkatasubramanian, Venkatkumar and Vukadinovic, Vladimir, “Chan-
nel coding for ultra-reliable low-latency communication in 5G sys-
tems,” IEEE 84th vehicular technology conference (VTC-Fall), Montreal,
Canada. Sep., pp. 1–5, 2016.

[14] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate (corresp.),” IEEE Trans. Inf.
Theory, vol. 20, no. 2, pp. 284–287, 1974.

[15] G. D. Forney, “Coset codes. II. Binary lattices and related codes,” IEEE
Trans. Inf. Theory, vol. 34, no. 5, pp. 1152–1187, 1988.

[16] D. J. Muder, “Minimal trellises for block codes,” IEEE Trans. Inf.
Theory, vol. 34, no. 5, pp. 1049–1053, 1988.

[17] F. R. Kschischang and V. Sorokine, “On the trellis structure of block
codes,” IEEE Trans. Inf. Theory, vol. 41, no. 6, pp. 1924–1937, 1995.

[18] S. Lin and D. J. Costello, Error control coding, Second Edition, Prentice
Hall, 2001.

[19] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman,
“Efficient erasure correcting codes,” IEEE Trans. Inf. Theory, vol. 47,
no. 2, pp. 569–584, 2001.

[20] Nicholas C. Wormald, “Differential equations for random processes and
random graphs,” Annals of Applied Probability, vol. 5, no. 4, pp. 1217–
1235, 1995.

[21] Luby, Michael G., Michael Mitzenmacher, Mohammad Amin Shokrol-
lahi, and Daniel A. Spielman. “Improved low-density parity-check codes
using irregular graphs.” IEEE Trans. on Inf. Theory, vol. 47, no. 2, pp.
585-598, 2001.

