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Separation of Metabolites and Macromolecules
for Short-TE 'H-MRSI Using Learned
Component-Specific Representations

Yahang Li, Zepeng Wang, Ruoyu Sun, Fan Lam

Abstract— Short-echo-time (TE) proton magnetic reso-
nance spectroscopic imaging (MRSI) allows for simultane-
ously mapping a number of molecules in the brain, and
has been recognized as an important tool for studying
in vivo biochemistry in various neuroscience and disease
applications. However, separation of the metabolite and
macromolecule (MM) signals present in the short-TE data
with significant spectral overlaps remains a major tech-
nical challenge. This work introduces a new approach to
solve this problem by integrating imaging physics and
representation learning. Specifically, a mixed unsupervised
and supervised learning-based strategy was developed to
learn the metabolite and MM-specific low-dimensional rep-
resentations using deep autoencoders. A constrained re-
construction formulation is proposed to integrate the MRSI
spatiospectral encoding model and the learned represen-
tations as effective constraints for signal separation. An
efficient algorithm was developed to solve the resulting op-
timization problem with provable convergence. Simulation
and experimental results have been obtained to demon-
strate the component-specific representation power of the
learned models and the capability of the proposed method
in separating metabolite and MM signals for practical short-
TE 'H-MRSI data.

Index Terms— proton (*H) magnetic resonance spectro-
scopic imaging, short TE, signal separation, deep learning,
deep autoencoder, low-dimensional models

[. INTRODUCTION

ROTON MRSI (*H-MRS]I) is a unique molecular imaging

modality that can noninvasively map various endogenous
metabolites in the brain. This molecular-level information
has been demonstrated useful in different neuroscience and
clinical applications, including brain tumors [1], [2], metabolic
disorders [3], and neurodegenerative diseases [4], [5]. Short-
echo-time (TE) 'H-MRSI, in particular, offers several unique
advantages compared to the more commonly used long-TE
acquisitions, such as higher signal-to-noise ratio (SNR) due to
less relaxation-induced signal loss and improved detection and
quantification of molecules with short 7>’s and/or J-coupled
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spins, e.g., myo-inositol (ml), glutamate (Glu) and glutamine
(GIn) [6]-[10]. However, the applications of short-TE IH-
MRSI have been limited by several technical challenges. One
of these major challenges is the presence of macromolecule
(MM) signals that overlap with the metabolite signals across
the entire spectrum. This makes accurate and reproducible
metabolite quantification difficult. It has been demonstrated
that metabolite quantification can be substantially improved
with better characterization and separation of MM signals
from the short-TE data [11]-[14]. Moreover, the separated
MM components may also provide additional biomarkers for
various disease applications [13], [15]-[17].

A number of methods have been proposed to separate the
metabolite and MM signals in short-TE MRSI data. One
approach is to suppress the metabolite or MM signals during
the data acquisition stage by exploiting their longitudinal
relaxation (77) or diffusion property differences [18]. Exam-
ples include the most commonly used inversion recovery (IR)
based excitation strategies, which are designed to null either
the metabolite (with longer 77’s) or MM (with shorter 77’s)
signals to measure the other [11], [19]-[22]. Methods that use
two acquisitions to obtain both metabolites and MMs have
also been proposed [13], [23]. Due to the variable ranges of
T values for different molecules in vivo, complete nulling of
metabolites or MMs is impossible and additional processing
are usually needed to further remove the residual spectral
components. If both metabolites and MMs are desired, two
acquisitions are needed which will inherently increase the
imaging time.

An alternative signal processing based approach is to model
the overall short-TE data using parametric models of metabo-
lites and MMs individually. The separation is then achieved
by estimating the model parameters for each component from
the data, e.g., solving a constrained nonlinear least-square
problem [11], [24]-[29]. Improved fitting strategies have been
proposed to take advantage of the fast decaying nature of
the MM signals for better separation. Specifically, one can
fit and back-extrapolate the metabolites using a truncated
FID with negligible MM contributions and estimate the MM
component by subtracting the extrapolated metabolite fits from
the original signal [27], [30], [31]. Iterative subtraction and
refitting can be done for improved separation performance.
However, these methods are sensitive to model mismatch and
noise, and often lead to substantial voxel-to-voxel estimation
variations for practical MRSI data. Nonetheless, inspired by
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these parametric models, we recognized that the metabolites
and MMs have their distinct spectral patterns specified by
just a few spectral parameters, e.g., concentrations, resonance
frequencies, and lineshapes, thus should reside in their own
nonlinear low-dimensional manifolds embedded in the origi-
nal high-dimensional space [32]. We hypothesized that these
manifolds could be learned from specially designed training
data and used as effective constraints for metabolite and MM
separation.

While learning nonlinear low-dimensional models from
high-dimensional heterogeneous data has been a major chal-
lenge in machine learning, recent breakthroughs in deep
learning have enabled excellent solutions to such problems
[33]-[35]. Leveraging this progress, deep neural networks have
been successfully adapted to process and quantify short-TE
MRSI data with MM separation/removal capability [36]-[39].
The initial attempts have been focused on training an end-to-
end network that learns the inverse function to directly map
the noisy and artifact containing data to the desired spectral
parameters [36], [39], spectra with MM components removed
[37], or even a group of networks to extract individual metabo-
lites [38]. These methods require the complicated networks
to simultaneously capture the physical model, metabolite and
MM spectral variations, and all other nuances related to noise,
artifacts, and acquisition designs. Recently, an alternative ap-
proach has been proposed to use deep networks to learn a low-
dimensional representation of general MR spectra and use this
as a prior in a constrained reconstruction formalism instead of
a direct inverse mapping. This approach not only simplifies the
learning problem but also allows for more flexible integration
with the physical forward model for different acquisition
designs. And it has been successfully applied to 3'P-MRSI
reconstruction [40].

Inspired by this approach, we proposed here a novel method
to separate metabolite and MM signals for short-TE 'H-MRSI
by learning their distinct nonlinear low-dimensional models
and incorporating the learned models into a constrained recon-
struction formulation. Specifically, we proposed a new strategy
that combines supervised and unsupervised learning to train
two special deep autoencoders (DAEs) to learn efficient low-
dimensional representations that are specific to metabolites
and MMs, respectively. We devised a formulation to integrate
the learned representations as effective constraints with a
spatiospectral encoding model for joint reconstruction as well
as signal separation. An efficient algorithm was developed to
solve the resulting optimization problem. We demonstrated the
efficient and component-specific low-dimensional representa-
tions learned by our DAEs for metabolites and MMs, respec-
tively. Numerical simulations and in vivo experiments were
performed to illustrate the superior separation performance
achieved by the proposed method over the standard paramet-
ric fitting method. Theoretical convergence analysis for the
proposed algorithm was also provided. The following sections
describe the proposed model learning strategy, reconstruction
formulation, and numerical algorithm in details.

Il. BACKGROUND

A. Metabolite and Macromolecule Signal Separation

In a short-TE 'H-MRSI acquisition, the data will contain
non-negligible contributions from both a metabolite compo-
nent ppe:(r,t) and a macromolecule component ppsps(r, ).
The goal of separating these two signal components can
be mathematically defined as estimating pp,e:(r,t) and
panv (v, t) from their summation:

p(ra t) = pmet(ra t) + PMM(I‘, t)7 (1)

which is an ill-posted problem. Solving this problem requires
effective constraints. One most common approach is to impose
parametric models on each component, i.e., pmet(r,t) =
fmet(t;a(r)) and parae(r,t) = farm(t;B(r)) where a(r)
and B(r) contain spectral parameters for the metabolites and
MMs, respectively. While f,,.:(¢; a(r)) usually incorporates
resonance structures/metabolite basis generated by quantum
mechanical simulations or phantom measurements, models for
farn(t;8(r)) are generally considered to be less molecule-
specific (some MM peaks can be attributed to specific amino-
acid residues in various proteins which may help to generate
potentially stronger spectral priors [19]). As a result, different
models including polynomials [27], [41], splines [24], [28],
wavelets [26], and Gaussian lineshapes [13], [21], [22], [29]
have been considered for fp;p;. Gaussian lineshape based
models with a priori determined chemical shift frequencies
(from extensive in vivo and in vitro experiments) have shown a
great balance between model complexity and fitting accuracy.

Specifically, a widely used model for both metabolites and
MMs for an individual FID in short-TE *H-MRSI data can be
written as follows [14], [37], [42]

M
p(t) = Z Cmei(¢o+¢m)vm(t)eft/T;mH%&fmt
m=1

I e 2)
+y bei(®o+v) o=t ammesy Ti2mofit

1=1
where the first summation represents the metabolite sig-
nals with c¢,,, T2*7m, and ¢f,, denoting the concentrations
coefficients, physiology/experiment-dependent lineshapes and
frequency shifts for individual molecules, respectively, and
{vm(t)} corresponds to the metabolite basis. The second
term captures the MM signals where W; and J f; denote the
Gaussian linewidths and resonance frequencies for each MM
group. The variables ¢y, ¢.,,, and v; are a global zeroth-order
phase and molecule-dependent phases. While directly estimat-
ing all these parameters from a single FID or spectrum can be
rather challenging and lead to large estimation variances, these
models imply that the metabolite and MM signals may reside
in their own nonlinear low-dimensional manifolds, which we
believe can be learned and then used as effective constraints
for metabolite and MM separation.

IIl. PROPOSED METHOD

A. Learning Component-Specific Low-Dimensional
Models

Learning a single low-dimensional model for MR spec-
tra by treating the entire spectrum as a point in a high-
dimensional space has been investigated in [40], [43], [44].
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Fig. 1.

lllustration of the proposed model learning strategy with a mixture of supervised and unsupervised learning. Specifically, two DAEs

are designed to capture the metabolite and MM-specific low-dimensional representations. For metabolite DAE (metabolite-specific NN), the
unsupervised part enforces the network to extract a set of low-dimensional features that can approximate the metabolite signals accurately while
the supervised part uses zeros as labels for the corresponding MM inputs. This enforces the network to learn to minimize its representation power
of the MM signals, which will be useful for signal separation. A similar training strategy is applied to MM-specific DAE (macromolecule-specific NN)
with the roles of metabolites and MMs exchanged. The mathematical formulations of this training strategy are provided in Egs. (3) and (4).

While these learned models are powerful for spatiospectral
reconstruction or denoising, they are not suited to address the
signal separation problem, which requires component-specific
constraints. The metabolite and MM signals have their own
unique signal characteristics (e.g., distinct spectral features
and parameter distributions); thus, separate models can be
learned to capture the low-dimensional manifolds where they
reside on or close to. However, a straightforward application of
the previously described DAE [40] trained using metabolites
and MMs individually may not be effective since they are
not optimized to differentiate the two spectrally overlapping
signal components. Therefore, we proposed here a mixed
supervised and unsupervised learning strategy to address this
issue. Specifically, we seek to train a DAE that can extract
an accurate and efficient low-dimensional representation of
the metabolite (or MM) signals with simultaneously minimal
representation capability of the other component. Figure 1
provides a graphical illustration of this special model learning
strategy. Mathematically, the learning problems are formulated
as follows, for metabolites:

N
{Omet} = arg gf:g ~ ; e(Xpmet = Nonet (Xers Omet))
+||Nmet(x:bnm§ 0met)||g:| ) (3)

and for macromolecules:

{émm} =

0m

N
1
arg min N ngl e(xn . — /\/’mm(X;L@m§ 0mm))

+||Nmm<x7net;emm>||§] @

{x™ 3N, and {x7,.}N | are training sets (FIDs) for the
metabolites and MMs, respectively, with each x" € R2T
being a sample with real and imaginary parts concatenated.
N is the number of training samples and 7" is the length of
the FID. Net(.,.) and ANy (., .) denote the metabolite and
MM component-specific neural networks (NNs) parameterized
by 6,,e: and 6,,,,, respectively. Here in the first term of
Eq. (3), € represents the loss for training that measures the
error between the original metabolite input and the network
approximation. This term enforces the NN to learn an accurate
low-dimensional representation of the metabolite signals. The
second term of Eq. (3), appearing as a regularization, is
designed to minimize the output of the metabolite NN that
corresponds to the MM data (x],,,,). This can also be viewed
as using zeros as the labels for the MM input. As a result, the
metabolite NN is trained to learn a representation specific to
metabolite signal features with minimal representation power
for MMs. Likewise, the two terms of Eq. (4) serve a similar
purpose (to capture MM-specific low-dimensional features
while minimizing metabolite representation). We hypothesized
that DAEs trained separately in this fashion would have not
only the ability to extract accurate nonlinear low-dimensional
representations of metabolites and MMs individually but
also the desired property that inaccurately models the other
component. The specific network has an embedded “bot-
tleneck” encoding-decoding structure that encodes the high-
dimensional data into a set of L-dimensional features that can
recover the original data, where L is referred to as the model
order below.More details on the network are provided in the
supplementary materials (Fig. S4).



Page 4 of 38

SUBMITTING TO IEEE TRANS MED IMAGING, NOVEMBER 2020

B. Signal Separation Using the Learned Models

With the trained DAES Ny (., .) and Ny (., .) capturing
learned metabolite and MM-specific models, one remaining
challenge is to effectively utilize the learned models for signal
separation from practical 'H-MRSI data. To this end, we pro-
posed a regularized reconstruction formulation that integrates
the forward spatiospectral encoding model with By inhomo-
geneity correction capability and the two learned models for
metabolite and MM separated reconstruction. Specifically, we
formulated the separation problem as:

min
Xmet EX1 7X7n7n €X2

N

A N (Ker) = X3
n=1 (5)
N
0 S N (X)X 2

n=1

+ )\3||Dw(Xmet + Xmm)”%ﬁ

|d — Q{FB & (Xpner + Xonm) } I3

where X, € CV*T and X, € CNXT are matrix
representations of the spatiotemporal functions of interest for
the metabolite and MM components, with each row being a
T-point FID and N the number of voxels. The feasible sets
Xy, X are balls with large enough radius that contain ground-
truth representations '. B models the linear phases induced by
By inhomogeneity, ® represents a point-wise multiplication,
F denotes the Fourier transform, 2 is a (k, t)-space sampling
operator (allows for flexible sampling designs), and d is a
vector containing the noisy measured data. The first term
enforces the imaging model and data consistency. The next two
terms impose the priors that FID signals of metabolites and
MMs belong to their own low-dimensional manifolds captured
by the learned DAEs. The last term is a spatial smoothness
constraint with D,, being a weighted finite-difference operator
[45], and ||-|| 7 denoting the Frobenius norm. Eq. (5) results in
a high-dimensional optimization problem, which is challeng-
ing to solve due to the presence of both nonlinear functions
related to the DAEs and quadratic functions of X,,.; and
Xmm,-

C. Optimization Algorithm

We developed an efficient algorithm to address the com-
putational challenges associated with the problem in Eq. (5).
Specifically, we introduced an auxiliary variable

S=B0O (Xnet + Xmm) (6)

and reformulated the problem as:

IFor the empirical computation, we often set X7, X2 to be CNXT, pyut
due to technical consideration, in the convergence results, we set them to be
bounded sets.

{Xmeta Xmma g}

=arg_ min s||d—Q{FS}||§
o , s
+ )‘1 Z”Nmet(XZzet) - X:lnetHg
n=1
N (7)
n=1

+X3|D,B O S|
st. Bo (Xmet + Xmm) = Sv
Xmet € Xthm € Xg,

where B denotes element-wise conjugate of B. Then, the alter-
nating direction method of multipliers (ADMM) is adapted to
solve this equivalent problem [46], in which it is decomposed
into simpler linear least-squares problems and nonlinear prob-
lems that can be solved in a parallel fashion. More specifically,
the following subproblems were solved iteratively:

(I) Update X,e; with fixed X2, and S as follows (i is the
iteration index)

i+1 n
X'Enl_t) = arg m}n A1 ZHNmet met) - Xmet”%
o 12 8)
) . Y
+ B Bo (Xmet + Xs:L)m) - S(
2 P llp

where Y (%) is the Lagrangian multiplier and p is the penalty
parameter.

(II) Update X,,,,,, with fixed XD and SO as

met

X+ — A (X0 ) — X
arg  min A, ZIIN m) = X3
" 9
. . YU
+2 HB © (XU 4+ Xym) — 8@ 4
2 P r

(IT) Update S with X+ = XV 4 X0+ by solving
SO+ —arg mind — Q{FS}||§+A3\|DwB 8%

, Y@ (10)
+2 HB@X““) S+ —
2 P lr
(IV) Update Y as

Subproblems (I) and (II) contain both terms associated
with the nonlinear networks, Npet(.,.) and Ny (., .), and
can be solved using a generic nonlinear optimization solver.
Subproblem (I1I) is a typical linear least-squares problem with
a quadratic regularization. Note that although directly mini-
mizing Eq. (8) and Eq. (9) are very high-dimensional problems
for which computing the gradient is very demanding, it can be
solved in a voxel-by-voxel fashion since the Frobenius norm
term is separable for all the voxels (i.e., individual rows in X).
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Based on the autoencoder design, the gradients for individual
voxels can be efficiently calculated through backpropagation.
More specifically, denote

fn(X:Lneﬁ X?nm) = >‘1||Nm€t(X:7Llet) - X?net”%

+ Ao [N (X, ) — X 1|2
2| ( ) I3 L (12)

) Y (9
+';H[B@X—s“>+ ]

2

as the cost function for the nth voxel, the then gradients for
the metabolite component can be written as:

an (X?net) = 2>\1(JNm,et - I)T(de (anet) - XZ),@I‘,)

BZ (B X, —S® i

13)

where Jy,,., € RT*T is the Jacobian of the metabolite

network, I is a 7" x T' identity matrix, and B(n) represents
a diagonal matrix formed by the nth row of B. The gradients
for MM component can be derived similarly (omitted due to
space constraint). And the Jacobians J .., and J;, . can be
calculated through backpropagation described in [40].
Subproblem (III) is equivalent to solving a system of
linear equations with a spatial regularization on the overall
spatiotemporal function (due to the way the auxiliary variable
is introduced). The iteration is terminated until a specified
iteration number is reached (e.g., 20) or the relative change

between ngl)et and X"*1 is below a threshold (e.g., 107%).

met

D. Training Data Generation

One common issue of training deep neural networks is
the requirement of a large number of high-quality training
data. Strategies that combine spectral fitting models, quantum
mechanical (QM) simulations and experimental data have been
described in several literature to address this issue for spectral
model learning [37], [40], [47]. Utilizing a similar strategy
here, we generated metabolite and MM training data separately
using the model in Eq. (2). For metabolites, the basis v, (t)
were generated from QM simulations using the NMRScopeB
software [48], for both the FID (pulse and acquire) and semi-
LASER excitation schemes with different TEs [7]. These
molecule specific resonance structures can be assumed to be
invariant with respect to different subjects. Meanwhile, the
empirical distributions of the spectral parameters, i.e., ¢,
T3 > and 6 f,, were estimated from literature values as well as
fitting experimental high-SNR, low-resolution MRSI data from
healthy volunteers [37], [43], [47]. The empirical distributions
were fitted to parametric Gaussian distributions to allow for
generating more randomly distributed parameters. The global
zeroth-order phase was generated from a Gaussian distribution
with mean zero and standard deviation of 25 degrees, and
Gaussian distributed molecule dependent phases were also
introduced to simulate more realistic signal variations (with
mean zero and standard deviation of 10 degrees). Finally,
the metabolite basis and parameters randomly sampled from
these distributions were combined using the model in Eq. (2)
to generate 300,000 'H MR spectra. Metabolites commonly

observed and quantified in 'H-MRSI experiments are con-
sidered, i.e., N-acetylaspartate (NAA), creatine (Cr), choline
(Cho), glutamate (Glu), glutamine (Gln), myo-inositol (ml),
gamma-Aminobutyric acid (GABA), glutathione (GSH) and
lactate (Lac). For MMs, another 300,000 training samples were
generated using a similar procedure and the model in Eq. (2).
13 commonly reported MM resonances with mean 0 f;’s equal
to 0.9, 1.21, 1.38, 1.63, 2.01, 2.09, 2.25, 2.61, 2.96, 3.11,
3.67, 3.8, and 3.96 ppm were included. The parameters b;
(concentration coefficients) and W, (linewidths) for different
peak groups were assumed to follow Gaussian distributions.
The mean values were acquired from [37] with standard
deviations specified as 20% of the means to introduce relative
peak variations. A global scaling factor was introduced to the
MM coefficients to reflect experimentally observed metabolite-
to-MM signal ratios. Finally, all data were normalized to the
range of —1 to 1 for training.

E. Other Implementation Details

Among the 300,000 training data, 200,000 were used for
training and 100,000 for testing. All the model parameters
were upper and lower bounded based on our own and other
published 'H-MRSI data [37], [38]. Specifically, the TQ*,m
values were lower bounded by 5 ms and upper bounded by
200 ms, and the ¢,,, values were bounded between 0 and 2 with
the mean NAA concentration being 1. The linewidth W, values
were bounded within the range of 5 to 70 Hz, and b;’s were
lower bounded by 0. The parameters were first generated, and
the values outside these ranges were excluded. The spectral
bandwidth (BW) was fixed at 2000 Hz. Similar to the DAE
used in [40], the metabolite and MM networks have a fully-
connected structure of 27 — 1000 — 250 — 100 — L — 100 —
250 — 1000 — 27'. Both Tanh and ReLu units can be used
in the nonlinear hidden layers except the middle linear layer
(with similar performances). The results shown below were
from ReLu. The learned network models were first evaluated
with a range of L’s. The exact L for phantom and in vivo data
processing was chosen, such that the NNs for metabolites and
MMs have similar approximation errors (around 5%). Note
that the training only needs to be performed once for a fixed
excitation scheme (with specific choices of RF pulses, TE,
and field strength). All the networks were implemented in
PyTorch and trained using an NVIDIA RTX Titan graphics
processing unit on Windows 10 using the Adam optimizer
[49] with a batch size of 500, an initial learning rate of
0.001, and 300 epochs while the other parameters remained
as default. The Broyden—Fletcher—Goldfarb—Shanno (BFGS)
algorithm was used to solve the optimization problem for
individual voxels in Egs. (8) and (9), and the linear conjugate
gradient was used to solve Eq. (10) [50].

[V. SIMULATION AND EXPERIMENTAL SETTINGS
A. Numerical Simulations

The component-specific representation power of our learned
models was first evaluated. Specifically, we validated the
approximation accuracy of the trained DAE-based metabolite
and MM-specific low-dimensional models with comparison
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to linear subspace models (estimated from the same training
data) [43], at different model orders. Testing metabolite and
MM data were generated and passed through the trained
metabolite and MM-specific networks, respectively. The errors
of the same test data projected onto the metabolite and MM
subspaces were also calculated. More specifically, two Casorati
matrices were first constructed by stacking all the training data
for metabolites or MMs, respectively. Then the component-
specific subspace was obtained by SVD with a rank truncation
(L, the model order). Finally, the testing data were projected
onto the two subspaces separately to evaluate approximation
accuracy [40], [43]. The approximation performance was
evaluated quantitatively using a relative {5 error defined as:

err = HXt'rue - XHF
||Xtrue||F

where Xy, denotes the original data (each column being an
FID), and X represents the model approximation or recon-
structed data (see below).

A numerical phantom was constructed to evaluate the signal
separation performance using the learned DAE-based nonlin-
ear models (details of the phantom generation process can be
found in the supplementary materials). In short, brain tissue
fraction maps for gray matter (GM), white matter (WM),
and cerebrospinal fluid (CSF) were first obtained from an in
vivo anatomical T;-weighted image. Then regional spectral
parameters for different 'H metabolites and MM components
described in the Training Data Generation section were as-
signed based on literature values [14], [37], [51]. The constant
parameters in each region were subsequently combined using
tissue fraction maps as weightings to simulate continuously
varying parameters across the brain. Finally, the parameters
at different voxels along with metabolite basis {v,,} were
fed into Eq. (2) to synthesize spatially localized FIDs. To
simulate a more realistic scenario, voxel-dependent random
frequency shifts (mean zero and standard deviation of 5 Hz)
for different molecules, as well as By inhomogeneity (mean
zero and standard deviation of 10 Hz), were also introduced. A
lesion-like feature with significantly altered metabolite ratios
(e.g., a factor of three higher Cho and lower concentrations
for other metabolites) and a higher MM level was included.
Noisy data were generated by adding complex white Gaussian
noise with different SNRs to the simulated (x,t)-space data.
The SNR is defined with respect to the maximum NAA peak
amplitude within the FOV. After the proposed reconstruction,
the separated metabolite and MM components were fitted
individually using a metabolite-only and a MM-only para-
metric model from Eq. (2) in a voxel-by-voxel fashion to
produce molecular maps. In comparison, a direct parametric
fitting was also performed to the original data without the
proposed separation. An FID truncation was performed to fit
the metabolites first which were then back-extrapolated for
subtraction to fit the MMs. A metabolite refitting was done
after subtracting the fitted MMs from the original data. All
fittings were done using in-house implementations which have
been validated against the time-domain fitting using the jMRUI
package [27], [48] (The customized implementations provided
more flexibility for further optimizations).

(14)
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Fig. 2. Representation capability of the learned nonlinear models:
a) Approximation errors (relative £2) of the trained metabolite DAE
(orange curve) compared to a linear subspace model (blue curve) for
the metabolite data at different L’s; b) Approximation errors of the
MM DAE (orange curve) with comparison to a linear subspace model
(blue curve); c) and e) Representative metabolite and MM spectra
(black), and the approximations of each signal by the metabolite DAE
(orange) and metabolite linear subspace (blue) both with L = 24;
d) and f) Representative MM and metabolite spectra (black), and the
approximations by the MM DAE (orange) and subspace (blue) with
L = 8. It is evident that the learned DAEs have more accurate and
component-specific representation than the linear subspaces.

B. In Vivo Experiments

We have evaluated the performance of the proposed method
using practical in vivo data acquired from five healthy vol-
unteers with approval from the local Institutional Review
Board. Experimental brain MRSI data were acquired on a
3T Prisma scanner equipped a 20-channel head coil using
both an FID-MRSI (pulse and acquire) sequence and a semi-
LASER MRSI short-TE sequence (sSLASER). We chose these
two sequences because they are among the most commonly
used short-TE data acquisition schemes and require rather
different metabolite basis sets which serves to demonstrate that
the proposed method can be flexibly adapted to work with
any sequences. The parameters for the FID-MRSI sequence
were as follows: TR/TE = 800/4 ms, field-of-view (FOV)
= 230 x 230 mm?2, slice thickness = 10 mm, matrix size =
36 x 36, spectral bandwidth (BW) = 2000 Hz and 512 FID
samples. The total acquisition time was about 13.5 minutes
with elliptical sampling. The parameters for the sLASER
sequence were: TR/TE = 1600/40 ms, FOV = 180 x 190 mm?2,
slice thickness = 15 mm, matrix size = 24 x 24, 2000 Hz BW
and 1024 FID samples. The total acquisition time was about 16
minutes. A 60 Hz weak water suppression and carefully placed
outer volume suppression bands were used for all the scans.
Before reconstruction, the nuisance water and lipid signals
were first removed using the method in [52] followed by coil
combination of the water/lipid-removed data.
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Fig. 3. Simulation results: a) Spatial variations of the overall metabolite and MM signals in the phantom (£2 integral along the FID dimension);

b) A sampled voxel spectrum and its noisy counterpart (SNR=30); c)

-e) Separation results from the proposed (orange curves) method and the

direct parametric fitting (blue curves, without the proposed separation) for three different voxels (in GM, WM, and Lesion). The voxel locations are
indicated by different shapes in (a). Similar overall spectra (c) were produced by both methods. But the proposed method yielded more accurate
separated metabolite (d) and MM (e) components. The black arrows identify some spectral features better recovered by the proposed method.

Gold Standard Parametric Fitting  Proposed Method

NAA
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Fig. 4. Simulation results: molecular maps of NAA, Cr, Cho, and MM
from the ground truth (Gold Standard, column 1), the direct parametric
fitting method (column 2) and the proposed method (column 3) are
compared. For the proposed method, the maps were obtained by fitting
the separated metabolite and MM components individually. The first MM
peak group (located at ~0.9 ppm) is shown [37]. Note that the MM maps
were normalized separately, thus having a different scaling compared to
the metabolite maps. Relative £2 errors for the separated metabolite and
MM signals are also calculated (shown in the images). The improved
signal separation offered by the proposed method led to significantly
improved molecular quantification.

V. RESULTS
A. Simulation Results

Figure 2 compares the representation powers of our learned
component-specific nonlinear low-dimensional and the linear
subspace models. As shown, the learned metabolite (Fig. 2a)
and MM (Fig. 2b) DAE-based models achieved higher accu-

racy with lower relative /5 errors than the subspace models for
their respective components. With the same model order (L),
the MM DAE has higher accuracy than the metabolite DAE.
The approximations for two representative testing metabolite
and MM spectra are also shown in Fig. 2c-f to further demon-
strate the accuracy and specificity of the learned models. With
a fixed model order L = 24 for metabolite and L = 8 for MM,
the metabolite DAE can accurately capture the metabolite
spectral features (Fig. 2c), exhibiting a higher accuracy than
the subspace model with the same dimension. Similar results
can be observed for the MM test spectrum (Fig. 2d). More
importantly, the metabolite DAE offers a poor approximation
of the MM spectrum as we designed it to, while the linear
metabolite subspace can still capture a decent amount of MM
spectral energy (Fig. 2e), implying a weaker capability for
signal separation. This component-specific representation can
also be observed for the MM DAE (Fig. 2f), which does
not capture the metabolite spectral features, while the MM
subspace can again capture a large portion of metabolite
signal energy. These validate the desirable component-specific
representation capability of the learned models and imply their
unique potential for improved metabolite and MM separation.

A set of metabolite and MM signal separation results from
the numerical phantom (SNR=30) are shown in Figs. 3 and
4. Here the resulting spectra were shown in magnitude for
visualization purpose (the real parts of reconstructed spectra
can be found in the supplementary materials Fig. S1). The
model order (L) was chosen as 24 for the metabolite DAE
and 16 for the MM DAE with similar approximation errors
(~ 5% error), which achieved a good balance between model
complexity and approximation accuracy. The regularization
parameters \; and Ay were chosen based on a single voxel sep-
aration performance, and A3 was chosen using the discrepancy
principle and then fine-tuned by minimizing the ¢ errors of the
final spatiospectral reconstructions. A time-domain direct para-
metric model-based fitting with back-extrapolation was also
performed as described above, and the results were compared.
The separated metabolite and MM spatiotemporal distributions
from the proposed method were subject to parametric fitting
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Fig. 5. Experimental results from the in vivo FID-MRSI data: a) and b) Maps of NAA, Cr, Cho, Glu and MM estimated from the separated signals
produced by the proposed method (a) and from the direct parametric fitting method (b). The molecular maps were overlaid on an anatomical image
for the matched slice; ¢) Spatially-resolved spectra from the voxel marked by the blue symbol, with the first and second rows showing the results
from the proposed method (orange curves) and parametric fitting (blue curves), respectively. The original spectra are shown in black. The overall
reconstruction, as well as the separated metabolite and MM spectra, are compared. The white arrows indicate some artifact-like features generated
by the direct parametric fitting which are not present in the maps produced by the proposed method.
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Fig. 6. Results from the same data in Fig. 5 but with the first 36 FID
points truncated (~18 ms) and zero-padded to the original length. Two
representative spatially-resolved spectra from the locations marked by
the corresponding symbols are shown, including the original spectra
(black), the overall reconstruction, and the separated metabolite and
MM spectra (orange). Significantly reduced MM signals were observed,
indicating that the proposed method is not overfitting.

(using the metabolite-only and MM-only parametric models,
respectively). As can be seen, both the parametric fitting
and the proposed method achieved similar estimates of the
overall spectra (Fig. 3c), but the proposed method produced
significantly more accurate separated metabolite and MM
components (Figs. 3d and e). The metabolite maps obtained by
direct parametric fitting of the overall data (Parametric Fitting)
and the proposed method (separate fitting) are compared in
Fig. 4. The results demonstrate the benefits of the proposed
signal separation. More specifically, the metabolite maps from
fitting the separated signals exhibit significantly less spatially
dependent estimation variances and higher accuracy than those
produced by a direct parametric fitting of the combined
signals. An additional set of results from less noisy data
(SNR=60) are shown in the supplementary materials (Fig. S3).

B. In Vivo Results

A set of spatially-resolved spectral reconstruction obtained
by the proposed method from the in vivo FID-MRSI data are
shown in Fig. 5. As can be seen, the proposed method was
able to separate the metabolite and MM spectral components
with a similar overall spectrum to the direct parametric fitting

method. Furthermore, the metabolite and MM maps from the
proposed method exhibited a higher quality with less spatial
estimation variances. More specifically, the molecule maps
produced by the direct parametric fitting had apparent arti-
facts, e.g., locally dark/bright areas and sudden discontinuities
(indicated by the white arrows in Fig. 5b). These artifacts were
effectively reduced in the maps from the proposed method. The
relative peak intensities may not appear the same as those
from standard IR-based MM measurements due to different
T, weightings (effects of no IR and the shorter TR used),
e. g., a strong 0.9 ppm MM peak even before separation.
Hence, results from another dataset acquired with a longer
TR (1500 ms) are included in the supplementary materials
(Fig. S2) to further illustrate the TR effects. We have also
performed a reconstruction of the same FID-MRSI data with
the first 36 time points truncated (i.e., 18 ms) to evaluate
the robustness of the proposed method. As shown in Fig. 6,
significantly reduced MM signals were obtained, indicating
that the learned model is not overfitting.

Figure 7 shows the spatially-resolved spectral reconstruction
from the sSLASER data to further demonstrate the utility of
the proposed method. Signals can only be observed from
the central region of the brain due to the volume selective
excitation. The proposed method again produced visually
better separation, which can be observed in the metabolite
and MM maps (e.g., better gray/white matter contrast and
fewer artifacts) as well as the selective voxel spectra. The
proposed method effectively reduced the over and under-
estimation of some metabolite and MM spectral components
in the parametric fitting method (Figs. 7b and d). Additional
metabolite maps can be found in the supplementary materials
(Fig. S5). Our approach should work for any excitation as
long as the corresponding metabolite basis can be obtained
for training data generation.

C. Convergence Analysis

We have also performed convergence analysis of the pro-
posed algorithm. Figure 8 shows the relative changes between
iterates (| X+ — X@||/|X(]|) and relative ¢5 errors for
the metabolite and MM estimates w.r.t. the iteration number.
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Fig. 7. Experimental results from the in vivo SLASER data: a) Maps of
NAA, Cr and MM from the proposed method (overlaid on anatomical im-
ages); b) Two representative spatially-resolved spectra (voxel locations
marked by the corresponding symbols) with the original spectra (black,
column 1), the overall reconstruction (column 1), and the separated
metabolite (column 2) and MM (column 3) spectra; c) and d) The
corresponding results from the parametric fitting method with the same
arrangement. The spectra from the two methods (b and d) are from
the same voxels. The arrows indicate some over and underestimation
of metabolite or MM components from the parametric fitting that were
mitigated by the proposed method.

Empirical convergence can be observed. Furthermore, our
problem formulation and the ADMM-based algorithm allow
us to theoretically characterize its convergence.

Theorem 1 There exists a constant poy such that if p > po,
every limit point of the sequence (X(i), S(i)) generated by the
algorithm described in (8), (9), (10), and (11) is a stationary
solution of the optimization problem (7) (i.e. a solution that
satisfies the KKT condition).

This theorem states that for a proper choice of penalty param-
eter p, the sequence generated by our algorithm is guaranteed
to converge to stationary points. For non-convex problems,
convergence to the global minimum is often very difficult.
Thus, we follow the common practice to prove a result of
convergence to stationary points. We remark that even the
convergence to a stationary solution is a non-trivial property
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Fig. 8. Convergence analysis of the algorithm: (a) Relative changes
(in terms of £2 errors) between different iterates; (b) Relative £2 errors
for the metabolite (orange) and MM (blue) components w.r.t. different
iterations. As can be seen, the result changes minimally after 10
iterations.

because a general convergence result of ADMM for non-
convex problems is still an open question. This theoretical
characterization is enabled by the unique structure of our
problem formulation: we show that it is a special case of the
non-convex sharing problem [53], for which the convergence
results have been established.

Proof sketch: If we denote X; = vec(Xper), Xo =
vee(Xomm), Xo = vec(S), then Ay 30 [Nomer (X20,) —
X7 ||2 is a function of X;, which we denote as g;(X;).
Similarly, Ay SN [[NVpn (X7,) — X212, is a function
of X5, which we denote as g>(X32). The remaining terms,
[d — Q{FX}||3+)\3]|/DwB © Xo||%, can be written as a
function of the vectorized variable X, which we denote as
£(Xg). The constraint B ® (Xypet + Xium) = S can be
rewritten as AX; + AXy = Xj for a certain matrix A. Then
our optimization problem in Eq. (7) can be written in the
general form of

i X X /(X
X1€X11,I)1(12HGX27X0 gl( 1) * 92( 2) * ( 0)
st AXy + AX, = X.

Recognizing that this is a special case of the sharing problem
in [53], we apply the convergence result provided in this work.
The detailed proof is provided in the supplementary materials.

(15)

VI. DISCUSSION

We have successfully combined the physics-based data
acquisition model with learned low-dimensional models for ef-
fective metabolite and macromolecule separation. Our unique
strategy of combining supervised and unsupervised learning
to discover component-specific low-dimensional manifolds is
a novel attempt motivated by the nature of spectroscopic data.
The proposed reconstruction represents a rigorous approach to
leverage deep learning to solve this long-standing challenge.
In contrast to the existing methods that learn end-to-end map-
pings, the proposed method allows the use of a general (&, t)-
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space sampling operator with high flexibility in the choices of
sampling designs and SNR levels, and the ability to account
for By inhomogeneity. While significant noise reduction can
be observed in the separated metabolite and MM spectra due
to the inherent denoising capability of the low-dimensional
models used, it should be noted that the proposed method is
focused on addressing the signal separation problem and not a
substitute for spectral quantification. Our hypothesis is that a
better separation will lead to improved spectral quantification
of different components of interest, which has been supported
by both simulation and experimental results. Meanwhile, we
expect that the proposed method can be readily integrated with
other more sophisticated parametric models for data generation
and representation learning (both metabolites and MMs) as
well as advanced quantification strategies for the separated
signal components. This is beyond the scope of this work but
will be investigated in future research.

While in this work we have only considered nine metabo-
lites that are the common molecules of interest in most brain
MRSI studies, especially at 3T, the proposed model learn-
ing and reconstruction methodologies are not limited by the
number of metabolites considered. Adding more metabolites
into the model will increase the model order to achieve the
same approximation accuracy but will not cause substantially
higher computation burden. For the other 'H metabolites, it
will be very challenging to quantify them reliably given the
SNR level and ignoring them has a minimal bias (due to
their weak signals), hence we did not include them. But more
metabolites can be considered when we adapt our method
for data with higher SNRs from higher field strengths (e.g.,
7T). One additional thing to note is that the learned MM-
specific model should be able to capture potential residual
lipids spectrally overlapping with the MM peaks (if sufficient
lipid removal can be achieved), because the lineshape and
frequency variations introduced when generating the MM
training data. Thus, small lipid residuals will not affect the
model’s representation capability or metabolite separation.

One important issue with the proposed method is the choice
of regularization parameters. In our current implementation for
practical data, we first performed a single voxel separation for
the selection of A and A\, using the parameter values from the
phantom studies. The third parameter A3 was then initialized
based on the simulation studies and adjusted according to
the discrepancy principle. Some minor fine-tuning together
with A\; and Ao was performed using visual inspection of
the separation reconstruction to balance SNR improvement
and smoothing effects (the relative ratios between the three
parameters remained the same during this step). More sophis-
ticated parameter selection strategies can be explored in future
research. Moreover, the formulation can readily be extended
to incorporate other spatiospectral constraints for improved
reconstruction.

The current fully-connected network-based DAE structures
and the way of handling complex-valued data may be limited
in scalability. We have investigated convolutional structures
(with reduced numbers of training parameters) for both FID
and spectral data and found that they were not as effective
as our current DAEs in terms of dimensionality reduction.

Various combinations of fully-connected and convolutional
feature extraction layers, as well as choices of activation
functions, are currently being explored. The current training
data generation processes used relatively simplified spectral
parameter distributions. While producing strong performance,
this strategy does not fully exploit the information available
from experimental 'H spectroscopy data. Estimation of more
sophisticated distributions using such data will be studied in
future work, e.g., using kernel density estimation [54].

Although Cartesian k-space sampling has been used to
demonstrate the utility of the proposed method, other sampling
trajectories can be considered by generalizing the forward en-
coding operator without having to retrain the models (another
unique advantage of our approach). The most computationally
expensive step in the current algorithm is solving Eq. (8) and
Eq. (9) that involves backpropagation. This is, however, a
highly parallelizable process that can significantly benefit from
translating the current implementation to parallel computing
platforms.

VIl. CONCLUSION

We have presented a new method to reconstruct and sep-
arate metabolite and MM signals for short-TE 'H-MRSI
by learning the two signal components’ distinct nonlinear
low-dimensional models and using the learned models as
priors for reconstruction. The models were learned using two
deep autoencoder based neural networks to accurately capture
metabolite and MM-specific low-dimensional manifolds of
their high-dimensional spectral variations. A constrained spa-
tiospectral reconstruction formulation that exploits the learned
models for signal separation was proposed and solved by
an efficient ADMM-based algorithm. Significantly improved
separation over the standard parametric fitting approach has
been demonstrated using both simulated and experimental
short-TE brain 'H-MRSI data. Theoretical analysis of the
proposed formulation and algorithm was also provided.

REFERENCES

[11 M. Wilson er al., “Magnetic resonance spectroscopy metabolite profiles
predict survival in paediatric brain tumours,” Eur. J. Cancer, vol. 49,
pp. 457-464, 2013.

[2] P. R. Luyten et al., “Metabolic imaging of patients with intracranial
tumors: H-1 MR spectroscopic imaging and PET,” Radiology, vol. 176,
pp. 791-799, 1990.

[3] J. E. Davison et al., “MR spectroscopy-based brain metabolite profiling
in propionic acidaemia: metabolic changes in the basal ganglia during
acute decompensation and effect of liver transplantation,” Orphanet J.
Rare Dis., vol. 6, p. 19, 2011.

[4] M. Colla et al., “MR spectroscopy in Alzheimer’s disease: gender
differences in probabilistic learning capacity,” Neurobiol. Aging, vol. 24,
pp. 545-552, 2003.

[5] L. Su, A. Blamire, R. Watson, J. He, L. Hayes, and J. T. O’Brien,
“Whole-brain patterns of 1H-magnetic resonance spectroscopy imaging
in Alzheimer’s disease and dementia with Lewy bodies,” Transl. Psy-
chiatry, vol. 6, p. €877, 2016.

[6] V. Mlyndrik, G. Gambarota, H. Frenkel, and R. Gruetter, “Localized
short-echo-time proton MR spectroscopy with full signal-intensity ac-
quisition,” Magn. Reson. Med., vol. 56, pp. 965-970, 2006.

[71 T. W. J. Scheenen, D. W. J. Klomp, J. P. Wijnen, and A. Heerschap,
“Short echo time 1H-MRSI of the human brain at 3T with minimal
chemical shift displacement errors using adiabatic refocusing pulses,”
Magn. Reson. Med., vol. 59, pp. 1-6, 2008.



Page 11 of 38

LI et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (AUGUST 2020) 11
[8] A. Henning, A. Fuchs, J. B. Murdoch, and P. Boesiger, “Slice-selective ~ [30] F. Lam, Y. Li, B. Clifford, and Z.-P. Liang, “Macromolecule mapping of
FID acquisition, localized by outer volume suppression (FIDLOVS) for the brain using ultrashort-TE acquisition and reference-based metabolite
1H-MRSI of the human brain at 7 T with minimal signal loss,” NMR removal,” Magn. Reson. Med., vol. 79, pp. 2460-2469, 2018.
Biomed., vol. 22, pp. 683-696, 2009. [31] C. Ma, F. Lam, Q. Ning, C. L. Johnson, and Z.-P. Liang, “High-
[91 W. Bogner, S. Gruber, S. Trattnig, and M. Chmelik, “High-resolution resolution 1H-MRSI of the brain using short-TE SPICE,” Magn. Reson.
mapping of human brain metabolites by free induction decay 1H MRSI Medicine., vol. 77, pp. 467-479, 2017.
at 7 T,” NMR in Biomed., vol. 25, pp. 873-882, 2012. [32] G. Peyré, “Manifold models for signals and images,” Comput. Vis.
[10] C. Gasparovic et al., “Test-retest reliability and reproducibility of short- Image. Underst., vol. 113, pp. 249 — 260, 2009. ' o
echo-time spectroscopic imaging of human brain at 3T,” Magn. Reson. ~ [33]1 G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
Med., vol. 66, pp. 324-332, 2011. data wit_h neurallnetworks_,” Science, vol. 313,.pp. 504—?07, 2006.
[11] C. Cudalbu, V. Mlynérik, and R. Gruetter, “Handling macromolecule [34] 1. Masm, U. Meier, D. C1rec.san, ‘"}d I Schmldhuber,‘ Sf?qked convo-
signals in the quantification of the neurochemical profile.” J. Alzheimers. lutional auto-encoders for hl.erarchlcal. feature extraction,” in Artificial
Dis., vol. 31, pp. S101-S115, 2012. Neural Nerwork‘s and_Machme Leaijnmg — ICANN 2011, T. Honkela,
[12] J. Penner and R. Bartha, “Semi-LASER 1H MR spectroscopy at 7 Tesla w. Duch, M. GerIaml’ and S. Kas}(l’ Eds.,“2011, Pp- 52_59' .
in human brain: Metabolite quantification incorporating subject-specific [35] Y. Benglo, A Courv1lle., ang P. Vincent, “Representation learning: A
macromolecule removal,” Magn. Reson. Med., vol. 74, pp. 4 — 12, 2015. re\ile;vs and nf;vg gersfgggvzso’l B{EEE Trans. Pattern. Anal. Mach. Intell.,
[13] M. Povazan et al., “Mapping of brain macromolecules and their use VOl 22, PP- 1 o ’ .
. R . [36] S. S. Gurbani, S. Sheriff, A. A. Maudsley, H. Shim, and L. A. Cooper,
for spectral processing of 1H-MRSI data with an ultra-short acquisition w . . .
d » ; Incorporation of a spectral model in a convolutional neural network for
clay at 7 T.” Neuroimage, vol. 121, pp. 126-135, 2015. accelerated spectral fitting,” Magn. Reson. Med., vol. 81 3346-3357
[14] R. Birch, A. C. Peet, H. Dehghani, and M. Wilson, “Influence of macro- 5010 P & Magn. - e, VoL 82, PP- ’
molecule baseline on 1H MR spectroscopic imaging reproducibility, [37] H. H. Lee and H. Kim, “Intact metabolite spectrum mining by deep
Magn. Reson. Med., vol. 77, pp. 34-43, 2017. learning in proton magnetic resonance spectroscopy of the brain,” Magn.
[15] U. Seeger, U. Klose, I. Mader, W. G.ro.dd, .and T. Nagele, “Parameterized Reson. Med., vol. 82, pp. 33 — 48, 2019.
evaluation of Tacromolecules and lipids in proton MR spectroscopy of 38 1. H. Lee and H. Kim, “Deep learning-based target metabolite isolation
brain diseases,” Magn. Reson. Med., vol. 49, pp. 19 — 28, 2003'. and big data-driven measurement uncertainty estimation in proton mag-
[16] G. D. Graham, J.-H. Hwang, D. L. Rothman, and J. W. Prichard, netic resonance spectroscopy of the brain,” Magn. Reson. Med., 2020,
“Spectroscopic assessment of alterations in macromolecule and small- in Press.
molecule metabolites in human brain after stroke,” Stroke, vol. 32, pp. [39] N.Hatami, M. Sdika, and H. Ratiney, “Magnetic resonance spectroscopy
2797 - 2802, 2001. quantification using deep learning,” in Proc. of Med. Image. Comput.
[17] M. Craveiro, V. Clement-Schatlo, D. Marino, R. Gruetter, and C. Cud- Comput. Assist. Interv., 2018, pp. 467-475.
albu, “In vivo brain macromplecule signals in healthy and glioblastoma [40] F. Lam, Y. Li, and X. Peng, “Constrained magnetic resonance spectro-
mouse models: 1H magnetic resonance spectroscopy, post-processing scopic imaging by learning nonlinear low-dimensional models,” IEEE
and metabolite quantification at 14.1 T,” J. Neurochem., vol. 129, pp. Trans. Med. Imag., vol. 39, pp. 545-555, 2019.
806 — 815, 2014. [41] R. Eslami and M. Jacob, “Robust reconstruction of MRSI data using
[18] N. Kunz, C. Cudalbu, V. Mlynarik, P. S. Hiippi, S. Sizonenko, and a sparse spectral model and high resolution MRI priors,” IEEE Trans.
R. Gruetter, “Diffusion-weighted spectroscopy: a novel approach to Med. Imag., vol. 29, pp. 1297-1309, 2010.
determine macromolecule resonances in short-echo time 1H-MRS,”  [42] L. Vanhamme, A. van den Boogaart, and S. V. Huffel, “Improved method
Magn. Reson. Med., vol. 64, 2010. for accurate and efficient quantification of MRS data with use of prior
[19] K. L. Behar, D. L. Rothman, D. D. Spencer, and O. A. Petroff, “Analysis knowledge,” J. Magn. Reson., vol. 129, pp. 35 — 43, 1997.
of macromolecule resonances in 1H NMR spectra of human brain,”  [43] F. Lam, Y. Li, R. Guo, B. Clifford, and Z.-P. Liang, “Ultrafast magnetic
Magn. Reson. Med., vol. 32, pp. 294-302, 1994. resonance spectroscopic imaging using SPICE with learned subspaces,”
[20] 1. Mader, U. Seeger, J. Karitzky, M. Erb, F. Schick, and U. Klose, Magn. Reson. Med., vol. 83, pp. 377-390, 2020. 4
“Proton magnetic resonance spectroscopy with metabolite nulling re-  [44] X. Qu er al., “Accelerated nuclear magnetic resonance spectroscopy with
veals regional differences of macromolecules in normal human brain,” deep learning,” Angew. Chem. Int. Ed., vol. 59, pp. 10297-10 300, 2020.
J. Magn. Reson. Imag., vol. 16, pp. 538 — 546, 2002. [45] J. P. qudar, D. Hernaqdo, S.-K. Spng, and Z.-P. Liang, “Anatomically
[21] K. Snoussi ef al., “Comparison of brain gray and white matter macro- constrained reconstruction from noisy data,” Magn. Reson. Med., vol. 59,
molecule resonances at 3 and 7 Tesla,” Magn. Reson. Med., vol. 74, pp. pp. 810 — 818, 2008.
607-613, 2015. [46] J . Yang and Y Zhang, “éltemating di'rection algorithms for ¢ -problems
[22] 1. Giapitzakis, R. Kreis, and A. Henning, “Characterization of the macro- in compressive sensing,” SIAM J. Sci. Comput., vol. 33, pp. 250 — 278,
molecular baseline with a metabolite-cycled double-inversion recovery 2011; . . “
sequence in the human brain at 9.4 T,” Proc. of Annual Conference of [47] Y. Li, F. Lam, B Clllfford, and Z"R Llang, ,A SPbSl}f’C@ approach
ISMRM, 2016. to‘ spectral quantification for MR spectroscopic imaging,” IEEE Trans.
[23] M. Gottschalk, I. Tropres, L. Lamalle, S. Grand, J.-F. Le Bas, and 48 gzorglea; Eng., VIOI' 5’4’ PpP- 24.86 _?489’ 201.7'
C. Segebarth, “Refined modelling of the short-T2 signal component and (48] ). Stefan et al, Quantitation o n’l’agnenc resonance spectroscopy
o . L . signals: the jMRUI software package,” Meas. Sci. Technol, vol. 20, p.
ensuing detection of glutamate and glutamine in short-TE, localised, 1H 104035. 2009
MR spectra of human glioma measured at 3 T,” NMR Biomed., vol. 29, L . » . o,
[49] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,
pp- 943-951, 2016. . ; .
e . . arXiv preprint arXiv:1412.6980, 2014.
[24] S. W. Provencher, “Estimation of metabolite concentrations from local- . . L .
. L N [50] J. Nocedal and S. J. Wright, Numerical Optimization. Springer, 2006.
ized in vivo proton NMR spectra,” Magn. Reson. Med., vol. 30, pp. . o ;
[51] R. A. de Graaf, In vivo NMR spectroscopy: Principles and techniques.
672-679, 1993. . . L . L John Wiley & Sons, 2019.
[25] S. W. Prpvencher, A’l’ltomatlc .quantltatlon of localized in vivo 1H [52] C. Ma, E. Lam, C. L. Johnson, and Z.-P. Liang, “Removal of nuisance
spectra with LCModel,” NMR Biomed., vol. 14, p}?‘. 260-264, 2001. signals from limited and sparse 1H MRSI data using a union-of-
[26] K. Young, B. J. Soher, and A. A. Maudsley, “Automated spectral subspaces model,” Magn. Reson. Med., vol. 75, pp. 488 — 497, 2016.
analysis II: Application of wavelet shrinkage for characterization of non- [53] M. Hong, Z.-Q. Luo, and M. Razaviyayn, “Convergence analysis of
parameterized signals,” Magn. Reson. Med., vol. 40, pp. 816-821, 1998. alternating direction method of multipliers for a family of nonconvex
[27] H. Ratiney, Y. Coenradie, S. Cavassila, D. van Ormondt, and problems,” SIAM J. Optimz., vol. 26, pp. 337-364, 2016.
D. Graveron-Demilly, “Time-domain Aqua’r’ltitation of 1H short echo-  [54] V. Vapnik and S. Mukherjee, “Support vector method for multivariate
time signals: background accommodation,” Magn. Reson. Mater. Phy., density estimation,” in Proc. of Adv. Neural. Inf. Process. Syst., 1999,
vol. 16, pp. 284-296, 2004. pp. 659-665.
[28] Y. Zhang and J. Shen, “Smoothness of in vivo spectral baseline deter-
mined by mean-square error,” Magn. Reson. Med., vol. 72, pp. 913-922,
2014.
[29] H. H. Lee and H. Kim, “Parameterization of spectral baseline directly

from short echo time full spectra in 1H-MRS,” Magn. Reson. Med.,
vol. 78, pp. 836-847, 2017.



Supplementary Materials

Proof of Theorem 1

We first restate the convergence theorem to be proved.

Theorem 1. There exists a constant py such that if p > po, every limit point of the sequence
(X, 8D generated by the algorithm described in (8), (9), (10), and (11) is a stationary
solution of the optimization problem (7) (i.e. a solution that satisfies the KKT condition).

We first explain more details of the transformation outlined in the proof sketch. Denote
X1 = vec(Xper), Xo = vee(Xpm), Xo = vec(S). Here vec is the standard vectorization
operation of a matrix, i.e. write a matrix (Mij)lgignl’lgjgrm as a vector of size nyny. The main
purpose of this vectorization is to write the linear constraint in the standard form. Denote A
as a diagonal matrix whose diagonal entries are all the entries of vec(B). Then the constraint
B ® (Xet + Xium) = S can be written as AX; + AX, = Xo. To be consistent, we also
need to express the objective as a function of the vectorized variables. Therefore we rewrite
A SN N (X2 ) =X 1|3 as a function of the vectorized variable X, denoted as g (X ).
It is not hard to write down the closed form expression of g;, but for the proof we do not
need this expression, so we skip it. Similarly, we can rewrite Ay 30 [NV (X2,.) — X2 |12,
as a function of Xy, denoted as go(Xs). We rewrite

|d — Q{FXo}]5 + As[|DwB © Xo |7 (16)

as a function of the vectorized variable X, which we denote as ¢(Xj).

Then our optimization problem in Eq. (7) can be written in the general form of

Xleler)l(lzIéXz,Xo o (Xl) o (X2) " €<XO) (17)

s.t. AXl + AX2 = XO.

This is a special case of the sharing problem [1]. And our algorithm (8), (9), (10), (11) is
a special case of Algorithm 4 in [1], which converges to a stationary point under certain
technical conditions described in Assumption C in [1]. Next, we verify these conditions.

Assumption C1 in [1] contains two sub-assumptions: the objective ¢(Xy) is Lipschitz
smooth, and the constraint coefficient matrix A is full column rank (the original sub-
assumption requires the coefficient matrix for each variable is full column rank; here the
coefficient matrix for X; and Xy are the same). The objective function

((Xo) = [ld — U{FXo}3 + A3 DuB © Xo[7 (18)

is a quadratic function of Xy, thus Lipschitz smooth, i.e., there exists L such that ||V{(X,) —
VI(Xo)||r < L||Xo — Xol|p. for any Xo,Xo. In fact, L can be chosen as the maximum
eigenvalue of the Hessian of ¢(Xj). This verifies the first sub-assumption. Recall that A is
a diagonal matrix whose diagonal entries are all the entries of vec(B). Based on the MRSI
physics, each entry of B is a non-zero number, thus A has full column rank. This verifies
the second sub-assumption.
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Assumption C2 in [1] contains two sub-assumptions: the subproblems are strongly con-
vex with modulus v1(p),72(p) and ~o(p) respectively (these quantities may depend on p,
thus appear in the bracket), and the penalty parameter p satisfies p > max{2L?/v,(p), 2L?}.
Since the feasible set of X; is bounded, the minimum eigenvalue of the Hessian of ¢;(X;)
has a lower bound A.;,. For any 6 > 0, if we pick p > (0 — Apin)/ min, ; |B; |, then the
subproblem defined in (8), (9) is strongly convex with modulus at least §. The subproblem
defined in (10) is strongly convex with modulus at least p (since the final term is a quadratic
function with the second order coefficient being p/2), i.e., v(p) > p. Thus the first sub-
assumption holds. Since v5(p) > p, we only need to pick p > max{v/2L,2L?} to satisfy the
second sub-assumption p > max{2L?/yo(p), 2L?}.

Assumption C3 requires that the objective function is lower bounded. In our problem,
the objective function is non-negative, thus this assumption holds.

Assumption C4 requires that g;’s are smooth functions (possibly non-convex) and are
Lipschitz smooth, i.e., there exists L; such that

IVg:i(X,) — Vgi(Xy)|| < Li|| X, — X, VX, X € X (19)

As we are using smooth activation functions in the neural networks, the neural network
mappings N,,.; and N,,,, are both smooth functions of the input. The function g; consists
of two terms, each of which is a concatenation of the quadratic loss function and a neural
network mapping, thus g; is smooth. Since the feasible set &} is a bounded set, the maximum
eigenvalue of V2g; has an upper bound L; in the feasible set. Thus there exists L; such that
(19) holds.

Now we have verified Assumption C in [1]. Applying [1, Theorem 3.4], we obtain the
desired convergence result.



Numerical Phantom Generation

Segmented brain compartments and tissue fraction maps, i.e., gray matter (GM), white mat-
ter (WM), and cerebrospinal fluid (CSF), were first obtained from an experimentally acquired
brain T3-weighted MPRAGE image (by SPM12, https://www.fil.ion.ucl.ac.uk/spm/). Com-
partmental concentrations and 7% /linewidths for the metabolites and MMs were assigned
by adapting literature values [2-4]. More specifically, for metabolites (NAA, Glu, Crl, Cr2,
ml, Gln, Cho, GABA, GSH, and Lac), the concentrations (¢,,) in the GM were 12.25, 9.25,
7.5, 4.25, 6.5, 9.25, 2.5, 1.5, 2.25, and 0.6 mM, respectively. And the T5s were 250, 80, 150,
150, 150, 80, 200, 80, 70, and 220 ms, respectively. The concentrations for the WM were
decreased by 30% with the Ty randomly decreased by 15%-20% for different molecules. In
addition, the concentrations for all molecules in the CSF were assigned to be 0.1% of the
concentrations in GM. For MMs (peaks located at 0.9, 1.21, 1.38, 1.63, 2.01, 2.09, 2.25,
2.61, 2.96, 3.11, 3.67, 3.8, and 3.96 ppm), the relative concentrations coefficients (b;) in the
GM were 0.72, 0.28, 0.38, 0.05, 0.45, 0.36, 0.36, 0.04, 0.2, 0.11, 0.64, 0.07, 1, respectively.
And the linewidths (W;) were 21.2, 19.16, 15.9, 7.5, 29.03, 20.53, 17.89, 5.3, 14.02, 17.89,
33.52, 11.85, 37.48 Hz, respectively. Similarly, the concentrations coefficients for the WM
were decreased by 30% with the linewidths remains the same for different MMs. And the
concentrations for all MMs in the CSF were also assigned to be 0.1% of the concentrations
in GM. Next, a global scaling factor (similar to [4], on top of the individual coefficieint varia-
tions) for MM signals were introduced to reflect experimentally observed metabolite-to-MM
signal ratios. The regional concentrations and linewidths were subsequently combined using
the tissue fraction maps as weightings in a voxel-by-voxel fashion, generating continuously
varying concentration and linewidth maps. A lesion-like feature was generated in the image
with a significantly altered metabolite ratio, i.e., a factor of 3 higher Cho concentration and
a factor of 3 lower concentrations for other metabolites compared to the GM. Finally, the
simulated metabolite basis ({vy,}) and the spectral parameters at different voxels were fed
into Eq. (2) to synthesize FIDs at individual voxels. To mimic practical scenarios, we also
simulated voxel-dependent random frequency shifts for different molecules (with mean zero
and a standard deviation of 5 Hz) as well as residual By field inhomogeneity (mean zero and a
standard deviation of 10 Hz). Noisy data were simulated by adding complex white Gaussian
noise. The SNR is defined as the ratio between the maximum NAA peak amplitude (across
the NAA map) and noise standard deviation (o):

SNR — maxy ’P(I‘a fNAA)|7

o

where fyaa denotes the NAA peak frequency at around 2 ppm.
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Supplementary Figures
This section shows the supplementary results mentioned in the main text.

Combined Metabolite Macromolecule

— True spectra
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Figure S1: Reconstructed and separated spectra produced by the proposed method from
the same data used in Figs. 3-7 with the real parts of the spectra shown (phase corrected).
The voxel locations are marked (red squares) in the anatomical images on the left. The first
row shows the results from the simulation phantom, while the second and third rows show
spectra from the in vivo FID-MRSI and sLASER data, respectively.
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Figure S2-1: Experimental results from another volunteer (data acquired using the FID-
MRSI sequence with TR/TE = 1500/4 ms, FOV = 220 x 220 mm?, slice thickness = 10 mm,
matrix size = 24 x 24, spectral bandwidth = 2000 Hz, and 512 FID samples): a) and b)
Maps of NAA, Cr, and MM estimated from the separated signals produced by the proposed
method (a) and the direct parametric fitting method (b). The maps were overlaid on an
anatomical image for the matched slice; ¢) Spatially-resolved spectra (voxel location marked
by the blue symbol) with the first and second rows showing the results from the proposed
method (orange) and parametric fitting (blue), respectively. The original spectra are shown
in black. A similar comparison to other data can be observed, with the results from the
proposed method showing less spatial artifacts and less spectral under/over estimation.
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Figure S2-2: Same as Fig. S2-1 with spectra shown in real parts.
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Figure S3: Simulation results from data with a higher SNR (SNR=60) a) A representative
spectrum (real parts) from the phantom illustrating the noise level; b) Mapping results from
the data: maps of NAA, Cr, Cho, and MM (~0.9 ppm peak) from the ground truth (Gold
Standard, column 1), the direct parametric fitting method (column 2), and the proposed
method (column 3) are compared, along with relative ¢y errors for the separated metabolite
and MM signals (shown in images). With the higher SNR, reduced spatial variances and
lower errors can be observed, as expected.
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Figure S4: The DAE structure used. X denotes the collection of FID training data (each with
a length T'). The real and imaginary parts of these data are concatenated (thus a dimension
of 2T") to be used as input to the network. The DAE uses a fully connected “bottleneck”
structure with an encoder (red) and a decoder (blue), and a middle feature layer with a
dimension L (also referred to as the model order for our learned representations).
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Figure S5: Experimental results from the in vivo FID-MRSI (top panel) and sLASER data
(bottom panel). The top rows in each panel contain the molecular maps (NAA, Cr, Cho,
Glu and MM) estimated from the separated signals produced by the proposed method (a
and c), while the second rows in each panel the direct parametric fitting results (b and d).
As can be seen, all the maps from the proposed method exhibit substantially less artifacts
than those from the direct fitting, consistent with the comparison shown in the main text.
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Figure S6: Comparison of the in-house fitting implementations against that provided by the
jMRUI package. Different metabolite and MM spectra were simulated using experimental

spectral parameters. As can be seen, our implementation produced almost the same results
as those from jMRUI.
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