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Abstract

The standard approach to fitting an autoregressive spike train model is to maximize
the likelihood for one-step prediction. This maximum likelihood estimation (MLE)
often leads to models that perform poorly when generating samples recursively for
more than one time step. Moreover, the generated spike trains can fail to capture
important features of the data and even show diverging firing rates. To alleviate
this, we propose to directly minimize the divergence between neural recorded
and model generated spike trains using spike train kernels. We develop a method
that stochastically optimizes the maximum mean discrepancy induced by the
kernel. Experiments performed on both real and synthetic neural data validate the
proposed approach, showing that it leads to well-behaving models. Using different
combinations of spike train kernels, we show that we can control the trade-off
between different features which is critical for dealing with model-mismatch.

1 Introduction

Determining the functional relationship between stimuli and neural responses is a central problem
in neuroscience. A standard approach is to build a probabilistic generative model and estimate
its parameters by maximizing the likelihood of the data under the model. This framework has
been applied in diverse scenarios describing the activity of single neurons and coupled populations,
extracting low dimensional latent dynamics underlying the data and decoding stimuli that produces
neural activity. The extracted model parameters are useful as they allow one to gain insights on the
relationship between the observed neural activity, its covariates and the intrinsic dynamics.

However, maximum likelihood estimation (MLE) focuses on making the data likely under the
assumed model without really assessing the behavior of the actual samples that the model generates.
MLE often leads to models that are unstable, operate at unphysiological regimes or generate samples
that fail to capture relevant features of the data. This harms model interpretation and it is a big
drawback if the obtained model is intended to be used in simulations.

In machine learning, big improvements in generative modeling were achieved when alternative ap-
proaches leading to different loss functions were considered. In their original formulation, Generative
Adversarial Networks [1] minimize an approximation to the Jensen-Shannon divergence by training a
discriminator model that evaluates sample quality. More recent works have proposed to minimize
other loss functions such as the Wasserstein distance [2] and the Maximum Mean Discrepancy
(MMD) [3–5].

While these works have focused on the use of deep neural networks to generate synthetic images,
models in neuroscience are usually autoregressive and they emphasize interpretability. Here we
propose to complement likelihood based approaches with MMD minimization for the autoregressive
models that are typically used in neuroscience. Using spike train kernels, MMD can evaluate different
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history (3) produces stable one-step predictions. However, for the same parameters, if one sampled
trajectories using ancestral sampling from (2), runaway self-excitation might be generated. To
illustrate this, consider one of the simplest autoregressive models, the linear autoregressive model of
order p, AR(p):

Xt =

p
∑

τ=1

aτXt−τ + ǫt (4)

where {ǫt}t are white Gaussian noise, and θ = {a1, . . . , ap, var(ǫt)}. For AR(p) models, the MLE could
result in unstable parameter regime of self-amplification when the poles of the linear system are
close to the unit circle [11, Ch. 10]. Fortunately, the condition of stability is exactly known for
AR(p) models, and an estimator that constrains parameters to lie within the stable regime has been
developed [11, Ch. 10]. For instance, for AR(1), |a1| < 1 guarantees stability and stationarity, while
|a1| > 1 guarantees instability.

However, beyond those linear models, the intractability of the free-running distribution makes it
difficult to directly optimize for it. For instance, the autoregressive point process models, often
referred to as the generalized linear models (GLMs) in neuroscience [12, 13], suffer from the issue of
instability as well:

Xt ∼ Poisson (λ(X<t, u<t; θ)) (5)

λ(X<t, u<t; θ) = exp
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(6)

where θ = {{hτ}τ, {aτ}τ, b} are the parameters, {hτ}τ and {aτ}τ are referred to as the history filter and
stimulus filter, respectively, and b ∈ R is the bias. Self-excitation in the inferred history filter has been
observed on both short and long time scales, with different proposed causes: bistable or overdispersed
data [14], periodic or bursting patterns [15], omitted covariates [16], ramping firing rates [17], and
lack of data [18]. These history filters have the potential to generate runaway self-excitation. Recently,
a number of approaches have attempted a resolution for the point process GLM and related models:
Gerhard et al. [19] approximate the free-running distribution over the history using a quasi-renewal
process approximation which is later extended by Chen et al. [18]. Rule and Sanguinetti [20] also
provide an approximation of this distribution using moment matching. On the other hand, Hocker
and Park [21] use Gibbs sampling to obtain the marginalized free-running likelihood for multi-step
prediction which is computationally prohibitive. In this paper, we take a fresh stab at this problem.

2.2 Goodness-of-fit measures

To complicate the matter, the goodness-of-fit measures often assume the data-conditioned likelihood.
As a result, the standard log-likelihood based measures such as deviance, information, or pseudo-
r2 [13] as well as the quantification of interval distribution using the time-rescaling theorem [22]
fail to reliably predict whether the fit model would generate free-running samples similar to the
data [19, 21]. Here we discuss various forms of goodness-of-fit measures for GLM-like models which
could be also useful for fitting.

A statistical divergence is a non-negative function that quantifies how dissimilar two distributions
are [23], thus it can be used as a goodness-of-fit measure: the smaller the divergence, the better the

fit. Consider the Kullback-Leibler (KL) divergence dKL(p̂ || q(θ)) ≔ EX∼ p̂

[

log
p̂(X)

q(X|θ)

]

between the

empirical data distribution p̂ and the data-conditioned likelihood q(θ) from (3), where p̂({Xt}t) =
∏

t δ(Xt − xt). In this context, the standard MLE is equivalent to minimizing the KL divergence, that
is,

θMLE = argmin
θ

dKL( p̂ || q(θ)) = argmax
θ

q({xt}t | {xt}t, θ) = argmax
θ

∏

t

p(xt | x<t, θ). (7)

As our goal is to find a model that can generate time series that resemble the data, it naturally leads to
the following minimum divergence estimation (MDE):

θMDE = argmin
θ

d( p̂ || p(θ)) (8)

where d is a divergence and p is the free-running likelihood of (2). From this first principle, our
challenge is finding a divergence such that the optimization (8) is computationally feasible. Unlike in
the standard MLE, using KL divergence generally results in an intractable objective function.
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We investigate a widely used kernel-induced statistic called maximum mean discrepancy (MMD) [24].
Given a positive definite kernel k, we can embed a probability measure p in the corresponding

reproducing kernel Hilbert space H , i.e., p 7→ pk ≔

∫

k(·, x) dp(x) ∈ H . MMD measures the
distance between the kernel embeddings,

dMMD(p, q) = ‖pk − qk‖H = sup
f∈F

(

E
X∼p

[ f (X)] − E
X∼q

[ f (X)]
)

(9)

where F is a unit-ball in H [24]. To find parameters θ that generate free-running samples similar to
the data, we can minimize dMMD(p̂, p(θ)), the MMD between the empirical data distribution p̂ and
the free-running distribution p(θ). Depending on the choice of kernel, MMD differentially weighs the
features in the input space. Hence, MMD can be tuned to produce goodness-of-fit statistics sensitive
to that of the inducing kernel. Importantly, if the kernel k is characteristic, the induced MMD is a
divergence (and a metric), i.e., it vanishes if and only if the two distributions are identical [25].

2.3 MMD Professor Forcing

Given parameters θ and a time series {xt}t, if the free-running (2) and data-conditioned (3) distributions
agree, we might expect p(θ) to be a good description of p̂. If the data is stable, the free-running
behavior of the model won’t diverge from the data-conditioned behavior. This is the idea introduced
by Professor Forcing [9] where they encouraged the behavior generated by a RNN in free-running and
teacher forcing modes to be the same. Then, MMD based goodness-of-fit that measure the closeness
between q(θ) and p(θ) can be used. Note that for autoregressive models, the agreement between
the free-running and data-conditioned distributions may be trivially achieved if the model does not
depend on the history (e.g., Poisson process). Thus these MMDs cannot be optimized on its own.
Fig. 1B illustrates the ideas here with various possible model parameters and their corresponding
conditional distributions. While both qθ1 and qθ2 are both only slightly worse than qθMLE

in explaining
data, their corresponding free-running distributions can be very dissimilar (e.g., pθ2 and pθMLE

) or very
close (e.g., pθ1 ). Informally, if both dKL( p̂, qθ) and dMMD(qθ, pθ) are small, we might expect d( p̂, pθ)
to be small too, leading to a faithful generative model.

3 Minimizing empirical MMD

Given a kernel k and its associated feature map φ : X 7→H , using the kernel trick 〈φ(X), φ(X′)〉H =

k(X, X′), we can write the (squared) MMD between the empirical data distribution p̂ and the free-
running distribution p on X as,

dMMD(p̂, p)2 = ‖ E
X∼p̂

[φ(X)] − E
X′∼p

[φ(X′)]‖2
H

(10)

= E
X,X′∼p̂

[k(X, X′)] + E
X,X′∼p

[k(X, X′)] − 2 E
X∼p̂,X′∼p

[k(X, X′)]. (11)

Minimizing MMD is then equivalent to minimizing the difference in the statistics represented by φ
between the two distributions. Given N samples x drawn from the data p̂ and M samples x′ drawn
from the free-running distribution p, an unbiased empirical estimator of MMD squared is

d̂MMD( p̂, p)2 =

N
∑

i=1

N
∑

j=1

i, j

k(xi, x j)

N(N − 1)
+

M
∑

i=1

M
∑

j=1

i, j

k(x′
i
, x′

j
)

M(M − 1)
− 2

N
∑

i=1

M
∑

j=1

k(xi, x
′
j
)

NM
.

(12)

A biased estimator of MMD squared is described in the Appendix. Unlike for MLE, d̂MMD involves
generating samples from the model and measuring their similarity to the data. We propose to minimize
MMD by gradient descent on the model parameters. We provide two different variants that rely on
different assumptions on the kernel used, and result in different bounds on the variance of the MMD
gradient estimator.

3.1 Score function estimator of squared MMD’s gradient

In general, the only dependence of MMD on the model parameters is through the expectations over
the model’s samples in Eq. (11). For models with tractable likelihood, given a sample x′ we can
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evaluate p(x′; θ). We can then rewrite squared MMD’s gradient as

∇θ dMMD( p̂, p)2 = 2Ex,x′∼p[∇θ log p(x′; θ)k(x, x′)] − 2Ex∼p̂,x′∼p[∇θ log p(x′; θ)k(x, x′)]. (13)

where ∇θ log p(x′; θ) is known as the score function [26] (derivation in the Appendix). Given N
samples x from p̂ and M samples x′ from p, we can compute a stochastic empirical estimate of the
gradient following

∇θ d̂MMD( p̂, p)2 = 2

M
∑

i=1

M
∑

j=1

i, j

∇θ[log p(x′
j
, θ)]k(x′

i
, x′

j
)

M(M − 1)
− 2

N
∑

i=1

M
∑

j=1

∇θ[log p(x′
j
, θ)]k(xi, x

′
j
)

NM
(14)

This is the score function estimator of squared MMD’s gradient. In principle, this procedure can be
used to minimize MMD for arbitrary kernels in the space of spike trains [27].

3.2 MMD Professor Forcing with model based kernels

Although the estimator in Eq.(14) is general, score function estimators tend to have large variance [26].
Here we introduce a different variant of MMD that helps alleviate this problem. We will encourage
a model’s free-running dynamics to match its data conditioned dynamics by using feature maps
(kernels) derived from the model we want to fit. Explicitly, given a model with parameters θ, we can
define a feature map φ : x 7→ ν(θ) ∈ ℓ2 introducing an explicit dependence on the model parameters
in the feature map and therefore in dMMD. Hence, minimizing the induced MMD is equivalent to
matching the model’s behavior conditioned on samples from either distribution.

We illustrate this idea with an example using the autoregressive GLM of Eqs. (5), 6. Given a spike
train x and parameters θ, the GLM assigns a time dependent conditional intensity (CI) λ(x, θ) given
by Eq. 6. If the CI conditioned on the GLM’s free-running spike trains is similar to the CI conditioned
on the data, we might expect the GLM’s free-running dynamics to better match the data overall.
A natural choice of model based kernel to achieve this could be k(X, X′; θ) = 〈λ(X; θ), λ(X′; θ)〉 =
∑

t λt(X<t; θ)λt(X
′
<t; θ) resulting in

dMMD( p̂, p)2 = ‖ E
X∼ p̂

[λ(X; θ)] − E
X′∼p

[λ(X′; θ)‖2 (15)

where the squared norm summation is over time.

In general, for any kernel that is a continuous function of θ [26], we can compute the induced MMD
squared with Eq. 11 and its gradient with

∇θ d̂MMD(p̂, p)2 =

N
∑

i=1

N
∑

j=1

i, j

∇θ k(xi, x j; θ)

N(N − 1)
+

M
∑

i=1

M
∑

j=1

i, j

∇θ k(x′
i
, x′

j
; θ)

M(M − 1)
− 2

N
∑

i=1

M
∑

j=1

∇θ k(xi, x
′
j
; θ)

NM
(16)

where we consider the samples generated from the model fixed. 1 Model based kernels introduce an
explicit dependence on the model parameters, making the optimization procedure more robust and
improving convergence. Model based MMDs are not characteristic in general; The statistics they can
match will always be limited by the used model’s capacity and zero MMD might be achieved with
trivial θ. Therefore, these model based MMDs have to be jointly optimized with the likelihood (see
section 2.3).

4 Experiments

We demonstrate in the following experiments that it is possible to minimize MMD as described
before in both simulated and real data.The following link contains the code used to fit the models
https://github.com/diegoarri91/mmd-glm.

5









that the MMD penalty term can act as a regularizer, helping overfitting. The MMD optimized
models captured the mean and cv of the interspike interval distribution with different degrees of
accuracy (Figs.4D,E). All MMD optimizations improved model stability over MLE showing very
low probabilities of runaway self-excitation (Fig.4F). Model 3 showed the worst stability with a
median value over optimizations of 0.1% of samples showing runaway self-excitation. Even this
low proportion of diverging samples has a big effect on the mean autocorrelation (Fig.4G). Although
model 4 has a very small probability of generating a diverging sample, model 5 shows that increasing
MMD’s weight α further reduces this probability at the expense of penalizing other statistics. For
all optimizations, all the samples drawn from model 5 were stable. This indicates again that the
framework can be used to encourage stable parameters using α to control the trade-off between the
different features.

5 Discussion

Taking ideas from generative modeling in machine learning, we propose to minimize alternative
objective functions to the likelihood as a way to improve sample quality of neural generative models.
Here we focused on formulating the framework and exploring the use of different kernels while
limiting ourselves to a single model. However, the ideas exposed here can be easily applied to any
autoregressive generative model and potentially the benefits could be bigger for more complex models
than the point process GLM. In neuroscience, the framework can be easily applied to coupled GLMs,
rate and spiking neural networks and dimensionality reduction models.

The main limitation of our proposal is the need to sample and compute kernel similarity during the
optimization procedure. Computation can be reduced in many ways. As we did here, MLE can be
used for parameter initialization and optimization objectives that jointly use MMD and the likelihood
may accelerate convergence. For the score function estimator of MMD’s gradient, there are available
methods to control its variance and potentially accelerate convergence.

Broader Impact

Bridging the gap between statistical neuroscientific models such as autoregressive point processes and
dynamical systems is a substantial challenge not only from the perspective of generative modelling
but also in terms of allowing a dynamical interpretation, that carries with it all the niceties that are
afforded by stochastic dynamical systems. As such, while the motivation we drew up on comes from
neuroscience, modelling, simulating and analyzing point process dynamics has a broad applicability
to biological sciences and other fields.Our method has potential use in modelling within social
sciences, geophysics (e.g. earthquakes), astrophysics and finance. In many of those areas stable
inference and simulation of future events would directly enable the ability to discern and shape social
and economic trends, or effect policy safeguarding against baleful events.
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